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Abstract. Vegetation phenology as well as the current vari-
ability and dynamics of vegetation and land cover, including
its climatic and human drivers, are examined in a region in
north-western Morocco that is nearly 22 700 km2 big. A gap-
less time series of Normalized Differenced Vegetation Index
(NDVI) composite raster data from 29 September 2000 to
29 September 2009 is utilised. The data have a spatial reso-
lution of 250 m and were acquired by the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) sensor.

The presented approach allows to compose and to anal-
yse yearly land cover maps in a widely unknown region with
scarce validated ground truth data by deriving phenological
parameters. Results show that the high temporal resolution
of 16 d is sufficient for (a) determining local land cover bet-
ter than global land cover classifications of Plant Functional
Types (PFT) and Global Land Cover 2000 (GLC2000) and
(b) for drawing conclusions on vegetation dynamics and its
drivers. Areas of stably classified land cover types (i.e. areas
that did not change their land cover type) show climatically
driven inter- and intra-annual variability with indicated in-
fluence of droughts. The presented approach to determine
human-driven influence on vegetation dynamics caused by
agriculture results in a more than ten times larger area com-
pared with stably classified areas. Change detection based on
yearly land cover maps shows a gain of high-productive veg-
etation (cropland) of about 259.3 km2. Statistically signif-
icant inter-annual trends in vegetation dynamics during the
last decade could however not be discovered. A sequence of
correlations was respectively carried out to extract the most
important periods of rainfall responsible for the production
of green biomass and for the extent of land cover types. Re-
sults show that mean daily precipitation from 1 October to
15 December has high correlation results (max.r2

= 0.85)
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on an intra-annual time scale to NDVI percentiles (50 %) of
land cover types. Correlation results of mean daily precip-
itation from 16 September to 15 January and percentage of
yearly classified area of each land cover type are medium
up to high (max.r2

= 0.64). In all, an offset of nearly 1.5
months is detected between precipitation rates and NDVI val-
ues. High-productive vegetation (cropland) is proved to be
mainly rain-fed. We conclude that identification, understand-
ing and knowledge about vegetation phenology, and current
variability of vegetation and land cover, as well as predic-
tion methods of land cover change, can be improved using
multi-year MODIS NDVI time series data. This study en-
hances the comprehension of current land surface dynamics
and variability of vegetation and land cover in north-western
Morocco. It especially offers a quick access when estimating
the extent of agricultural lands.

1 Introduction

The mapping, quantifying and monitoring of land cover (LC)
is essential to understand the current state of landscape. The
use of satellite-based remote sensor data has been widely
applied to receive cost-effective LC data over large geo-
graphic regions (Lunetta et al., 2006) because field surveys
are not only an expensive undertaking counting time, labour
and costs they also quickly become outdated (Lucas et al.,
2007). Especially if validated ground truth knowledge is as
scarce as in Morocco, freely available remote sensing data
sets are the key to get contiguous spatio-temporal informa-
tion about LC and vegetation dynamics (Evrendilek and Gul-
beyaz, 2008). These dynamics base on factors such as human
land use, climate, soil and groundwater conditions, invasion
of non-native species, volcanism and tectonics. While fo-
cussing on human and climatic drivers as the main factors of
land cover change (LCC), a differentiation between human-
driven change, climate-driven change, vegetation trends and
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inter-annual ecosystem variability is still a challenge for LC
research. An understanding of current vegetation dynamics
(phenology) and recent inter- and intra-annual variability of
LC is required to identify and predict the LCC in the study
region (Bradley and Mustard, 2008).

1.1 NDVI, MODIS data and phenology

The Normalized Differenced Vegetation Index (NDVI; Sell-
ers, 1985) as an indicator of vivid green vegetation and as
a descriptor of ecosystem functions has proved to be very
valuable for assessing ecological responses to environmental
changes (Alcaraz-Segura et al., 2009; Pettorelli et al., 2005).
NDVI-based approaches are widely used for monitoring veg-
etation activity using time series data sets (TSD) acquired by
sensors aboard satellites with short revisit periods (Goward
and Prince, 1995; Beck et al., 2006). The Moderate Res-
olution Imaging Spectroradiometer (MODIS), as the latest
of these sensors, is one of the key instruments of NASA’s
Earth Observing System (EOS) and is a major step ahead
over previous sensors in terms of its spectral (36 bands), spa-
tial (max. 250 m) and temporal (1–2 d for the entire Earth)
resolutions (Xiong and Barnes, 2006).

Plenty of studies use MODIS TSD in combination with
ground truth information to map croplands (e.g., Xiao et al.,
2005; Chang et al., 2007; Fritz et al., 2008; Wardlow et al.,
2007, 2008; Shao et al., 2010), to predict the production of
wheat (Ren et al., 2008) or to map irrigated areas (Thenkabail
et al., 2005). Characteristic temporal profiles of NDVI (end-
members) have been presented for corn, soybean, wheat, al-
falfa, paddy rice and fallow ground (Xiao et al., 2005; Ward-
low et al., 2007; Chang et al., 2007; Geerken, 2009; Shao et
al., 2010). Classification and monitoring studies, apart from
crop-related themes, show that the temporal and spatial reso-
lution of MODIS data have the potential to monitor floating
vegetation in lakes (Kiage, 2009), to assess regions at risk of
desertification (Wang et al., 2007) and to discriminate native
and invaded grassland species (Huang, 2009).

In terms of entire natural terrestrial ecosystems Evrendilek
and Gulbeyaz (2008) show the potential of MODIS NDVI
and Enhanced Vegetation Index (EVI) TSD (16 d composites
with 500 m spatial resolution) for the estimation and moni-
toring of seasonal and inter-annual ecosystem dynamics over
Turkey. They explored data according to four LC types, six
biogeoclimate zones, four seasons and seven years present-
ing correlations of MODIS EVI- and NDVI TSD with higher
mean values and higher standard deviation of NDVI TSD.

Multiple phenologic parameters related to vegetation ac-
tivity and derived from NDVI TSD were defined by Reed
et al. (1994) to describe seasonal dynamics (phenology) of
vegetation. Several studies applied these phenologic met-
rics, or dealt with additional indicators, to describe vege-
tation phenology (summary in Bradley and Mustard, 2008;
Funk and Budde, 2009). In terms of MODIS NDVI TSD, a
general comparison of satellite measured start of season and

Fig. 1. Workflow. Background colours define working steps as de-
fined in the objectives. Light grey indicates results of step 1, grey
indicates results of step 2 and dark grey indicates results of step 3.

actual start of season was made by Wardlow et al. (2006).
Soudani et al. (2008) evaluated the time of onset of green-up
for temperate deciduous broadleaf forests while Archibald
and Scholes (2007) examined green-up dates in the African
savannah. With regard to rice crops in Italy, Boschetti et
al. (2009) produced phenological calendars.

Even though multiple studies already use remote sensing
information for an understanding of the phenology of land
surface, methods are still in development. Understanding of
the phenology is regarded as a key to understand land-surface
processes (Reed, 2006), which are mainly based on human
and climatic drivers as described.

1.2 Objectives

The major objective of our study is to point out an approach
to extract broad knowledge about vegetation and LC dynam-
ics in a widely unknown region. In contrast to the major-
ity of other studies using rastered MODIS NDVI TSD, we
present a methodology of analysing vegetation and LC dy-
namics when ground truth knowledge is scarce. We apply the
freely available rastered MODIS NDVI TSD to make this an
easy-to-handle approach and to show the amount of informa-
tion that can be extracted from contiguous spatio-temporal
data. The study aims to map, quantify and monitor LC and to
contribute to differ between human-driven change, climate-
driven change, vegetation trends and inter-annual ecosystem
variability. The workflow including the pre-processing is
shown in Fig. 1.

In a first step, annual LC maps have been computed by an-
nual LC classifications based on a hierarchically structured
decision tree classifier using phenologic metrics. In a sec-
ond step, areas classified as stable (i.e. areas that do not
change their LC) and areas with actual LCC were extracted
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Fig. 2. Elevation of the study region.

to understand current vegetation and LC dynamics. The ex-
traction of annual endmembers of stably classified areas al-
lows derivation of phenologic metrics of each land cover type
(LCT). These phenologic metrics allow to analyse vegetation
trends during the last decade and to distinguish vegetation
variability. In a last step, climate-driven changes were sus-
pected to be mainly caused by presence or absence of precip-
itation. Therefore mean NDVI endmembers of stably clas-
sified LCT were compared to precipitation data from two
measurement stations within the study region. A sequence
of correlations was carried out to extract the most impor-
tant periods of rainfall needed for the production of green
biomass and for the extent of LCT. With the focus on areas
of high productivity, human-driven impacts caused by agri-
culture can be shown using a simple approach.

2 Materials and methods

2.1 Study region

The study region (Fig. 2) includes the cities of Casablanca,
Rabat and Salé and covers an area from 32◦42′ N to
34◦9′ N latitude and from 6◦19′ W to 8◦27′ W longitude of
22 677.25 km2 (158.75 km× 200.75 km) ashore. The At-
lantic Ocean to the north-west and the Middle Atlas to the
south-east are natural borders. The mean elevation is about
380 m a.s.l. and the maximum elevation about 1072 m a.s.l. in
the Atlas Mountains. The climate near the coast is moder-
ate due to the Canary Current. The mean air temperature
in Casablanca is 17.4◦C. Precipitation normally occurs dur-
ing the winter months with a total mean of yearly 423 mm;
ranging between 61 and 707 mm (GHCN DATA 1951-2006,
Nouasseur station).

2.2 Data set and pre-processing

The gapless NDVI TSD of MOD13Q1 product (collection
5) covers nine years (Table 1) and has been acquired from
the Warehouse Inventory Search Tool (WIST, 2009). In total
207 NDVI data sets of 16 d composites (Huete et al., 1999)
were used.

Although the use of composite data already reduces the
effect of noise like cloud contamination, shadow, sun angle
or aerosol effects (Holben, 1986; Huete et al., 1994), data
are still negatively influenced by noise, resulting in gener-
ally underestimated NDVI values (Gu, 2006; Hird and Mc-
Dermid, 2009). Several smoothing techniques like double
logistic function-fitting (Beck, 2006; Hird and McDermid,
2009), asymmetric Gaussian function-fitting (Jönsson and
Eklundh, 2002; Hird and McDermid, 2009) or Savitzky-
Golay filter (Savitzky and Golay, 1964; Chen et al., 2004;
Gong et al., 2006; Doraiswamy et al., 2007; Hird and Mc-
Dermid, 2009; Ren et al., 2008) are used to model a nearly
noise-free NDVI time series following the main assumption
that vegetation follows a continuous sequence drawn by in-
crease, peak and decrease of NDVI, describing a clear math-
ematical function. Modelling this mathematical function,
smoothing algorithms eliminate depressions of TSD. How-
ever, the purpose of these algorithms is not to distinguish
between depressions caused by clouds or atmospheric distur-
bance nor human caused depressions and other natural dis-
turbances (Evrendilek and Gulbeyaz, 2008). In order to keep
responses to climate or other drivers it is assumed that noise
(mostly technical or physical caused) depresses single NDVI
composites while climate conditions, human impacts or other
drivers depress a sequence of NDVI composites. Thus, the
simple but effective smoothing technique (Eq. 1) introduced
by Gu et al. (2006) is applied, which assumes that NDVI is
always depressed and never overrated by noise. The algo-
rithm reduces impact of single contaminated data points and
keeps the upper envelope. Following Gu et al. (2006) the
algorithm was applied three times in order to remove single
noise contaminations more efficiently.

NDVIsmooth = Max(NDVI t ,0.25× NDVI t−1 (1)

+ 0.5× NDVI t + 0.25× NDVI t+1)

The actual time step is represented byt , the previous byt −1
and the following byt +1.

Data were re-projected into Universal Transverse Merca-
tor (UTM, Zone 29, WGS 84). Incongruous picture elements
in the Atlantic Ocean near the coast were eliminated apply-
ing a land-water mask. The mask was derived from Shuttle
Radar Topography Mission (SRTM) data and includes two
additional reservoirs ashore which were masked from SRTM
data by catching connected areas of the same altitude of wa-
ter level.

According to the vegetation break during the summer
months and the start of the vegetation period on the first of
October, the NDVI mega-file of 207 composites was divided
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Table 1. Overview of data used.

Dataset Spatial resolution Corresponding time/time of measurement

Global Land Cover 2000 (GLC 2000) v.3 1000 m 2000

Landsat 7 ETM+ ∼ 30 m 20 January 2001,
8 February 2002,
26 January 2003,
17 March 2004,
10 March 2007

MODIS MOD12 (Plant Functional Types, PFT) 1000 m 2001, 2002, 2003, 2004

MODIS MOD13Q1 collection 5 250 m 29 September 2000–29 September 2009

Occupation du sol Grand Casablanca – 2004

SPOT 5 2.5 m 16 March 2004

SRTM ∼ 90 m 2000

into nine single data files according to the years of 2001 to
2009 with 23 composites each. Thus, one data file effectively
covers a time period starting at 29 September/ 30 September
and ending at 28 September/ 29 September of the follow-
ing year due to composite length of 16 d. The data set called
e.g. “2001” covers the vegetation period starting at the end of
September 2000 and finishing at the end of September 2001.

2.3 Land cover classification

LC classifications deliver spatial patterns of LCT. Within the
study region, the sole use of NDVI TSD for distinction of
LCT apart from very sparsely vegetated and forested areas,
is critical because not all grass-, shrub- and croplands have
a characteristic productivity. Varying altitudes, varying dis-
tances to the coast, varying soils and water availability, as
well as multi-crop systems and scarce validated ground truth
data hamper a discrimination of these LCT. Analyses of his-
tograms and scatter plots did not result in any possibility to
discriminate different LCT specifically. Therefore, LC is dis-
criminated into five defined LCT as: very sparsely vegetated
(LCTvsv), sparsely vegetated (LCTsv), forest (LCTfor), high-
productive vegetation (LCThpv) and low-productive vegeta-
tion (LCTlpv), where high-productive vegetation and low-
productive vegetation discriminate LC by productivity of
green biomass. This approach allows gathering rain fed, ir-
rigated and multi-crop croplands as well as different grass-
lands and shrub lands in the defined LCT without discrimi-
nating various soils, locations and water supply.

First approaches using classification methods such as
the unsupervised ISODATA classifier or the supervised
maximum-likelihood classifier lead to unsatisfying results.
Traditional methods for LC identification often fail in the
Moroccan context due to small parcels of cropland, a high
variety of crops and a high heterogeneity of development

(V. Simonneaux, 2009, personal communication, 24 Novem-
ber 2009). Thus a hierarchically structured binary decision
tree classifier is applied. Five phenologic metrics are de-
duced (Fig. 3) for each year from the smoothed NDVI TSD
to run the decision tree classifier (Fig. 4). In terms of val-
idation, classification accuracy and classification efficiency
a decision tree classifier relies heavily on the decision tree
chosen. The two most separable types are processed first and
the most subtle type pair is discriminated at the bottom of
the tree. By so doing, the cumulative error will be minimised
(Richards and Jia, 2006).

Following thresholds of NDVI lower than 0.18 (Bradley
and Mustard, 2008; Simonneaux, 2007) and lower than 0.2
(Geerken, 2009; Ren et al., 2008), very sparsely vegetated
areas were classified by the maximum value of NDVI within
the vegetation period (MaxV) lower than 0.2.

The perennial LCTfor with high NDVI values all-the-year
is easily to determine in Morocco with freely available Land-
sat 7 ETM+ scenes. First classification results using training
areas showed that it is not possible to delimit LCTfor by sin-
gle use of thresholds of NDVI values at the beginning of the
vegetation period (OnV), nor the NDVI value at the end of
the vegetation period (EndV) and the mean NDVI value of
the vegetation period (MeanV) because non-forested areas
were also classified as LCTfor. Therefore, a combination of
the three metrics was applied.

High-productive vegetation growing on agricultural lands
has a higher NDVI range (RanV) between MaxV and the
minimum of EndV and OnV than wild vegetation accord-
ing to seed, a dense stand within the vegetation period and
a low vegetated surface after crop during the vegetation rest.
Benhadj et al. (2008) report NDVI temporal profiles for crop
areas in Marrakech (Morocco) showing a RanV greater than
0.4. Other studies report at least a RanV of 0.4 for single
crop systems (Chang et al., 2007; Shao et al., 2010).
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Fig. 3. Derived phenologic metrics according to Reed et al. (1994):
MaxV (maximum NDVI value within the vegetation period),
MeanV (mean NDVI value of the vegetation period), OnV (NDVI
value at the beginning of the vegetation period), EndV (NDVI value
at the end of the vegetation period), RanV (range between maxi-
mum value within the vegetation period and minimum of OnV and
EndV).

In distinction to LCThpv the remaining vegetation with less
productivity is summarised in LCTlpv and may also include
croplands with moderate or poor yields having less produc-
tivity of green biomass than areas with rich yields.

2.4 Validation of land cover classifications

Validation of classification results requires validated in-situ
ground truth data, official maps or other validated data. A
two-part validation of decision tree classifier results is ap-
plied because ground truth knowledge in the study region
is limited to the administrative region of Grand Casablanca
(boundary see Fig. 11). In a first step, decision tree clas-
sification results are visually validated for the entire study
region using freely available Landsat 7 ETM + data mea-
sured within different vegetation periods. In a second step,
final validation using ground truth data is made based upon
an official land use/LC map of the administrative region of
Grand Casablanca from the year 2004 (Agence Urbaine de
Casablanca, 2006). The old medina of Casablanca as very
dense city quarter was used as a ground truth polygon for
LCTvsv and less dense city quarters with more vegetation
were used as ground truth polygons for LCTsv to differ the
city region into LCTvsv and LCTsv. Additional ground truth
polygons have been acquired directly from a SPOT image
such as parks in the city of Casablanca, vegetated areas
around the runways of the airport Mohammed V (location
see Fig. 6) and the former airport in western Casablanca since
the official map does not indicate areas with further vegeta-
tion specifications apart from forests and croplands. Global

Fig. 4. Hierarchically structured binary decision tree classifier used
for annual land cover classifications 2001–2009.

LC classification data as Global Land Cover 2000 (GLC,
2000; Mayaux et al., 2003) and MODIS product MOD12
(Strahler et al., 1999) were additionally validated to further
estimate the quality of decision tree classifier results. Out of
MOD12 product, LC maps of Plant Functional Types (PFT)
are applied for validation since its allocation of LCT fits best
to the previously defined LCT in this study. Annual clas-
sification maps of PFT contain information from 2001 up
to 2004 and GLC2000 contains a LC classification map of
2000.

Usage of confusion matrix and Kappa coefficient is a
widely applied method to assess the classification accuracy
(Richards and Jia, 2006). In our context it has been used
with the identical ground truth data both for the PFT classifi-
cation of 2004 and decision tree classification result of 2004.
A confusion matrix for GLC2000 is not made since ground
truth data and classification map concern different years.

2.5 Characterisation of land cover and land cover
dynamics

Stably classified areas are extracted to describe vegetation
and LC dynamics in the study region from 2001 up to 2009.
Derivation of mean endmembers of stably classified areas
provides information about intra-annual and inter-annual dy-
namics of vegetation. NDVI percentiles of stably classified
areas, as well as NDVI percentiles of all classified areas,
were computed to display inter-annual ecosystem variabil-
ity. The determination of vegetation trends during the last
decade is made by calculating yearly phenologic metrics of
endmembers of stably classified areas.

Inter-annual dynamics of LC (LCT A as e.g. LCTfor
changes to LCT B as e.g. LCTsv) were identified by compar-
ing all nine annual classification results of 2001 up to 2009.
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LCC were assumed to be actual LCC as
2001–2002 classified as LCT A and 2003–2009 classified as
LCT B (2 years + 7 years)
2001–2003 classified as LCT A and 2004–2009 classified as
LCT B (3 years + 6 years)
2001–2004 classified as LCT A and 2005–2009 classified as
LCT B (4 years + 5 years)
2001–2005 classified as LCT A and 2006–2009 classified as
LCT B (5 years + 4 years)
2001–2006 classified as LCT A and 2007–2009 classified as
LCT B (6 years + 3 years)
2001–2007 classified as LCT A and 2008–2009 classified as
LCT B (7 years + 2 years)

by using the requirement that there is exactly one LCC
between two LCT within the nine years.

Other patterns of classified results are not regarded as ac-
tual LCC to insure that fluctuations caused by method or
other reasons like inter-annual precipitation variability do not
effect monitoring of LCC.

2.6 Human- and climate-driven impacts

The identification and differentiation of human- and climate-
driven impacts through the use of NDVI TSD is difficult due
to the diversity of impacts. Apart from areas with actual
LCC, human driven impacts on LC are detected by follow-
ing the approach of the decision tree classifier which assumes
that croplands used as productive land surfaces have a higher
RanV due to seed and crop. Following this, the mean annual
RanV from 2001 up to 2009 (RanVmean) is computed for
each pixel of the study region to assess and indicate human-
driven impact apart from LC classification for the entire time
period.

Climate-driven impacts are suspected to be mainly caused
by the presence or absence of precipitation. A cross-
correlation is made for mean daily precipitation per compos-
ite and endmembers of stably classified areas using a lack
of zero up to six composites. Further examinations analyse
correlations of mean daily precipitation from different time
periods and NDVI percentiles (50 %) of stably classified ar-
eas of each LCT in order to identify the time period which
has the highest correlation values. For that, varying time
periods starting at the first or sixteenth of each month and
lasting at least a month or more are applied in order to not
overemphasise short term weather events or potential incor-
rect measurement values. For computation of mean daily
precipitation, varying start time (1 July–1 April) and vary-
ing end time (+14 d up to end of vegetation period) is ap-
plied to cover a possible shift of precipitation-vegetation re-
lation. The extraction of results is done firstly by specifying
a common time period with high correlation values and sec-
ondly by specifying individual time periods with the high-
est correlation values for each LCT. Analogue, the total an-
nual classified area of each LCT is correlated to mean daily

precipitation of different time periods to identify the time pe-
riod which is the most important for the spatial pattern of
LCT.

For all available daily precipitation data of two weather
measurement stations (Casablanca station at the former air-
port in western Casablanca and Nouasseur station at the air-
port “Mohammed V” is utilised, applying only the days with
valid values at both measurement stations. Measurement
values from the Casablanca station dating 25 August 2001
(199 mm) and from Nouasseur station dating 2 April 2002
(270 mm) were set as missing values after checking hourly
data and weather situation of a wider area because of heavy
distrust.

3 Results

3.1 Classification results and validation

Annual classification results of 2002 to 2009 are presented in
Fig. 5. The classification result of 2001 is part of Fig. 6.

A visual comparison of annual decision tree classifier re-
sults to Landsat 7 ETM+ data shows that analogue to other
cities, the city of Casablanca is classified as LCTvsv in very
dense city quarters. Other parts of the town with lower ur-
ban density and higher proportions of vegetation are classi-
fied as LCTsv while areas with detached housing in western
Casablanca are classified as LCTlpv due to the higher NDVI
signal caused by raised vegetation coverage. Thus, the results
of the decision tree classifier image cities smaller than they
actually are. Contrarily, GLC2000 and PFT overestimate ex-
tensions of cities and underestimate extensions of forests and
vegetation apart from cropland. Especially GLC2000 mis-
judges LC: while urban areas are too big, about 86 % of the
land surface is classified as croplands, other vegetated sur-
faces are classified with less than 10 %. Woody areas in the
centre of the study region are too small or not classified as
forest at all. A reservoir eastern of Rabat and Salé is not
classified as a water body, while a classified water body in
the south-east does not even exist. Representatively, Fig. 6
shows a comparison for 2001 with special interest in city re-
gion of Casablanca: both, PFT LCT “Urban and built-up”
and GLC2000 LCT “Cities” cover the airport and the cities
of Casablanca and Mohammedia as well as vegetated areas
in between both cities, furthermore vegetated areas around
Casablanca (mainly south-east of the town) and parts of the
Bouskoura forest. In total, PFT classification maps of 2001
up to 2004 reflect LC better than GLC2000 in the study re-
gion.

Although a combination of three phenologic metrics was
applied to determine LCTfor and to minimise classification
errors of the decision tree classifier, few forested areas were
classified as LCThpv and vice versa. We assume the first case
occurs in forested areas with less canopy and higher per-
centage of shrub- and grasslands in the understorey. In the
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Fig. 5. Annual land cover classification results of 2002 to 2009.

second case, classification error in terms of LCTfor instead
of LCThpv occurs due to the classification method which dis-
criminates sole monocrop-systems by RanV without consid-
ering irrigated multi-crop-systems. Thus, few croplands ex-
ceed all thresholds and are misclassified as LCTfor.

The validation of the LC classification map of 2004, re-
sulting from the decision tree classifier for the administrative
region of Grand Casablanca results in an overall accuracy
of 80.24 % and a Kappa coefficient of 0.74 (Table 2). The
low producer’s accuracy of LCTlpv underlines the described
problem of a differentiation between cropland and other veg-
etation if ground truth data are scarce. While outer parts of
the airport runways are classified correctly as LCTlpv, some
of the inner parts are classified as LCThpv. This phenomenon
might result from a raised supply of water due to surface
runoff from runways which facilitates enhanced growth of

Fig. 6. Comparison of GLC2000, PFT 2001, decision tree classifi-
cation result of 2001 and Landsat 7 ETM+ (up: bands 4-3-2., down:
bands 5-4-1., measured: 20 January 2001). Up: Entire study region.
Below: Zoom to Casablanca region (A- City of Mohammedia, B-
City of Casablanca, C-Forest of Bouskoura, D-Airport ’Mohammed
V’).

Table 2. Confusion matrix of decision tree classification result of
2004 using ground truth information from the administrative re-
gion of Grand Casablanca. Columns show the ground truth pixels
of land cover types and rows show the classified land cover types
for these pixels: LCTfor (Forest), LCThpv (High-productive vegeta-
tion), LCTlpv (Low-productive vegetation), LCTsv (Sparsely vege-
tated), LCTvsv (Very sparsely vegetated).

land cover LCTfor LCThpv LCTlpv LCTsv LCTvsv Total
type

LCTfor 131 0 0 0 0 131
LCThpv 11 172 67 0 0 250
LCTlpv 6 0 35 2 0 43
LCTsv 0 0 0 132 4 136
LCTvsv 0 0 0 27 5 32
Total 148 172 102 161 9 592

vegetation. However, the user’s accuracy of LCTlpv is about
81.4 %.

An additional validation of PFT classification of 2004 re-
sults in an overall accuracy of 35.47 % and a Kappa coeffi-
cient of 0.25. This may result by overestimated urban sur-
faces in the study region, as previously described, but also
from determination of ground truth areas within the city re-
gion. LCTsv and LCTvsv are not distinguished in the PFT
classification, which applies LCT “Urban and built-up” for
urban areas. Taking this into account, it was questionable to
compare validation results from the decision tree classifier
to the validation results of PFT classification. Accordingly
a further validation was made with summarised LCTvsv and
LCTsv and summarised ground truth areas to test if this is
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an artefact of the applied method. The validation of decision
tree classification (PFT classification) resulted in an overall
accuracy of 85.47 % (62.67 %) and a Kappa coefficient of
0.80 (0.48).

Following overall higher accuracy and better visual valida-
tion results, classification maps of the applied decision tree
classifier are considered to be more appropriate to describe
local LC in the study region than global LC products of PFT
classification and GLC2000.

3.2 Characterisation of land cover and land cover
dynamics

While comparing classification results the differences are ev-
ident: the years 2001, 2002 and 2007 have larger areas of
LCTsv and LCTlpv than the years 2003, 2006, 2008 and 2009
with higher proportions of areas classified as LCThpv. All in
all, stably classified areas (Fig. 7) cover 13.9 % (∼3149 km2)

of the study region encompassing other areas among the
cities of Casablanca, Rabat, Salé and Khouribga as well as
the almost entire forested surfaces. Within the nine years,
two different LCT were classified for 64.3 % of the study re-
gion. Fluctuations occur mainly between LCThpv and LCTlpv
especially in the western, southern and south-eastern part of
the study region (compare Fig. 5). These areas have alti-
tudes that are mostly higher than 280 m a.s.l. or lower than
140 m a.s.l. Further analyses show that 79.6 % (95.7 %) of
areas, which are stably classified as LCThpv, are in altitudes
of 70 up to 280 m a.s.l. (1–450 m a.s.l.) while fluctuations
of productivity and resulting fluctuations to LCTlpv mainly
occur in higher altitudes. Further transitory zones oscillate
between LCTlpv and LCTfor on the borders of forested ar-
eas, which result mainly from fix classification thresholds in
combination with inter-annual ecosystem variability. Minor
fluctuations occur between LCTfor and LCThpv due to the
explained classification limits of the applied approach con-
cerning forests and crop systems.

Screening LCC, 1.6 % (∼374 km2) of the study region
have changed LCT actually. Spatial pattern of areas with
actual LCC (Fig. 8) show a cluster in the south-western
part, one in the eastern part and spots around the cities of
Casablanca, Rabat and Salé. Having the advantage of high
temporal resolution of NDVI TSD, it is possible to deter-
mine the instant when the LC changed. The cluster in the
south-west indicates mostly changes from LCTlpv to LCThpv
with the highest rates of about 101 km2 in 2003 and 63 km2

in 2004 indicating human-driven impacts. The eastern clus-
ter indicates succession by a shift from LCTsv to LCTlpv with
a maximum rate of nearly 63 km2 in 2003. Analyses of dots
at the city borders show a gain of LCTsv revealing a loss of
LCTlpv and indicating urbanisation as human-driven impact.
A matrix with a totalised gain and loss of LCT is presented
in Table 3.

Extracted yearly endmembers of stably classified areas
characterise LCT intra-annually and show the highest NDVI

Fig. 7. Stably classified areas of the years 2001–2009.

Fig. 8. Spatial distribution of areas with actual land cover changes.
Colours indicate the new land cover type.

values between the end of February and the beginning of
March. Although LCTlpv and LCThpv are distinguished by
thresholds of RanV, the mean endmember of LCTlpv (Fig. 9)
shows higher values in off-season than the endmember of
LCThpv. This shows that areas classified as LCThpv are less
vegetated in off-season since higher NDVI values indicate
higher proportion of green vegetation. Therefore our ap-
proach of collecting croplands in LCThpv is successful, be-
cause agricultural lands have fewer canopies than grass- or
shrub lands during the off-season due to harvest.

Results of determination of NDVI percentiles of each year
are shown in Fig. 10. When combining the results with per-
centiles of all classified areas of each LCT, within a single
year, the NDVI percentiles of stably classified areas from
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Table 3. Identified actual land cover changes (2001–2009) in total and as percentage of the study region. Columns show the gain of land
cover types and rows show the loss of land cover types: LCTfor (Forest), LCThpv (High-productive vegetation), LCTlpv (Low-productive
vegetation), LCTsv (Sparsely vegetated), LCTvsv (Very sparsely vegetated).

land cover type LCTfor LCThpv LCTlpv LCTsv LCTvsv Total loss

LCTfor – 0.8 km2 (0.00 %) 13.4 km2 (0.06 %) – – 14.1 km2(0.06 %)
LCThpv 2.8 km2 (0.01 %) – 9.1 km2 (0.04 %) 0.1 km2(0.00 %) – 11.9 km2(0.05 %)
LCTlpv 15.2 km2(0.07 %) 258.5 km2(1.14 %) – 6.3 km2(0.03 %) – 280 km2 (1.23 %)
LCTsv – – 63.6 km2(0.28 %) – 1.1 km2(0.00 %) 64.7 km2(0.29 %)
LCTvsv – – 3.1 km2(0.01 %) – 3.1 km2 (0.01 %)
Total gain 17.9 km2(0.08 %) 259.3 km2(1.14 %) 86.1 km2 (0.38 %) 9.4 km2(0.04 %) 1.1 km2(0.00 %)

Fig. 9. Mean endmembers of stably classified areas 2001–2009.

each LCT, show similar patterns of inter-annual ecosystem
variability during the last decade. Our early hypothesis, that
the use of total classified areas of each class does not lead
to reasonable results, could not be shown. It seems possible
to estimate inter-annual ecosystem variability in both ways.
The shift between both approaches results through the clas-
sification method: While stably classified areas encompass
the core of areas of each LCT, total classified areas addition-
ally encompass all areas with values of applied phenologic
metrics near the thresholds, which leads to class fluctuations
as previously described.

The analysis of derived phenologic metrics from annual
mean endmembers of stably classified areas (Fig. 12) did not
result in any trend during the last decade. Therefore, derived
metrics are not presented.

3.3 Drivers of land cover

Areas with actual LCC e.g. from LCTlpv to LCThpv or from
LCTlpv to LCTsv in areas near cities indicate human-driven
impacts. Further on, computing RanVmeanof each pixel for
the entire time period of 2001 up to 2009 estimates mean
human impact referring to agriculture in the study region
(Fig. 11). Computation of RanVmean is independent of used
classification technique. Results show in terms of forested

Fig. 10. NDVI percentiles (5 %, 25 %, 50 %, 75 %, 95 %) for sta-
bly classified areas (black) and all classified areas (grey) of land
cover types forest/ LCTfor (a), very sparsely vegetated/ LCTvsv (b),
low-productive vegetation/ LCTlpv (c), high-productive vegetation/
LCThpv (d) and sparsely vegetated/ LCTsv (e).

areas and areas with scarce vegetation (e.g. cities) low val-
ues of RanVmean less than 0.3. Thus, areas classified as
LCThpv stick out with values of RanVmean greater than 0.4
which was the threshold for delimiting LCThpv. In total
52.54 % (11 915 km2) of the study region show a RanVmean
of at least 0.4. Compared to the stably classified areas of
LCThpv (5.11 %, 1.158 km2) the value is over ten times
higher. Hence, RanVmeanrespectively seems to be an indica-
tor for a simple and rapid assessment of human driven impact
and extent of croplands.

Cross-correlation of daily precipitation values measured
at both measurement stations results in the highestr2 of 0.48
with no shift in time between both stations. Thus, the local
influence causes approximately 50 % of the daily precipita-
tion and superior climate events contribute to the other half.
Further correlations of mean daily precipitation for different
time periods rising in monthly steps show the highest val-
ues ofr2 (0.95) for the time period of October-March in-
cluding a major part of the rainy season. On a yearly base
and using mean daily precipitation, the correlation of both

www.biogeosciences.net/8/3359/2011/ Biogeosciences, 8, 3359–3373, 2011
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Fig. 11. Mean annual RanV (RanVmean) for 2001–2009 with
marked borders of the administrative region of Grand Casablanca.

Fig. 12. Endmembers of stably classified areas and accumulated
precipitation to composite length. Arrows show indicated influence
of droughts due to a lack of precipitation from mid of December to
mid of February in 2004.

measurement stations is lower, withr2 of 0.85 showing that
local seasonal precipitation plays an important role.

Comparisons of mean daily precipitation per composite
and endmembers of stably classified areas for each LCT
(Fig. 12) indicate highest results ofr2 using an offset of three
composites. This means that the vegetation reacts with a lack
of nearly one and a half months to precipitation changes:
more precipitation causes increasing NDVI values and weak-
ening precipitation causes decreasing NDVI values, resulting
in a vegetation rest during the summer months due to the ab-
sence of precipitation. Apart from LCTvsv with lower r2 val-
ues and applying an offset of three composites, correlations
of mean daily precipitation per composite and endmembers
of stably classified areas for each LCT range betweenr2 of
0.2 andr2 of 0.3 for both stations, where all correlation val-
ues of Nouasseur station are higher than correlation values of
the Casablanca station. In all, the location of the Casablanca

Fig. 13. Correlation of mean daily precipitation and NDVI (per-
centile 50 %) of stably classified areas. Best fit for a common time
period (A–E) and best individual fit (F) for land cover type very
sparsely vegetated (LCTvsv). DF = Degrees of freedom.

station within the city and near to the sea seems to reflect
more local urban effects and sea effects than the Nouasseur
station further inland. Thus, the data of Nouasseur station are
applied for subsequent examinations.

Highest correlation values of mean daily precipitation and
NDVI percentile values (50 %) of stably classified areas of
each LCT are identified for the common time period from
1 October to the 15 December. Specifying individual time
periods with the highest correlation values for each LCT, just
LCTvsv has higher correlation values at other time periods
from 16 November to the 15 December. Results are signif-
icant at the 1 % significance level for all LCT but LCTvsv
which is significant at the 5 % significance level. Correla-
tions are presented in Fig. 13.

In terms of correlations of mean daily precipitation and
the yearly extent of classified areas of each LCT, correla-
tions show the highestr2 values for the common time period
from the 16 September to the 15 January. Highest correlation
values for individual time periods for each LCT differ from
this period except LCThpv. Concerning LCTvsv and LCTsv
the highest correlation values occur for short time frames be-
fore the start of the actual hydrological year. In these time
periods practically no precipitation occurs and high corre-
lation values are regarded as artefacts. Therefore, the first
time period covering at least a part of the actual hydrological
year is considered to be the individual time period with high-
est correlation values. Correlations as well as time periods
are presented in Fig. 14. Results are significant at the 1 %
significance level (Fig. 14e, h, i, j), at the 5 % significance
level (Fig. 14a, c, d, f, g) and at the 10 % significance level
(Fig. 14b).
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C. Höpfner and D. Scherer: Vegetation and land cover dynamics in nw-Morocco 3369

Fig. 14. Correlations of mean daily precipitation (MP) and classi-
fied area of each land cover type. Best fit for a common time period
from 16 September to 15 January(A–E) and best individual fit for
each land cover type (F–J) including second best individual fit for
land cover type forest (I). DF = Degrees of freedom.

Focussing on precipitation measurements of 2004 a lack of
precipitation from mid of December to mid of February oc-
curs in growth period before vegetation maximum is reached.
Endmembers of stably classified areas show indentations of
NDVI values which are indicated by some arrows in Fig. 12.

4 Discussion

Understanding current vegetation dynamics and variability
of LC in a widely unknown large region needs remote sensed
spatio-temporal data to provide cost-effective information
(Lunetta et al., 2006; Evrendilek and Gulbeyaz, 2008). Ap-
plied MODIS TSD have a moderate grain of spatial resolu-
tion. Thus, a considerable number of mixed pixels, which
represent more than one ground LCT, are present (Roosta
and Saradjian, 2007). Unmixing strategies and sub-pixel al-
gorithms need knowledge about vegetation, LC and its dy-
namics. Our study extracts information about vegetation

phenology as well as current variability and dynamics of veg-
etation and LC showing that moderate spatial resolution and
high temporal resolution of MODIS TSD are sufficient for
this purpose even if ground truth data are scarce as in this
case.

Although NDVI is a useful parameter to assess LC in arid
regions (Huang and Siegert, 2006), NDVI values may be
partly overrated in areas with scarce vegetation due to signal
influence from soil under the vegetation (Wang et al., 2008;
Edwards et al., 1999). Yearly produced LC maps, which
showed to describe LC better than global LC maps, docu-
ment already higher percentage of areas with sparse vegeta-
tion in comparison to global LC maps especially at higher al-
titudes in the south-eastern study region (e.g. 2001 in Fig. 6).
Following the above statement, percentage might be in fact
higher.

The aim of this study to yield information about vegeta-
tion and LC to differ between human-driven change, climate-
driven change, vegetation trends and inter-annual ecosystem
variability, even if the ground truth knowledge is scarce,
is a challenge to the definition of parameters of the de-
cision tree classifier. It was not possible to use varying
thresholds throughout the years since knowledge on inter-
annual ecosystem variability in the study region was not
known before. The adaptation of classification thresholds to
precipitation sums was also impossible because we had no
knowledge on the vegetation-precipitation interaction. This
way the use of fix classification thresholds ensures to extract
the core of each LCT as stably classified areas while the re-
maining areas vary normally between two LCT as described.
By examining the stably classified areas it becomes possible
to extract information about the LCT and vegetation (dynam-
ics). There is though, a big difference of LCC every year
due to inter-annual fluctuations caused by fix thresholds. In
terms of LCC detection we had to find a solution to delimit
varying areas from areas with actual LCC. Hence we used
the requirements that there is exactly one LCC between two
LCT within the years to delimit actual LCC and to receive
a sufficient likelihood to call it actual LCC. Apart from the
many documented LCC due to inter-annual ecosystem vari-
ability documenting e.g. dryer and wetter years it was pos-
sible to extract 1.6 % (∼374 km2) of the study region which
have actually changed LCT. In total, change detection of LC
for areas with actual LCC has raised value in comparison to
commonly change detection techniques because it does not
compare two different points in time but a gapless time se-
ries of data in 16 d steps. Thus, misleading results due to
inter-annual variability (as possible by comparing e.g. Fig. 5:
2007 and 2009) are minimised.

The Influence of human and climatic drivers on vegeta-
tion dynamics cannot be shown holistically in a single study.
Thus, the approach using RanVmean shows a human driven
impact, given to extraction of areas with actual LCC in-
dicating urbanisation or ploughing up of grassland. Areas
of stably classified LCT show climatically driven inter- and
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intra-annual variability. Indentations of NDVI values after
a lack of precipitation from the middle of December to the
middle of February in 2004 indicate the influence of droughts
(Fig. 12) and underline the previous assumption that climatic
drivers depress a sequence of composites instead of single
values, as formulated for the choice of applied smoothing
technique.

Climatic drivers affect large regions causing lower or
higher biomass production which leads to exceedance or
lower deviation of classification thresholds explaining fluctu-
ations between two LCT. For instance the percentage of areas
classified as LCThpv is greater in humid years and lower in
arid years. Fluctuations between LCThpv and LCTlpv (espe-
cially in the south-western, southern and south-eastern parts
of the study region) do not result from local change in veg-
etation conditions caused by higher application of fertilisers
or implementation of irrigation techniques since they occur
in a very widespread manner. As explained, the ground truth
knowledge is scarce and we had no information about the
extent of irrigation or rain dependency of agricultural used
areas within the study region. Nevertheless, correlation val-
ues of NDVI percentiles (50 %) and mean daily precipitation
of LCThpv are lower thanr2 values of LCTlpv (Fig. 13d, e)
but are higher than 0.5 for both LCT. We conclude that both
LCT are mainly rain-fed in the study region.

The analysis of correlation values of mean daily precipi-
tation and percentage of yearly classified area of each LCT
show a positive correlation of LCTfor and LCThpv as well as a
negative correlation for the other LCT. This means the more
precipitation occurs, the less percentage of LCTvsv, LCTsv
and LCTlpv. In other words, areas classified as LCTsv and
LCTlpv increase to some extent through areas fluctuating re-
spectively from LCTvsv and LCTsv but at the same time they
decrease to the bigger extent through areas fluctuating re-
spectively to LCTfor and LCThpv. In terms of fluctuations
from LCTlpv, we have to differ between areas fluctuating
to LCTf or which represent the above mentioned transitory
zones near the borders of forested areas and fluctuations to
LCThpv due to increased productivity. Thus, percentage of
areas classified as LCThpv range from 16 % in dry years to
70 % in wetter years documenting high fluctuations of pro-
ductivity. Overall, correlations of mean daily precipitation
and percentage of yearly classified area of each LCT are
medium up to high. The best fit period of LCTfor from
1 February to the 15 May might result from the classifica-
tion method which uses EndV as one threshold. Thus, the
period documents the importance of precipitation falling in
later periods to exceed the classification threshold. The sec-
ond highest correlation occurs for LCTfor for the time period
from 16 September to the 15 May havingr2 of 0.73. This re-
sult is significant at the 1 % significance level and underlines
the importance of precipitation during the whole vegetation
period.

Results of correlations of mean daily precipitation and
NDVI percentiles (50 %, presented in Fig. 13) show high and

very highr2 values up to 84 %. In all cases the variance in
the NDVI not explained by the variance in precipitation is
rather small. Unexplained variance could stem from errors
in both the NDVI and precipitation time series, or from fur-
ther predictors missing in the regression model. Although
we cannot exclude that other predictors would also be able
explaining larger parts of the variance in the NDVI, we can
state that precipitation is an appropriate predictor, since there
is not only statistical evidence by high correlation but also
bio-physical reasons behind the regression model.

We could not detect statistically significant trends in the
areas covered by the LCT (using a 10 % significance level)
over the studied period. The same holds for the mean NDVI
within the stably classified areas. Kennedy et al. (2009)
analysed data up to 2007/2008 proclaiming data records of
MODIS vegetation to be currently too short to capture long-
term changes. Our study could be interpreted such that either
there are no significant changes or the time series are still too
short as concluded by Kennedy et al. (2009).

5 Conclusions

Our approach shows that moderate spatial resolution and
high temporal resolution of MODIS TSD are sufficient
for drawing conclusions on LC dynamics and its driving
forces in a widely unknown region with sparse validated
ground truth knowledge. By deriving phenological parame-
ters from the gapless TSD from the 29 September 2000 to the
29 September 2009 composition of yearly LC maps is possi-
ble. Results of applied decision tree classifier, showed to de-
termine LC in the study region better than global LC classi-
fications of PFT and GLC2000. Validation ends in an overall
accuracy of 80.24 % and a Kappa coefficient of 0.74 for the
administrative region of Grand Casablanca. Drawing conclu-
sions on vegetation dynamics and its drivers is possible. This
study contributes to a differentiation between human-driven
changes, climate-driven changes and inter-annual ecosystem
variability.

Areas of stably classified LCT show climatically driven
inter- and intra-annual variability with indicated influence
of droughts. The presented approach to determine human-
driven influence on vegetation dynamics by RanVmean, re-
sults in a more than ten times larger area than compared as
stably classified areas. It respectively seems to be a good in-
dicator for a simple and rapid assessment of human-driven
impacts and extents of annual crop systems. It has still has to
be additionally proved for perennial and multi-crop systems.

Change detection based on yearly LC maps shows a gain
of LCThpv (cropland) of about 259.3 km2.

Vegetation in the study region showed to be highly depen-
dent on precipitation, in terms of climate-driven impact, es-
pecially croplands, are supposed to be mainly rain-fed. Mean
daily precipitation from 1 October to the 15 December and
NDVI percentiles (50 %) of LCT show highest correlation
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values. Results are significant at the 1 % and 5 % significance
level as shown. Comparable, correlations of mean daily pre-
cipitation from 16 September to 15 January and percentage
of yearly classified area of each LCT show highest correla-
tion values for a common time period. All in all, an offset of
nearly 1.5 months is detected between precipitation rates and
NDVI values.

However, the precipitation data originated from two mea-
surement stations delivering the data of a comparatively
small area. Therefore, further studies are needed to exam-
ine the relation of vegetation and precipitation in the study
region in more detail.

The vegetation phenology as well as current variability and
dynamics of vegetation and LC, including its climatic and
human drivers, could be extracted for a widely unknown re-
gion. However, statistically significant trends in vegetation
dynamics could not be discovered. We conclude that identi-
fication, understanding and knowledge about vegetation phe-
nology, and current variability of vegetation and LC, as well
as prediction methods of LCC can be improved using multi-
year MODIS NDVI TSD. This study enhances the compre-
hension of current land surface dynamics and variability of
vegetation and LC in north-western Morocco.
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