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Department of Ecology, Swedish University of Agricultural Sciences, P.O. Box 7044, 750 07 Uppsala, Sweden

Received: 3 November 2010 – Published in Biogeosciences Discuss.: 30 November 2010
Revised: 7 February 2011 – Accepted: 10 February 2011 – Published: 18 February 2011

Abstract. We still lack full mechanistic understanding of
how the temperature history affects the future decomposition
rate of litter and soil organic matter. To explore that, we used
the GLUE modelling framework together with the Q-model
and data from a needle litter incubation experiment to com-
pare a differential temperature response of litter qualities to
a temperature-dependent decomposer efficiency. The needle
litter incubation was a full factorial design with the initial
and final temperatures 5, 15 and 25◦C. Samples were moved
from the initial to the final temperature when approximately
12% of the initial carbon had been respired and the experi-
ment terminated when an additional 12% had been lost. We
used four variations of the Q-model; the litter was described
as having one or two initial quality values and the decom-
poser efficiency was either fixed or allowed to vary with tem-
perature. All variations were calibrated with good fits to the
data subsets with equal initial and final temperatures. Eval-
uation against temperature shift subsets also showed good
results, except just after the change in temperature where
all variations predicted a smaller response than observed.
The effects of having one or two initial litter quality val-
ues (fixed decomposer efficiency) on end-of-experiment litter
quality and respiration were marginal. Letting decomposer
efficiency vary with temperature resulted in a decrease in ef-
ficiency between 5 and 15◦C but no change between 15 and
25◦C and in substantial differences in litter quality at the end
of the initial incubation in response to incubation tempera-
ture. The temperature response of decomposition through
temperature dependent decomposer efficiency proved, there-
fore, to be more important than the differential response to
different substrate qualities. These results suggests that it
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may be important to consider other factors (e.g. microbial
efficiency, changing substrate composition) than the temper-
ature sensitivity coupled to substrate quality when evaluating
effects of temperature changes on soil organic matter stabil-
ity.

1 Introduction

In view of the expected future climatic change (Solomon,
2007) the temperature dependence of decomposition of lit-
ters and soil organic matter (SOM) has since long attracted
much interest because a strong positive temperature de-
pendence would create a strong positive climatic feedback.
However, both in laboratory incubations and field studies,
temperature history and not only current temperature have
been shown to affect respiration rates, such that SOM with
different temperature histories will have different decompo-
sition rates at the same temperature. These effects can be
short term or long term, and be a result of factors like sub-
strate depletion, changes in decomposer community com-
position and abundance, and changes in quality composi-
tion (Kirschbaum, 2006). Quality changes have been chal-
lenged as a major factor because the temperature depen-
dence of the rate of utilisation might not respond strongly
enough to explain observations as there are several pro-
cesses involved with sometimes counteracting temperature
responses (Davidson and Janssens, 2006;Ågren and Wet-
terstedt, 2007). It is thus necessary to also consider the
temperature dependence of the other factors regulating de-
composition. Decomposer community composition and de-
composer biomass are two important factors that may be
affected by temperature. For example, it has been demon-
strated (Dev̂evre and Horẃath, 2000; Steinweg et al., 2008)
that the carbon use efficiency of decomposers decreases with
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temperature, probably as a result of higher maintenance
costs. Allison et al. (2010) suggest that the decomposer
biomass should go down with increasing maintenance cost
and as a result less extracellular enzymes are produced and
decomposition slows down.

Most models, e.g. Century (Parton et al., 1987), G’Day
(Comins and McMurtrie, 1993), RothC (Coleman and Jenk-
inson, 1995), Q (̊Agren and Bosatta, 1998) dealing with soil
organic carbon (SOC) conform to the same generic structure.
SOC is described as consisting of carbon of different pools
or qualities with three main processes driving the changes
in SOC quantity and quality: (i) a decomposer community
feeding on SOC at some rate (growth rate); (ii) when doing
so, part of the carbon it uses is respired as carbon dioxide
and part remains as SOC; we call the fraction remaining ef-
ficiency (decomposer efficiency); (iii) the fraction remaining
undergoes changes in quality. We call this transfer between
qualities (pools)dispersion, on average SOC increases in re-
calcitrance/decreases in quality with time.

To investigate how the factors quality and decomposer ef-
ficiency affect respiration at different temperatures (temper-
ature response) we tested the Q-model (Bosatta andÅgren,
2003; Ågren and Bosatta, 1998) against an incubation ex-
periment with needle litter (Wetterstedt et al., 2010). The
Q-model was chosen because the fate of carbon and the de-
composition processes are relatively easy to follow in it. The
factors quality and decomposer efficiency are explored by
modifying the model to have one or two initial litter qualities
in combination with fixed or flexible (with regard to temper-
ature) decomposer efficiency.

We have chosen to use the GLUE (Generalised Likelihood
Uncertainty Estimation, Beven, 2006) framework for model
calibration and evaluation. GLUE can be used as a modelling
protocol and is well suited to give uncertainty estimations in
model output. It also provides criteria for complete model
rejection, i.e. the model structure needs to be changed if the
model fails to predict empirical data well enough.

The main reason for choosing GLUE as opposed to a for-
mal Bayesian approach was because it allowed us more free-
dom in specifying a likelihood function. The measurements
are known to contain equipment-related errors, there is bio-
logical variation within the replicates, the Q-model is non-
linear, and the ever-present model structural error makes the
identification of a formal error model to be used in a formal
Bayesian approach problematic. Moreover, our main pur-
pose is not to establish the value of the parameters to the
best precision possible, but rather to explore qualitative ef-
fects of the parameters and the model. Using GLUE, it is
often the case that quite different parameter sets give more or
less equal good fits (equifinality). Within the framework it is
easy and straightforward to use those sets in ensemble mod-
eling. Even though the likelihood function is subjectively
chosen it is easy to understand and communicate to a wider
audience. The likelihood function is of lesser importance as
long as it will help us find parameters that make the model

predict measurements well. See also the discussion of the
use of the GLUE methodology versus other formal Bayesian
approaches (Mantovan and Todini, 2006; Beven et al., 2008).

2 Materials and methods

2.1 The Q-model

The Q-model describes litter or SOC as consisting of a con-
tinuous spectrum of carbon qualities or decomposabilities in-
stead of being partitioned into a small number of discrete
pools. The Q-model has certain advantages over discrete
models. Firstly, there are analytical solutions, making it eas-
ier to understand and explain model behaviour. Approximate
solutions, which are similar in their behaviour, are also avail-
able (Bosatta and̊Agren, 2003). The approximate solutions
are much less computationally demanding and are therefore
preferred when doing large model runs, for example during
calibration. They substitute the complete distribution of lit-
ter qualities in the exact solution with one average quality.
Secondly, there are also fewer parameters in a continuous
formulation, as opposed to pool models, and the model for-
mulation enforces consistency between them (Bruun et al.,
2010). Parameters estimated with the approximate solutions
can also be used in the exact solution, possibly with some
slight recalibration.

In the Q-model the growth rate (u) of the decomposers
depends on carbon quality (q) and temperature (T ) as well
as the base rate parameter (u0). The temperature response of
the growth rate couples temperature and quality through an
Arrhenius function with activation energy1G0 giving

u(q,T ) = u0e
−

∣∣∣1G0
∣∣∣

qRT

whereR is the gas constant (Bosatta andÅgren, 1999); we
will for convenience allowq > 1 in contrast to the restric-
tion 0 < q < 1 in the original derivation. Decomposer effi-
ciency (e) is set to be either temperature independent (fixed)
or allowed to vary with temperature (flexible). In the lat-
ter case no specific temperature function has been assumed;
the intention is instead to investigate the existence of a tem-
perature dependence. Transfer of carbon to lower qualities,
dispersion, is expressed through the parameterη12, which
is assumed to be temperature independent. Table 1 lists the
parameters used in the model. When running the model
with two initial litter qualities, the twoq0’s will be selected
from behavioural models (see below) where the qualities are
somewhat separated. The reason we are using two initialq0’s
in this experiment is to explore the effect of how the differ-
ent temperature sensitivity of differentq0’s translates into a
differential quality evolution. Besides answering the ques-
tion of which variations of the Q-model that can reproduce
the observations, it is necessary to look at the consequences
for the distribution of carbon qualities; when extrapolating
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Table 1. List of parameters. Parameter values are those corresponding to the highest LM. Range is the range used in the calibration procedure.
Sampling was done uniformly for all parameters butu0 which was sampled from a log-distribution. With two initial qualities theq0’s (q0−1
andq0−2) were fixed from values obtained with one initial quality (q0). Fixed and Flex. in the table heading refer to fixed or flexiblee0.
Initial parameter range was greater to find suitable parameter space.

Oneq0 Two q0

Parameter Range Fixed Flex. Fixed Flex. Comment

q0 1.5–4.5 2.50 2.5 – – Initial litter quality (unit-less)
q0−1 fixed – 1.80 1.80 1st initial litter quality in the twoq0 version
q0−2 fixed – 2.50 2.50 2nd initial litter quality in the twoq0 version
1G0 a 127 93 127 99.5 Gibbs’ free energy (kJ)
e0 0.15–0.40 0.377 – 0.220 – Decomposer efficiency in the

fixed version (unit-less)
e0−5 – : – – 0.369 – 0.393 e0 at 5◦C in the flexible version
e0−15 – : – – 0.327 – 0.336 e0 at 15◦C in the flexible version
e0−25 – : – – 0.321 – 0.330 e0 at 25◦C in the flexible version
u0 107–109 7.63×107 2.46×107 65.7×107 1.21×107 Decomposer growth rate regulating

parameter (g C (g C)−1 d−1)

η12 0.1–0.45 0.120 0.199 0.0663 0.0476 Rate of quality decrease,
approximate solution (unit-less)

Q10 1.4–4.0 Only used to create
plausible parameter range for1G0

a For1G0 the range isq0R
T5T15

10
[
−log

[
Q10max

]
...−log

[
Q10min

]]
.

from this short-term experiment to long-term carbon storage
differences in quality distributions become important.

Four versions of the model were run with combinations of
oneor two initial qualities combined withfixedor flexiblede-
composer efficiencies. When using two initial qualities, one
quality was chosen as the best one found when using only
one quality and the other one was set to a lower value esti-
mated to give a reasonable difference; the sensitivity to this
choice was also tested. The initial amount of carbon was par-
titioned equally between the two qualities. When estimating
parameters within GLUE we have used the approximate ver-
sion of Model III as defined in Bosatta and̊Agren (2003).
The best parameter set has then been used in the exact solu-
tion to calculate quality distributions.

2.2 Observational data

We have chosen to use the spruce (Picea abies) needle lit-
ter data from the temperature experiment by Wetterstedt et
al. (2010) (see Figs. 1 and 2). The data consists of time se-
ries (four replicates) of litter respiration rates at different tem-
peratures. In some time series the samples have been shifted
from one temperature to another when approximately 12% of
the initial carbon had been respired. We will denote temper-
ature combinations as initial temperature + final temperature,
e.g. 5+15◦C, meaning that the sample was first exposed to
5◦C and then 15◦C. The data used for calibration were from
needles stored at three temperatures without shifts in temper-
ature (5+5 ◦C, 19 data points; 15+15◦C, 14 data points;

and 25+25◦C, 16 data points). To reduce the variability in
data between measurement points, we used a running mean
of three consecutive points to smooth the curve (the first and
last points were averaged from two points). We also nor-
malised the variance at each measurement point by averaging
over the whole measurement period for each temperature, i.e.
the variances used when calibrating the model are

Ōi

∑
i

Var
(
Ōi

)
Ōi

/n,

whereOi is the observation at pointi andn is the number
of points in the measurement series. These steps were taken
to obtain a more robust calibration process. However, when
the calibrated models are evaluated using the least square
method,R2 are calculated with respect to non-smoothed data
(Figs. 1 and 2).

2.3 GLUE

The GLUE methodology introduced by Beven and Bin-
ley (1992) is a framework for calibrating and using models
in predictions. It includes criteria and methods for model
rejection and sensitivity analysis of model parameters. A
“model” in GLUE terminology is the combination of the
“model structure”, e.g. the Q-model as opposed to some
other model, and the parameter values used to run the model.
A “behavioural model” is a model that can simulate real data
“good enough”. It follows that a non-behavioural model
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Fig. 1. Model predictions of respiration rates for the one initial quality, fixed decomposer efficiency model and observed respiration rates
for all combinations of initial (Ti) and final (Tf) temperatures (5◦C, 15◦C, and 25◦C.) Weighted ensemble run predictions (solid black line)
with max/min curves (blue dashed lines) for the behavioural parameter sets. The yellow fields show 95% error bounds around measured data
points (dots). Least square R2-values are shown in top right corner of each sub-graph.

should not be used to forecast data; instead, it would need
better parameterisation or a change in model structure. In
this text we will, however, use the term “model” with the
meaning “model structure”.

The GLUE methodology is particularly useful in the field
of environmental modelling in which the errors involved in
measurement data may be unclear and where the response
surface of the “goal function” or likelihood measure (LM)
is flat and likely to contain many local optima (cf. Hyvönen
et al., 2005). The GLUE methodology also acknowledges
that more optima will be found with a more extensive search
in the parameter space. Since it is likely that these optima
would move with already small differences in measurement
data (measurement errors), it is not meaningful to only search
for a global optimum.

The use of GLUE includes the following steps (Beven,
2009):

1. Likelihood measure: decide on an informal (or formal)
likelihood measure or measures (LM) for use in eval-
uating each model run, including the rejection criteria,
which for a non-behavioural model run will be given a
likelihood of zero. Ideally this should be done before
running the model, taking into account possible input
and observational errors: since calibration data contain
means as well as standard deviations, we used a trian-
gular shaped likelihood measure:

l (M,Omin,Omean,Omax) =

{
M−Omin

Omean−Omin
M ≤ Omean

Omax−M
Omax−Omean

M >Omean

}

If model output equals the average measured value
(Omean) the function returns 1, at±1.96 standard de-
viations (Omax, Omin) zero, and negative values when
model output deviates more from the observed mean
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Fig. 2. Model predictions of respiration rates for the one initial quality, flexible decomposer efficiency model and observed respiration rates
for all combinations of initial (Ti) and final (Tf) temperatures (5◦C, 15◦C, and 25◦C.) Weighted ensemble run predictions (solid black line)
with max/min curves (blue dashed lines) for the behavioural parameter sets. The yellow fields show 95% error bounds around measured data
points (dots). Least square R2-values are shown in top right corner of each sub-graph.

value. These values were summed for each temperature
and divided by the number of observed values,nO,T and
then averaged over the three temperatures

LM (M(2),O)

=

∑
T =5,15,25◦C

(∑
OT

l
(
MO,T ,Omin,T ,Omean,T ,Omax,T

)
nO,T

)
/3.

2 stands for the parameter set used. This choice of
likelihood measure gives equal weight to the different
temperature series. It takes also advantage of the vari-
ability in the observed data and is less influenced than
the least square method by outliers. Ideally, the model
with the parameters in question, should predict all ob-
served data points within their 95% error bounds; i.e.
for all LM(M,Omin,Omean,Omax) observations. How-

ever, this turned out not to be feasible, why have chosen
LM > 0 as criteria for a behavioural model.

2. Model parameters: decide which model parameters and
input variables are to be considered uncertain: all model
parameters were considered uncertain (Table 1).

3. Parameter distributions: decide on prior distributions
from which the uncertain parameters and variables can
be sampled: we have chosen uniform initial distribu-
tions for all parameters exceptu0, for which a logarith-
mic one was used (Table 1). To further narrow the sam-
pling space, initial sample runs were made to localise
parts of the parameter space that were more likely to
generate good fits.

4. Random realisations of the model: decide on a method
to generate random realisations of models consistent
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482 J.Å. M. Wetterstedt and G. I.̊Agren: Quality or decomposer efficiency

Fig. 3. Respiration rates of samples as a function of time, predicted by the flexible and fixed decomposer efficiency models with constant
temperatures (solid lines) and with a switch between 5◦C and 25◦C at 12% respired carbon (broken lines) using the parameter set with the
highest LM (Table 1). For clarity, the transitions between temperatures are slightly displaced from exactly 12%.(a) Fixede0. (b) Flexible
e0. Note, this simulation does not give the same result as the weighted ensemble predictions (Figs. 2 and 3).

with the assumptions in steps 1 and 2: twenty thousand
parameter sets were drawn from uniform distributions
for all parameters exceptu0, which was drawn from a
log-distribution, (Table 1) and used as initial points in
the Simulated annealing algorithm (Mathematica 7.0.0
Ubuntu/Linux). This procedure results in only one “op-
timum” set of parameters. The procedure was therefore
repeated 28 000 times and the optimum sets together
with their resulting likelihood values were stored. Cal-
ibration was made simultaneously against samples that
had been kept at 5+5◦C, 15+15◦C and 25+25◦C.

Dotty plots

There exist a number of methods to assess sensitivity in non-
linear models. The method most often used within the GLUE
framework is to make a scatter-plot/dotty plot of each param-
eter (on the x-axis) versus the likelihood measure (y-axis)
obtained during the calibration/conditioning process. From
the resulting swarm of points, one can find trends showing
for example that certain parameters are present in only a
short interval of the initially sampled points, whereas oth-
ers have a uniform density along the x-axis. If only a small
segment of the initially sampled parameter space is found
among the behavioural model runs, restricting that parame-
ter to a smaller range will probably improve the number of
behavioural model runs. On the contrary, if behavioural runs
are equally distributed along the parameter axis, extending
the parameter range might disclose/unravel areas of the pa-
rameter space which are more likely to prove behavioural.

2.4 Using the model

Behavioural parameter sets are used in ensemble runs to gen-
erate a mean output value and likely error bounds. An en-
semble run is obtained when running the same model with
many parameter sets (as is the case in this article) or run-

ning different models to obtain a distribution of results. The
likelihood measure, LM, or any other performance measure,
can then be used to weigh the different outputs to create a
weighted mean. Error bounds can be generated from themax
andmin from the model runs, or at any preferred significance
level obtained from a cumulative density curve. In this arti-
cle we will simply usemaxandmin of the selected models
as bounds.

3 Results

3.1 One initial quality, fixed decomposer efficiency

With one initial quality (q0) and fixed decomposer efficiency
(e0) the dotty plots (data not shown) showed more or less
evenly distributed LM’s, except foru0 for which fits tended
to be better with increasingu0. This indicates that the up-
per boundary foru0 might have been too small. The gener-
ally even distribution of all parameters means that, within the
used ranges, different parameters compensate for each other,
making the model rather insensitive to changes in single pa-
rameters. We got 257 parameter sets that were behavioural.
The best fit yielded a LM of 0.243, and was within bound-
aries at 37 out of 48 data points in the calibration set (Fig. 1).

When validated against experiments with shifts in temper-
ature, the model follows the data well during the initial tem-
perature phase; this is not surprising because it was calibrated
on similar data (Fig. 1). During the final incubation after a
temperature increase, the model underestimates the increase
in respiration during the first days when going from 5◦C to
15◦C or 25◦C. When shifting downwards in temperature the
model predicts initially slightly higher values than observed.

With fixed decomposer efficiency, temperature history has
negligible effect on future respiration rates. The respira-
tion at the final temperature after the shift for the 5+25◦C
treatment is the same as the respiration after 12% C loss in
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Fig. 4. Dotty plots for the one initial quality, flexible decomposer efficiency. Each dot represents one model run. The likelihood measure,
LM, or “goodness of fit”, is plotted against parameter values. The x-scales cover the allowed ranges of the parameters. Parameter sets
resulting in a LM> 0 where used in ensemble simulation runs.

the 25+25◦C treatment (Fig. 3a). The same holds for the
25+5◦C and 5+5◦C treatment.

3.2 One initial quality, flexible decomposer efficiency

With one initial quality (q0) and flexible decomposer effi-
ciency (e0) there are few points in the dotty plots at the ex-
tremes of the x-axis forq0, meaning that high and lowq0
were unlikely to give good fits.u0, 1G0 ande0’s are fairly
evenly distributed.η12 is skewed towards the lower end of
the spectrum (Fig. 4). The best fit yielded a LM of 0.284,
and was within boundaries at 37 out of 48 points (Fig. 2). 33
sets were found behavioural.

The model with flexible decomposer efficiency fits the
data slightly better than the fixed decomposer efficiency ver-
sion when validated against the experiment with temperature
shifts, as well as bracketing more of the data points due to
the wider uncertainty bounds (Fig. 2). When going down in
temperature, the model seems to over-shoot slightly, at least
initially (15+5◦C, 25+5◦C) and when going up (5+25◦C
and possibly 15+25◦C) the model misses the initial respira-
tory peak.

To search for trends in howe0 varied with temperature we
reran the simulations with the oneq0 flexible e0 model to
obtain a larger number (160) of behavioural parameter sets
(LM > 0). Decomposer efficiencies were plotted in pairs, i.e.
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Fig. 5. Correlations between efficiencies at 5◦C, 15◦C, and 25◦C from behavioural parameter sets in the one initial quality, flexible
decomposer efficiency model. Solid line: linear regression of data. Broken line: 1:1 line.

e0−5 versuse0−15, e0−15 versuse0−25, ande0−5 versuse0−25
(Fig. 5). The plots show that thee0’s are highly correlated.
Averagee0 decreased by 0.03 units when going from 5◦C
to 15◦C (left), increased by 0.02 when going from 15◦C to
25◦C (middle), resulting in an overall decrease of 0.01 from
5◦C to 25◦C (right).

With temperature dependent decomposer efficiency, respi-
ration responded strongly to temperature history. For exam-
ple, the sample initially at 25◦C respired substantially more
than the one initially at 5◦C when both were at 25◦C. Simi-
larly, the sample initially at 25◦C respired more than the one
initially at 5◦C when both are at 5◦C (Fig. 3b).

3.3 Two initial qualities, fixed and flexible decomposer
efficiency

In the model runs with two initial qualities, the contribution
(both at time 0 and at 12% carbon loss) of the lower qual-
ity (q0−1) to respiration is much lower (1/4700 and 1/2700
at 5◦C and 25◦C, respectively) than the respiration of the
higher quality (q0−2). Therefore the respiration from the
high quality totally dominated the respiration and the model
behaved qualitatively the same as with a single initial quality
but with different “optimal” parameters.

4 Discussion

4.1 Model behaviour

The calibration data showed considerable variation in the
variability between days. Also, the respiration did not al-
ways decrease monotonically as expected. We do not know
whether this variability in input data comes from short-time
biological variation or from measurement errors. We had,
therefore, to relax the condition that, for each behavioural
parameter set, predictions should be within error bounds for

all points in each temperature series. Despite that, calibra-
tion to the constant temperature subsets worked well withR2

values in the range of 0.83–0.96. However, even though the
ensemble runs mostly covered all calibration points, at 5◦C
and 15◦C the data points might have a more concave pattern
than what the model can predict (Figs. 1 and 2 at 5+5 ◦C,
15+15◦C). When the model is validated against the temper-
ature shift experiments, experiments tend to respond more
strongly just at the temperature shift than the model.

4.2 Choice of likelihood measure (LM)

Our choice of likelihood measure, LM, is subjective. Ulti-
mately, the objective should be to acquire parameters “use-
ful in model prediction” (Beven, 2009, p. 124), and the LM
should be chosen to help in doing so. One way of interpret-
ing “useful in model prediction” is that the model should be
able to bracket our observations, which it did in most of the
cases (Figs. 1 and 2). Since the primary objective of this pa-
per is not to model decomposition in general, but rather to
highlight the effects on quality composition and respiration
rates of a temperature-dependent efficiency and the coupling
of quality with temperature, the likelihood measure used is
of lesser importance; see Beven (2009, p. 165) for further
discussion of choice of likelihood measure.

4.3 Mechanisms for temperature history to influence
current respiration

4.3.1 One or several initial qualities

We have considered two main ways in which temperature
history can affect current respiration rates. The first is that
different qualities have different temperature dependencies,
which should lead to a difference in quality composition at
different temperatures and equal carbon loss (for a more de-
tailed discussion, see Wetterstedt et al., 2010). However,
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Fig. 6. Distributions of qualities for combinations of one or two initial qualities and fixed or flexible decomposer efficiency (e0) when 12%
carbon has been lost for samples incubated at 5◦C or 25◦C. Solid lines and black bars are for samples at 5◦C. Dashed lines and grey bars
are for samples at 25◦C. The bars have been shifted slightly leftwards and rightwards from their value to visually separate them. Bars show
the amount of carbon that has not been used by decomposers so far (remaining at the initial qualities). The lines show the distributions of
carbon that the decomposers have converted into new qualities. With flexible decomposer efficiency, more carbon has been converted (lines)
and less remains at the initial quality (bar) at the higher temperature. With two initial qualities the losses have essentially only occurred from
the highest quality. Note that the sums of the bar(s) and the areas under the corresponding temperature curves are all equal, 88% of initial
carbon.

with our choice of two different initial qualities (q0−1 = 1.80,
q0−2 = 2.50), the lower quality decomposed at only about
1/4700 at 5◦C respectively 1/2700 at 25◦C of the rate of the
higher one. Together with the relatively small difference in
temperature sensitivity between the twoq0’s (fixede0, twoq0
model:Q10−1 = 2.9,Q10−2 = 2.1; flexiblee0, twoq0 model:
Q10−1 = 2.9, Q10−2 = 2.3) this did not in this short-term ex-
periment translate into a sufficiently large quality evolution
between the temperatures; it is essentially only the highest
quality that decomposes. Choosing a largerq0−1 resulted in
more use also of the lower quality, but at the expense of a
smaller difference inQ10 between the two qualities. How-
ever, whateverq0−1 is chosen, the effect on the temperature
response is small.

4.3.2 Fixed or flexible decomposer efficiency

The second mechanism, varying decomposer efficiency (e0)

with temperature, resulted in a clear effect on quality distri-
butions and thus temperature sensitivity and respiration rates
(Figs. 3 and 6). The reason for this is two-fold. Most impor-
tantly, with higher efficiency, when carbon is taken from the

initial quality, a smaller part is lost by respiration and a larger
part is converted to lower qualities. Thus, to obtain the same
mass loss more of the initial quality has to be processed. Sec-
ondly, the dispersed carbon will for the same reason persist
for longer which means that yet more initial carbon needs to
be processed before reaching the same cumulative respiration
as at the lower decomposer efficiency. As a result at equal
mass losses, the higher efficiency produces a lower quality.

The flexible model is better fitted to the initial more rapid
increase at the beginning of the experiment as well as after
the shift in temperature. Having a temperature dependente0
also leads to a model that simulates differences in respiration
rates at the same final temperature from samples of different
initial incubation temperatures (Fig. 3). Surprisingly, having
flexible decomposer efficiency resulted in fewer behavioural
parameter sets. This is surprising because it adds two extra
parameters which should increase the possibility of finding
better fits. It seems however that the two extra parameters
decreased the probability of finding good parameter sets and
because the calibration was run with the same number of trial
parameter sets, this resulted in fewer behavioural parameter
sets.
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The behaviour ofe0 points in the direction that decom-
poser efficiency might decrease with increasing temperature.
This could be one of the explanations to why respiration is
so strongly correlated to temperature. However, it can be
difficult to comparee0 between different models, between
models and experiment, or indeed, between different exper-
iments (cf. Dev̂evre and Horẃath, 2000; Steinweg et al.,
2008). In experimentse0 is not measured directly and a num-
ber of more or less explicit assumptions are introduced when
calculatinge0 from measurable quantities such as consumed
substrate and respiration; such assumptions may or may not
distort the relation between conceptual and observed values.
In models, we also simplify the system; simplifications that
differ between models.

4.3.3 Other temperature effects

One part where the model has difficulty in reproducing the
experiment is directly after temperature shifts, where respira-
tion is underestimated and overestimated after shifts upward
and downward, respectively. These deviations between pre-
dictions and observations are similar to those observed when
extrapolating respiration rates obtained at constant temper-
atures to temperature shifts in the study by Wetterstedt et
al. (2010). We propose that these deviations over a few
days represent transient adjustments in decomposer proper-
ties to new conditions. A possible interpretation is that these
transients result from decomposer adaptation to new temper-
atures and that previously cold-adapted organisms respond
more strongly than previously warm-adopted (Bradford et
al., 2008). It remains an open question how important such
transients may be under field conditions where temperatures
are changing continuously, albeit less rapidly than in most
experimental studies.

It should also be born in mind that the temperature re-
sponse we find ine0 depends on the assumptions we have
made about the temperature dependence of the other factors.
For example, we are assuming that the dispersion function is
temperature independent although the rate of decomposition
is highly sensitive to the strength of dispersion (Hyvönen et
al., 2005). This is a simplifying assumption but we are not
aware of any experiments demonstrating temperature sensi-
tivity of dispersion. Likewise, although there are theoretical
arguments for the effects of quality on the temperature de-
pendence of the rate of carbon utilisation (Bosatta andÅgren,
1999), this has not been tested rigorously experimentally. Al-
lison et al. (2010) point out another complication from tem-
perature dependent decomposer efficiency. If decomposer
efficiency goes down with temperature, decomposers assimi-
lating the same amount of carbon will produce less biomass,
which in turn should lead to a lower production of extracel-
lular enzymes that can release assimilable carbon. In our
terminology this should correspond a positive coupling be-
tweene0 andu0. The increased loss of carbon caused by a
temperature increase resulting from lowered decomposer ef-

ficiency would then be counteracted by a lower use of car-
bon. Schimel and Weintraub (2003) suggest instead that
lowered decomposer efficiency would not occur at the ex-
pense of enzyme production but rather lead to decreased mi-
crobial biomass. There is a possibility that different micro-
bial populations are active at different temperatures and that
cold-adaptation increases maintenance costs, i.e. decreases
efficiency, which can lead to a negative coupling between
growth rate and efficiency over changing temperatures (Lip-
son et al., 2009). In the laboratory experiment by Wetterstedt
et al. (2010) the scope for changes in microbial populations
was limited and the response should more reflect those of
a fixed microbial composition although there were indica-
tions of changes in the microbial population (E. Bååth, un-
published data). The question of the mechanisms behind the
temperature response of decomposition is still far from be-
ing solved and it is likely that we need to consider additional
couplings between processes.

5 Conclusions

When fitting complex models with many adjustable param-
eters it is a common situation that many different parameter
combinations are almost equally good and there is no ad-
ditional information to be used for discriminating between
them (Hyv̈onen et al., 2005). The strength of the GLUE
method in a context like this one is that is does not select
just one optimal set of parameters but allows all the possi-
ble parameters that match preselected conditions. What we
learn in this study is that for almost all parameter combina-
tions, e0−5 is larger thane0−15 ande0−25. This is a strong
suggestion that decomposer efficiency is, indeed, tempera-
ture dependent at least in the range 5–15◦C; above that range
the results are less clear. This is a key result of this study.

A temperature-sensitive decomposer efficiency was shown
to have a much stronger influence on quality differentia-
tion, and thus respiration, than the temperature sensitivity of
utilisation of different qualities. The difficulties in captur-
ing changes in respiration rates at rapid temperature changes
should caution us about extrapolating short term effects to
longer time periods (cf. Wetterstedt et al., 2010); understand-
ing the rate at which a microbial community can adjust re-
quires more investigations. Our results show also that it is
necessary to more carefully consider the temperature depen-
dence of other processes than those directly coupled to the
rate of substrate utilisation.
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