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Abstract. The variability of inherent optical properties is
investigated in the ultra-oligotrophic waters of the Mediter-
ranean Sea sampled during the BOUM experiment per-
formed during early summer 2008. Bio-optical relationships
found for ultra-oligotrophic waters of the three anticyclonic
gyres sampled significantly depart from the mean standard
relationships provided for the global ocean, confirming the
peculiar character of these Mediterranean waters. These op-
tical anomalies are diversely related to the specific biolog-
ical and environmental conditions occurring in the studied
ecosystem. Specifically, the surface specific phytoplankton
absorption coefficient exhibits values lower than those ex-
pected from the general relationships mainly in relation with
a high contribution of relatively large sized phytoplankton.
Conversely, the particulate backscattering coefficient,bbp,
values are much higher than the mean standard values for a
given chlorophyll-a concentration, TChl-a. This feature can
presumably be related to the relevant influence of highly re-
fractive submicrometer particles of Saharan origin in the sur-
face layer of the water column. The present measurements
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also show that the Mediterranean Sea is greener than TChl-
a alone indicates, as already stressed in previous studies.
This color anomaly is partly explained by the estimated col-
ored dissolved organic matter and submicrometer particles
absorption coefficients, and to a greater extent by the high
bbp/TChl-a values assuming that these particles backscatter
light similarly in the green and blue parts of the visible spec-
trum. The diel variation of both the particulate matter atten-
uation and backscattering coefficients were also investigated
specifically. Despite some differences in the timing and the
magnitude of the daily oscillations found for these optical
parameters, potential for the backscattering coefficient daily
oscillation to be used, similarly to that for the attenuation
coefficient, as a proxy for estimating carbon community pro-
duction budget has been highlighted for the first time. This
result is particularly relevant for present and future geosta-
tionary spatial ocean color missions.

1 Introduction

In situ and remote sensing measurements of inherent opti-
cal properties (IOPs) in natural waters provide essential in-
formation to infer biogeochemical stocks and processes at
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different temporal and spatial scales (Smith and Baker, 1978;
Nelson et al., 1998; Stramski et al., 1999; Oubelkheir et
al., 2005; Boss et al., 2007; Vantrepotte et al., 2011). Gen-
eral bio-optical relationships have long been established be-
tween these IOPs and some biogeochemical parameters, such
as the chlorophyll-a concentration, Chl-a, and particulate
organic carbon, POC, in open ocean waters (Gordon and
Morel, 1983; Yentsch and Phinney, 1989; Bricaud et al.,
1995; Oubelkheir et al., 2005; Gardner et al., 2006; Huot
et al., 2008). These relationships can then be used to as-
sess the variability of the latter biogeochemical parameters
from field or remote sensing measurements. The universal
(i.e. global) status of these relationships can only be stated by
characterizing and understanding the variability around these
averaged laws which describe the mean trends observed be-
tween the IOPs and the biogeochemical parameters concen-
tration. At first order, the IOPs variability is driven by the
concentration of the optically significant material present in
the water masses. For instance, robust statistical relation-
ships (Loisel and Morel, 1998; Bricaud et al., 1998) have
been established between the particulate attenuation,cp, and
absorption,ap, coefficients with Chl-a over the whole trophic
range (covering about three orders of magnitude). The bio-
optical characteristics of the particulate and dissolved matter,
as well as the respective proportion between these different
optically active pools, drive the natural variability observed
around the averages relationships between IOPs and biogeo-
chemical parameters. Here we examine the IOPs variability
for ultra-oligotrophic waters of the Mediterranean Sea sam-
pled in the frame of the BOUM (Biogeochemistry from the
Oligotrophic to the Ultra-oligotrophic Mediterranean) cruise
carried out in early summer, June–July 2008 (Moutin et al.,
2011).

While numerous field measurements were acquired to es-
tablished bio-optical relationships representative of the open
ocean (see Morel, 2009 and references therein), in situ mea-
surements performed in ultra oligotrophic waters (i.e. Chl-a

lower than about 0.05 mg m−3) are still very scarce. This
is particularly true for the particulate backscattering coeffi-
cient, bbp, which has been rarely measured in oligotrophic
waters. Recent bio-optical relationships (Huot et al., 2008;
Bricaud et al., 2010) were however established, thanks to the
large trophic gradient covered in the frame of the BIOSOPE
cruise which was carried out in the eastern South Pacific
Ocean (Claustre et al., 2008). Compared to the South Pacific
gyre system, where ultra ologotrophic waters were sampled
during BIOSOPE, the Mediterranean Sea waters and their
associated bio-optical relationships can be affected by conti-
nental inputs such as rivers discharge and desert dust events.
Different studies have already stressed the marginal charac-
ter of this semi enclosed sea at a bio-optical point of view
(Gitelson et al., 1996; D’Ortenzio et al., 2002; Claustre et
al., 2002; Bricaud et al., 2002; Morel and Gentili, 2009).
A higher than expected colored dissolved organic matter
content, a presence of coccolithophorids, and Saharan dust

events were advanced to explain the over-estimation, com-
pared to the field values, of Chl-a loads retrieved from the
standard bio-optical algorithms used to process ocean color
data collected from space. The first objective of the present
study is to re-examine this well known, but still not fully un-
derstood, color anomaly found in ultra-oligotrophic waters of
the Mediterranean Sea, with a particular focus on the partic-
ulate backscattering coefficient,bbp, which was never mea-
sured during previous studies.

Diel variation incp has been extensively reported in var-
ious parts of the world oceans and has been used to infer
biogeochemical processes such as particles growth rates and
productivity (Cullen et al., 1992; Claustre et al., 2008; Marra,
1995; Gardner et al, 1999; Oubelkheir and Sciandra, 2008;
Gernez et al, 2011; Dall’Olmo et al., 2011; Walsh et al.,
1995). With minima near sunrise and maxima near sun set,
the cp diel variations have been mainly attributed to varia-
tions in refractive index and size of phytoplankton cells dur-
ing the photosynthetic processes (Stramski and Reynolds,
1993; Durand and Olson, 1998). Note that changes in par-
ticles (phytoplankton and heterotrophic bacteria) numerical
concentration also contribute to thecp diel cycle (Oubelkheir
and Sciandra, 2008). Conversely, diurnal cycles inbbp have
not been documented yet and represent therefore the second
major objective of the present study. The characterization of
the bbp diel cycle is motivated by two major aspects. First,
in the frame of the Mie scattering theory,bbp is mostly in-
fluenced by submicrometer particles, whereascp is mainly
driven by particles with diameters between 0.5 and 20 µm
(Stramski and Kieffer, 1991; Pak et al., 1988). Therefore,
the comparison of the respective diel cycles of the two lat-
ter optical parameters could provide complementary infor-
mation on related biogeochemical processes. Note, however,
that the influence of relatively large phytoplankton cells on
bbp seems to be underestimated from Mie calculations ac-
cording to recent experimental studies (Vaillancourt et al.,
2004; Dall’Olmo et al., 2009). Due to the current uncer-
tainties regarding the role of sea water constituents in light
backscattering processes in the ocean (Stramski et al., 2004),
and to the relatively short time series acquired during BOUM
(3 days), the present study only represents the first step to-
ward the potential use ofbbp to assess community produc-
tion loss and gain terms. Second, in contrast tocp which rep-
resents the sum of the particulate absorption and scattering
coefficients,bbp can be assessed from space with a satisfying
accuracy (IOCCG, 2006). Recently launched (GOCI, Ges-
tationary Ocean Color Imager, KORDI) and planed (GEO-
OCAPI, CNES; HR-GEO, ISRO) geostationary spatial ocean
color instruments will provide new opportunities to infer bio-
geochemical processes from space with an increased tempo-
ral resolution and provide new insights on biogeochemical
fluxes. In that context, a better understanding ofbbp diel cy-
cles is of particular interest.
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Figure 1. 

Fig. 1. Transect performed during the BOUM cruise (16 June–20
July 2008). Short duration (SD) stations are reported as blue dots
while long duration (LD) stations sampled in the centre of anticy-
clonic eddies for a time period of 3 days are reported as red dots
(namely stations A, B and C).

2 Materials and methods

2.1 Sampling strategy

The BOUM cruise took place during summer 2008 (from
16 June to 20 July in the Mediterranean Sea and consisted
of a 3000 km transect from the Rhone river mouth (west-
ern Mediterranean) to the Eratosthenes sea mount (eastern
Mediterranean, Fig. 1). Along this transect, two kinds of sta-
tions were sampled: “short duration” (SD) and “long dura-
tion” (LD) stations (27 and 3 stations respectively, Fig. 1).
Surface to bottom measurements were performed at each SD
station distant of around 60 miles of each other. The 3 LD
stations (A, B, C) were located in the centre of anticyclonic
eddies, approximately determined from satellite imagery and
MERCATOR forecast and accurately located on board using
hydrologic and hydrodynamic data (i.e. XBT, thermosalino-
graph and ADCP measurements). The latter fixed stations
were sampled at high frequency (every 3 h) for 3 days in or-
der to study the diurnal cycle of various biogeochemical and
optical parameters. Basic measurements consisted of CTD
vertical profiles (0–500 m). In addition, discrete Niskin bot-
tles samples were taken at different depths of the water col-
umn. It is noteworthy that hydrodynamic conditions for the
LD fixed stations remained stable all along the sampling time
period (Moutin et al., 2011).

2.1.1 Biogeochemical parameters

Photosynthetic pigment (including total chlorophyll-
a, TChl-a = chlorophyll-a + divinyl chlorophyll-
a + chlorophyllide-a mg m−3) concentrations were measured
at discrete depths collected from Niskin bottles (1 to 2.5 L)
by High Performance Liquid Chromatography (HPLC) fol-
lowing the methodology described in Ras et al. (2008). The
relative proportion of pico-, nano- and microphytoplankton
was computed using the chemotaxonomic pigment ratios
described in Vidussi et al. (2001) recently updated by Uitz

et al. (2006). Note that only one vertical profile of HPLC
measurements is available at each long duration station.

Particulate organic carbon, POC, (in µg l−1) was collected
on precombusted (24 h, 450 C) glass fiber filters (Whatman
GF/F, 25 mm). Filters were dried in an oven at 50◦C and
stored, in ashed glass vial and in a dessicator until analyses
when return from the cruise, on a CHN Perkin Elmer 2400.

For Lithogenic silica, LSi, between 1 and 2.3 l of seawa-
ter were filtered onto 47 mm 0.6 µm PC filters. Filters were
folded and stored in a plastic Petri dish, oven dried (60◦C)
for 24 h and then stored at room temperature until analyses
at the laboratory. Filters were analyzed for LSi following the
HF digestion technique described by Nelson et al. (1989).

2.1.2 Optical measurements

Remote sensing reflectance

Hyperspectral radiometric measurements (3 nm resolution)
were performed in the 350–750 nm spectral range with two
TriOS radiometers. The first radiometer was fixed on the
deck and measured the above-surface downward irradiance,
Ed(0+, λ), whereλ is the wavelength of light in nanome-
ters (nm). The second radiometer recorded the upward ra-
diance profile in the water column,Lu(z, λ). Remote-
sensing reflectance,Rrs(λ), was then calculated from the in-
water method, following the protocols prescribed by Mueller
(2003):

Rrs(λ) = Lw(λ)/Ed(0
+,λ) (1)

whereLw(λ) is the water leaving radiance which is calcu-
lated from the upwelling radiance just below the sea surface
estimated from theLu(z, λ) vertical profile. A full descrip-
tion of the radiometric data processing is given by Lubac and
Loisel (2007).

Chlorophyll fluorescence

Continuous profiles of chlorophyll fluorescence were mea-
sured using a Chelsea Aquatracka III fluorometer and was
calibrated to TChl-a concentration using HPLC pigment
measurements. In practice, a calibration was made for each
LD stations, by linear regression of fluorescence on TChl-
a from each LD stations profiles and from the nearest tran-
sect casts. Calibration relationships slightly differ from one
LD station to another due to variation in the phytoplank-
ton community and physiological state (station A: TChl-
a = 2.5263 fluo + 0.0038,r2

= 0.9683,N = 89; station B:
TChl-a = 2.3575 fluo + 0.0059,r2

= 0.9771,N = 30; station
C: TChl-a = 3.0638 fluo−0.0097,r2

= 0.9812,N = 30).

Backscattering coefficient

The particulate backscattering coefficient,bbp(λ), is sen-
sitive to particle load, composition (refractive index), and
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size distribution, and usually dominates the backscattering in
coastal waters. However, in open ocean waters the backscat-
tering of pure seawater,bbw(λ), is significant, and uncertain-
ties in this term have a large impact when computing the
particulate component (Twardowski et al., 2007). Vertical
profiles of the scattering coefficient at 650 nm and three an-
gles, 100◦, 125◦ and 150◦ were performed with a WET Labs
ECO-VSF meter during LD stations only. Because of the
very oligotrophic conditions encountered during the cruise,
which push backscattering measurements near to their limit,
dark current measurements were performed in the dark sev-
eral times during the cruise using a neoprene black cape to
cover the instrument window. The obtained values are very
similar to those measured before the cruise during the cal-
ibration phase at the factory (WET Labs), emphasizing no
electronic drift of this parameter. Integration and extrapola-
tion of the measured signal from 90◦ to 180◦ yield the total
backscattering coefficient,bb(650), after correction for the
loss of photons along the path due to absorption by partic-
ulate and dissolved material (Loisel et al., 2007). The par-
ticulate backscattering coefficient,bbp(650), is then obtained
by correcting the signal for backscattering by pure seawater
as described in Loisel et al. (2007). The theoretical model
by Zhang et al. (2009) was used to correct for the scattering
by pure seawater while absorption correction was performed
using in situ discrete measurements.

Beam attenuation coefficient

Profiles of beam transmission at 650 nm were measured by a
WET Labs Cstar transmissiometer with a 25 cm pathlength at
all stations. Data were processed to give the beam attenuation
coefficient,c(650), for sea water, expressed in m−1. In or-
der to get the attenuation coefficient for suspended particles,
cp(650), the contribution from pure seawater has to be sub-
tracted toc(650). Instead of using the factory calibration, the
meanc(650) value measured between 350 and 400 m depth
was subtracted from each profile since at these depths, the
very low particle concentration inducesc(650) values very
close to the value for particle-free water. This approach, de-
scribed by Loisel and Morel (1998), presents the advantage
of accounting for the effects of instrumental drift and varying
cleanliness of the optical windows. Theoretically,cp(650)
represents the sum of absorption and scattering coefficients,
but in practice at 650 nm it can be assumed thatcp(650) cor-
responds to the particle scattering coefficientbp(650) due to
very low particulate absorption in the red part of the spec-
trum, especially for the oligotrophic waters sampled during
BOUM (Loisel and Morel, 1998).

Absorption coefficient

The total particulate absorption coefficient,ap(λ), is the sum
of the phytoplankton absorption coefficient,aph(λ), and the

absorption coefficient by non-pigmented particles,anap(λ).
Water samples were taken at 5 m depth and close to the
DCM (Deep Chlorophyll Maximum) during the diel cycle
casts. Samples were stored in a cool and dark compart-
ment until filtration, at most 6 h after collection. Depend-
ing on particle content, a volume of 2.8 to 5.6 l was filtered
onto 25 mm pre-combusted Whatman GF/F filters, immedi-
ately put in liquid nitrogen and stored at−80◦C until anal-
ysis in the laboratory within two months of sampling. Note
that precombustion shrinks the pore size of the GF/F filters
for which it is initially assumed that particles with diame-
ter greater than 0.5–0.7 mm are retained before shrinking. A
Cary 100 UV/VIS double-beam spectrophotometer was used
for the analysis. The total Optical Density of the particles on
the filter, ODfp(λ), was measured between 300–900 nm. Due
to high instrumental noise in the upper and lower ends of the
spectrum, only measurements in the range 350–850 nm were
used for further analysis. The absorption coefficientap(λ)

(m−1) is computed as

ap(λ) = 2.303Af/βVf[ODfp(lλ)−ODbf(λ)−ODnull] (2)

where ODbf(λ) is the optical density of a hydrated blank filter
and ODnull is a residual correction from the infrared spectrum
where particle absorption is minimal. When a double-beam
spectrometer with automatic baseline correction is used, with
a blank filter in one of the filter holders, ODbf does not need
to be subtracted during the processing. ODnull is computed
as the mean ODfp(λ) in the interval 790–800 nm. Light scat-
tering within the filter increases the absorption pathlength,
and the absorption coefficient must be corrected for this path-
length amplification. The pathlength amplification factorβ

is calculated as

β = [C1+C2[ODfp(λ)−ODnull]]
−1 (3)

The pathlength amplification varies with phytoplankton com-
munity and especially cell size. The coefficientsC1 andC2
were set to 0.359 and 0.390, respectively. These values were
obtained from Bricaud et Stramski (1990). Once the ODfp(λ)

has been measured, the pigments are extracted in methanol
as described in (Mitchell et al., 2003), and ODfd(λ) is mea-
sured.anap(λ) is calculated in the same way asap(λ), replac-
ing ODfp(λ) with ODfnap(λ) in Eq. (2). The phytoplankton
absorptionaph(λ) is then computed asap(λ)−anap(λ).

2.1.3 Ancillary parameters

Continuous PAR measurements were recorded on board (1
measure each 30 s). In addition, vertical profile of PAR were
measured at each station (short and long duration) allowing
to compute the euphotic depth (Zeu: depth where the PAR
is equal to 1 % of its surface value). The mixed layer depth,
MLD, is taken from Moutin et al. (2011) as the MLD 2 days
lagged (see their Table 1a).
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Table 1. General bio-optical characteristics of the surface water and at the deep chlorophyll maximum (DCM) at the long duration stations A,
B, and C. The values in standard font and bold represent the mean and standard deviation values, respectively. The particulate backscattering
(bbp) and attenuation (cp) coefficients values are given 650 and 660 nm, respectively. The absorption coefficients values are given at 440 nm.
The subscripts p, phy, and nap stand for particulate, phytoplankton, and non-algal particles, respectively.

StAsurf StADCM StBsurf StBDCM−1 StBDCM−2 StCsurf StCDCM

TChl-a 0.047
± 0.007

0.493
± 0.136

0.0423
± 0.005

0.126
± 0.024

0,199
± 0.020

0.033
± 0.006

0.462
± 0.127

bbp 0.00081
± 0.0001

0.00135
± 0.0003

0.00066
± 0.00008

0.00077
± 0.0003

0.00058
± 0.000091

0.00055
± 0.00006

0.00089
± 0.0003

cp 0.0541
± 0.0035

0.0800
± 0.0182

0.0410
± 0.0027

0.0551
± 0.0081

0.0252
± 0.0020

0.0331
± 0.0028

0.0565
± 0.0094

bbp/cp 0.0150
± 0.0019

0.0173
± 0.0038

0.0161
± 0.0017

0.0141
± 0.0057

0.0232
± 0.0040

0.0166
± 0.0020

0.0158
± 0.0048

bbp/TChl-a 0.017
± 0.003

0.0028
± 0.00067

0.0159
± 0.0025

0.00624
± 0.0023

0.0029
± 0.0006

0.017
± 0.004

0.002
± 0.00072

cp/ TChl-a 1.1715
± 0.1909

0.1652
± 0.0224

0.9824
± 0.1273

0.4475
± 0.0753

0.1273
± 0.0123

1.0397
± 0.2174

0.1287
± 0.0287

ap 0.00731
± 0.00010

0.01808
±0.00544

0.00534
± 0.00046

No data 0.01772
± 0.00130

0.00464
± 0.00042

0.02449
± 0.00283

aphy 0.00461
± 0.0010

0.01319
± 0.00443

0.00359
± 0.00030

No data 0.01411
± 0.00139

0.00274
± 0.00027

0.01864
± 0.00200

anap 0.00270
±0.00032

0.00489
±0.00124

0.00176
±0.00034

No data 0.00361
±0.00056

0.00189
±0.00040

0.00584
±0.00103

aphy/ap 0.625
± 0.0513

0.725
± 0.0508

0.673
± 0.0481

No data 0.796
± 0.0336

0.594
± 0.0612

0.761
± 0.0221

ap/TChl-a 0.157
± 0.036

0.06226
± 0.01315

0.128
± 0.016

No data 0.10872
±0.00804

0.145
± 0.028

0.06235
±0.01877

aphy/TChl-a 0.099
± 0.031

0.04490
±0.00938

0.086
± 0.010

No data 0.08642
±0.00669

0.086
± 0.019

0.04765
±0.01484

2.2 Production model

Diel variation in the POC estimates obtained fromcp can be
used to assess various terms of a production budget including
gross community production, community losses or net com-
munity production rates following the method documented
by Claustre et al. (2008). This method is also applied here
for bbp.

For a given ocean layer, the gross community pro-
duction derived from optical measurements (OptGCP in
mg C m−2 d−1) is the sum of the gross primary and microbial
productions. It can be assessed by estimation of the increase
in POC content during daytime (D1POC). In practice:

OptGCP = D1POC/Dt (4)

whereDt is equal to the day time duration corresponding to
each day sampled. In practice we considered the difference
between minimum and maximum POC values for the calcu-
lation of the later biogeochemical rates rather than the ac-
tual POC values corresponding to the sunlight diel evolution
(see in Sect. 3.4). Similar estimation of the Net Community
Production (OptNCP in mg C m−2 d−1) and of the commu-
nity losses (OptCL i.e. respiration and other processes such
as grazing and sinking) can be performed following the POC

evolution during nighttime, however the latter are not con-
sidered for this study due to the absence of concurrent esti-
mation of these biogeochemical rates from classical methods
prevailing any validation of the derived estimates.

3 Results and discussion

3.1 Vertical distribution of the particulate matter

3.1.1 Vertical profile of fluorescence and
pigment-derived phytoplankton size classes

Vertical profiles of the total chlorophyll-a concentration,
TChl-a, estimated from in situ fluorescence calibrated us-
ing discrete HPLC measurements (see material and method),
present a general feature typical of oligotrophic conditions.
A deep chlorophyll maximum is found within the stratified
part of the water column (Fig. 2a, c, e). This maximum is
observed at 85 and 110 m for the A and C long duration sta-
tions, respectively. These water depths roughly correspond
to the depths of the euphotic zone (83 m for A, and 102 m for
C) and are slightly deeper than the top of the nitricline which
were observed at 72, and 93 m, respectively (Moutin et al.,
2011). These results are in good agreement with previous
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studies performed in oligotrophic areas (Moutin and Raim-
bault, 2002; Marty et al., 2002; Letelier et al., 2004; Uitz
et al., 2006). The TChl-a values at the DCM are 0.49 and
0.46 mg m−3 which, compared to their surface values, corre-
spond to an increase in TChl-a with depth by a factor of 10.5
and 14, respectively. In contrast to these two stations, the
TChl-a profile at station B is characterized by two unusual
maxima (75 and 140 m) which are located above the euphotic
depth (104 m) and below the top of the nitricline (114 m).
Note that these TChl-a values slightly differ from the one
reported in Moutin et al. (2011) who used a single parame-
terization to convert the in situ fluorescence signal in terms
of TChl−a for the three profiles measured at the LD stations
A, B and C, while different parameterizations were used for
each LD station in the present manuscript. The surface TChl-
a concentration at station B is equivalent to those of stations
A and C, but increases only by a factor of 3 and 4.7 from the
surface to the first and second maximum, respectively. Chl-a

concentration as measured from HPLC does not change be-
tween 75 and 150 m (= 0.0845± 0.0062 mg m−3), whereas
Divinyl-chlorophyll-a presents a peak at 124 m (Fig. 2c). As
already discussed in several papers, the DCM is partly ex-
plained by an intracellular increase in Chl-a (Kiefer et al.,
1976; Cullen, 1982). Indeed, the phytoplankton commu-
nity physiologically adapts to the low irradiance level (the so
called photoacclimation process), and to the vicinity of the
top of the nitricline. The recent development of appropriate
in situ instrumentation to characterize the vertical profile of
marine particles also highlights that phytoplankton cells can
play, through photoadaptation process, an important role in
this vertical feature (Oubelkier and Sciandra, 2008; Grob et
al., 2007). For instance, cytometry measurements performed
in the Ionian Sea show a maximum of picophytoeukaryotes
in the 50–90 m layer, with a deep chlorophyll maximum lo-
cated at 90 m (Oubelkier and Sciandra, 2008). In the same
way, a deep picophytoeukaryotes maximum was recorded in
the deep chlorophyll maximum at the center of the South Pa-
cific gyre (Grob et al., 2007).

Vertical profiles of pigment-derived phytoplankton size
classes as proposed by Claustre (1994) and Vidussi et
al. (2001) and recently improved by Uitz et al. (2006) re-
veal a change in the phytoplankton community structure
over the water column (Fig. 2b, d, f). Within the surface
layer, the biomass in terms of TChl-a, is dominated by nano-
phytoplankton, with a proportion of 68 %, 55 %, and 60 % at
stations A, B, and C, respectively. The proportion of nano-
phytoplankton then decreases from the surface to the deep
chlorophyll maximum, from where it starts increasing. The
phytoplankton community structure is equally dominated by
pico and nano -phytoplankton at the DCM for stations A and
C. This is in agreement with cytometry counting and micro-
scopic identification (Mauriac et al., 2011). At station B,
while the first DCM shows more nano-phytoplankton (52 %)
than pico-phytoplankton (35 %), the second DCM is mainly
dominated by pico-phytoplankton (65 %). This diversity in

 

 
 
 

 
Figure 2. 

Fig. 2. Vertical profiles of calibrated fluorescence performed during
the whole time period of sampling at the long duration stations A
(a), B (c), and C(e), together with the discrete measurements of
chlorophyll-a and divinyl chlorophyll-a performed by HPLC (see
text). Vertical profiles of the relative proportion of pico-, nano- and
microphytoplankton at the long duration stations A(b), B (d), and
C (f). The depth of the euphotic zone, Zeu, and the lower limit of
the mixed layer, MLD, are indicated.

the phytoplankton assemblages at the two DCM of station B
which are characterized by the same Chl-a (as measured by
HPLC) could explain the difference observed in the fluores-
cence peak intensity.

3.1.2 Vertical profiles of particulate attenuation and
backscattering coefficients

Particulate attenuation (Fig. 3a, c, e) and backscattering
(Fig. 3b, d, f) coefficients were also acquired simultaneously
to fluorescence profiles. The main vertical patterns observed
in the fluorescence profiles are also identified for thecp and
bbp ones. In particular, bothcp andbbp present a maximum
located at the DCM, and their value greatly decreases be-
low. However, some differences are noticeable. Firstly, while
TChl-a sharply increases from the surface to the DCM, this
increase is much less pronounced for bothcp andbbp at each
long duration stations. For instance, while TChl-a increases
by a factor of about 20,cp andbbp only increase by a fac-
tor of 1.9 and 1.6, respectively at station C (Table 1). Sec-
ondly, the two TChl-a maxima measured at station B are
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Figure 3. Fig. 3. Vertical profiles of the particulate attenuation coefficient at
660 nm,cp(660), for the LD stations A(a), B (c), and C(e). Ver-
tical profiles of the particulate backscattering coefficient at 650 nm,
bbp(650), for the LD stations A(b), B (d), and C(f). The depth
of the euphotic zone, Zeu, and the lower limit of the mixed layer,
MLD, are indicated.

also observable on thecp profiles but their intensity is re-
versed. From the first (z = 75 m) to the second (z = 140 m)
peak thecp value decreases by a factor of 2.2, whereas TChl-
a increases by a factor of 1.6. Thirdly, twocp maxima (at
22 and 85 m) are also observable at station A, where only
one TChl-a maximum is measured. Finally, compared with
the fluorescence and particulate attenuation profiles, particu-
late backscattering profiles exhibit numerous brief and large
spikes, which may be related to the presence of either ag-
gregates or zooplankton (Bishop et al., 1999; Gardner et al.
2000).

A combination of vertical profiles of particulate scattering
coefficients and fluorescence profiles have previously been
used to explain the origin of variability of TChl-a within the
whole water column (Kitchen and Zaneveld, 1990; Loisel
and Morel, 1998). Thecp vs. TChl-a diagrams, character-
ized by a 7-shape, are typical of oligotrophic environments
(Fig. 4). Between the surface and the DCM,cp is more
or less constant, and then linearly decreases with TChl-a

toward the deeper aphotic level. The horizontal segment
observed from surface waters to the DCM illustrates the
photoacclimation process responsible for the intraspecific
variation in the cellular chlorophyll concentration. Thecp

 
 
 

Figure 4. Fig. 4. cp(660) (left panels) andbbp(650) (right panels) as a func-
tion of TChl-a through the whole water column at stations A, B,
and C as indicated. The lines drawn with a 1:1 slope correspond to
values of the specific particulate attenuation,cp*(= cp/TChl-a), and
backscattering,bbp*(= bbp/TChl-a), coefficients in m2 (mg TChl-

a)−1. The depths of the euphotic zone, Zeu, of the lower limit
of the mixed layer, MLD, and of the deep chlorophyll maximum,
DCM, are indicated. The numerical depth values (e.g. 170, 250,
and 200 m) indicate the depth, deeper than the DCM, from which
the Log(cp(660)) vs. Log(TChl-a) relationship departs from linear-
ity.

vs. TChl-a linear behavior observed below the DCM can be
interpreted as a progressive dilution of the entire particu-
late matter assemblage seen by the transmissometer (Loisel
and Morel, 1998). Values of the specific particulate coef-
ficient, cp*(= cp/TChl-a), vary between about 1 and 0.1 m2

(mg TChl-a)−1 from the surface layer to the DCM for the
three long duration stations. The linear trend observed be-
low the DCM is characterized bycp* values of 0.1–0.2 m2

(mg TChl-a)−1. These differentcp* values are typical of
those found in other oligotrophic environments (Loisel and
Morel, 1998; Gardner et al., 2006; Morel et al., 2007).

The two DCMs at station B are also clearly visible on the
cp vs. TChl-a diagram. The photoacclimation of phytoplank-
ton cells is evidenced by the horizontal segment from the sur-
face layer to the first DCM, withcp* value decreasing by a
factor of 2 (from 1 to 0.5 m2 (mg TChl-a)−1). Then, while
TChl-a increases by a factor of 1.58 between the first and
the second DCM,cp decreases by a factor of 2.2, inducing
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cp* to decrease by a factor of about 5. Such highcp* vari-
ability observed over a relatively thin water layer (65 m) may
be caused by different factors. The value ofcp* at 660 nm,
which is equivalent tobp* (see material and method), is
driven by the scattering cross section of the microbial or-
ganisms (function of their refractive index and size distribu-
tion), as well as by the relative proportion between detritus
and living material. Similarly to stations A and C, this ra-
tio decreases from the surface layer to the first and second
DCM in station B, in agreement with the evolution of the
carbon-to-chlorophyll ratio of phytoplankton cells (Stramski
and Reynolds, 1993). Note however thatcp increases by a
factor of 1.34 from the surface to the first DCM, probably
due to the presence of detritus or other non-pigmented parti-
cles, and decreases by a factor of 2.2 between the two DCM
due to the adaptation of phytoplankton carbon content to the
irradiance level (Table 1).

The two distinct vertical patterns observed for thecp
vs. TChl-a relationship (i.e. the 7-shape) are much less no-
ticeable for the particulate backscattering coefficient. The
evolution of bbp as a function of TChl-a from the surface
layer to the DCM is nearly similar to that observed below the
DCM. In contrast tocp, bbp tends to increase with TChl-a

from the surface to the DCM, especially for stations A and C.
While cp* is roughly constant from the DCM to deep waters,
bbp* exhibits large variations of similar amplitude for the
two oceanic layers located above or below the DCM. Vari-
ation ofbbp* from 0.003 to 0.01 m2 (mg TChl-a)−1 is found
within these two oceanic layers, for instance at station A. For
the same range of TChl-a, variations inbbp* computed from
Huot et al. (2008)‘s formulation gives 0.002 and 0.005 m2

(mg TChl-a)−1. These values are consistent with thebbp*
measurements performed around the DCM, but are signifi-
cantly lower than those measured within the surface waters
(by a factor of 2). The differences observed between thecp
vs. TChl-a andbbp vs. TChl-a vertical patterns certainly re-
flect variation in the sensitivity ofbbp andcp regarding the
nature of the whole particulate matter. The origins of these
differences are discussed in the following section.

3.2 The bio-optical environment of the particulate
matter at the three long duration stations

Relationships between inherent optical properties (IOPs) and
biogeochemical parameters are analyzed for the three long
duration stations to establish their bio-optical environment,
which in turn is compared with standard relationships previ-
ously developed for open ocean waters.

The behavior of the particulate,ap(440), and phytoplank-
ton,aphy(440), absorption coefficients are analyzed as a func-
tion of the total chlorophyll-a concentration, TChl-a (Fig. 5).
The variation ofaphy(440) andap(440) versus TChl-a from
the surface water to the DCM can be described by the fol-
lowing relationships:

aphy(440) = 0.0364 TChl-a0.708 (N = 125, r2
= 0.89) (5)

ap(440) = 0.0432 TChl-a0.622 (N = 125, r2
= 0.91) (6)

where N is the number of samples, andr2 is the determi-
nation coefficient. The non-linear character of these two
relationships is particularly consistent with previous studies
(Yentsch and Phinney, 1989; Bricaud et al., 1995, 1998). Ex-
ponents in Eqs. (5) and (6) are relatively close to each other,
emphasizing that absorption by non-algal particles is propor-
tional to phytoplankton absorption at 440 nm. On average,
phytoplankton absorption contributes to 62± 5, 67± 5, and
59± 6 % of the particulate absorption measured at 440 nm
in surface waters of LD stations A, B, and C, respectively.
These proportions are consistent with previous studies per-
formed in the Mediterranean Sea (Bricaud et al., 1998;
Oubelkheir et al., 2007). These proportions significantly in-
crease around the DCM to reach about 70 % (Table 1). The
exponents in equations 5 and 6 are similar to previous find-
ings established from large data sets made of in situ measure-
ments collected in various oceanic regions (Bricaud et al.,
1995, 1998, 2004; Dupouy et al., 2003). For a given chloro-
phyll concentration, the values ofap(440) and especially of
aphy(440) measured in the surface layer during the BOUM
cruise are however lower than the mean values previously
published. For instance, the mean specific phytoplankton ab-
sorption coefficients,aphy*(=aphy/TChl-a), measured in the
surface layer of station A, is lower by a factor of 1.5 and 1.1
compared to the mean values given in Bricaud et al. (2004)
and Bricaud et al. (1995), respectively (see Table 1). How-
ever, theaphy* values measured at the three long duration
stations are in the range of the natural variability ofaphy*
reported by Bricaud et al. (2004), and very close to the ones
measured during the MINOS cruise in the Mediterranean Sea
(see their Fig. 2a). For the same TChl-a range (about 0.02–
0.05 mg m−3), the BOUMaphy* values are also in agreement
with those obtained in ultra-oligotrophic waters sampled in
the South Pacific Gyre during the BIOSOPE cruise (Bricaud
et al., 2010).

The relative lowaphy values reported in the present study
compared to the values generally adopted in open ocean
waters can be explained by a difference in the size struc-
ture and accessory pigments of the phytoplankton assem-
blage. The phytoplankton size index (SI) values, calculated
as in Bricaud et al. (2004), are in the upper limit of the re-
ported values by Bricaud et al. (2010) measured in ultra-
oligotrophic waters sampled during BIOSOPE. Based on
HPLC measurements, the SI (and TChl-a) values at stations
A, B, and C are 11.1 (0.06 mg m−3), 11.7 (0.04 mg m−3),
and 7.7 (0.026 mg m−3), respectively. These relatively high
SI values explain the lowaphy coefficient through the pack-
aging effect (Morel and Bricaud, 1981). Concerning ac-
cessory pigments, while the ratio values of photosynthetic
carotenoids, i.e., fucoxanthin, peridinin, 19‘-HF and 19‘-BF;
to TChl-a are in the range of expected values, the non photo-
synthetic pigments (zeaxanthin, diadinoxanthin, alloxanthin,
andβ-carotene) to TChl-a ratio values are very low (about
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Figure 5. 

Fig. 5. Variations of the absorption coefficient of(a) particles,ap(440), and(b) phytoplankton,aphy(440), at 440 nm as a function of
the TChl-a concentration for the surface layer (open circles), and at the DCM (crosses). The solid curves stand for the regression fits
corresponding to Eqs. (6) and (5) from measurements performed at the surface and DCM. Previous relationships are also represented as
indicated.

0.15–0.33). These two factors (i.e. relatively high SI and low
non photosynthetic pigments to TChl-a ratio), which both
explain the relatively lowaphy values, are consistent with
a significant contribution of nanophytoplankton to the total
phytoplankton biomass. The same conclusion was reached
by Bricaud et al. (2010) for the phytoplankton absorption
measurements performed in the very clear water of the South
Pacific Gyre.

The behavior ofcp(66w) with Chl-a, and POC has been
studied in various parts of the global ocean for about 3
decades (Gordon and Morel, 1983; Loisel and Morel, 1998;
Gardner et al., 1999; Stramska et al., 2005). In contrast, open
ocean water field measurements of the particulate backscat-
tering coefficient,bbp(66w), are relatively scarce and re-
stricted to few oceanic areas given that the proper in situ
commercial instrumentation has been made available only
for about a decade (Stramski et al., 1999; Reynolds et al.,
2001; Boss et al., 2004; Huot et al, 2008). The first order
variability of bothcp(66w) andbbp(66w) can be used to as-
sess the concentration of the particulate assemblage. Based
on Mie scattering theory, which assumes that suspended par-
ticles are homogeneous spheres, more than 80 % of the scat-
tering signal is due to particles less than 8 µm in diameter. In
contrast, for the same particle size distribution (a Junge type
with an exponent of−4), and a mean refractive index rela-
tive to water of 1.05 (typical of phytoplankton cells), most
of the backscattering signal is caused by particles smaller
than about 1 µm (Stramski and Kieffer, 1991; Morel and Ahn,
1991). However, recent fractionation experiments performed
in the open ocean (Dall’Olmo et al., 2009) and in coastal wa-
ters (Roesler and Boss, 2008) indicate contributions tobbp
from particles larger than 3 µm of 53± 7 % (at 470 nm) and
about 70 % (at 440 nm), respectively, and much lower contri-
butions (10–30 %) from submicron particles. The origin of
thebbp signal is then still controversial and more laboratory
experiments and in situ measurements are needed to explain

the variability observed in the particulate backscattering sig-
nal (Stramski et al., 2004).

The (TChl-a, cp) data points obtained at the surface for
the long (N = 69) and short (N = 106) duration stations fall
within the range of variability obtained over a larger data
set (Loisel and Morel, 1998), which covers different oceanic
regions, and are in agreement with previous measurements
performed in the Mediterranean Sea during the PROSOPE
(French acronym for “Productivité des Syst̀emes Oćeaniques
PElagiques” or “productivity of oceanic pelagic systems” )
cruise in September 1999 (Oubelkheir et al., 2005) (Fig. 6).
The standard non-linear behavior ofcp(660) with TChl-a is
well characterized from the surface water measurements per-
formed at the three LD stations (Fig. 6a):

cp(660) = 0.499TChl-a0.77(N = 69, r2
= 0.56) (7)

While the exponent 0.77 is remarkably close to the one found
in Loisel and Morel (1998) for the upper homogeneous layer
of the ocean, the coefficient (0.499) falls above the previously
published values. For instance, this coefficient has been fixed
at 0.26 from measurements performed within the upper layer
of the eastern South Pacific Ocean (Huot et al., 2008), and
varies between 0.103 and 0.383 depending on the data set
used over different regions of the global ocean (Loisel and
Morel, 1998). The relationship described in Eq. (7) is simi-
lar to the one established using all the surface measurements
performed at short duration stations:

cp(660) = 0.574TChl-a0.81(N = 106, r2
= 0.64) (8)

The exponent in Eq. (7) is closer to those obtained in Loisel
and Morel (1998) when all pairs of available data are consid-
ered (their subset 1 + 2 + 3 in Table 2), and larger to the one
obtained when data measured in the north Atlantic ocean are
excluded (their Subset. 1). The mean surface specific particu-
late attenuation coefficients,cp*(=cp/TChl-a), at stations A,
B, and C, are 1.17± 0.19, 0.98± 0.13, and 1.04± 0.21 m2
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(mg TChl-a)−1 (Table 1). These values are significantly
higher than those calculated using the mean global relation-
ships (Subset. 1 + 2 + 3) of Loisel and Morel (1998) which
are 0.71, 0.73, and 0.77 m2 (mg TChl-a)−1 at stations A, B,
and C, respectively. Note that the BOUM surfacecp* val-
ues are consistent with those measured in oligotrophic waters
sampled during the PROSOPE cruise (Fig. 6a).

A tight relationship is also observed betweencp and TChl-
a at the DCM (Fig. 6b):

cp(660) = 0.152TChl-a1.08(N = 67, r2
= 0.9) (9)

Note thatcp vs. TChl-a relationship is closer to linearity in
the DCM (Eq. 9) than in surface waters (Eq. 7). This rela-
tionship is equivalent to the one established for the short du-
ration stations (not shown). Compared with surface waters,
the variability incp is more tightly related to that of TChl-a

at the DCM, as stressed by the relatively high determination
coefficient found for the latter relationship. The mean spe-
cific attenuation coefficient decreases from the surface water
to the DCM by a factor of 6.4, 7.7, and 5.2 at stations A, B
(second maximum), and C (Table 1).

In situ cp measurements have been extensively used to as-
sess the spatio-temporal variability of POC in open ocean
waters (Marra et al., 1995; Loisel and Morel, 1998; Claustre
et al., 1999; Karageorgis et al., 2008). The conversion factor
betweencp and POC, namely the attenuation cross section,
depends on the refractive index, particle size distribution,
shape and internal structure of the particles in suspension.
Despite the large natural variability of these different param-
eters, relatively similar relationships have been established
betweencp and POC in different oceanic regions (Fig. 3c in
Stramska et al., 2005). For the surface waters (Eq. 10) of the
BOUM stations, POC is related tocp as follows:

POC = 404.cp(660) + 29.25(N = 31, r2
= 0.6) (10)

This equation was developed using mainly the short stations,
since only two POC profiles were measured during each long
duration stations. The coefficient 404 is in the range of previ-
ously published values used to convertcp into POC (see ref-
erences in Stramska et al., 2005). The relationship between
POC andcp presents much less variability from the surface
layer to the DCM (not shown) than thecp vs. TChl-a rela-
tionship which greatly changes along the water column. This
is explained by the fact that the vertical profiles of POC are
much more constant than those of TChl-a, as already shown
previously (Dufor̂et-Gaurier et al., 2010).

The evolution ofbbp as a function of TChl-a (Fig. 7) sig-
nificantly differs between surface waters (Eq. 11) and the
DCM (Eq. 12):

bbp(650) = 0.00573TChl-a0.67(N = 68, r2
= 0.59) (11)

bbp(650) = 0.00197TChl-a0.75(N = 66, r2
= 0.75) (12)

Similarly to thecp vs. TChl-a relationships established at the
surface and DCM, the exponents in Eqs. (11) and (12) are

relatively similar, but the coefficients sharply decrease from
the surface to the DCM. Between these two layers, the spe-
cific backscattering coefficients,bbp/TChl-a, decrease by a
factor 3 to 5, depending on the station (Table 1). This verti-
cal pattern stresses that the bulk particulate matter is a much
more efficient backscatter at the surface than at the DCM for
the same TChl-a. Note that thebbp/TChl-a mean values are
remarkably similar between the three long duration stations
(Table 1).

The evolution ofbbp as a function of TChl-a established
during the BOUM cruise is compared with the empirical for-
mulation documented by Huot et al. (2008), and with the
semi-analytical model of Morel and Maritorena (2001). In
the latter, the mean formulation used betweenbp and TChl-a
(Loisel and Morel, 1998) is replaced by the empirical formu-
lation developed over the BOUM data set (Eq. 7), and two
different values of the backscattering ratio,bbp/bp, are suc-
cessively used: 2 % as in Morel (1988), and 1 % as in Morel
and Maritorena (2001) who decreases the Morel (1988)‘s
value on the basis of theoretical considerations. Thebbp
BOUM parameterization (Eq. 11) follows the same trend
with TChl-a compared to the three other models, especially
the one developed by Huot et al. (2008) which presents ex-
actly the same exponent than in Eq. (11) (Fig. 7a). How-
ever, for a given chlorophyll concentration, the bulk par-
ticulate matter suspended in the surface water of the long
duration stations backscatters light much more efficiently
than what is expected for oligotrophic waters. Considering
for instance a TChl-a of 0.05 mg m−3, bbp calculated using
Eq. (11) is greater by a factor of 3.3 compared to the value
computed using the Huot et al. (2008)‘s model. The disper-
sion of the Huot et al. (2008) data points, as represented by
their 95 % confidence interval, does even not overlap part
of the BOUM data set (Fig. 7a). A relatively good agree-
ment can be observed between the BOUM data set and the
Morel and Maritorena (2001)‘s model when the greatest par-
ticulate backscattering ratio value (2 %) is used and whenbp
vs. TChl-a is modeled using Eq. (7) instead of the Loisel and
Morel (1998)‘s parameterization which is characterized by
a lowerbp/TChl-a value (Fig. 7a). However, based on Mie
scattering calculations, it appears thatbbp/bp value of 2 % is
too high for organic particles, which are predominant in case
1 waters (Ulloha et al., 1994; Morel and Maritorena, 2001).
Similar or higherbbp/bp values are currently encountered in
coastal areas (Sullivan et al., 2005; Loisel et al., 2007), but
have never been measured in open ocean waters, at least in
absence of suspended mineral particles from organic (coccol-
ithophorids) or inorganic (atmospheric inputs) origin. The
reasons of such singularbbp/bp values andbbp vs. TChl-a
relationship are discussed in the next section.

The fact thatbbp follows the same trend with TChl-a than
those described in previous studies for oligotrophic waters
gives us confidence in the present data set. However, to
be able to faithfully compare the presentbbp vs. TChl-a re-
lationship with the formulation by Huot et al. (2008), we
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Figure 6. 
Fig. 6. Variations of the particulate attenuation coefficient,cp(660), as a function of the TChl-a concentration for(a) the surface layer, and
(b) at the DCM. The data collected during BOUM at the LD and SD stations, during the PROSOPE cruise, and those gathered by Loisel and
Morel (1998) are plotted as indicated. Nhl and Ndl represent the number of data available in the Loisel and Morel (1998)‘s data set for the
homogeneous and the deep layers, respectively. The results of the present and previous regression analyses are also plotted as indicated.

processed the data according to the procedure defined by
Twardowski et al. (2007) also used in Huot et al. (2008). In
their approach,bbp is derived from scattering measurements
performed at one scattering angle (117◦), β(117). Then,bbp
is derived by assuming a conversion factor betweenbbp and
2πβ(117). This conversion factor is fixed at 0.9, accord-
ing to Sulivan et al. (2005). Based on the BOUM data set,
the conversion factor betweenbbp and 2πβ(125) is 1.0086
(r2

= 0.84). This weak difference may be caused by the
fact that the BOUM data set is focused on very clear waters
whereas to the data set used in Sulivan et al. (2005) encom-
passes measurements performed in coastal areas. By apply-
ing the conversion factor used by Twardovski et al. (2007)
to our measurements collected at 125◦ we obtain higherbbp
values (by about 30 %) than those derived using the scatter-
ing measurements at three angles. Therefore, the derivation
of the backscattering coefficient from a single angle, as it is
done in Huot et al. (2008), would even increase the discrep-
ancy observed with theirbbp vs. TChl-a parameterization.

Moreover, otherbbp measurements were performed dur-
ing the BOUM cruise using a quite different protocol (on
water continuously pumped from about 9 m below the sea
surface) and instrument (an ECO-BB3 WET Lab measuring
at 3 wavelengths and at one given angle, 117◦). Particulate
backscattering coefficients are calculated as in Dall’Olmo et
al. (2009). Only the blue and green channels can be used
because the red channel showed significant drifts in the cali-
bration coefficients measurements. Comparison between the
in situ bbp(650) values and thebbp values obtained from
the measurements performed on pumped waters at 526 nm
shows a relatively good agreement (Fig. 7b). So, even if
these two sets ofbbp measurements were acquired at differ-
ent wavelengths and using different methodologies, the slight
differences observed between these two data sets re-enforce
our present conclusion about the backscattering anomaly,

and clearly demonstrate that this is not an artifact of the mea-
surements.

3.3 The Mediterranean color anomaly as seen during
the BOUM cruise

3.3.1 Ocean color anomaly

Remote sensing reflectance measurements performed during
the BOUM cruise confirm the unusual bio-optical character
of the Mediterranean Sea, as previously stressed in different
studies (Gitelson et al., 1996; Claustre et al., 2002; Antoine
et al., 2006). The blue-to-green reflectance ratios vs. TChl-a

measurements depart significantly from the OC4v4 empiri-
cal formulation (O’Reilly et al., 1998) currently used to as-
sess TChl-a from the Seaviewing Wide Field-of-view Sensor
(SeaWiFS) (Fig. 8). Based on the restricted BOUM radio-
metric data set, the OC4v4 algorithm overestimates TChl-a

by a factor of two, with a mean ratio of the retrieved-to-in
situ TChl-a using OC4v4 of 2.2± 0.3. This ratio drops to
0.9± 0.2 when using the regional algorithm developed from
a data set of reflectance and chlorophyll measurements col-
lected during the PROSOPE and AMOFRONT-2 cruises in
the Mediterranean Sea (Bricaud et al., 2002). Different as-
sumptions were proposed to explain the fact that the Mediter-
ranean Sea is greener than TChl-a alone indicates. The pres-
ence of phytoplankton cells with a high specific attenuation
coefficient, such as coccolithophorids, was suggested to ex-
plain the bias observed in ultra oligotrophic waters of the
eastern Mediterranean Sea (Gitelson et al., 1996). In contrast
to this assumption based on a specific phytoplankton nature,
the presence of submicron Saharan dust in suspension within
the upper layer was advanced by Claustre et al. (2002) to
explain the enhanced absorption in the blue as well as the
enhanced backscattering in the green part of the visible spec-
trum, which tend to decrease the blue-to-green reflectance
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Figure 7. Fig. 7. (a) Variations of the particulate backscattering coefficient,
bbp(660), as a function of the TChl-a concentration for the sur-
face layer (cross), and at the DCM (circle). The two solid lines
are the least squares linear fits described by the Eqs. (11) (surface
layer) and (12) (DCM). The dashed and doted lines represent the
semi-analytical model of Morel and Maritorena (2001), in which the
mean formulation used betweenbp and TChl-a is replaced by the
empirical formulation developed over the BOUM data set (Eq. 7),
and for two different values of the backscattering ratio,bbp/bp, as
indicated. The solid grey line represents the empirical formulation
of Huot et al. (2008), and the two grey dashed lines delimit the
95 % confidence interval as given in Huot et al. (2008) (their Ta-
ble 1). (b) Comparison between the in situbbp(650) measurements
and thebbp(526) measurements performed in the wet lab on surface
pumped water at station B.

ratio values. More recently, Morel and Gentili (2009) pro-
posed that the TChl-a overestimation by standard (global)
algorithms (such as OC4v4) reflects the presence of a high
CDOM background within the Mediterranean waters.

The over-estimation of TChl-a by a factor of 2 using
OC4v4 is due to a lower blue-to-green reflectance ratio, BG,
than expected (by a factor 1.4). The mean and standard

 

 
 

Figure 8. Fig. 8. Variations of the blue-to-green reflectance ratio as a function
of the TChl-a concentration for the BOUM data set. The dashed
line represents the global NASA algorithm (“OC4v4,” see O’Reilly
et al., 1998), and the solid line the regional algorithm developed by
Bricaud et al. (2002).

deviation of in situ BG and TChl-a values are 5.66± 0.67
and 0.041± 0.006 mg m−3, respectively. The same mean
TChl-a value can be obtained using OC4v4 with a BG
value of 8.2, that is 1.4 times higher than the BG in situ
value. The lower than expected BG value is explained by
a lower than expected blue-to-green backscattering ratio,
bb(443)/bb(555), and/or a higher than expected blue-to-green
absorption ratio,a(555)/a(443). Based on standard IOPS vs.
TChl-a relationships the variability of BG with TChl-a, as
driven by the empirical OC4v4 algorithm, can be reproduced
to study the impact of each IOPs on the BG value. For that
purpose,bbp(λ), ap(λ), andacdom(λ) are modeled as a func-
tion of TChl-a according to Huot et al. (2008), Bricaud et
al. (1998), and Morel and Gentili (2009), respectively. For
the mean TChl-a value obtained from the present data set
(i.e. 0.041 mg m−3) the BG value (= 7.9) calculated using
these different relationships is close to the OC4v4 BG value
(= 8.2), emphasizing that these relationships can be used in
this sensitivity analysis. The impact of each IOPs measured
during BOUM on the BG values is now examined by mod-
ifying the mean IOPs vs. TChl-a relationships based on the
BOUM data set.

3.3.2 Absorption by particles larger than about
0.5–0.7 µm

The substitution of the mean (global)ap(λ) relationships
at 443 and 555 nm by those established from the present
in situ data set in the BG parameterization only induces a
very slight increase of BG. This increase is due to the lower
than expectedap(440) andap(555) values. Such low values
are consistent with measurements performed by Bricaud et
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al. (2010) during BIOSOPE. The measured non-algal par-
ticles, anap(440), values are consistent with those calcu-
lated using the mean relationship established by Bricaud et
al. (2010) betweenanap(440) and TChl-a from data collected
in different oceanic areas ranging from ultra-oligotrophic and
eutrophic waters. For instance, for TChl-a = 0.05 mg m−3,
anap(440) is equal to 0.0023 and 0.0021 m−1 for the BOUM
data set and from the Bricaud et al. (2010)‘s parameteriza-
tion, respectively. Therefore, absorption properties of sus-
pended marine particles sampled during BOUM with diam-
eters higher than 0.5–0.7 µm (the assumed porosity of the
GF/F filter after their precombustion) can not explain the
40 % BG decrease (compared with its expected values for
the same TChl-a).

3.3.3 Absorption by small particles and
colored dissolved organic matter

Decrease in the blue-to-green reflectance ratio by a factor of
1.4 by modifying only the amount of colored dissolved or-
ganic matter would require an increase in each of the mean
values ofacdom(443) andacdom(555) as modeled by Morel
and Gentili (2009) by a factor of 2.9. Unfortunately, ab-
sorption by colored dissolved organic matter,acdom(λ), and
absorption by small particles with diameters between about
0.2 and 0.7 µm,asp(λ), have not been measured during the
BOUM cruise.asp(λ) represents the missing part in the ab-
sorption budget, asap(λ) represents the absorption by par-
ticles retained by a filter with a nominal pore size of about
0.5–0.7 µm, andacdom(λ) is the absorption of the matter af-
ter filtration onto membrane filters with a 0.22 µm pore size.
However,acdom(λ) + asp(λ) can be modeled by subtracting
the measured particulate absorption,ap(λ), and the pure sea
water absorption,aw(λ) (Pope and Fry, 1997), coefficients
to the total absorption coefficient,a(λ), retrieved from ra-
diometric measurements. The remote-sensing reflectance,
the average attenuation coefficient for downwelling irradi-
ance,Kd(λ), between the surface and the first attenuation
depth, and the solar zenith angle, are used as input param-
eters in the new version of the Loisel and Stramski (2000)
model to assess the total absorption and backscattering co-
efficients. This new version directly accounts forRrs in-
stead of irradiance reflectance,R(0−), and includes more
realisticb/a- bw/b combination in the different parameteri-
zations used in the model (b andbw are the total and pure
sea water scattering coefficients, respectively). Based on a
synthetic data set (IOCCG, 2006)bbp(443) anda −aw(443)
are retrieved with a Root Mean Square error of 0.024 and
0.0022 for oligotrophic waters (Chl-a < 0.3 mg m−3). Based
on the BOUM data set whenbbp, Rrs and Kd measure-
ments are available, the inversed-to-measuredbbp(650) ratio
is 0.92± 0.11. The mean and standard deviation for the mea-
sured and inversedbbp(650) values are 0.00074± 0.00005
and 0.00068± 0.00011 m−1, respectively. Even though the
number of stations is limited (N = 7), this result gives us a

certain degree of confidence for the absorption assessment
using the present model. The mean and standard deviation
of acdom(443) + asp(443) are 0.0054± 0.0011 m−1 for these
stations. These inversed values are slightly higher than those
calculated from the mean global relationship of Morel and
Gentili (2009) betweenacdom(443) and TChl-a. Indeed, for
the TChl-a values measured at the stations considered for
the inversion, the mean and standard deviation values for
acdom(443) are 0.0042± 0.0004 m−1. The inversed values
are therefore greater by a factor of 1.29 than the averaged
values, which is far from the factor 2.9 that should be con-
sidered to explain the BG anomaly with only absorption by
CDOM and submicron particles. Note that by taking into ac-
count an error of 40% in theacdom(443) +asp(443) retrieval
would provide values greater by a factor of 1.8 than the aver-
aged values.

3.3.4 The scattering and backscattering anomalies

The present in situ data set reveals that both surfacecp*
andbbp* are higher than expected using standard relation-
ships developed for open ocean waters (Loisel and Morel,
1998; Huot et al., 2008). Our highcp* values are consis-
tent with the findings of Gitelson et al. (1996) and Claustre
et al. (2002). For instance, Claustre et al. (2002) have shown
that the particulate scattering coefficients measured in the Io-
nian Sea (eastern basin of the Mediterranean sea) were higher
by a factor of 2.4 than the ones modeled according to Loisel
and Morel (1998) using their data Subsects. 2 and 3. With the
BOUM data set this overestimation reaches a factor of 1.4.
The discrepancy between the measured and modeledcp, is
even more pronounced forbbp in the ultra oligotrophic parts
of the Mediterranean Sea sampled during the BOUM cruise.
This is the first time that such largebbp* values are reported
in ultra oligotrophic environments, as only scattering or at-
tenuation measurements were performed in the previously
cited studies (mainly due to the relatively recent commercial
availability of appropriate instrumentation). While recent
studies stressed that higher than averagedbbp* values lead to
an over-estimation of TChl-a by standard global algorithms
using blue-to-green reflectance ratios (Brown et al., 2008;
Loisel et al., 2010), the relevant driving processes are not to-
tally understood. Based on the present data set and for TChl-
a = 0.041 mg m−3, bbp(650) is greater by a factor of 3.26
compared to the averaged value of Huot et al. (2008). The
spectral values ofbbp(λ) are computed using three methods
to assess the effect ofbb(443)/bb(555) on BG. First, the spec-
tral dependencies as established by Huot et al. (2008) from
their different parameterizations betweenbbp(λ) and TChl-a
are used to assessbbp(443) andbbp(555) from thebbp(650)
measurements performed during the BOUM cruise. In this
configuration the blue to green reflectance ratio decreases by
a factor of 1.10 compared to its mean expected value for
TChl-a = 0.041 mg m−3. Second,bbp(555) is equal to the
bbp(443) value as calculated in the first configuration. This
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configuration, which accounts for the presence of absorb-
ing particles in the blue being responsible for the decreas-
ing bbp(443) value through the absorbing depressing effect,
explains more than half of the BG anomaly. Indeed, the BG
decreases by a factor of 1.33 compared with the factor 1.4. At
last,bbp(443) andbbp(555) are calculated frombbp(650) as-
suming a spectral dependency ofλ−1 andλ−3.5, respectively.
Note that such highbbp spectral dependency has already been
reported in the Mediterranean Sea in summer (Antoine et
al., 2011). This configuration, in whichbbp(555) is slightly
higher thanbbp(443) (by a factor 1.20), almost fully explains
the 1.4 decreasing of the blue-to-green ratio. The two last
scenarios in terms ofbbp spectral shapes account for the fact
that these particles should strongly backscatter light in the
green part of the spectrum due to (i) their specific proper-
ties and (ii) the absorbing depressing effect in the backscat-
tering spectrum, which reduce the number of backscattered
photons in the blue. The spectral variability ofbbp calcu-
lated from the scattering measurements performed in the blue
(470 nm) and in the green (526 nm) parts of the spectrum on
pumped-water, as described in the Sect. 3.2, emphasizes that
the second scenario is the more reliable one. Indeed, the
bbp(470)/bbp(526) ratio is 1.04±0.06 for stations where the
blue-to-green reflectance anomalies have been reported. This
ratio is significantly lower that the one measured in the most
oligotrophic part of the Atlantic ocean during the AMT19
cruise (bbp(470)/bbp(526) ≈ 1.2) using the same measure-
ment protocol (Dall‘Olmo, personal communication, 2011).
This feature again stress the peculiar bio-optical character of
these Mediterranean waters sampled.

Based on the different scenarios of specific IOPs exam-
ined above, one may assume that the presence of highly re-
fractive suspended marine particles with diameter lower than
0.5–0.7 µm in the surface layer of the Mediterranean Sea
could explain most of the observed blue-to-green reflectance
anomalies. The vertical variability of the factor appearing
in Eq. (11) (0.00573) and (12) (0.00197) emphasizes that
the overestimation ofbbp, compared to its mean expected
value, is restricted to a surface layer of about 40 m deep
(Fig. 9). In the same way, the higher determination coeffi-
cient found betweencp or bbp and TChl-a at the DCM com-
pared to their surface value stress that the variability in both
bbp and cp is more tightly related to that of TChl-a at the
DCM (Eqs. 7, 9, 11, and 12). The presence of non-pigmented
particles (in terms of TChl-a) at the surface could explain
part of this difference. Therefore, the combination of the in-
versedacdom(λ)+ asp(λ) values, which decreases BG by a
factor of 1.08, and thebbp(λ) values calculated using the sec-
ond scenario, explains the full blue-to-green reflectance ratio
anomaly.

3.3.5 Origin of the submicrometer particles

Even though Mie calculations should be used with cau-
tion for the interpretation ofbbp (Stramski et al., 2004), it

 
 

 
 
 
 
 
 
 
 
 
 

Figure 9. 

Fig. 9. Vertical evolution of the coefficientα (bbp = α TChl-aβ )

calculated from a regression analysis performed at different depths
between thebbp and TChl-a data values measured at the three long
duration stations.

provides some insights if one considers particles as homoge-
neous spheres. In this context, the higher-than-expectedbbp
surface values for a given TChl-a may be caused by a much
greater concentration of small organic living or non-living
particles compared to large particles, or/and by the presence
of highly refractive particles. Indeed, hyperbolic particle size
distribution with a high slope value, and particles with high
refractive index both explain the highbbp/bp values reported
here (see Fig. 9 in Twardowski et al., 2001). Based on these
theoretical considerations, the following different types of
particles could explain the highbbp* andbbp/cp values in the
studied area: a high concentration of submicron non-living or
living organic particles, highly refractive submicron Saharan
dust, and highly refractive coccolithophores. Based on the
fact that highbbp* values are found at the three long duration
stations which are located in the eastern, central and western
part of the Mediterranean Sea, and that these particles should
be in the submicron size range with therefore a negligible
sinking velocity, coccolithophores are not the most plausi-
ble candidates to explain the BG anomaly. Picoparticles,
amongst which picodetritus have a lower water content and a
higher refractive index than phytoplankton cells, may appear
in high concentrations as shown in Loisel et al. (2006) in the
ultra-oligotrophic waters of the south Pacific gyre. However,
no bbp and BG anomalies were observed during BIOSOPE
where very steep slopes of the particle size distribution in
the submicrometer range were measured. In contrast to the
two previous types of particles, strong evidence indicates
that highly refractive particles from Saharan origin could ex-
plain the BG anomalies as already advanced by Claustre et
al. (2002). Firstly, vertical profiles of lithogenic silica, LSi,
a desert dust tracer (Betzer et al., 1988), exhibit high sur-
face concentration for each LD stations (Fig. 10a). Besides,
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the LSi concentration values are generally much higher, up
to a factor of 5, in the surface layer compared to deeper wa-
ters (Fig. 10a). Lithogenic silica data in the open ocean are
very scarce, as LSi is often measured only in coastal environ-
ments as a way to correct BSi measurements from lithogenic
interference (Raguenau and Tréguer, 1994; Ragueneau et al,
2005). However, LSi concentrations for open oligotrophic
areas are usually close to∼0.01 µmol L−1 at the surface
level (Leblanc, personal communication from unpublished
data, Adjou et al., 2011). Concentrations>0.01 µmol L−1

are usually clearly associated with either: samples close to
the sea floor and containing suspended sediment, samples
collected at coastal sites or near river mouth, or dust depo-
sition events. Unfortunately, to our knowledge, there are
no data comparing dust collected during a dust storm and
in situ lithogenic silica concentrations. However there is
no doubt that LSi increases in the water column trace ei-
ther sediment or aerosol presence in the form of aluminosil-
icates eroded from the earth crust. Hence, in open waters
far from the coast and with deep bathymetry, LSi increases
can only trace either lateral advection of sediment particle
with a strong current, or aerosol deposition from the atmo-
sphere which is the most likely explanation in our present
study. Secondly, OMI daily products of absorbing aerosol in-
dex (http://toms.gsfc.nasa.gov/aerosols/aerosolsv8.html) re-
veal that Saharan dust events occurred before and during the
cruise (Fig. 10b). Note however that the satellite observa-
tion of Saharan dust events does not necessarily indicate that
a deposition in the Mediterranean Sea occurred. Finally, a
wet dust deposition event has been observed during the tran-
sect between the short duration station 17 and the long du-
ration station A (Ternon et al., 2011). Even if most of the
BG anomaly seems to be related to the presence of sub-
micrometer and highly refractive particles, complete field
measurements of the different parameters (Rrs(λ), bbp(λ),
(acdom+ asp)(λ), TChl-a, LSi, coccolithophores identifica-
tion, and particle size distribution), should however be per-
formed in the future to strengthen this hypothesis. Note how-
ever that measurement of particles size distribution in the
submicrometer size range is still very challenging (Loisel et
al., 2006).

3.4 Diel cycle incp and bbp and associated
biogeochemical applications

3.4.1 cp and bbp diel cycles

Thecp andbbp time series recorded during the BOUM cruise
show clear daily oscillations for the two long stations A and
B (Fig. 11), while no distinct daily patterns were detected
at station C neither for the biological parameters (e.g. the
TChl-a) or optical parameters. The absence of diurnal cy-
cle at station C could be explained by a mixed situation in
terms of phytoplankton composition. In the Provencal Basin
(station A), significant diurnal variations incp andbbp are

 
a) 

 
b)  

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2008-05-31

2008-06-07

2008-06-14

2008-06-21

2008-06-28

2008-07-05

2008-07-12

O
M

I A
er

os
ol

 In
de

x

Date

Daily evolution of Aerosol Index over BOUM stations

ABC

point A

point B

point C

 
 
 

Figure 10. 
Fig. 10. (a) Mean vertical profiles of lithogenic silica, LSi, per-
formed at each Long duration station. Horizontal bars represent the
standard deviation.(b) Temporal evolution of the OMI daily prod-
ucts of absorbing aerosol index.

mostly observed around the DCM (80–90 m). Conversely, in
the Ionian Sea (station B)cp andbbp day-night cycles can
be detected from the water column surface down to the up-
per TChl-a maximum (∼75 m) while the latter parameters
remained relatively stable in time within the second DCM
located below the euphotic depth (140 m).cp andbbp daily
oscillations appear to be slightly decayed in time for both
sites. This feature is represented clearly in Fig. 12, which
shows the time series ofcp andbbp values integrated from
the surface to the depth corresponding to 1.5 Zeu (i.e. 123
and 155 m for A and B respectively). For both A and B
stationscp is minimal around sunrise and maximal around
sunset (excepted for Day 2 at station A) in agreement with
previous observations performed for various oligotrophic and
mesotrophic ecosystems (Siegel et al., 1989, Claustre et al.,
1999, 2008). Integratedbbp minimum values are usually syn-
chronized tocp whereas maximumbbp are often reached 3 to
6 h later than those forcp (Days 1 and 2 for both stations).
The mean integratedcp andbbp daily values levels remain
stable over the 3 days of the long time stations excepted for
the station B wherecp values tend to decrease by 12 % over
the duration of the experiment.

The amplitude of daytime variations experienced bycp
reaches up to 19 and 14 % ([cpmax-cpmin]/cpmin.100) in aver-
age for station A and B, respectively. This is in the range
of the value previously reported in the eastern Ionian sea
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Figure 11. 

Fig. 11.Contour plot showing the vertical and temporal evolution of the chlorophyll fluorescence (a, b) of the particle attenuation coefficient,
cp, (m−1), (c, d) and of the particle backscattering coefficient,bbp, (m−1) (e, f) at stations A and B respectively. The vertical dimension is
represented in terms of density in order to remove the effects of internal waves throughout the water column.

(5–21 %, Oubelkheir and Sciandra, 2008) but remains lower
than those documented for other areas (e.g. equatorial and
tropical Pacific 25–70 %, Claustre et al., 1999; Durand and
Olson, 1996; Gardner et al, 1995). Such diel changes incp
correspond to mean diurnal rate of variation (µcp, in d−1) of
0.32 and 0.37 d−1 in stations A and B, respectively, estimated
using the formulation proposed by Cullen et al. (1992):

µcp = 24/(t2− t1)ln(cp2/cp1) (13)

wheret1 andt2 correspond to the actual minimum and max-
imum dailycp values. These rates agree with those reported
by several authors for oligotrophic conditions (Gernez et al.,
2011 and references therein). Note that the latterµcp falls
to 0.2 d−1, for both A and B whenµcp is calculated using
cp sunset and sunrise values as recommended by the previ-
ous authors emphasizing that the actual extremecp values
we measured are not perfectly synchronized to the extreme
variation in the light environment. Such time shift of thecp
extreme values from sunset and sunrise have already been no-
ticed (Gernez et al., 2011; Oubelkheir and Sciandra, 2008).

Relative daily increase experienced bybbp value is slightly
lower than those forcp reaching mean values of 14 and
13 % for stations A and B, respectively. In average, the de-
crease incp (−20 and−17 % for A and B respectively) and
bbp (−13 % for A and B) during nighttime almost balance
the daytime increase of the latter parameters, even though a

strong day to day variability is observed for bothcp andbbp
(Fig. 12). The diurnal rates of variation forbbp (µbbp, d−1)

are slightly lower than the corresponding µcp values (0.27
and 0.26 d−1 for stations A and B respectively).

In addition to these differences in the magnitude of the
diel cycles, relevant discrepancies have been observed be-
tween the timing of the diel variations associated withbbp
andcp within the different sites. Moreover, a marked day-to-
day variation in the extent of thecp diel oscillations has also
been noticed. However, we assume that a clear explanation
of these discrepancies cannot be assessed from the present
dataset, which only covers a limited number of diel cycles
and emphasizes the need of longer time series. Indeed, the
latter features reflect heterogeneities in the sensitivity of the
latter optical parameters to spatial and temporal changes in
the structure of the particle assemblage, which is diversely
composed of various types of phytoplankton, heterotrophs
and detritus, as well as in changes regarding the properties of
the individual particles (including abundance, size, refractive
index, shape or internal structure). As a matter of fact, par-
ticle attenuation and backscattering coefficients depend on
the numerical concentrations of all particles in a given wa-
ter volume and the particles geometric cross section and ef-
ficiency factor for attenuation and backscattering (Bricaud
and Morel 1986; Morel and Bricaud 1986). A quantita-
tive estimation of the factors driving the diel dynamics of
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Figure 12. 
 

Fig. 12. Temporal evolution of the vertically integrated (0–1.5 Zeu)

particle backscattering (red circles) and attenuation (blue squares)
coefficients at stations A and B, respectively. The grey line repre-
sents the evolution of the surface irradiance over the same period of
time (µmole Quanta m−2 s−1).

bbp andcp needs a relevant description of each of the latter
parameters appearing for the various types of particles sam-
pled. These required parameters have not been acquired dur-
ing the BOUM cruise and remain very difficult to estimate
from in situ measurements (Claustre et al., 2000; Boss et al.,
2001; Oubelkheir et al., 2005).

The diurnal increase incp can diversely be related to phy-
toplankton photosynthetic production, diurnal variations in
heterotrophic bacteria abundance and detrital matter con-
centration (Stramski and Reynolds, 1993; Stramski, 1999;
Claustre et al., 2008; Oubelkheir and Sciandra, 2008).
Among those factors, daily changes in phytoplankton proper-
ties (i.e. size and refractive index) induced by the accumula-
tion of carbon within the phytoplankton cells associated with
photosynthetic processes have been often considered as the
main driving factors forcp diel variations by several authors
(e.g. Stramski and Reynolds, 1993; Stramski, 1999; Durand
and Olson, 1998; Binder and Durand, 2002). For instance,
numerous laboratory measurements have shown that the diel
variations ofcp are mainly caused by variation of the scatter-
ing cross section of phytoplankton cells, driven by refractive
index (i.e. changes in intracellular carbon concentration) and
cell size, rather than by the variation of their concentration
(Stramski and Reynolds, 1993). However, Oubelkheir and
Sciandra (2008) have shown from in situ measurements that
while cp undergoes a daily percent increase ranging between
5 % and 21 %, the concentration of particles increases by 6 %
to 8 %. Controversial results by Oubelkheir and Sciandra

(2008) have also emphasized the predominant impact of the
cell abundance of heterotrophic bacteria oncp daily variabil-
ity in the eastern Ionian Sea. Situations observed at sta-
tions A and B seem to be more contrasted. Indeed, in the
Provencal basin (station A), the strongcp andbbp daily os-
cillations found in the DCM (90 m) are positively correlated
with the temporal evolution of cell bacteria abundance (r-
Pearson = 0.5 and 0.6, respectively). In addition, signif-
icant correlations are also found betweencp and bbp and
picoeukaryotes, Synecochoccus and Prochlorococcus abun-
dances (r-Pearson = [0.5–0.8]) however it concerns mostly
depths corresponding to the deep limit of the DCM (100–
110 m). At station B, weaker positive correlations are also
found betweenbbp and phytoplankton andbbp and bacteri-
oplankton abundances (r-Pearson = [0.4–0.6]) essentially in
the upper part of the water column while significant corre-
lations forcp are mostly found for the deep samples (below
90 m depth). The impact of the detritus dynamics oncp and
bbp diel variability seems to be relatively limited as empha-
sized by the absence of significant diel variations in the detri-
tal matter absorption coefficient,adet, for both stations A and
B (not shown). This is consistent with findings by DuRand
and Olson (1996) who have shown that non-algal material
is relatively constant over a daily scale. Such correlations
are however not sufficient to assess the actual impact of each
of the latter contributors to the diel variation of particulate
matter attenuation and backscattering properties due to the
actual lack of knowledge regarding the specific optical prop-
erties associated especially with heterotrophic bacteria and
detritus.

The lower magnitude of the diel variations forbbp might be
related to the high sensitivity ofbbp to changes in the small
particle abundance which represents only a limited part of
the particulate matter assemblage sampled in the studied ar-
eas (assuming that detritus do not present a significant diel
cycle). As a matter of fact, diel variations in the particulate
matter associated with large phytoplankton cells, whose rel-
ative contribution has been found to be relatively high in the
water masses sampled during the BOUM experiment (high
contribution of nano-phytoplankton, relatively high size in-
dex), might therefore induce stronger diurnal changes incp
than inbbp values. Similarly, differences observed in the tim-
ing of cp andbbp diel maxima might be related to an increase
in the small sized phytoplankton cells induced by cell divi-
sion processes during nighttime as previously emphasized
from in situ studies (Vaulot and Marie, 1999; Oubelkheir
and Sciandra, 2008; Slade et al., 2010). Again the lat-
ter pattern might have a greater impact onbbp than oncp
values which is only moderately impacted by cellular divi-
sion processes (12–20 % of thecp variations according to
Claustre et al, 1999 and DuRand and Olson, 1996). As a
matter of fact, daily oscillations found at the station A for
the ratio between vertically integratedbbp andcp values (a
proxy for bbp/bp ratio, not shown), being maximal during
nighttime and varying by about 20 % relative to its minimal
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level, emphasize the presence of relevant diel changes in the
particle size distribution (and refractive index) over the in-
vestigated time period. It should be noticed that the latter
processes might also occur during daytime (Chilshom and
Costallo, 1980) and might shift between the different phyto-
plankton groups that make the phytoplankton community as
highlighted by Vaulot and Marie (1999) for the various au-
totrophic picoplankton groups in the equatorial Pacific. Ab-
sence of correlation between Prochlorococcus, Synecochoc-
cus, picoeukaryotes and bacteria abundances, as detected
from cytometry counting (Mauriac, personnal communica-
tion, 2011), are also found within the water masses sampled
in stations A and B, however the present time series are not
long enough to provide any clear evidence explaining the dis-
crepancies existing betweenbbp andcp diel variations.

3.4.2 Biogeochemical applications

The strong correlation betweencp and POC concentration
(Loisel and Morel, 1998; Claustre et al., 2008) suggests that
the diel variation incp significantly reflects the different gain
and loss terms involved in the carbon budget within the up-
per part of the ocean waters. Considering this feature, several
authors (Claustre et al., 2008 and references therein) have
proposed to infer biogeochemical fluxes (including phyto-
plankton growth rates, production and community produc-
tion) from cp measurements which present the interest to be
non-intrusive and much more easily acquired than the clas-
sical biogeochemical approaches. Importantly, the same as-
sumption can be performed forbbp and our results show clear
diel cycles in particle backscattering properties, which em-
phasize the potential forbbp values to be also used as a proxy
for estimating upper ocean biogeochemical rates. This last
feature is of particular interest sincebbp can be inferred from
satellite remote sensing measurements now with satisfying
accuracy (Loisel et al., 2001; Dupouy et al., 2003; IOCCG,
2006).

When phytoplankton dynamics represents the major con-
tributor to the diel variability incp, they can be used to
assess phytoplankton growth and production rates (Binder
and Durand 2002). In the present study, this assumption
does not hold since bacterial abundance variability has also
been shown to significantly impactcp and bbp diel cycles
both in the Ionian Sea and in the Provencal basin. How-
ever, assuming that the dynamics of the other living com-
ponents of the particulate assemblage (i.e. heterotrophic bac-
teria, flagellates) are positively correlated to the dynamics of
the phytoplankton photosynthetic processescp andbbp data
can be thus used to assess community production loss and
gain terms.

Daily changes incp and bbp have to be converted first
into POC (POCcp and POCbbp, respectively) concentrations.
As reported in the Sect. 3.2cp-POC relationships signifi-
cantly differ according the layer of the water column consid-
ered. However, in the context of biogeochemical applications

vertically integrated POCcp should be considered. Therefore,
cp has been scaled into POC concentration using the follow-
ing relationship between integreted (and not discret) data:

1.5Zeu∫
0

POC(z)dz = 286

1.5Zeu∫
0

cp(z)dz + 3163, (14)

R2
= 0.42, N = 34

During the BOUM experiment, very few coincidental mea-
surements ofbbp and POC have been performed precluding a
direct estimation of POC content frombbp values.bbp values
have been therefore scaled into POC by combining the rela-
tionshipcp = 47.8.bbp + 1.46 (r2 = 0.86,n = 69p < 0.001)
with the integratedcp-POC scaling equation reported previ-
ously (Eq. 16).

The daytime increase (i.e. the difference between the ac-
tual minimal and maximal POC values) in POC derived
from optical measurements gives an estimate of the Gross
Community Production rate (GCP, Claustre et al., 2008, see
Sect. 2.2). GCP estimated from POCcp and POCbbp are an
average of 651 (±27) and 512 (±100) mg C m−2 d−1 and 638
(±131) and 351 (±90) mg C m−2 d−1 for the stations A and
B, respectively. The apparent discrepancies between GCP
derived from particle attenuation and backscattering proper-
ties (differences of a factor 1.3 and 1.8 between the two meth-
ods for the stations A and B, respectively) mainly reflect the
differences existing in the magnitude of the diel variations of
the latter optical parameters but also differences in the POC
scaling factors used. The GCP rates estimated from opti-
cal proxies should be compared to the GCP rates measured
using classical biogeochemical approaches (GCPmeas= pri-
mary production + bacterial production). However, a direct
comparison with in situ primary production measurements
is made difficult since14C based primary production is nei-
ther a gross production rate nor a net production rate. As a
matter of fact, Moutin et al. (1999) have proposed a model
computing gross primary production rates as: GPP = 1.72
AN where AN is the daily primary production (24 h dawn-
to-dawn) rate measured with the14C method. Considering
the rescaled GPP, the sum of the bacterial and phytoplankton
primary productions reaches 506 and 283 mg C m−2 d−1 for
stations A and B, respectively. POCbbp values provide, there-
fore, GCP estimates narrower than those derived from classi-
cal measurements (factor of 1.01 and 1.24 between GCPbbp
and GCPmeas) while POCcp tends to induce a greater over-
estimation of the actual GCP values (by a factor of 1.28 and
2.25 for stations A and B, respectively). The latter feature
might translate thatcp andbbp measurements focus on dif-
ferent fractions of the particulate matter stock,bbp provid-
ing a better description of the smaller sized particles (in the
frame of the Mie scattering theory), which may reflect only
partially the diel variations of the POC associated with the
whole particle pool.
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Previous studies have reported strong overestimation of
optically derived GCP when compared with biogeochemical
estimates. Claustre et al. (2008) in the south Pacific Gyre
region have for instance documented GCPcp greater by a fac-
tor of up to 7 than that derived from using14C labelling.
Such overestimation has been related to a misestimation of
the actual production rates made by the classical approaches
for very deep samples (below the Zeu) which are difficult
to maintain under dim light during laboratory measurements
(Claustre et al., 2008). This feature might also explain the
differences observed in this study. Importantly, our results
stress the crucial need ofcp (andbbp) to POC conversion fac-
tors that reflect the whole water column instead of conversion
factors associated with a specific depth which might not be
representative of the entire water column and induce a bias in
the POC and therefore GCP estimates. Indeed, when using
for instancecp to POC conversion factors derived from the
surface samples (Eq. 12), GCP is greatly overestimated by
the optical approaches by a factor of 3 to 4 for both stations
A and B. Application of this vertical integrated conversion
factor instead of the one developed from discret measure-
ments should reduce part of the large discrepancy observed in
Claustre et al. (2008) between Gross Community Production
rates measured from an optical approach and estimated from
standard measurements. Moreover, the relative low overes-
timation made in this study by the optically derived GCP is
also related to the correction performed on the14C GPP pro-
duction estimates being important to allow a direct compari-
son between the different approaches.

4 Concluding remarks

The three long duration stations located in the center of
anticyclonic gyres, which have been sampled during the
strongest stratified period, do not exhibit significant differ-
ences in terms of bio-optical environments. The surface
TChl-a values measured at these LD stations, with a mean
value of 0.041± 0.006 mg m−3, do not reflect the perma-
nent trophic gradient existing from the western to the east-
ern basins of the Mediterranean Sea (Fig. 1). These sta-
tions are also peculiar from an optical point of view. Indeed,
the surface specific phytoplankton absorption coefficients,
aphy*, are similar for each LD station, but significantly lower
than the values computed from mean (i.e. global) relation-
ships. Such relatively lowaphy* values are coherent with
a significant contribution of nanophytoplankton to the total
phytoplankton biomass, as highlighted by the relatively high
size index and low non photosynthetic pigments to TChl-a

ratio found in these ecosystems. Absorption by non-algal
particles contributes to about 40 % of the particulate ab-
sorption measured at 440 nm in surface waters of the LD
stations and does not exhibit any diurnal variations. Con-
trarily to the particulate absorption coefficients, the partic-
ulate scattering coefficient, and especially the particulate

backscattering coefficient, present higher than mean (global)
values for a given TChl-a load. Highly refractive submi-
crometer particles from Saharan origin, exhibiting a negligi-
ble sinking velocity, could explain this particulate backscat-
tering anomaly. This assumption is partly confirmed by a rel-
atively high concentration of lithogenic silica, a desert dust
tracer, in the surface waters sampled. Most of the observed
blue-to-green reflectance ratio anomaly might therefore be
explained by these highbbp values with likely spectral de-
pendency in the blue and green part of the spectrum. To a
lesser extent it can also be attributed to a slightly greater ab-
sorption by colored non-algal particles and dissolved matter
than the averaged (global) values. Further experiments, and
especially spectralbbp(λ) measurements over the whole vis-
ible spectrum, should however be performed to fully confirm
these assumptions.

The diel cycle of the particulate backscattering coefficient
observed from field measurements is reported for the very
first time. Differences have been noticed between the diel
cycles ofcp andbbp measured at the long duration stations,
such as the time shift between thecp andbbp maxima. How-
ever, the derived time series are not sufficiently long for pro-
viding any clear evidence allowing to explain the discrepan-
cies existing betweenbbp andcp diel variations. Similarly,
the origin of the differences observed within the gross com-
munity production rate estimated from the diel cycles ofcp
or bbp, the latter being much closer to the estimated values
by standard biogeochemical measurements, will have to be
assessed. For that purpose the origin of the particle backscat-
tering variability, which is still an open debate in the marine
optics community, should be better characterized.
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