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Abstract. Error-quantified, synoptic-scale relationships be-
tween chlorophyll-a (Chl-a) and phytoplankton pigment
groups at the sea surface are presented. A total of ten pig-
ment groups were considered to represent three Phytoplank-
ton Size Classes (PSCs, micro-, nano- and picoplankton) and
seven Phytoplankton Functional Types (PFTs, i.e. diatoms,
dinoflagellates, green algae, prymnesiophytes (haptophytes),
pico-eukaryotes, prokaryotes andProchlorococcussp.). The
observed relationships between Chl-a and PSCs/PFTs were
well-defined at the global scale to show that a community
shift of phytoplankton at the basin and global scales is re-
flected by a change in Chl-a of the total community. Thus,
Chl-a of the total community can be used as an index of
not only phytoplankton biomass but also of their commu-
nity structure. Within these relationships, we also found non-
monotonic variations with Chl-a for certain pico-sized phy-
toplankton (pico-eukaryotes, Prokaryotes andProchlorococ-
cussp.) and nano-sized phytoplankton (Green algae, prym-
nesiophytes). The relationships were quantified with a least-
square fitting approach in order to enable an estimation of the
PFTs from Chl-a where PFTs are expressed as a percentage
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of the total Chl-a. The estimated uncertainty of the relation-
ships depends on both PFT and Chl-a concentration. Max-
imum uncertainty of 31.8% was found for diatoms at Chl-
a = 0.49 mg m−3. However, the mean uncertainty of the rela-
tionships over all PFTs was 5.9% over the entire Chl-a range
observed in situ (0.02< Chl-a < 4.26 mg m−3). The rela-
tionships were applied to SeaWiFS satellite Chl-a data from
1998 to 2009 to show the global climatological fields of the
surface distribution of PFTs. Results show that microplank-
ton are present in the mid and high latitudes, constituting
only ∼10.9% of the entire phytoplankton community in the
mean field for 1998–2009, in which diatoms explain∼7.5%.
Nanoplankton are ubiquitous throughout the global surface
oceans, except the subtropical gyres, constituting∼45.5%,
of which prymnesiophytes (haptophytes) are the major group
explaining∼31.7% while green algae contribute∼13.9%.
Picoplankton are dominant in the subtropical gyres, but con-
stitute∼43.6% globally, of which prokaryotes are the major
group explaining∼26.5% (Prochlorococcussp. explaining
22.8%), while pico-eukaryotes explain∼17.2% and are rela-
tively abundant in the South Pacific. These results may be of
use to evaluate global marine ecosystem models.
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1 Introduction

Phytoplankton play numerous roles in ocean biogeochemi-
cal cycling: CO2 is utilised to form organic matter via pho-
tosynthetic processes and is then released through respira-
tion; macro- and micronutrients are assimilated by phyto-
plankton for their metabolic needs. While these processes
are common to all phytoplankton, some species have specific
chemical requirements for their distinct physiological pro-
cesses, thereby fulfilling a range of different functional roles
in ocean biogeochemical cycles: Si is utilised by diatoms, Ca
by coccolithophores and N2 by some cyanobacteria (e.g.Tri-
chodesmium). Some phytoplankton such as dinoflagellates
and prymnesiophytes (haptophytes) appear responsible for
enhanced dimethylsulfoniopropionate (DMSp) production in
the ocean, contributing to an exchange of S between the
ocean and atmosphere (Sunda et al., 2002). These func-
tional differences have led to phytoplankton being classified
according to their biogeochemical functions.

In order to quantify the contributions of these phytoplank-
ton functional types (PFTs) to biogeochemical cycling on a
global scale, it is first important to understand their spatio-
temporal variability throughout the oceans. Ocean biogeo-
chemistry and ecosystem models, such as NEMURO (Aita
et al., 2007; Hashioka and Yamanaka, 2007; Kishi et al.,
2007), ERSEM (Blackford et al., 2004; Petihakis et al.,
2005), PlankTOM-5 and -10 (Le Quéŕe et al., 2005; Le Qúeŕe
and Pesant, 2009) and NOBM (e.g. Gregg et al., 2003; Gregg
and Casey, 2007), can be used to investigate the processes re-
sponsible for spatial and temporal variability of phytoplank-
ton populations at large scales and provide some potential
for forecasting future ocean states. The populations within
these models are generally based on biogeochemical func-
tion (usually linked to size), rather than explicit taxonomy.
Validation of these models is essential, which is cumbersome
when large spatial and temporal scales are concerned (Allen
et al., 2010), so a globally consistent approach based on a
functional classification of marine phytoplankton groups is
required.

In general, the agreement between functional- and
taxonomic- or size-based classifications, while far from uni-
versal, is adequate for comparisons to be undertaken with
current model estimates. The close similarity between the
functional classification of Le Qúeŕe et al. (2005) and size
structure or taxonomic groupings (Sieburth et al., 1978; mi-
croplankton>20 µm, nanoplankton 20–2 µm, picoplankton
<2 µm) is shown in Table 1. On the other hand, direct es-
timation of phytoplankton community structure at basin to
global scales is non-trivial. Traditional microscopic obser-
vations, flow cytometry, pigment and DNA analyses have
all been used to classify phytoplankton community struc-
ture in situ. Pigment analysis by High Performance Liq-
uid Chromatography (HPLC) has become increasingly pop-
ular in oceanography because of the relatively large num-
ber of samples that can be collected and analysed rapidly,

categorizing the phytoplankton community (at least accord-
ing to broad classes based on size or taxonomy) much faster
than with traditional microscopy. Even so, spatial and tem-
poral coverage is inevitably limited by the mismatch in scales
between in situ observational capabilities and the vast size of
the oceans.

Since the launch of space-borne ocean colour sensors,
satellites have been able to provide a continuous record of
multi-spectral optical observations of the ocean surface, that
at certain wavelengths are strongly affected by concentra-
tions of the ubiquitous photosynthetic pigment, chlorophyll-
a (Chl-a). As a result, ocean colour measurements have been
used to observe Chl-a at the global scale (O’Reilly et al.,
1998). From this proxy of phytoplankton biomass, variations
in oceanic phytoplankton populations and global marine pri-
mary production have been investigated (e.g. Longhurst et
al., 1995; Behrenfeld and Falkowski, 1997; Behrenfeld et
al., 2006; Polovina et al., 2008). More recently, this tech-
nology has revealed the capability for more in depth inves-
tigation of phytoplankton community structure by means of
Phytoplankton Functional Types, PFTs, or size classes, PSCs
(e.g. Ciotti and Bricaud, 2006; Sathyendranath et al., 2004;
Alvain et al., 2005, 2008; Devered et al., 2006; Uitz et al.,
2006; Aiken et al., 2007, 2009; Hirata et al., 2008; Raitsos
et al., 2008; Bracher et al., 2009; Brewin et al., 2010, 2011;
Mouw and Yorder, 2010; Kostadinov et al., 2010), allowing
the extrapolation of in situ PFT/PSC descriptions to larger
spatial scales with better temporal resolution, thus providing
a method to more adequately evaluate biogeochemical and
ecosystem models.

The current suite of satellite PFT algorithms are derived
from either (1) the “dominance” of specific PFTs or size
classes without estimation of their fractional contributions to
the overall phytoplankton community (Sathyendranath et al.,
2004; Alvain et al., 2005, 2008; Hirata et al., 2008; Rait-
sos et al., 2008), or (2) a limited number of phytoplank-
ton groups (Devred et al., 2006; Uitz et al., 2006; Bracher
et al., 2009; Brewin et al., 2010; Kostadinov et al., 2010),
for which the fractional contribution is in some cases esti-
mated. This paper bridges the gap between these approaches
by estimating the fractional contribution of an increased
number of PFTs (7 PFTs), partitioned within 3 size classes
where appropriate. The novelty of this work is that, in ad-
dition to size classes such as micro-, nano- and picoplank-
ton, we estimate diatoms, dinoflagellates, prymnesiophytes
(haptophytes), green algae, pico-eukaryotes, prokaryotes and
Prochlorococcussp. These PFTs have not been globally
estimated simultaneously from satellite by previous stud-
ies. The relationships between phytoplankton Chl-a concen-
trations and the phytoplankton functional types determined
from their biomarker pigments were quantified from a global
in situ data set, and the uncertainty of these relationships
was assessed to enable satellite observations of PFT fields
throughout the World’s oceans.
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Table 1. Phytoplankton Size Classes (PSCs) and Phytoplankton Functional Types (PFTs) represented by their pigments.

PSCs/PFTs Diagnostic Pigments Estimation Formula

Microplankton(>20 µm)∗2 Fucoxanthin (Fuco), Peridinin (Perid) 1.41 (Fuco + Perid)/6DP∗2

Diatoms Fuco 1.41 Fuco/6DP∗2

Dinoflagellates Perid 1.41 Perid/6DP∗2

Nanoplankton (2–20 µm)∗1 19’-Hexanoyloxyfucoxanthin (Hex) (Xn∗1.27 Hex + 1.01 Chl-b
+ 0.35 But + 0.60 Allo)/6DP∗3

Chlorophyll-b (Chl-b)
Butanoyloxyfucoxanthin (But)
Alloxanthin (Allo)

Green algae Chl-b 1.01 Chl-b/6DP∗2

Prymnesiophytes∗4 Hex, But
(Haptophytes)
Picoplankton (0.2–2 µm)∗1 Zeaxanthin (Zea), Hex, Chl-b (0.86 Zea + Yp1.27 Hex)/6DP∗3

Prokaryotes Zea 0.86 Zea/6DP∗2

Pico-eukaryotes∗5 Hex, Chl-b
Prochlorococcussp. Divinyl Chlorophyll-a (DVChl-a) 0.74 DVChl-a/Chl-a

∗1 Sieburth et al. (1978)
∗26DP = 1.41 Fuco + 1.41 Perid + 1.27 Hex + 0.6 Allo + 0.35 But + 1.01 Chl-b + 0.86 Zea = Chl-a (Uitz et al., 2006)
∗3 Xn indicates a proportion of nanoplankton contribution in Hex. Similarly Yp indicates a proportion of picoplankton in Hex, (Brewin et al., 2010)
∗4 Given that contributions of Allo to nanoplankton were only a few percent in our data set, haptophytes were approximated to Nano minus Green Algae (see also Fig. 2 caption)
∗5 Pico-eukaryotes can be determined from picoplankton minus prokaryotes (see also Fig. 2 caption).

2 Data and methods

Phytoplankton pigments derived from High Performance
Liquid Chromatography (HPLC) were obtained from various
sources, including data collected between 1997–2004 by the
Atlantic Meridional Transect programme (AMT) operated by
the Plymouth Marine Laboratory (PML, UK) and Natural
Environmental Research Council (NERC, UK), the BEA-
GLE cruise in 2003–2004 by Japan Agency for Marine-Earth
Science and TEChnology (JAMSTEC, Japan), data from
1995–2008 in the SeaWiFS Bio-optical archive and Stor-
age System (SeaBASS) operated by the National Aeronautics
and Space Administration (NASA, USA), data from 1995–
2003 in the NASA bio-Optical Marine Algorithm Dataset
(NOMAD), the SEEDS II iron enrichment experiment in
2004 by the University of Tokyo (Japan), A-line stations in
2005 by Fisheries Research Agency (FRA, Japan), and the
Oshoro-Maru cruise by Hokkaido University (HU, Japan) in
2004–2006 (Fig. 1). The data were quality controlled in
the following way: Individual pigment data were visually
checked and data of clear low-quality (e.g. continuously re-
peated value over several stations within a cruise, typically
low values, suspected as outside the detection limits of an
instrument) were removed. Further outliers were determined
from the regression of accessory pigments against Chl-a con-
centration, excluding values beyond the 95% confidence in-
terval of the regression (Aiken et al., 2009). The data were
then sorted by numerical value of Chl-a and smoothed with
a 5-point running mean low-pass filter to improve the sig-
nal to noise ratio (Hirata et al., 2008; Brewin et al., 2010).

This resulted in a database of 3966 observations. From the
quality controlled data, 70% were used for algorithm devel-
opment and 30% were reserved for validation. The validation
dataset were constructed in such a way that 30% of each sub-
dataset (i.e. each cruise or dataset described previously) was
sub-sampled using a random number generator, to ensure that
each sub-dataset evenly contributed to the validation dataset.

SeaWiFS 9 km Level-3 monthly composites of Chl-a data
(O’Reilley et al., 1998) for the period 1998–2009 were ob-
tained from NASA Goddard Space Flight Centre using the
2009 reprocessing which has resulted in improved atmo-
spheric and radiometric corrections, more comprehensive vi-
carious calibration and corrections to instrument calibration
drift over the time series. Validation results show substan-
tially improved agreement with in situ measurements in tur-
bid and highly productive waters (seehttp://oceancolor.gsfc.
nasa.gov/REPROCESSING/R2009/and linked forum topics
for further details). In order to focus on oceanic waters,
coastal and shelf waters (<200 m) were masked out in the
SeaWiFS Chl-a data, using the ETOPO5 bathymetry (Na-
tional Geophysical Data Center, 1988).

Diagnostic Pigment Analysis (DPA) is applied to classify
phytoplankton types from HPLC pigment data (Vidussi et
al., 2001). DPA defines a suite of Diagnostic Pigments
(DP) for specific PFTs that can be quantified relative to the
sum of all DP concentrations (i.e. DP/6DP) to estimate the
relative abundance of a specific PFT (Table 1). The DPA
procedure, originally proposed by Vidussi et al. (2001),
was subsequently refined by Uitz et al. (2006) to scale
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Table 2. Equations to estimate fractions [0.0–1.0] of PSCs (Micro-, Nano- and Picoplankton) and PFTs (other). Set PFT fraction to 1.0 if
>1.0, and 0 if<0. To get % Chl-a, multiply 100 to the fractions derived.

PSCs/PFTs Formula a0 a1 a2 a3 a4 a5 a6

Microplankton [a0 + exp (a1x + a2)]−1 0.9117 −2.7330 0.4003
Diatoms [a0 + exp (a1x + a2)]−1 1.3272 −3.9828 0.1953 – – – –
Dinoflagellates (= Micro-Diatoms) – – – – – – –
Nanoplankton (= 1-Micro-Pico) – – – – – – –
Green Algae (a0/y) exp [a1(x + a2)2] 0.2490 −1.2621 −0.5523 – – – –
Prymnesiophytes (' Nano-Green Algae) – – – – – – –
(Haptophytes)
Picoplankton – [a0 + exp (a1x + a2)]−1 + a3x + a4 0.1529 1.0306 –1.5576 –1.8597 2.9954 – –
Prokaryotes (a0/a1/y) exp [a2(x + a3)2/a2

1]
+ a4 x2 + a5x + a6 0.0067 0.6154 −19.5190 0.9643 0.1027 −0.1189 0.0626

Pico-eukaryotes (= Pico-Prokaryotes) – – – – – – –
Prochlorococcus sp.

(a0/a1/y) exp [a3(x + a4)2/a2
1]

+ a4x2 + a5x + a6 0.0099 0.6808 −8.6276 0.9668 0.0074 −0.1621 0.0436

x = log10(Chl-a); y = Chl-a
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Fig. 1. Distribution of phytoplankton pigment data used in this study; blue dot: the NERC 2 
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Fig. 1. Distribution of phytoplankton pigment data used in this study; blue dot: the NERC AMT cruise (Aiken et al., 2009), black triangle:
the JAMSTEC BEAGLE cruise (Barlow et al., 2007), cyan diamond: the NASA NOMAD (Werdell and Bailey, 2005), magenta cross:
the NASA SeaBASS, brown star: the SEEDS II cruise (Suzuki et al., 2005) + A-line stations (Isada et al., 2009), green square: the HU
Oshoro-maru cruise.

6DP to Chl-a, permitting the application of DPA-based
approaches to satellite-derived Chl-a. In addition, Hirata et
al. (2008) used the refined DPA to separate pico-eukaryotes
from nano-eukaryotes, and Brewin et al. (2010) developed
a method to quantify the relationship, which is used in the
present work. Here, DPA is further refined to account for
ambiguity of the fucoxanthin (Fuco) signal. Fuco is defined

as a DP for Diatoms by Vidussi et al. (2001). However, Fuco
is also a precursor pigment of 19’-Hexanoyloxyfucoxanthin
(Hex), the DP for prymnesiophytes (haptophytes), and
can co-occur in this group. Fuco is also contained in the
other heterokonts (e.g. chrysophytes, bolidophytes) and
dinoflagellates, which are relatively abundant in coastal
environments (Wright and Jeffrey, 2006). Thus, diatoms

Biogeosciences, 8, 311–327, 2011 www.biogeosciences.net/8/311/2011/
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Fig. 2. Global relationships between Chl-a and % Chl-a of each PFT; (a) Picoplankton, (b) Nanoplankton, (c) Microplank-
ton, (d) Pico-eukaryotes,(e) Prymnesiophytes (Haptophyotes),(f) Diatoms, (g) Prokaryotes, (h) Green algae, (i) Dinoflag-
ellates, (j) Prochlorococcus sp. The orange thick curves are the least-square fits to the original data(a, c, f, g, h,
j) , whereas the black thin curves are the fits indirectly derived from the least square fits (b, d, i; e.g. 100× Nanofit
[%] = 100× (1.0 – Microfit – Picofit); see also Table 2. Refer to Table 3 for goodness of the fits. The following mass-balances are
maintained; Microplankton + Nanoplankton + Picoplankton) = 1.0; Diatoms + Dinoflagellates = Microplankton; Prymnesiophytes (Hapto-
phytes) + GreenAlgae' Nanoplankton; Prokaryotes + PicoEukaryotes = Picoplankton.

could be overestimated in DPA. Hirata et al. (2008) found
a non-negligible proportion of Fuco within the oligotrophic
gyres of the subtropical Atlantic, where small prokaryotes
(predominantlyProchlorococcussp. andSynechococcus
sp.) and pico-eukaryotes (which can partly belong to
the prymnesiophytes (haptophytes) so may also contain
Hex) usually dominate the phytoplankton community
(Zubkov et al., 1998; Tarran et al., 2006). In these olig-
otrophic waters, Chl-a is low (<0.25 mg m−3, Aiken et
al., 2009), therefore, it is more reasonable to assume
that the background level of Fuco detected results from
smaller prymnesiophytes (haptophytes) rather than diatoms
which are more prevalent in eutrophic waters. There-
fore, we calculated a baseline for the Fuco/Hex ratio,
(Fuco/Hex)baseline, using Fuco and Hex in the Chl-a range
less than 0.25 mg m−3 in the original data set (denoted as
Fucooriginal and Hexoriginal, respectively). The proportion
of Fuco as a diatom biomarker is then corrected so that
Fucocorrected= Fucooriginal− (Fuco/Hex)baseline× Hexoriginal.

The Fuco conversion is only significant in the lower Chl-a

range (<0.5 mg m−3) and is negligible for higher Chl-a
values.

Using these HPLC pigment signals, PSCs and PFTs are
defined and classified as in Table 1, and their relationships to
Chl-a are analysed below.

3 Results

3.1 Synoptic relationships between Chl-a and
phytoplankton functional types (PFTs)

Figure 2 shows the global relationships between Chl-a and
the fraction of DP associated with each PFT, derived from in
situ HPLC. A clear co-variability is found between Chl-a and
DP for each PFT. While Chl-a is commonly used as an index
of phytoplankton biomass, the co-variability indicates that
Chl-a is also an index of phytoplankton community struc-
ture. For microplankton, the fractional contribution to Chl-a

www.biogeosciences.net/8/311/2011/ Biogeosciences, 8, 311–327, 2011
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Table 3. Statistical results of the reconstructed relationships between Chl-a and PSCs/PFTs against in situ data.

PSCs/ Observed Max. Abs. Chl-a at Max.
PFT range of % Chl-a r2 p RMSE [%] Error [%] Abs. Error [mg m3]

Microplankton 0–82 0.76 <0.001 6.7 31.1 0.49
Diatoms 0–80 0.77 <0.001 6.3 31.8 0.49
Dinoflagellates 0–14 0.00 <0.190 2.1 12.0 4.26
Nanoplankton 7–73 0.65 <0.001 7.6 27.6 0.12
Green algae 0–37 0.59 <0.001 4.2 17.8 0.19
Prymnesiophytes 0–61 0.41<0.001 8.4 29.5 0.12
(Haptophytes)
Picoplankton 7–93 0.82 <0.001 6.1 23.8 0.08
Prokaryotes 1–73 0.75 <0.001 7.1 25.2 0.08
PicoEukaryotes 3–37 0.46 <0.001 4.6 16.6 0.19
Prochlorococcussp. 0–58 0.75 <0.001 6.1 21.4 0.06

Mean 0.65 <0.001 5.9 23.7 0.61

(% Chl-a) monotonically increases with increasing Chl-a

(Fig. 2c), whereas for picoplankton, this monotonically de-
creases with increasing Chl-a (Fig. 2a). From these data,
the microplankton contribution to total Chl-a ranges between
0–82% Chl-a and the picoplankton contribution ranges be-
tween 7–93% Chl-a, showing large variations in time and/or
space. The fractional contribution of nanoplankton does not
vary monotonically with Chl-a as found in micro- and pi-
coplankton (Fig. 2b). Rather % Chl-a of nanoplankton in-
creases as Chl-a increases up to approximately 0.2 mg m−3

but decreases as Chl-a further increases, resulting in a broad
maximum between approximately 0.1–0.5 mg m−3. The
nanoplankton contribution to total Chl-a ranges from 7–73%
Chl-a, showing a smaller range of variation than micro- and
picoplankton.

These size-class relationships (micro-, nano-, and pi-
coplankton) are further decomposed into a range of PFTs.
Microplankton (Fig. 2c) is subdivided into diatoms and di-
noflagellates (Fig. 2f and i), and their abundance ratios vary
against Chl-a showing a similar relationship to that of mi-
croplankton. Picoplankton is composed of pico-eukaryotes
and prokaryotes (Fig. 2d and g), the latter of which include
Prochlorococcussp. (Fig. 2i). The relationships between
Chl-a and subtypes within the picoplankton community are
not the same. The % Chl-a of prokaryotes andProchloro-
coccussp. non-monotonically changes with Chl-a, with a
local maximum at Chl-a = 0.06–0.13 mg m3 (Fig. 2g and i).
Pico-eukaryotes also show a non-monotonic variation with
Chl-a but with a local minimum at 0.08–0.13 mg Chl-a m−3,
increasing slightly up to 0.70 mg Chl-a m−3, then decreas-
ing gradually again above this. Prymnesiophytes (hapto-
phytes) show a similar distribution and magnitude to those
of the nanoplankton (Fig. 2e), implying that they are the ma-
jor group within the nanoplankton community. Green algae
also show a broad peak between 0.3 and 0.7 mg Chl-a m−3,
consistent with the distribution of nanoplankton (Fig. 2h).

The relationships between Chl-a and % Chl-a shown in
Fig. 2 can be quantified using a least square fit (thick solid
lines in Fig. 2), enabling the estimation of % Chl-a of each
PFT from Chl-a alone, hence from satellite-derived Chl-a

fields (O’Reilly et al., 1998; McClain et al., 2009). Table 2
summarizes the fitting formulae and associated coefficients
to quantify the relationship between Chl-a and % Chl-a for
each PFT. The relationships between Chl-a and % Chl-a of
micro- and picoplankton as well as Diatoms were represented
using a logistic equation, however, the relationships with
other PFTs were not represented by this form. Thus, the use
of the logistic growth model for % Chl-a was only applicable
to a limited number of phytoplankton classifications (micro,
diatoms and pico) in our data set.

Simple polynomial fitting functions could also have been
applied to the quantification of the relationships, however,
they tend to over- or underestimate at lower and upper
bounds of the Chl-a range observed, without introduc-
ing a significant statistical improvement (hence, results not
shown). When the simple polynomial fitting is used to ex-
trapolate outside the Chl-a range in Fig. 2, which would be
necessary for satellite data processing, they would introduce
larger errors than those shown in Table 3. Hence, we did not
employ the simple polynomial fitting.

To maintain “mass balance”, not all relationships are re-
gressed. For example, % Chl-a due to nanoplankton is de-
rived from 100 – % Chl-a (microplankton) – % Chl-a (pi-
coplankton) so that micro-, nano- and picoplankton sum up
to 100%. The nanoplankton relationship derived in this way
(shown as a thin curve in Fig. 2b) still fits the observed
data well, reflecting strength in the micro- and picoplankton
fits. This subtraction could equally have been undertaken
between micro- and nanoplankton derived from regression,
or similarly between nano- and picoplankton. However, the
best statistical fit was found in our data set when % Chl-a

(nanoplankton) was not regressed. The method was also
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Table 4. Statistical results of the validation.

Size Class/PFT slope intercept r2 p RMSE [% Chl-a]

Microplankton 1.109 1.073 0.72 <0.001 8.28
Diatoms 1.115 1.732 0.73 <0.001 7.98
Dinoflagellates 0.075 3.055 0.00 0.106 1.87
Nanoplankon 1.168 −9.721 0.56 <0.001 8.55
Green algae 0.809 2.035 0.40<0.001 4.71
Prymnesiophytes 1.218 −8.093 0.37 <0.001 10.0
(Haptophytes)
Picoplankton 1.000 −0.480 0.74 <0.001 7.12
Prokaryotes 0.864 3.712 0.65<0.001 7.71
Pico-Eukaryotes 0.801 2.564 0.31<0.001 5.25
Prochlorococcussp. 0.982 0.353 0.72 <0.001 6.25

Mean 0.914 −0.377 0.52 <0.001 5.97

used to derive prymnesiophytes within the nanoplankton, di-
noflagellates within the microplankton community and pico-
eukaryotes within the picoplankton community (see Table 2).

Figure 3 shows the estimated uncertainties of the relation-
ships between % Chl-a and Chl-a, defined here as the resid-
ual between in situ data and the least-square fit. The un-
certainty varies according to both the PFT considered and
the Chl-a level. Maximum mean uncertainty (i.e. maximum
Root Mean Square Error, RMSE), is 8.4% Chl-a for prym-
nesiophytes (haptophytes, Fig. 3e), while minimum is 2.1%
Chl-a for dinoflagellates (Fig. 3i). The overall mean uncer-
tainty is 5.9% Chl-a when all PFTs are considered (Table 3).
The uncertainty is variable even within a specific PFT con-
sidered. For example, for diatoms the local maximum of un-
certainty is as high as +31.8% Chl-a at Chl-a of 0.49 mg m−3

but −20% Chl-a at Chl-a of 1.8 mg m−3 (Fig. 3f; see also
Table 3). Thus the regressions obtained in Fig. 2 would rep-
resent synoptic relationships between Chl-a and % Chl-a of
each PFT, and small scale variability of PFT, both in time and
space, may not be represented well in our proposed formula-
tions.

3.2 Validation of the relationships between
Chl-a and PFTs

Figure 4 shows validation results and Table 4 summarises its
statistical details; the mean regression slope over all PFTs
is 0.914, the intercept−0.377, the coefficient of determi-
nationr2 = 0.52 with RMSE = 5.97% Chl-a. The algorithm
performance varies depending on the PFT of interest. While
for picoplankton the algorithm performed particularly well
(r2

= 0.74, Fig. 4a and see also Table 4), for dinoflagellates
it performed poorly (r2 < 0.00, Fig. 4i) which resulted in a
reduction of the meanr2 over all PFTs. Careful examina-
tion of results for microplankton (Fig. 4c), diatoms (Fig. 4f)
and dinoflagellates (Fig. 4i) suggests that the estimation of
large-cell phytoplankton is less accurate when they com-

prise <12% Chl-a (recall the uncertainties for these PFTs
are 6.7, 6.3, 2.1% Chl-a as shown in Table 3). Nanoplank-
ton (Fig. 4b), prymnesiophytes (haptophytes, Fig. 4e), green
algae (Fig. 4h) indicate artificial cut-offs at the higher end of
the estimated % Chl-a. This results from the fact that (1) the
relationships between Chl-a and % Chl-a of PFTs are for-
mulated by the least-square regression, so that a single value
of Chl-a returns a single value of % Chl-a and (2) the func-
tional forms of the relationships for these particular PFTs
show a local maxima which is also the maximum over the
given range of Chl-a, thus does not allow to return % Chl-
a above the maximal value; for example, see Fig. 2b where
the reconstructed curve takes the unique maximal value of
% Chl-a at Chl-a of 0.20 mg m−3, which is also the max-
imum value over the entire Chl-a range, while % Chl-a in
the in situ data fluctuates around the same Chl-a value of
0.20 mg m−3 (approx. 35–62 % Chl-a).

3.3 Global distribution of PSCs/PFTs

Figure 5 shows the global mean distributions of each PFT,
derived from SeaWiFS Chl-a observed over the period 1998–
2009. Dinoflagellates are not considered here due to a poor
result in the validation. Microplankton is relatively abun-
dant at mid and high latitudes (Fig. 5a). Microplankton-
dominated waters (e.g. % Chl-a >50%) are rather restricted
along some parts of the Arctic and Antarctic coasts and
coastal upwelling regions such as the Benguela, Humbolt,
California and Canary current regions. Thus, microplank-
ton, which are almost entirely composed of diatoms at the
synoptic scale (Fig. 5d), do not show a basin-scale spa-
tial dominance within the phytoplankton community in the
mean field over 1998–2009. Nanoplankton is ubiquitously
distributed, and constitutes a background population con-
tributing approximately 45.5% Chl-a as a global mean, but
less in the subtropical gyres (Fig. 5b). Prymnesiophytes
(haptophytes) comprise the major group in the nanoplankton
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Fig. 3. Uncertainties of the synoptic relationships between Chl-a and % Chl-a of each PFT, i.e. (Xobs-Xfit) where Xobs and Xfit represent
% Chl-a observed or fitted for each PFT and PSC, respectively;(a) Picoplankton,(b) Nanoplankton,(c) Microplankton,(d) Pico-eukaryotes,
(e) Prymnesiophytes (Haptophyotes),(f) Diatoms,(g) Prokaryotes,(h) Green algae,(i) Dinoflagellates,(j) Prochlorococcussp. The root
mean square error, RMSE (% Chl-a), is also calculated by SQRT{6(Xobs-Xfit)

2/n} where n represents the number of data.

(Fig. 5e), explaining 31.7% Chl-a and 70% of the nanoplank-
ton % Chl-a. The results obtained in this study are consistent
with those of Liu et al. (2009) who found that prymnesio-
phytes (haptophytes) dominate the Chl-a-normalized phy-
toplankton stock in modern oceans. The subtropical gyres
are largely dominated by picoplankton (% Chl-a > 65%,
Fig. 5c), mostly by prokaryotes (Fig. 5h) which include
Prochlorococcussp. (Fig. 5i). In the South Pacific gyre,
pico-eukaryotes constitute a significant proportion (up to
37% Chl-a, Fig. 5g), along with prokaryotes, which may be
supported by the in situ data analysis of Ras et al. (2008)
who postulate a possible significance of pico-sized flagel-
lates (i.e. pico-eukaryotes) in the South Pacific Ocean, espe-
cially at the surface. On average over the 1998–2009 period,
microplankton, nanoplankton and picoplankton explain 10.9,
45.5 and 43.6% Chl-a respectively of global surface Chl-a,
whereas diatoms, green algae, pico-eukaryotes, prokaryotes
and Prochlorococcussp. explain approximately 7.5, 13.8,
17.2, 26.5 and 22.8% Chl-a, respectively.

Figure 6 shows the global map of mean maximum un-
certainty in the algorithm, estimated for the PSCs/PFTs in

the following way: (1) 7 ocean biomes were defined accord-
ing to the method of Hardman-Mountford et al. (2008); (2)
the absolute deviations (residuals) between the PSCs/PFTs
estimated (PFTest) and observed (PFTobs) shown earlier,
i.e. PFTest-PFTobs, were classified geographically using lat-
itude and longitude associated with the observed data, and
assigned to an ocean biome; (3) the residuals within each
biome were averaged and the mean uncertainty was calcu-
lated for each biome, then mapped globally. The global un-
certainty shows a relatively large uncertainty of>+35% for
microplankton and diatoms at high latitudes and in the east-
ern boundary upwelling regions. Uncertainty in the subtrop-
ical gyres of the South Pacific is approximately +22% for
nanoplankton and−8% for picoplankton. This inverted bias
for nano- and picoplankton in the South Pacific is due to the
maintenance of mass balance between these PSCs. While un-
certainties for other PFTs are rather small (< ±5%), a rela-
tively large uncertainty is found for prymnesiophytes in trop-
ical oceans (−25%). It is important to note that uncertainty
of Chl-a, which is an input to the present estimation of
PSCs/PFTs, should be added to obtain an overall uncertainty
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Fig. 4. Results of validation;(a) Picoplankton,(b) Nanoplankton,(c) Microplankton,(d) Pico-eukaryotes,(e)) Prymnesiophytes (Hapto-
phyotes),(f) Diatoms,(g) Prokaryotes,(h) Green algae,(i) Dinoflagellates,(j) Prochlorococcussp. The root mean square error, RMSE
(% Chl-a), is also calculated by SQRT{6(Xobs-Xfit)

2/n} wheren represents the number of data. See Table 4 for statistical details.

for the derivation of PSCs/PFTs from space.
Figure 7 shows the global distribution of PFTs as in

Fig. 5 but in terms of Chl-a with the unit of mg m−3 rather
than % Chl-a. Microplankton (Fig. 7a) is rather limited to
marginal seas and coastal upwelling regions but mean Chl-
a is as high as∼0.11 mg m−3 on average over the globe and
the 1998–2009 period. Nano- and picoplankton are relatively
wide-spread over the globe (Fig. 7b and c). Nanoplank-
ton (∼0.12 mg m−3) is abundant in the mid and high lat-
itude and largely explained by prymnesiophytes (hapto-
phytes) (∼0.08 mg m−3), showing the relatively high global
mean Chl-a comparable to microplankton. This implies
a large role of nanoplankton in primary production in the
global surface oceans as well as microplankton. Picoplank-
ton (global average of∼0.08 mg m−3) is also wide spread but
more abundant in the subtropical gyres (Fig. 7c). Although
small phytoplankton such as pico-eukaryotes, prokaryotes
andProchlororoccussp. were shown to have relatively high
% Chl-a in the subtropical gyres (Fig. 5g, h and i), their
absolute Chl-a abundance (Fig. 7g, h and i) is relatively low
(∼0.04,∼0.04 and∼0.03 mg m−3, respectively), as the Chl-
a of the total phytoplankton community is low in these re-

gions. Green algae (Fig. 6f) and pico-eukaryotes (Fig. 6g)
show a similar global distribution and mean Chl-a value
(∼0.04 mg m−3) to each other, although they are notably dif-
ferent in % Chl-a (Fig. 5f and g).

3.4 Seasonal variations of PSCs/PFTs

Along with the characteristic spatial distributions shown,
strong seasonality in the composition of the phytoplankton
community is exhibited for each ocean basin, clearly shown
in the monthly climatologies (Fig. 8). In the Northern Hemi-
sphere (Fig. 8a, c, e), the spring bloom of microplankton and
diatoms in May is obvious, which is reflected in the global
average (Fig. 8h). A characteristic second bloom is also seen
in the North Pacific (Fig. 8e). Apart from the Southern Ocean
(Fig. 8b), less remarkable blooms are found in September to
December in the Southern Hemisphere (Fig. 8d, f and g), the
amplitude of which varies between regions and according to
PSCs/PFTs. A relatively large bloom is found in December
for the Southern Ocean and the South Atlantic (Fig. 8b and
d), whereas an increase in Chl-a is found in September to
November for the South Pacific and the Indian Ocean (Fig. 8f
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Fig. 5. Synoptic distribution of surface PFTs [% Chl-a] over 1998–2009 derived from SeaWiFS.(a) Microplankton (global average∼10.9%
Chl-a), (b) Nanoplankton (∼45.5% Chl-a), (c) Picoplankton (∼43.6% Chl-a), (d) Diatoms (∼7.5% Chl-a), (e) Green Algae (∼13.8%
Chl-a), (f) Pico-eukaryotes (∼17.2% Chl-a), (g) Prymnesiophytes (Haptophytes) (∼31.7% Chl-a), (h) Prokaryotes (∼26.5% Chl-a), (i)
Prochlorococcussp. (∼22.8% Chl-a). White area shows a continental shelf mask defined by<200 m.
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Fig. 6. Spatial distribution of uncertainty in the algorithm estimated for PSCs(a–c)and PFTs(d–h); (a) Microplankton,(b) Nanoplankton,
(c) Picoplankton,(d) Diatoms,(e)Prymnesiophytes,(f) Green algae,(g) Pico-Eukaryotes,(h) Prokaryotes,(i) Prochlorococcussp.
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Fig. 7. Synoptic distribution of mean surface Chla (mg m-3) of PSCs (a-c) and PFTs (d-i)  2 

over 1998-2009 derived from SeaWiFS; a) Microplankton (global average ~0.11 mg m-3), b) 3 
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Fig. 7. Synoptic distribution of mean surface Chl-a (mg m−3) of PSCs(a–c) and PFTs(d–i) over 1998–2009 derived from SeaW-
iFS; (a) Microplankton (global average∼0.11 mg m−3), (b) Nanoplankton (0.12 mg m−3), (c) Picoplankton (0.08 mg m−3), (d) Diatoms
(0.09 mg m−3), (e)Green Algae (0.04 mg m−3), (f) Pico-eukaryotes (0.04 mg m−3), (g) Prymnesiophytes (Haptophytes) (0.08 mg m−3), (h)
Prokaryotes (0.04 mg m−3), (i) Prochlorococcussp. (0.03 mg m−3). White area shows a continental shelf mask defined by<200 m.

and g). Variability in bloom timing between PSCs/PFTs sug-
gests taxonomic succession. This is relatively clear even in
the basin scale for the North Pacific and the Indian Ocean
(Fig. 8e and g), where an increase in nano/picoplankton pre-
cedes the onset of the microplankton (diatom) bloom.

4 Comparison with other approaches

Figure 9 shows comparisons between PSCs estimated by
the present study with existing methods (Uitz et al., 2006;
Brewin et al., 2010). PFTs are not compared since there is
currently no other method available to derives 7 PFTs, nei-
ther in % Chl-a nor mg m−3. For microplankton, this study
gives a reduced estimate of their contribution (approx.−6%
Chl-a) compared to both Uitz et al. (2006) and Brewin et
al. (2010) (Fig. 9a and b, respectively) in the majority of
the ocean but an increased estimate of their contribution in
the higher chlorophyll regions around ocean margins and
in the temperate North Atlantic (up to approx. 21% Chl-
a); note that the comparison is undertaken during the bo-
real spring bloom period. These differences are explained
by the application of a fucoxanthin correction to the DPA
in the present study to improve discrimination of diatoms
from prymnesiophytes (haptophytes) (as described above).
The differences at higher Chl-a might also result from the

fact that different data sets were used to parameterize each
method.

The spatial pattern of differences in nanoplankton also re-
flects this adjustment, with this study showing an increase
in nanoplankton % Chl-a. A further contribution to the in-
creased estimation of nanoplankton by the present method
results from the treatment of Chlorophyll-b (Chl-b) in the
DPA. In the present analysis, Chl-b was used in the definition
of nanoplankton, whereas it was used to define picoplankton
in the previous methods. The rationale for the treatment of
Chl-b as a biomarker contributing to nanoplankton in this
work is as follows; (i) Fig. 2 shows that the predominant
occurrence of green algae, for which Chl-b is the diagnos-
tic marker pigment (Table 1), occurs at Chl-a>0.2 mg m−3

where Prochlorococcussp., which contains divinyl Chl-b
(dvChl-b) as well as divinyl Chl-a and is defined indepen-
dently from nanoplankton in our DPA, show a progressive
decline (as seen in Fig. 2h). Therefore, Chl-b is largely rep-
resentative of monovinyl Chl-b (mvChl-b) in our data set, (ii)
The Chl-a value of 0.20–0.25 mg m−3 geographically corre-
sponds to the border of the region of the subtropical gyres
(Polovina et al., 2001; Aiken et al., 2009) whereProchloro-
coccussp. becomes less dominant. Thus, our approach is
the first to mechanistically consider separation of mono- and
divinyl Chl-b in the DPA and the global distribution of Chl-b

vs. Chl-a used for the regression (Fig. 2e) justifies the use of
mvChl-b in the nano range, providing an improvement over
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Fig. 8. Monthly climatology of each PSC and PFT derived from SeaWiFS satellite chla over 2 
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Fig. 8. Monthly climatology of each PSC and PFT derived from SeaWiFS satellite chla over 1998–2009:(a) the Arctic Ocean (ARC),(b)
the Southern Ocean (SOC),(c) the North Atlantic (NAT),(d) the South Atlantic (SAT),(e) the North Pacific (NPC),(f) the South Pacific
(SPC),(g) the Indian Ocean (IND),(h) the Global Oceans (GLB). For the Arctic and Southern Oceans, the satellite Chl-a is not available for
winter period.

improvement over the previous studies. A future improve-
ment would be to add a pico-eukaryote adjustment to mvChl-
b as we have for Hex. Care also needs to be taken at very low
Chl-b concentrations where discrimination of mvChl-b and
dvChl-b is less reliable, possibly contributing another source
of uncertainty.

A further difference in the nanoplankton is seen in the
subtropical gyre regions with the present study giving much
lower estimates than Uitz et al. (2006), particularly in the
South Pacific (Fig. 9.a.2 and 9.b.2). The inverse difference is
seen in the picoplankton, with the present study giving higher
estimates than Uitz et al. (2006), reflecting the mass-balance
applied in our analysis (i.e. micro + nano + pico = 100%). In
both cases, differences with Brewin et al. (2010) are far less
marked. These differences are explained by the application
of a pico-eukaryote correction in this study and by Brewin et
al. (2010) but not by Uitz et al. (2006). The correction ad-
justs the picoplankton by partitioning the diagnostic marker
pigment Hex to account for prymnesiophytes (haptophytes)
within both the nano and the pico size domains separately,
reducing the contribution to nanoplankton and increasing the
contribution to picoplankton at low Chl-a. The smaller dif-
ferences between Brewin et al. (2010) and this study at very

low Chl-a may be due to acceleration in the regression slopes
derived by this study when extrapolated below 0.03 mg m−3.

5 Discussion

Monthly climatologies show intensive blooms of mi-
croplankton and diatoms to occur but only at specific periods
throughout the year (Fig. 8). Recalling that their spatial dis-
tributions are limited to coastal and some parts of mid and
high latitudes (Fig. 5a and d), microplankton and diatoms
can be dominant only at a localized scale, both spatially and
temporally, rather than as a background group at the syn-
optic scale. Supporting this global view of microplankton
and diatom distributions, Obayashi et al. (2001) suggested
for the subarctic North Pacific that an ubiquitous basic struc-
ture made up of a diverse population was apparent, on which
a flourishing diatom population, limited by area and sea-
son, was superimposed sporadically. However, a number
of patches dominated by microplankton or diatoms can also
be found in open oceans, especially in the Southern Ocean
(Fig. 7a). These patches may be associated with turbulent
flows such as eddies, and be captured by ship observation
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Fig. 9. Absolute deviation of PSCs in Chla (mg m-3) between this study and Uitz et al. (2006) 2 

as well as between this study and Brewin et al. (2010) for May 2005.  3 

Fig. 9. Absolute deviation of PSCs in Chl-a (mg m−3) between this study and Uitz et al. (2006) as well as between this study and Brewin et
al. (2010) for May 2005.

even if the observation is usually limited in temporal and spa-
tial coverage.

The high levels ofProchlorococcussp. predicted to occur
in the Southern Ocean by the present study are outside the
known distribution range for this organism and most likely an
anomaly caused by extrapolation from in situ samples taken
in areas where the Prochlorococcus signal is strong to areas
where there are few or noProchlorococcussp. but where
similar chlorophyll-a levels occur. This is a fundamental un-
dersampling issue and requires in situ data to identify what
replacesProchlorococcussp. in these ecosystems to correct
the present algorithm. Known problems with remote sens-
ing algorithms for Chl-a at higher latitudes may also con-
tribute to this anomaly. The dominance ofProchlorococcus
sp. in the gyres is consistent with observations (Zwirglmaier
et al., 2007, 2008; Grob et al., 2007). The low contribu-
tion of other prokaryotes, which are most likely repesented
by Synechococcussp. in the gyres, is consistent with the or-
ders of magnitude lower number of cells for this organism in
these regions and its reduced dependence on chlorophyll-a

as a photosynthetic pigment, instead using phycoerythrin as
well.

The spatial distribution and temporal variation of
PFTs captured by SeaWiFS are based on the empirical
relationships between Chl-a and PFTs obtained from in situ
data collected at various times of the year in the global sur-
face oceans. While the derived relationships reasonably re-
produced the PFT structure within the time span of the data
(1995–2008) as shown in Fig. 4, an extrapolation of the re-
lationships to future satellite observations may introduce an
ambiguity between possible real natural fluctuations of the
PFTs and a potential drift of the empirical relationships from
reality. When the relationships are viewed as algorithms to
estimate the PFTs from satellite, ongoing re-calibration of
the algorithm may be required over time to reduce any such
ambiguity. Furthermore, it is currently unknown whether or
not an unexpected shift in PSC/PFT composition in marine
ecosystems can be detected by the present method over the
period analyzed, for which it is well-calibrated. Our global in
situ data collected over 1995–2008 showed that a variation of
PSCs/PFTs at the synoptic scale is reflected, or accompany, a
change in Chl-a in a complex marine ecosystem. Further in-
vestigation is needed to investigate, perhaps in a probabilistic
sense, if an unexpected abrupt change of PSCs/PFTs could
occur independently of a change in Chl-a, thereby remaining
undetected by the algorithm. This contrasts with a gradual
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shift in the community composition to Chl-a relationship,
which could be recalibrated.

The results presented in this work are limited to the surface
ocean and global applications. Caution must be taken when
the relationships are applied to analysis for smaller scales,
in space or time (i.e. within a narrower Chl-a range), be-
cause an increased noise-to-signal ratio in the relationships
is expected from Fig. 2. Fluctuations of % Chl-a (or vari-
ability along y-axis in Fig. 2) for a restricted range of Chl-a

can become significantly large relative to the variability of
Chl-a itself (or variability along x-axis), which may result
in a degraded relationship between Chl-a and % Chl-a for
each PFT in that Chl-a range. Such a fluctuation of % Chl-
a at a given Chl-a value could partly result from a temporal
variation in phytoplankton community structure at a given
geographical point, and partly from geographical spread of
data points where the community composition is not neces-
sarily the same. The mathematical representation within the
ecological ambiguity is a limitation of the present approach.
The data used to quantify the relationships, or to develop the
algorithms, should ideally include sampling during pre- to
post bloom periods for all ocean basins, providing a greater
degree of confidence in the relationships. Continuous accu-
mulation of in situ data to build such a data set would also
enable a regular ongoing calibration of the relationships, im-
proving detection of variability in PFTs at smaller temporal
and spatial scales.

Physiological changes in the phytoplankton due to envi-
ronmental changes may also be reflected in the natural vari-
ability of the relationships. While laboratory studies show
phytoplankton pigment ratios to vary with environmental
stimuli (nutrient forcing, light climate), for in situ studies
a much clearer relationship between phytoplankton commu-
nity structure and pigment composition exists. Specifically,
the ratio of Chl-a to accessory pigments co-varies with the
abundance of different phytoplankton functional types (Fish-
wick et al., 2006; Aiken et al., 2007, 2008; Hirata et al.,
2008). Thus, shifts in phytoplankton community composi-
tion rather than acclimation tend to dominate variability in
surface oceanic pigment relationships. For example, iron en-
richment experiments have shown an increase in Chl-a to be
associated with a shift towards larger size classes (e.g. Gall
et al., 2001). The link between phytoplankton-type specific
Chl-a and carbon (both particulate organic and living carbon)
is less well parameterized so care must be taken when con-
verting between these different biomass measures. Nonethe-
less, physiological changes in the phytoplankton due to envi-
ronmental changes may necessitate a regular recalibration of
the PFT-Chl-a relationship over time.

While other techniques for classification and quantifica-
tion of PSCs/PFTs, such as flow-cytometric analysis and
microscopic analysis, may be available, diagnostic pigment
analysis (Vidussi et al., 2001; Uitz et al., 2006; Hirata et al.,
2008; Brewin et al., 2010) has been used in this work due to
the wide availability of HPLC pigment data. If PSCs/PFTs

classified using other techniques were applied to validate the
present method, a deviation may be found due to inherent
uncertainties between these different methods. This uncer-
tainty is likely to be enhanced in coastal environments where
definitions of biomarker pigments may become less robust
due to, for example, increased populations of dinoflagellates
and colonialPhaeocystisblooms, which can both also con-
tain Fuco (Wright and Jeffrey, 2006), confusing the interpre-
tation of the Fuco signal which is defined in this work as a
biomarker pigment for diatoms. Thus, a further correction to
diagnostic pigment analysis may be required. There are alter-
native methods available for classification and quantification
of phytoplankton (such as particle counting, microscopic and
flow-cytometric analysis), but they also have their own prac-
tical and technical difficulties in analyzing natural samples:
microscopy requires too much time to complete cell count-
ing and species identification to obtain statistical significance
of classification and quantification of phytoplankton at the
global scale; particle counters count not only the number of
phytoplankton but also any other suspended particles, so re-
quire the application of another technique for phytoplankton
classification; Flow-cytometers may not size particles well
for a wide range of size while counting due to the optical
method employed, and they require a priori knowledge of
phytoplankton composition within the water sample for clas-
sification or identification of phytoplankton. More extensive
inter-comparison of cell classification and quantification re-
sults from these different methods would be useful to further
understand uncertainties associated with both DPA and the
present algorithm.

An extensive comparison of several bio-optical algorithms
to classify PSCs dominating in seawater, rather than in
% Chl-a or mgChl-a m−3 of each PSC, has been conducted
by Brewin et al. (2011). It showed that abundance-based
approaches using Chl-a, or its optical analogue such as
the absorption coefficient at 443 nm, may be more robust
than spectral-response approaches that use either the spec-
tral shape of the absorption coefficient of phytoplankton or
the second order variability in the remotely-sensed spec-
tral radiance. However, the spectral-response approaches
did perform with similar accuracy and may require less re-
calibration than the abundance-based approaches regarding
long-term trend applications. Since a change in the abun-
dance of Chl-a, or its optical analogue, often accompanies
a change in the spectral shape (of the absorption coeffi-
cient of phytoplankton or the remotely-sensed radiance), the
spectral-response and abundance-based approaches are prob-
ably inter-related. Continuous exploitation and improvement
of both approaches are required for the global observation of
PFTs.
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6 Conclusions

The synoptic relationships between Chl-a and its fractional
contribution from three PSCs and seven PFTs were presented
for the first time using a global in situ data set of pigment
measurements. It was found that variation in the phytoplank-
ton community structure is not independent of the variation
in Chl-a of the total community at large scales. The rela-
tionships and their associated uncertainties were quantified
and validated to enable global estimation of the PSCs/PFTs
from satellite Chl-a. The present work revealed global dis-
tributions of the detailed structure of dynamic phytoplankton
communities within the marine ecosystem, through the de-
scription of multiple PFTs, in terms of both percentage and
fractional Chl-a, derived from satellite ocean colour mea-
surements.
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