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Canada

M. Demarty1, J. Bastien1, and A. Tremblay2

1Environnement Illimit́e inc., 1453, rue Saint-Timothée, Montŕeal, Qúebec, Canada
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Abstract. Surface waterpCO2 and pCH4 measurements
were taken in the boreal zone of Québec, Canada, from sum-
mer 2006 to summer 2008 in Eastmain 1 reservoir and two
nearby lakes. The goal of this follow-up was to evaluate
annual greenhouse gas (GHG) emissions, including spring
emissions (N.B. gross emissions for reservoir), through flux
calculations using the thin boundary layer model. Our mea-
surements underscored the winter CO2 accumulation due to
ice cover and the importance of a reliable estimate of spring
diffusive emissions as the ice breaks up. We clearly demon-
strated that in our systems, diffusive CH4 flux (in terms of
CO2 equivalent) were of minor importance in the GHG emis-
sions (without CH4 accumulation under ice), with diffusive
CO2 flux generally accounting for more than 95% of the an-
nual diffusive flux. We also noted the extent of spring dif-
fusive CO2 emissions (23% to 52%) in the annual carbon
budget.

1 Introduction

The involvement of freshwater ecosystems in the global car-
bon budget has long been neglected because of their limited
surface coverage on a worldwide scale, compared with forest
or oceans. However, in a recent review, Cole et al. (2007)
demonstrated that lakes, reservoirs and rivers do not behave
as mere pipelines transporting organic matter from terres-
trial systems to oceans. Actually, half of the carbon annu-
ally entering freshwater ecosystems is processed therein (i.e.,
biomass production, emissions, storage) and will never reach
the ocean.
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It has also been demonstrated that the loading of terrestrial
dissolved organic carbon can contribute significantly to the
energy pathways of lake ecosystems (Tranvik, 1992; Pace et
al., 2004; Carpenter et al., 2005), sometimes leading to respi-
ration rates exceeding primary production rates (Del Giorgio
et al., 1997). This state, also called ecosystem net heterotro-
phy, is believed to be largely responsible for the CO2 super-
saturation observed in most of the world’s lakes (Cole et al.,
1994; Del Giorgio et al., 1999; Duarte and Prairie, 2005).
Lakes thus clearly appear to be sources of carbon emissions
to the atmosphere.

In the nineties, direct diffusive flux measurements from
natural water bodies and diffusive flux calculations from par-
tial pressure measurements were carried out in the northern
hemisphere (Kling et al., 1992; MacIntyre et al., 1995) and
in tropical zones (Richey et al., 1988; Keller and Stallard,
1994). Following the statements of Rudd et al. (1993) and
St. Louis et al. (2000) about the potential of reservoirs to be
net greenhouse gas (GHG) emitters, the techniques devel-
oped for GHG measurements in natural systems have been
applied to reservoirs. A comprehensive understanding of the
processes involved in the global carbon cycle in reservoirs is
becoming more and more crucial to ensure accurate compar-
isons of energy production methods and determination of na-
tional GHG inventories (IPCC, 2006; Houghton et al., 2001).

Reservoirs can emit GHGs by three major pathways, the
first two of which are also observed in natural water bodies:
(1) diffusion at the reservoir surface (Huttunen et al., 2003;
Rosa et al., 2004), (2) bubbles produced at the sediment-
water interface that migrate through the water column and
into the atmosphere (Huttunen et al., 2003; Abril et al.,
2005), and (3) downstream emissions, which include de-
gassing (diffusive emissions in the turbulent waters down-
stream of reservoirs, called degassing emissions to differ-
entiate them from the diffusive emissions at the reservoir’s

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


42 M. Demarty et al.: Annual follow-up of gross diffusive carbon dioxide and methane emissions

Table 1. Description of study site.

Study site Latitude Longitude Surface Residence Mean Maximum
(km2) time (month) depth (m) depth (m)

Eastmain River

Eastmain 1 reservoir 52.19◦ N 75.05◦ W 603 2.3 16 63

watershed

(created in 2005)

Mistumis Lake 52.16◦ N 76.16◦ W 4 N/A 5 12

Clarkie Lake 52.23◦ N 75.47◦ W 24 N/A 6 18

surface) and diffusion and bubbling in the river downstream
of the generating station (Soumis et al., 2004; Roehm and
Tremblay, 2006). Tremblay et al. (2005), Tremblay and
Bastien (2009) and Tremblay et al. (2010) have shown that
in Eastmain 1 reservoir, diffusive emissions comprising over
95% of total gross emissions, with degassing and bubble
emissions representing less than 5% of the total. Therefore,
in this study we have focused on diffusive flux.

In northern temperate and boreal regions, seasonal vari-
ations in diffuse emissions of carbon (CO2 and CH4) from
freshwater ecosystems are difficult to measure directly, be-
cause the ice cover during winter prevents flux measurements
from being taken with floating chambers. Also, continuous
monitors, such as eddy covariance towers, are still contro-
versial, because of possible interference with, for example,
the surrounding forest (MacIntyre et al., 1995; Eugster et al.,
2003). However, in such climates, temporal variation is cru-
cial information for annual carbon budget estimation, since
it is commonly recognized that, in certain conditions, CO2
and CH4 can accumulate under ice (Riera et al., 1999; Ko-
rtelainen et al., 2000; Striegl et al., 2001) and be released
as diffusive flux on spring ice break-up (Michmerhuizen and
Striegl, 1996; Huttunen et al., 2004; Duchemin et al., 2006).

The objectives of our study were to (1) present a follow-up
from 2006 to 2008 of GHG partial pressures and flux mea-
sured at different seasons in the Eastmain River watershed
area; (2) address the question of gas accumulation under ice
cover (increase in partial pressure) in both lakes and reser-
voir by comparing results of winter and summer field sur-
veys; and (3) propose a way to estimate annual gross diffu-
sive GHG flux from seasonal field campaign measurements.
We present a comparison of gross diffusive emissions from
Eastmain 1 reservoir and two nearby lakes to document the
effect of anthropogenic reservoir creation on aquatic GHG
emissions (as performed by Huttunen et al., 2003, for Euro-
pean reservoirs).

2 Methodology

2.1 Study sites

Eastmain 1 reservoir, Mistumis Lake and Clarkie Lake were
sampled in the Eastmain River watershed (Table 1), in the bo-
real zone, northwestern Québec, Canada (Fig. 1). Within this
region, mean monthly temperatures vary between−23◦C
and 14◦C, and total rainfall and total snow precipitation
are up to 430 mm and 260 mm, respectively. The Eastmain
River’s catchment is dominated by coniferous forest, shallow
podzolic and peat soils, and igneous bedrock. The aquatic
systems studied are oligotrophic, with an overall low primary
production (Planas et al., 2005). They are partially to totally
covered by ice from about 15 December to 15 May (accord-
ing to Hydro-Qúebec surveys). For safety reasons, winter
field surveys could only be done between early January and
the end of March, when the ice was at least 20 cm thick.

Eastmain 1 reservoir was four years old at the time of
the study, and it has been observed that it can take around
10 years after reservoir creation for the labile flooded organic
matter to decompose and for diffusive CO2 flux to return
to levels observed in natural lakes before reservoir creation
(Chartrand et al., 1994; Tremblay et al., 2005). Accordingly,
higher CO2 emissions were expected in Eastmain 1 reservoir
than in the natural lakes studied.

Sampling dates between 2006 and 2008 and the number of
sampling stations (visited once per sampling period) for each
water body are described in Table 2. When Eastmain 1 reser-
voir was created, three types of ecosystems were flooded:
forest (57%), lakes and river (25%), and peatlands (18%).
For the purposes of the Eastmain 1 reservoir GHG survey
program, a large number of sampling stations were chosen to
cover the spatial variability of the flooded landscape (Fig. 1,
all campaigns together) and to allow net emission calcula-
tion (Tremblay et al., 2010). At least three sampling stations
were chosen above each flooded lake or peatland of inter-
est. As well, several sampling stations were chosen above the
flooded riverbed. Two or three sampling stations were chosen
per lake studied, with one station in deep water. Locations
remained the same during each field survey. The number of
stations sampled depended on weather conditions (especially
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Figure 1. Map of sampling stations in Eastmain River watershed; graphs representing 

distribution of sampling depths. 

Fig. 1. Map of sampling stations in Eastmain River watershed;
graphs representing distribution of sampling depths.

in winter), with at least one station per sampling section (e.g.,
one flooded lake of interest).

Temperature and dissolved oxygen profiles determined
during the field surveys showed that there was no water col-
umn stratification (neither thermocline nor oxycline), what-
ever the season (Demarty et al., 2008)

2.2 Spatial coverage of CO2 and CH4 partial pressures

The partial pressure of CO2 and CH4 (pCO2 and pCH4)
was measured at the water surface (0.1 m) for all sampling
stations at Eastmain 1 reservoir, Mistumis Lake and Clarkie
Lake. Also, at Eastmain 1 reservoir,pCO2 andpCH4 pro-
files were produced for 11 sampling stations in March 2007,
17 stations in January 2008, 2 stations in March 2008, 13 sta-
tions in July 2008 and 13 stations in September 2008. Sta-
tions were chosen to represent the reservoir’s spatial variabil-
ity and according to weather conditions. At Mistumis Lake,
pCO2 andpCH4 profiles were produced at one station dur-
ing each field survey. Three sampling depths were chosen
according to the station’s water depth, with one station at the
bottom of the water column and the others at one third and
two thirds of the water column’s depth.

To measurepCO2, water was sampled with a peristaltic
pump and surface waterpCO2 was measured in situ with a
nondispersive infrared (NDIR) sensor (EGM-4 manufactured
by PP Systems) coupled with a gas exchanger (Membrana
Celgard). Ten consecutive measurements (one per minute)
were averaged to obtain thepCO2 at each station (mean vari-
ation coefficient of 1.3%).

To determinepCH4, three 30-mL water samples were col-
lected in 60-mL polypropylene syringes from each depth and
kept chilled in a dark cooler for transport to the laboratory.
There, 30 mL of nitrogen gas (N2) was added. Water and N2
were equilibrated by shaking the syringe vigorously for two
minutes. Partial pressure of CH4 in the headspace (pCH4
HS) was quantified by means of a gas chromatograph (with
a flame ionization detector) within 24 h. Partial pressure be-
fore equilibration (pCH4f ) was determined using Eqs. (1)
and (2):

pCH4f =
(pCH4 HS×KH Eq.)+(HSR×

(pCH4 HS−pCH4i)
Vm

)

KH Sample
(1)

where HSR is the headspace ratio (here equal to 1);pCH4i is
equal to 0, since the only gas in the air inside the syringe be-
fore equilibration was N2; Vm is the molar volume (according
to Avogadro’s law);KH Eq. andKH Sampleare the gas parti-
tion constants at equilibrium (20◦C) and at sampling temper-
ature, respectively, calculated according to Lide (2007):

lnKH(CH4) = −115.6477+
155.5756

(TK/100)
+ 65.2553

× ln(
TK

100
) − 6.1698× (

TK

100
) (2)

where TK is the temperature in kelvin. KH (CH4)
is in molar fraction atm−1 (Lide, 2007) but con-
verted to mole L−1 atm−1 using the following factor,

(
1000 g L−1

[water density]
18.0153 g/mole[water molecular weight] ). The field pCH4 was

obtained by averaging the results from three sampling
syringes.

To obtain mean profiles of the water bodies, for each field
surveys of Eastmain 1 reservoir, results from same sampling
depth were averaged (different sampling station were thus
considered as replicates at the reservoir/lake scale). This
method of averaging data gives a rough snapshot of the state
of the whole reservoir, but does not provide a fine description
of the processes at work. We found that the means calculated
at each sampling depth had an average coefficient of varia-
tion of 20%. At Mistumis Lake, three stations were sampled
and a GHG profile was produced at a single station (explain-
ing the absence of an error bar in Fig. 4a and c).
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Table 2. Sampling periods and number of GHG (and water quality for Eastmain 1 reservoir and Mistumis Lake) sampling stations for each
water body studied.

Number of sampling stations

System Sampling periods Ice/Ice-free Eastmain 1 Mistumis Clarkie
reservoir Lake Lake

Eastmain River

10–22 July 2006 Ice-free 41 3 2
18 September–4 October 2006 Ice-free 42
20–27 March 2007 Ice 39 3
5–21 July 2007 Ice-free 38 3 3
14–26 January 2008 Ice 42 3 3
26 March–5 April 2008 Ice 35 3 2
3–22 July 2008 Ice-free 57 3 3
15–22 September 2008 Ice-free 27 3 2

2.3 Time series ofpCO2 and pCH4 and temperature
from Eastmain 1 reservoir

Automated GHG systems (monitors) have been in place at
Eastmain-1 generating station (GS) since 2006 to obtain
GHG partial pressure time series. The continuous gas mon-
itor is modeled after Carignan’s design (1998) and built of
commercial components. Every three hours, CO2 and CH4
are measured by two different sensors (LICOR LI-820 NDIR
sensor and Neodym Panterra metal oxide semiconductor sen-
sor, respectively) on a gas stream that has been equilibrated
with the source water (Demarty et al., 2009). Measurements
taken at a single sampling station with monitors installed in
the GS (Qúebec and Manitoba, Demarty et al., 2009) have
been shown to be representative of conditions in the whole
reservoir. Generally, no CH4 accumulation under ice cover
has been observed, contrary to CO2 (see Fig. 2 for the ex-
ample of results from Eastmain-1 GS GHG monitor). Trends
observed from GHG monitoring measurements were used to
determine the trends between field surveys and to calculate
maximumpCO2 reached before ice break-up and flux ac-
cordingly (Fig. 3 and Sects. 3.4 and 3.5).

2.4 Calculation of CO2 and CH4 flux

We calculated meanpCO2 and pCH4 for ice-free peri-
ods, and thereby estimated mean flux using corresponding
mean water temperatures (data from automated systems at
Eastmain-1 GS) and wind speeds (data from Nemiscau Air-
port meteorological station, 69 km away from the study area).

According to MacIntyre et al. (2005), flux calculations re-
quire conversion of partial pressures in concentration. CO2
water concentration and CH4 water concentration (CO2wc
and CH4wc, respectively) were calculated frompCO2
(CO2wp) andpCH4 (CH4wp), using Eqs. (3) and (4) (Morel,
1982; Anderson, 2002):

CO2wc = KH × CO2wp (3)
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Figure 2. Time series of CO2 and CH4 concentrations measured by GHG monitors at 

Eastmain-1 generating station, 2006–2008. 

Fig. 2. Time series of CO2 and CH4 concentrations measured by
GHG monitors at Eastmain-1 generating station, 2006–2008.
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Figure 3. Schematic representation of estimated annual emissions based on seasonal field 

surveys for CO2-supersaturated systems. Dotted line represents partial pressure of CO2 at 

water surface in equilibrium with atmosphere. 

Fig. 3. Schematic representation of estimated annual emissions based on seasonal field surveys for CO2-supersaturated systems. Dotted line
represents partial pressure of CO2 at water surface in equilibrium with atmosphere.

CH4wc = KH × CH4wp (4)

with KH (CO2) and KH (CH4) determined according to
Eqs. (5) and (2), respectively:

lnKH(CO2) = − 58.0931+ 90.5069

× (
100

TK
) + 22.294 × ln(

TK

100
) (5)

whereKH (CO2) is the gas partition constant of CO2 in water
at sampling temperature, expressed in mole L−1 atm−1, and
TK is the temperature in kelvin (Weiss, 1974).

Then, CO2 and CH4 flux was calculated using Eq. (6)
(MacIntyre et al., 1995),

Flux = kx(Cw − Ca) (6)

with Ca being the gas concentration in water exposed to the
atmosphere (385 ppm for CO2, NOAA, October 2008; and
1.745 ppm for CH4, Houghton et al., 2001),

kx being the mass transfer coefficient (cm h−1):

kx = k600(
Sc

600
)−x (7)

wherex is equal to 0.66 for wind speed≤3 m s−1 and is equal
to 0.5 for wind speed>3 m s−1; Sc is the Schmidt number
for CO2 or CH4, which is dependent on temperature (T , in
kelvin) according to Eqs. (8) and (9) (Wanninkhof, 1992):

Sc(CO2)=1911.1−118.11T +3.4527T 2
−0.04132T 3 (8)

Sc(CH4)=1897.8−114.28T +3.2902T 2
−0.039061T 3 (9)

andk600 is estimated from the wind speed, according to Cole
and Caraco (1998):

k600= 2.07 + (0.215 × U1.7
10 ). (10)

The flux obtained from Eq. (6) is converted from moles to
grams. The GHG flux can thus be calculated by adding the
CO2 and CH4 fluxes in CO2eq (Eq. (11), using the global
warming potential of 25 for CH4, Forster et al., 2007):

GHG Flux(CO2eq) = CO2flux + 25×(CH4 flux) (11)

3 Results

3.1 Interannual variation and comparison of reservoir
and nearby lakes

Under the assumption of an atmospheric CO2 partial pres-
sure of 385 ppm (NOAA, 2008), we observed that the three
water bodies studied are supersaturated in CO2, whatever the
season, with apCO2 one (Clarkie Lake, September 2008) to
seven (Eastmain 1 reservoir, March 2007) times higher than
the atmospheric equilibration partial pressure (Table 3).

Mean summer water surfacepCO2 measured at East-
main 1 reservoir decreased from 2006 to 2008, with
2205 ppm, 1269 ppm and 1126 ppm in 2006, 2007 and 2008,
respectively. Mean winter water surfacepCO2 was higher
and not significantly different in 2007 and 2008 (2798 ppm
in March 2007 and 2529 ppm in March 2008; t-test,p > .05).
So a winter increase in partial pressure does not appear to
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Table 3. Mean surfacepCO2 andpCH4 (± standard deviation) measured at Eastmain 1 reservoir, Mistumis Lake, Clarkie Lake, Robert
Bourassa reservoir, Duncan Lake and Yasinski Lake. The number of replicates corresponds to the number of sampling stations given in
Table 2.

Field surveys

Eastmain 1 reservoir Mistumis Lake Clarkie Lake

pCO2 pCH4 pCO2 pCH4 pCO2 pCH4

ppm

July 2006 2230±563 125±151 565±30 33±5 558±13 –
September 2006 2181±485 83±65 – – – –
March 2007 2798±708 20±31 1441±47 8±2 – –
July 2007 1333±317 – 568±47 – 496±42 –
January 2008 1211±194 40±82 856±25 17±2 716±31 11±1
March 2008 2529±796 287±982 1533±268 19±9 975±171 13±2
July 2008 1025±361 58±56 620±73 25±19 507±34 9±2
September 2008 1340±459 38±38 454±18 24±7 425±4 17±5

affect summer trends, which indicate that the limiting pro-
cesses for CO2 production are not the same in winter (tem-
perature limits the decomposition of organic matter) and in
summer (organic matter availability would be the limiting
factor, decreasing over time). For Mistumis and Clarkie
Lakes, summer and winter values were not different from
year to year (ANOVA and t-test,p > .05).

Winter and summer surfacepCO2 measured at Eastmain 1
reservoir are higher thanpCO2 measured at the two lakes
nearby (ANOVA,p < .05).

There were no significant differences betweenpCH4 mea-
sured at the reservoir and nearby lake surfaces in the different
sampling periods, because of the high spatial variability ob-
served in the reservoir (ANOVA,p > .05).

3.2 Dissolved gas profiles in Eastmain River watershed

Figure 4 shows the seasonalpCO2 and pCH4 profiles
for Eastmain 1 reservoir and Mistumis Lake. For Mistu-
mis Lake, an increase inpCO2 with depth was observed
for under-ice measurements, reflecting winter CO2 buildup
(Fig. 4a). There was a general increase inpCO2 with depth
at Eastmain 1 reservoir, whatever the season, with the great-
est difference between surface and bottom observed in March
2007 and 2008 (Fig. 4b), reflecting CO2 accumulation under
the ice.

At Mistumis Lake, there was no trend inpCH4 with depth,
except in September 2008 (Fig. 4c), wherepCH4 increased
from 20 ppm at 7.5 m to 152 ppm at 9 m. Unfortunately, no
other summer or fall data are available from a depth of 9 m,
preventing us from reaching any conclusion about the poten-
tial recurrence of such an event.

At Eastmain 1 reservoir, there was no trend inpCH4 with
depth, except in March 2007 (Fig. 4d). During that survey,
we measuredpCH4 from the surface to a depth of 21 m.
Most of thepCH4 profiles gave similar values from surface

to bottom, with no CH4 accumulation under the ice, but the
trends were different at three of the seven sampling stations.
Indeed, for stations KP 45-3 (at depths of 10 m and 13 m),
KP 260-4 (at 21 m only) and Tower-3 (at 21 m only), high
pCH4 was measured (Fig. 4d), corresponding to low to very
low dissolved oxygen saturation (50%, 15.5%, 16.7% and
21.6%, respectively, data from temperature and dissolved gas
profiles not shown), thus suggesting CH4 accumulation in
deep zones. We cannot confirm a regular under-ice buildup
of CH4, since January 2008 profiles at the same stations
showed no increase with depth and the same profiles are not
available for the March 2008 survey. However, low dissolved
oxygen saturation seen in March 2008 below a depth of 20 m
(data not shown) may have led to similar favorable condi-
tions for CH4 production in deep zones. For the reservoir
as a whole, our results showed that, as at Mistumis Lake,
high values measured at depth are not reflected by the over-
all surfacepCH4 (surfacepCH4 measured at 39 stations in
March 2007), also suggesting a CH4 degradation along the
water column. In March 2008, three stations (among the 34
wherepCH4 measurements were done) showed very high
surfacepCH4 (1442 ppm, 2221 ppm and 5439 ppm), leading
to the high mean surface partial pressure observed in Fig. 4d
(303 ppm, standard deviation± 1009); without these data the
meanpCH4 would be 41 ppm, which is not significantly dif-
ferent from the surfacepCH4 observed during the other sur-
vey. Accordingly, we will consider that there was no CH4
accumulation under ice cover for either Eastmain 1 reservoir
or Mistumis Lake, as already suggested by the GHG monitor
data.

3.3 Estimate of maximum dissolvedpCO2 reached
before ice break-up

CO2 accumulation under ice cover has been observed in
Eastmain 1 reservoir, Mistumis Lake and Clarkie Lake:
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Fig. 4. Mean profiles ofpCO2 andpCH4 for Eastmain 1 reservoir and Mistumis Lake. Bars represent standard errors. Dashed lines represent
maximum depth (for Mistumis Lake) and dotted lines represent mean depth.

Table 4. Daily rates of under-icepCO2 increase and maximum potentialpCO2 reached by 15 May at study sites.

Study site n Springtime daily rates SD R2 PotentialpCO2 reached.
of pCO2 increase ppm d−1 ppm d−1 15 May (ppm)

Mean Min. Max.

Eastmain 1 res., 2007 122 7.91 16.79 0.18 3154 0 5168
Eastmain 1 res., 2008 116 16.80 14.26 0.59 3285 1574 4996
Mistumis Lake, 2007 7 11.68 1.02 0.99 1967 1844 2089
Mistumis Lake, 2008 9 10.95 5.60 0.83 2026 1354 2698
Clarkie Lake, 2008 8 4.90 4.00 0.65 1196 1085 2266

www.biogeosciences.net/8/41/2011/ Biogeosciences, 8, 41–53, 2011
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Figure 5. Measured and extrapolated partial pressure of CO2 for different systems studied. 
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Fig. 5. Measured and extrapolated partial pressure of CO2 for different systems studied. Bars represent standard errors. Baseline points
represent mean values during ice-free periods.

spring values (i.e., in March–April) are clearly higher
than what was measured during the other sampling period
(ANOVA, p < .05; Table 4 and Fig. 5), whereas no differ-
ences in summer, fall and early winter (before January) mean
dissolvedpCO2 was observed (ANOVA,p > .05). Taken to-
gether, the later data thus represent the baselinepCO2 of the
year (Fig. 5). A higher dissolvedpCO2 is observed in March
than in January, and a linear increase of dissolvedpCO2 is
expected under the ice cover from January to May (Fig. 3).
Linear regressions between baselinepCO2 values and March
pCO2 values were then made to calculate the under-ice daily
rate ofpCO2 increase (75 days between the two sampling
dates, 15 January and 30 March; Table 4). Taking the date
of 15 May as the beginning of the spring emission period
(based on observations from automated systems), we thus
estimated potentialpCO2 before the ice break-up (Table 4).
From these calculations, it is clear that Eastmain 1 reservoir
tends to present the highestpCO2 before the spring emission
period.

3.4 Estimate of potential spring gross diffusive GHG
emissions

The method used to estimate the potential spring gross dif-
fusive emissions is shown in Fig. 3. Depending on when
the ice break-up began (as recorded by the ice survey pro-
gram over the last 30 years), the spring emission period in

the studied area was assumed to last around one month, from
15 May to 15 June. Between these dates, flux was assumed
to follow a linear trend. Maximum potential partial pres-
sures were used to calculate the maximum potential flux at
the beginning of the spring emission period, and baseline
partial pressures were used to calculate potential flux during
the following period (summer and fall; Table 5). Averaging
these two fluxes, we obtained a mean daily spring flux, which
was used to compute an annual carbon budget. Accordingly,
over one month, mean GHG flux calculated ranged between
37 gCO2eq m−2 (Clarkie Lake) and 147 gCO2eq m−2 (East-
main 1 reservoir, 2008).

3.5 Annual cumulative diffusive flux

The annual CO2 flux was calculated as the sum of the daily
fluxes between two spring emission periods (for example, 15
May 2007 to 15 May 2008): we added 31 days of mean
spring flux (see Table 5), 214 days of mean ice-free period
flux (summer, fall and beginning of winter) and 120 days
without flux (ice-cover period). The resulting annual CO2
emissions for the water bodies studied are presented in Ta-
ble 6. Spring CO2 flux represented 23% (Eastmain 1 reser-
voir) to 52% (Mistumis Lake) of annual diffusive CO2 emis-
sions, and spring CH4 flux represented 5% (Eastmain 1 reser-
voir) to 18% (Clarkie Lake) of annual diffusive CH4 emis-
sions. Clarkie Lake had the lowest diffusive emissions. For
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Mistumis Lake and Eastmain 1 reservoir, 2008–2009 emis-
sions were lower than in the previous year. As this study is
part of a long-term monitoring program, the observed trend
merits further discussion with regard to he future data.

4 Discussion

This study is the first to provide a multiannual estimation
of spring diffusive GHG flux for both reservoirs and nearby
lakes.

Comparisons of reservoirs with nearby lakes are com-
monly found in the literature (̊Aberg et al., 2004; Harrison
et al., 2009). The limnological features of reservoirs more
than 10 years old are generally comparable to those of lakes
in the same region (Schetagne, 1994). Old reservoirs also
behave like lakes in terms of GHG emissions (Demarty et
al., 2008). References are needed when studying the evolu-
tion of newly impounded reservoirs such as Eastmain 1. In
the case of the Eastmain 1 reservoir GHG monitoring pro-
gram, the emissions of several lakes were studied before the
reservoir was created, and Mistumis Lake and Clarkie Lake
were found to be representative of lakes in the area (Blais and
Tremblay, 2007). Theyhave therefore been chosen as refer-
ences for studies after creation of the reservoir.

4.1 Choice of partial pressures used to estimate
spring flux

The potential spring GHG flux of lakes and reservoirs is com-
monly calculated as the difference between the amount of
accumulated gas (using the potential GHG storage of wa-
ter bodies to obtain the concentration per square metre) and
the amount of gas at atmospheric equilibrium (i.e., 385 ppm
for CO2, 1998; Striegl et al., 2001; Huttunen et al., 2004;
Duchemin et al., 2006). But many lakes (Cole et al., 1994;
Del Giorgio et al., 1999; Duarte and Prairie, 2005) and reser-
voirs (Tremblay et al., 2005; Demarty et al., 2009) around
the world are supersaturated with CO2, meaning that the
partial pressure of CO2 is generally above atmospheric par-
tial pressure for most of the year. It is therefore mislead-
ing to consider that the partial pressure of dissolved GHG
will reach equilibrium with the atmosphere after spring emis-
sions. Since the difference between the highest partial pres-
sure of dissolved GHG reached under ice cover and equilib-
rium is greater than the actual partial pressure measured in
late spring (see Fig. 3), the misconception leads to overesti-
mates of spring (and annual) flux. That is why, in this paper,
we felt that using the difference between partial pressure at
the water surface at the beginning and end of the ice-cover
period was a better method of estimating spring diffusive
flux.

4.2 Assumptions regarding trends in partial pressure

Two main assumptions were made regarding the estimation
of maximum partial pressure of dissolved gases before ice
break-up. First, we averaged the results of the ice-free pe-
riod (summer, fall and end of December) to obtain a baseline
flux, and then computed a conservative annual flux. Because
of the lack of data between September and ice cover, we
could not examine the importance of the fall turnover, which
is known to affect CO2 and CH4 flux. However, for East-
main 1 reservoir, data from September 2008 (Fig. 4) showed
that partial pressure of CO2 and CH4 did not increase with
depth, so fall turnover should not have led to an increased
flux; we consequently assumed that the use of an ice-free
mean as baseline would be acceptable.

Second, we assumed a linear trend in CO2 accumulation
under the ice from January until the beginning of the spring
emission period and a linear decrease during spring. These
trends rely on the results obtained from monitors that have
been measuringpCO2 andpCH4 time series at Eastmain-1
GS since 2006 and at other Québec and Manitoba GS (De-
marty et al., 2009). In that paper, the authors showed that an-
nual estimates of diffusive emissions from Eastmain 1 reser-
voir calculated either from GHG monitor data (time series) or
by sampling surveys gave comparable results. We therefore
decided to use the trends observed in Eastmain 1 reservoir
to compute annual emissions from water bodies unequipped
with GHG monitors, such as lakes.

4.3 Source of CO2 increase under ice cover

We observed CO2 buildup under ice cover at both the reser-
voir and lakes under study. We did not perform any exper-
iments to examine heterotrophic CO2 production under ice
cover, but it is probably due to the bacterial decomposition of
organic matter, rather than to an underground water source.
To discuss this hypothesis, the spring daily rates of CO2 in-
crease under ice cover presented in Table 4 were calculated
in terms of concentration rather than partial pressure, that
is, using Eqs. (1) and (4), assuming a surface temperature of
0.1◦C, based on field observations. Rates varied between 0.3
and 0.9 µgC L−1 h−1 at Clarkie Lake and Eastmain 1 reser-
voir, respectively. In their review of respiration in lakes, Pace
and Prairie (2005) summarize field observations of plank-
tonic respiration, which varies between 0.4 µgC L−1 h−1 and
81 µgC L−1 h−1 (mean: 7.9 µgC L−1 h−1); temperature is
presented as an important factor influencing respiration rates.
Interestingly, the under-ice rates of CO2 increase observed in
our systems are comparable to the lower range reported by
Pace and Prairie (2005). This strongly suggests that CO2 in-
creases under ice are due to bacterial respiration under the in-
fluence of cold temperatures, concomitant with low primary
production, which hides the respiration rate in warmer con-
ditions. This hypothesis is supported by Striegl et al. (2001),
who demonstrated that high dissolvedpCO2 prior to ice melt
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Table 5. Spring CO2, CH4 and GHG flux. The beginning and end of the degassing periods are assumed to be around 15 May and 15 June,
respectively.

Study site Degassing period CO2 flux CH4 flux Mean CO2 Mean CH4 Mean GHG Total GHG
(mmole m−2 d−1) (mmole m−2 d−1) spring flux spring flux spring flux spring flux

(mmole m−2 d−1) (mmole m−2 d−1) (mmolCO2eq m−2 d−1) (gCO2eq m−2)

Eastmain 1

Beginning 2007 131 0.017
86 0.017 86 117

reservoir

End 2007 40 0.017

Beginning 2008 173 0.059
108 0.036 108 147End 2008 43 0.012

Mistumis

Beginning 2007 75 0.010
45 0.010 45 61

Lake
End 2007 15 0.010

Beginning 2008 98 0.036
53 0.043 53 73End 2008 9 0.049

Clarkie Beginning 2008 49 0.023
27 0.019 27 37Lake End 2008 5 0.015

Table 6. Ice-free period, spring and annual CO2, CH4 and GHG emissions for water bodies studied. Note that emissions from reservoirs are
gross emissions.

Study site

CO2 CH4 GHG

and period

Ice-free Spring CO2 Annual CO2 Spring flux/ Ice-free Spring CH4 Annual CH4 Spring flux/ Annual GHG CO2
period CO2 emissions emissions annual flux period CH4 emissions emissions annual flux emissions contribution
emissions emissions

mmol m−2 % mmol m−2 % gCO2eq m−2 %

Eastmain 1 res., 8747 2654 11 401 23 7 1 7 7 509 98.6%
2007–2008

Eastmain 1 res., 7374 3348 10723 31 20 1 21 5 493 95.6%
2008–2009

Mistumis Lake, 3248 1392 4640 30 2 0 3 12 207 98.8%
2007–2008

Mistumis Lake, 1528 1658 3186 52 8 1 10 13 150 93.5%
2008–2009

Clarkie Lake, 903 834 1737 48 3 1 3 18 80 95.9%
2008–2009

was related to bacterial respiration. Moreover, the highest
pCO2 values and winter CO2 increase rates were observed
at Eastmain 1 reservoir. This was expected, since it is a
young reservoir flooded only four years ago (in 2006), and
the flooding of large quantities of organic matter is known to
lead to an increase in dissolvedpCO2 through an increase
in bacterial activity (Tremblay et al., 2005; Tadonkélé et al.,
2005). After an initial peak, generally reached within the first
years few after flooding, CO2 flux and partial pressure de-
cline, reaching values comparable to those of natural aquatic
ecosystems within about 10 years (Tremblay et al., 2005).
After this transition period, CO2 emissions are related to car-
bon entering the reservoir through runoff from the watershed
or autochthonous primary production (Marty et al., 2005;
Matthews et al., 2005). In the case of Eastmain 1 reservoir,
the return to natural aquatic ecosystem values (i.e., values in
the same range as nearby lakes) occurred the third year after
flooding (2008) (Tremblay et al., 2009).

4.4 CH4 emissions

In accordance with the fact that most of the CH4 produced in
the anoxic sediment may have been oxidized at the sediment-
water interface (Frenzel et al., 1990), and that CH4 escaping
from the sediment-water interface would have been slowly
oxidized in the water column (Wang et al., 1996), no clear
CH4 accumulation was observed under the ice, especially in
2008. In 2007, at three of the seven stations wherepCH4
was sampled,pCH4 increased with depth, probably due to
the weak oxygen concentration there, as observed by Korte-
lainen et al. (2000). The ancillary available information (e.g.,
sampling station location, type of flooded land) cannot ex-
plain the origin of the highpCH4 observed at these stations.
Huttunen et al. (2004) also observed no CH4 accumulation
under ice cover in a small boreal lake during three consecu-
tive late winters. Similar results were observed in four reser-
voirs in Manitoba over three years and in three reservoirs in
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Québec over 18 months (Demarty et al., 2009). Finally, a re-
cent study by Juutinen et al. (2009) showed that partial pres-
sure of CH4 in surface and hypolimnetic water is negatively
correlated with oxygen and lake depth and area, whatever the
season. This supports the observation of low winter partial
pressure of CH4 in the large reservoir studied.

We found that diffusive CH4 emissions, in contrast to CO2
emissions, were of little concern in the boreal systems stud-
ied. Thix finding tallies with those of Juutinen et al. (2009)
and Kortelainen et al. (2006) with respect to Finnish lakes.
They reported that CH4 emissions amounted to 49 mmol m−2

(1.8% of total emissions) (Juutinen et al., 2009), vs. CO2
emissions of only 3.5 mol m−2 (reported as 42 gC m−2 in Ko-
rtelainen et al., 2006).

Potential spring diffusive GHG emissions from lakes
(given in Table 5) are comparable to those measured in a bo-
real lake by Huttunen et al. (2004; 103 to 128 gCO2eq m−2).
Spring GHG emissions represented 23% to 52% of annual
GHG emissions. We also did annual estimates of diffu-
sive GHG emissions at Robert Bourassa reservoir (Québec,
Canada) with data collected in 2006 (up to 29 sampling sta-
tions) and we found higher potential spring emissions (22%
of annual emissions) than those reported by Duchemin et
al. (2006) for shallow areas, whereas spring diffusive GHG
flux amounted to only 7% of annual flux at Robert Bourassa
reservoir. Our results also demonstrated that, generally
speaking, over 95% of annual diffusive GHG emissions from
the studied systems are carbon dioxide.

5 Summary

We have provided the results of surveys of partial pressure
and diffusive flux of GHG in both lakes and a reservoir in
northwestern Qúebec, which allowed us to reliably estimate
spring GHG flux based on a few assumptions. The method
we used to estimate spring emissions can be generally ap-
plied.

Spring diffusive GHG emissions accounted for a higher
proportion of annual GHG emissions than what has been pre-
viously proposed, with CO2 being largely responsible for to-
tal annual diffusive emissions.
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