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Abstract. Nearly half of the earth’s photosynthetically fixed
carbon derives from the oceans. To determine global and re-
gion specific rates, we rely on models that estimate marine
net primary productivity (NPP) thus it is essential that these
models are evaluated to determine their accuracy. Here we
assessed the skill of 21 ocean color models by comparing
their estimates of depth-integrated NPP to 1156 in situ14C
measurements encompassing ten marine regions including
the Sargasso Sea, pelagic North Atlantic, coastal Northeast
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Atlantic, Black Sea, Mediterranean Sea, Arabian Sea, sub-
tropical North Pacific, Ross Sea, West Antarctic Peninsula,
and the Antarctic Polar Frontal Zone. Average model skill, as
determined by root-mean square difference calculations, was
lowest in the Black and Mediterranean Seas, highest in the
pelagic North Atlantic and the Antarctic Polar Frontal Zone,
and intermediate in the other six regions. The maximum frac-
tion of model skill that may be attributable to uncertainties
in both the input variables and in situ NPP measurements
was nearly 72%. On average, the simplest depth/wavelength
integrated models performed no worse than the more com-
plex depth/wavelength resolved models. Ocean color mod-
els were not highly challenged in extreme conditions of
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surface chlorophyll-a and sea surface temperature, nor in
high-nitrate low-chlorophyll waters. Water column depth
was the primary influence on ocean color model performance
such that average skill was significantly higher at depths
greater than 250 m, suggesting that ocean color models are
more challenged in Case-2 waters (coastal) than in Case-1
(pelagic) waters. Given that in situ chlorophyll-a data was
used as input data, algorithm improvement is required to
eliminate the poor performance of ocean color NPP mod-
els in Case-2 waters that are close to coastlines. Finally,
ocean color chlorophyll-a algorithms are challenged by op-
tically complex Case-2 waters, thus using satellite-derived
chlorophyll-a to estimate NPP in coastal areas would likely
further reduce the skill of ocean color models.

1 Introduction

Large-scale estimates of marine net primary productivity
(NPP) are an essential component of global carbon budget
analyses as nearly half of the earth’s source of photosynthet-
ically fixed carbon derives from the global ocean. Under-
standing the rate of marine fixed carbon production can only
be accomplished using models due to the spatial and tem-
poral limitations of in situ measurements. Therefore, it is
critical that these models are carefully evaluated by compar-
ing their estimates of NPP to in situ measurements collected
from various regions across the globe in order to better un-
derstand which types of systems may be most challenging to
model and to better constrain the model uncertainties.

The most commonly applied NPP models are ocean color
models, which use input data derived from satellites (e.g.
surface chlorophyll-a concentration and sea surface temper-
ature) to estimate NPP over large areas. Ocean color models
have been used to assess contemporary trends in global NPP
(Behrenfeld et al., 2006), relationships between sea-ice vari-
ability and NPP in the Southern Ocean (Arrigo et al., 2008),
bottom-up forcing on leatherback turtles (Saba et al., 2008),
and fisheries management (Zainuddin et al., 2006).

Ocean color models vary in both their type (carbon-based
versus chlorophyll-based) and complexity (depth and wave-
length integrated versus resolved); thus a context is required
in which these models can be evaluated. The Primary Pro-
ductivity Algorithm Round Robin (PPARR) provides this
framework such that the skill and sensitivities of ocean color
models can be assessed in multiple types of comparisons.
Early PPARR studies compared a small number of model es-
timates to in situ NPP data at 89 stations from various marine
ecosystems (Campbell et al., 2002). Global fields of NPP
estimated by 31 satellite-based ocean color models and cou-
pled biogeochemical ocean general circulation models were
contrasted to understand why and where models diverge in
their estimates (Carr et al., 2006). A study comparing NPP
estimates of 30 models to in situ data from nearly 1000 sta-

tions over 13 years in the tropical Pacific Ocean revealed that
ocean color models did not capture a broad scale shift from
low biomass-normalized productivity in the 1980s to higher
biomass-normalized productivity in the 1990s (Friedrichs et
al., 2009). Most recently, 36 models were evaluated to assess
their ability to estimate multidecadal trends in NPP at two
time-series stations in the North subtropical gyres of the At-
lantic and Pacific Oceans (Saba et al., 2010). A multiregional
PPARR analysis that compares output from multiple models
to in situ NPP at various regions has not been recently con-
ducted since the study by Campbell et al. (2002) and a larger
sample size of in situ measurements would strengthen the
assessment of model skill and provide insights into the rela-
tionship between region type, quality of the input variables,
quality of the NPP measurement, and model error.

Here we assess the skill of 21 ocean color models ranging
from simple integrated models to complex resolved models.
This is accomplished by comparing model output to 1156 in
situ NPP measurements that encompass ten different marine
regions. We first assess both average and individual model
skill on a region-specific basis using the root-mean square
difference, which measures a model’s ability to estimate the
observed mean and variability of NPP. Next, we determine
how ocean color model skill is affected by uncertainties in
both the input variables and in situ measurements of NPP.
This is followed by a correlation analysis to determine which
station parameters (i.e. depth, latitude, surface chlorophyll-
a) have the largest influence on model-data misfit. Finally,
we assess model skill regardless of region and highlight the
water characteristics that are most challenging to the models.

2 Methods

2.1 Data

We collected data from various projects (Table S1) that incor-
porated ship-based measurements of NPP profiles covering
ten regions (Fig. 1) and spanning multiple time-periods be-
tween 1984–2007 (Table 1). Although each dataset included
NPP, the over-arching goals and purposes for each of these
field studies were diverse and were not optimized in their
sampling design to assess ocean color models. However, in
situ measurements of marine NPP are not common thus we
had to use a diverse group of datasets. All 1156 NPP mea-
surements were based on the14C tracer method; incubation
times and type (in situ or on-deck) were dependent upon time
of year and region, respectively (Table 1). Each station’s
NPP profile was measured to the 1% light-level at various
depth intervals. We extracted each station’s NPP datum at
every depth of measurement and used trapezoid integration
to provide daily NPP (mg C m−2 day−1) to the greatest isol-
ume measured (1% light-level). Because 24-h incubations
are more accurate measurements of NPP (Campbell et al.,
2002), we adjusted NPP measurements that were based on
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Fig. 1. Sample locations of the 1156 NPP measurements among 10
regions. Some of these locations were sampled multiple times (i.e.
BATS and HOT).

incubation time shorter than 24 h. These regions were the
Bermuda Atlantic Time-series Study (BATS) and the Hawaii
Ocean Time-series (HOT) where primary productivity was
measured using 12–16 h incubations (Table 1). At BATS, in-
cubations were performed using both light and dark bottles,
whereas at HOT, dark bottles have not been used since 2000.
Therefore, we calculated NPP in the following manner: for
the BATS data, we used the mean light values of productiv-
ity and subtracted the dark values to remove the carbon pro-
duced by non-photoautotrophs. For the HOT data, we cal-
culated the average proportion of dark to light bottle values
from 1989 to 2000 and then used this proportion to calculate
NPP for all light bottle samples from 2000 onwards.

Ocean color models require specific input data to estimate
NPP; the suite of input data is dependent upon model type
although all ocean color models require surface measure-
ments of chlorophyll-a (Chl-a) (Table 2). For each station,
we used in situ surface fluorometric Chl-a and in situ sea
surface temperature (SST) from the programs listed in Ta-
ble 1 (surface= 0–5 m). Reanalysis estimates of shortwave
radiation were obtained from the National Centers for En-
vironmental Prediction (http://www.cdc.noaa.gov) and trans-
formed to photosynthetically active radiation (PAR; Ein-
steins m−2 d−1) using a conversion factor of 0.43 (Olofs-
son et al., 2007). Mixed-layer depths (MLD) were derived
either from in situ measurements using the surface offset
method (1σ = 0.125 kg m−3) (Levitus, 1982) or from model
results (WAP= Dinniman and Klinck, 2004; BATS and
NEA = Doney, 1996; Doney et al., 2007; Black Sea= Kara
et al., 2005; Mediterranean Sea= D’Ortenzio et al., 2005).

Depth data for each station were extracted from the
British Oceanographic Data Centre (http://www.bodc.ac.uk/
data/onlinedelivery/gebco) using one arc-minute grid data
from the gridded bathymetric data sets. The complete dataset
used for this analysis can be found in the online Supplement
(Supplement file S1).

2.2 Models

Output from a total of 21 satellite-based ocean color models
were contributed to this study (Table 2). Model complex-
ity ranged from the relatively simple depth-integrated and/or
wavelength-integrated models to the more complex depth-
resolved and wavelength-resolved models. Specific details
for each of the 21 models are given in Appendix A of the
Supplement. Model participants were provided with input
fields (Chl-a, SST, PAR, MLD, latitude/longitude, date, and
day length) and returned estimates of NPP integrated to the
base of the euphotic zone (1% light-level). Although skill
comparison results for the carbon-based models (Behrenfeld
et al., 2005; Westberry et al., 2008) appear in Friedrichs et
al. (2009) and Saba et al. (2010), these approaches are not in-
cluded in the analyses presented here. One of the primary in-
puts for the carbon-based model is particulate backscattering,
which is not included in the dataset described in Sect. 2.1,
and which severely handicaps these models for the purposes
of this type of evaluation. Satellite surrogates for particulate
backscatter are available for use with some of the dataset as-
sembled here, but are not available for the subset of data prior
to the modern ocean color satellite era (prior to 1997).

2.3 Model performance

To assess overall model performance in terms of both bias
and variability in a single statistic, we used the root mean
square difference (RMSD) calculated for each model’sN es-
timates of NPP:

RMSD =

(
1

N

N∑
i=1

1(i)2

)1/2

(1)

where model-data misfit in log10 space1(i) is defined as:

1(i) = log(NPPm(i))−log(NPPd(i)) (2)

and where NPPm(i) is modeled NPP and NPPd(i) represents
in situ data for each samplei. The RMSD statistic assesses
model skill such that models with lower values have higher
skill. The use of log normalized RMSD to assess overall
model performance is consistent with prior PPARR studies
(Campbell et al., 2002; Carr et al., 2006; Friedrichs et al.,
2009; Saba et al., 2010). To assess model skill more specif-
ically (whether a model over- or underestimated NPP), we
calculated each model’s bias (B) for each region where:

B = log(NPPm)− log(NPPd) (3)

We determined if certain model types or individual models
had significantly higher skill than others (based on RMSD)
by applying an ANOVA method with a 95% confidence in-
terval.

Model performance was also illustrated using Target dia-
grams (Jolliff et al., 2009). These diagrams break down the
RMSD such that:

RMSD2=B2
+uRMSD2 (4)
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Table 1. Description of each region and study from which NPP measurements were recorded.

General region Program Ecosystem type N Sampling time range Spatial NPP method (incubation,
coverage tracer, incubation time)

Northwest Atlantic Ocean: BATS∗ Subtropical – Gyre 197 Dec 1988 to Dec 2003 Single in situ,14C, 12–16 h
Sargasso Sea station
Northeast Atlantic Ocean NABE Temperate – 12 Apr 1989 to May 1989 Multiple in situ,14C, 24 h

Convergence Zone stations
Northeast Atlantic Ocean NEA (OMEX I, II), Temperate – 52 Jul 1993 to Jul 1999 Multiple on deck,14C, 24 h

SeaMARC Convergence Zone stations
Black Sea NATO SfP ODBMS Temperate 43 Jan 1992 to Apr 1999 Multiple on deck,14C, 24 h

Anoxic Basin stations
Mediterranean Sea DYFAMED, FRONTS, Temperate Basin 86 Feb 1990 to Sep 2007 Multiple on deck,14C, 24 h

HIVERN, PROSOPE, stations
VARIMED, ZSN-GN

Arabian Sea Arabian Sea Tropical – Monsoonal 42 Jan 1995 to Dec 1995 Multiple in situ,14C, 24 h
(Process Study) stations

North Pacific Ocean HOT Subtropical – Gyre 139 Jul 1989 to Dec 2005 Single in situ,14C, 12–16 h
station

Southern Ocean Ross Sea Polar – Polynya 133 Oct 1996 to Dec 2006 Multiple on deck,14C, 24 h
(AESOPS, CORSACS) stations

Southern Ocean WAP (LTER-PAL) Polar – 440 Jan 1998 to Jan 2005 Multiple on deck,14C, 24 h
Continental Shelf stations

Southern Ocean APFZ (AESOPS) Polar – 12 Dec 1997 Multiple on deck,14C, 24 h
Convergence Zone stations

∗ Program descriptions are listed in Table S1 of the Supplement.

Table 2. Contributed satellite-based ocean color primary productivity models. Specific details for each model are described in Appendix A
of the Supplement.

Model # Contributer Type Input variables used: Reference

Chl-a SST PAR MLD

1 Saba DI, WI x Eppley et al. (1985)
2 Saba DI, WI x x x x Howard and Yoder (1997)
3 Saba DI, WI x x x Carr (2002)
4 Dowell DI, WI x x x x Dowell, unpublished data
5 Scardi DI, WI x x x x Scardi (2001)
6 Ciotti DI, WI x x x Morel and Maritorena (2001)
7 Kameda; Ishizaka DI, WI x x x Kameda and Ishizaka (2005)
8 Westberry; Behrenfeld DI, WI x x x Behrenfeld and Falkowski (1997)
9 Westberry; Behrenfeld DI, WI x x x Behrenfeld and Falkowski (1997); Eppley (1972)
10 Tang DI, WI x x x Tang et al. (2008); Behrenfeld and Falkowski (1997)
11 Tang DI, WI x x x Tang et al. (2008)
12 Armstrong DR, WI x x x Armstrong (2006)
13 Armstrong DR, WI x x x Armstrong (2006); Eppley (1972)
14 Asanuma DR, WI x x x Asanuma et al. (2006)
15 Marra; O’Reilly; Hyde DR, WI x x x Marra et al. (2003)
16 Antoine; Morel DR, WR x x x x Antoine and Morel (1996)
17 Uitz DR, WR x x x Uitz et al. (2008)
18 Mélin; Hoepffner DR, WR x x Ḿelin and Hoepffner (2011)
19 Smyth DR, WR x x x Smyth et al. (2005)
20 Waters DR, WR x x x x Ondrusek et al. (2001)
21 Waters DR, WR x x x Ondrusek et al. (2001)

DI = Depth-integrated, DR= Depth-resolved, WI= Wavelength-integrated, WR= Wavelength-resolved.

Biogeosciences, 8, 489–503, 2011 www.biogeosciences.net/8/489/2011/
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where unbiased RMSD squared (uRMSD2) is defined as:

uRMSD2=
1

N

N∑
i=1

(
(logNPPm(i)−logNPPm)

−(logNPPd(i)− logNPPd)
)2

(5)

Target diagrams show multiple statistics on a single plot: bias
on the y-axis, and the signed unbiased RMSD (uRMSD) on
the x-axis, where:

signed uRMSD=(uRMSD) sign(σm−σd) (6)

andσm = standard deviation of log NPPm andσd = standard
deviation of log NPPd. The Target diagram thus enables one
to easily visualize whether a model over- or under-estimates
the mean and variability of NPP. By normalizing the bias and
uRMSD byσd and plotting a circle with radius equal to one,
the Target diagrams also illustrate whether models are per-
forming better than the mean of the observations (Jolliff et
al., 2009). Models that perform better than the mean of the
observations are defined to have a Model Efficiency (ME)
greater than zero (Stow et al., 2009):

ME=

N∑
i=1

{
logNPPd(i)−logNPPd

}2
−

N∑
i=1

{logNPPm(i)−logNPPd(i)}
2

N∑
i=1

{
logNPPd(i)−logNPPd

}2
(7)

The ME is located inside the reference circle on the Target
diagrams. A model with ME< 0 is typically of limited use,
because the data mean provides a better fit to the observa-
tions than the model predictions. In the NPP comparisons
presented here, models produce the lowest RMSD for the re-
gional data sets characterized by the least variability, yet at
the same time these models can have ME< 0. When data
sets have low variability, it is difficult for models to do better
than the mean of the observations. To be consistent with pre-
vious PPARR results, we typically equate higher model skill
with lower RMSD, yet we also discuss ME as a secondary
indicator of model skill.

Finally, to determine the effect of various station param-
eters on the NPP model estimates, for every NPP measure-
ment the Pearson’s correlation coefficient was calculated be-
tween model-data misfit (1(i)) and each of the following
parameters: Chl-a, SST, PAR, MLD, NPP, absolute latitude
(i.e. distance from the equator in degrees), and depth.

2.4 Uncertainty analysis

When comparing ocean color model estimates of NPP, it
is important to consider uncertainty in the input fields and
the NPP data, both of which can affect the assessment of
a model’s ability to accurately estimate NPP (Friedrichs
et al., 2009). For each measurement of NPP, we as-
sumed an uncertainty in the measurement such that val-
ues less than or equal to 50 mg C m−2 day−1 were sub-
ject to a ±50% error, while values greater than or equal

Table 3. Uncertainties in each input variable at each region based
on differences between satellite, modeled, and in situ data sources.
Ocean color models were provided with 81 perturbations of input
data for each NPP measurement based on these region-specific un-
certainties.

Region Chl-a ± SST± PAR± MLD ±

BATS 35% 1◦C 20% 40%
NABE 50% 1◦C 20% 40%
NEA 50% 1◦C 20% 20%
Black Sea 50% 1◦C 20% 40%
Med. Sea 65% 1◦C 20% 40%
Arabian Sea 50% 1◦C 20% 40%
HOT 35% 1◦C 20% 40%
Ross Sea 65% 1◦C 20% 60%
WAP 65% 1◦C 20% 60%
APFZ 65% 1◦C 20% 40%

to 2000 mg C m−2 day−1 were subject to a±20% error
(W. Smith, unpublished data). Therefore, error in values
between 50 and 2000 mg C m−2 day−1 ranged from 50% to
20% respectively and were calculated using a linear function
of log(NPP).

Ocean color models use satellite-derived input data, thus
it is important to understand how their estimates of NPP can
be affected by error in these data. For that purpose, we
compared each station’s in situ Chl-a and modeled PAR to
8-day, level-3 SeaWiFS 9 km data from the NASA Ocean
Color Website (http://oceancolor.gsfc.nasa.gov). SeaWiFS
measurements of Chl-a and PAR were averaged for the 3×3
grid point window (27×27 km) that encompassed each NPP
measurement location. This was done for each 8-day Sea-
WiFS image that contained the respective date of each mea-
surement. Comparing in situ Chl-a to 8-day Level 3 Sea-
WiFS data was not ideal but it was a compromise solu-
tion to get a maximum uncertainty estimate for each re-
gion. However, ocean color models typically use Level-
3, monthly or 8-day, satellite-derived Chl-a and thus we
were able to get an idea of RMSD sensitivity to in situ ver-
sus satellite-derived NPP estimates. For SST, we used an
error of ±1◦C, which was found to be a conservative er-
ror between in situ and satellite-derived data (Friedrichs et
al., 2009) and thus represented a maximum possible un-
certainty. We compared MLD to the Thermal Ocean Pre-
diction Model (TOPS) (http://www.science.oregonstate.edu/
ocean.productivity/mld.html), which is based on the Navy
Coupled Data Assimilation. We extracted 8-day TOPS MLD
data for each station using the same method for SeaWiFS
Chl-a and PAR. There are no SeaWiFS or TOPS data prior
to September of 1997 thus we only compared NPP measure-
ments that were collected since 1997 to calculate uncertainty.
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Table 4. Mean RMSD (model skill), depth, in situ NPP, and input data (± standard deviation) for each of the ten regions.

Region RMSD NPP Depth Chl-a SST PAR MLD
(mg C m−2 day−1) (m) (mg m−3) (◦C) (E m−2 day−1) (m)

BATS 0.34 (±0.09) 460 (±199) 4473 0.11 (±0.09) 23 (±3) 35 (±10) 73 (±72)
NABE 0.15 (±0.07) 978 (±235) 4412 (±151) 0.97 (±0.30) 12 (±1) 33 (±10) 44 (±23)
NEA 0.33 (±0.08) 535 (±313) 1636 (±1379) 0.58 (±0.42) 16 (±2) 37 (±13) 38 (±33)
Black Sea 0.44 (±0.09) 341 (±197) 1030 (±945) 0.73 (±0.61) 14 (±6) 35 (±16) 22 (±10)
Med. Sea 0.42 (±0.06) 658 (±639) 1253 (±1154) 0.97 (±1.35) 19 (±4) 40 (±13) 40 (±44)
Arabian Sea 0.22 (±0.09) 1075 (±373) 3361 (±936) 0.40 (±0.24) 27 (±2) 45 (±7) 52 (±24)
HOT 0.26 (±0.07) 489 (±149) 4736 0.08 (±0.03) 25 (±1) 39 (±9) 58 (±24)
Ross Sea 0.33 (±0.05) 1274 (±812) 728 (±626) 2.57 (±2.05) −1 (±1) 53 (±10) 40 (±55)
WAP 0.34 (±0.07) 585 (±579) 990 (±1061) 1.45 (±2.57) 1 (±1) 35 (±9) 14 (±8)
APFZ 0.16 (±0.07) 909 (±213) 3960 (±1009) 1.19 (±0.68) 3 (±3) 43 (±10) 30 (±16)

Uncertainties in each input variable were calculated for
each region (Table 3). Each of the four input variables can
have three possible values for each NPP measurement (orig-
inal value, original value + uncertainty, original value – un-
certainty). Similarly, each NPP measurement could also have
three values (the original value and the observed± uncer-
tainty). Therefore, for each NPP measurement (N = 1156)
there are 81 perturbations of input data and three possi-
ble values of NPP. Model participants were provided with
1156× 81 perturbations of input data and the uncertainty
analysis was conducted as follows: for each NPP measure-
ment, we examined the 81 perturbations and selected the
perturbation that produced the lowest RMSD using (a) un-
certainty in individual input variables, (b) uncertainty in all
input variables, (c) uncertainty in observed NPP, and (d) un-
certainty in all input variables and in observed NPP.

3 Results

3.1 Observed data

Measurements of NPP ranged from as low as
18 mg C m−2 day−1 in the Ross Sea to as high as
5038 mg C m−2 day−1 in the West Antarctic Peninsula
(WAP). The region with the highest mean NPP was the
Ross Sea (1274 mg C m−2 day−1) while the region with the
lowest mean NPP was the Black Sea (341 mg C m−2 day−1)

(Table 4). The region with the highest variability in NPP
was the Mediterranean Sea while the North Atlantic Bloom
Experiment (NABE) and the Antarctic Polar Frontal Zone
(APFZ) had the lowest variability (Table 4).

Data ranges among the input variables (Table 4) were as
follows: Chl-a from 0.005 mg m−3 (BATS) to 23 mg m−3

(WAP); SST from−2◦C (Ross Sea) to 29◦C (Arabian Sea);
PAR from 11 E m−2 day−1 (Northeast Atlantic, NEA) to
70 E m−2 day−1 (Ross Sea); and MLD from 2 m (WAP) to
484 m (Ross Sea).
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Fig. 2. Average RMSD for all 21 models at each region. Lower val-
ues of RMSD are equivalent to higher model skill. Green error bars
are 2× standard error. Red bars represent the maximum reduction
in RMSD (increase in model skill) when the uncertainty in both the
input variables and in situ NPP measurements are considered.

3.2 Region-specific model performance

3.2.1 Total RMSD

In terms of the average skill of the 21 ocean color mod-
els, RMSD was not consistent (P < 0.0001) at each of the
ten regions (Table 4; Fig. 2). Average ocean color model
skill was significantly lower (P < 0.0001) in the Black and
Mediterranean Seas (mean RMSD= 0.44 and 0.42, respec-
tively) when compared to the other eight regions (0.27) (Ta-
ble 4; Fig. 2). Among the other eight regions, there were
significant differences between specific groups. The hierar-
chy of average model skill (highest to lowest;P < 0.005) for
groups of regions that had statistically significant differences
in RMSD is as follows: the NABE and APFZ (0.15); the Ara-
bian Sea and HOT (0.24); BATS, NEA, the Ross Sea, and
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Fig. 3. Model skill (RMSD) for each model at each region. Solid
black line is the RMSD when using the mean of the observed data.
Models that have a RMSD below the solid black line have a Model
Efficiency >0 thus they estimate NPP more accurately than using
the mean of the observed data.

WAP (0.33); and finally the Black and Mediterranean Seas
(0.43) (Table 4; Fig. 2). Within each of these four groups of
regions, model skill was not significantly different.

In terms of individual model skill, certain models per-
formed better than others in specific regions (Fig. 3).
Model 16 (Antoine and Morel, 1996) was among the best
models (in terms of lowest RMSD) in eight of ten regions
and had ME> 0 in three regions (Fig. 3). Models 9 (Behren-
feld and Falkowski, 1997; Eppley, 1972) and 12 (Armstrong,
2006) were among the best models in seven of ten regions
(in terms of lowest RMSD) and had ME> 0 in five regions
(Fig. 3). Model 7 (Kameda and Ishizaka, 2005) was among
the best models in six of ten regions (Fig. 3) and had ME> 0
in four regions.
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Fig. 4. Target diagrams representing average model skill at each
region for DIWIs (11 models), DRWIs (4 models), and DRWRs (6
models). Bias∗ and uRMSD∗ are normalized such that Bias and
uRMSD are divided by the standard deviation of in situ NPP data
(σd) at each region. The solid circle is the normalized standard
deviation of the in situ NPP data at each region. Symbols falling
within the circle indicate that models estimate NPP more accurately
than using the mean of the observed data (Model Efficiency>0) at
each region. Red symbols are the pelagic regions and blue symbols
are coastal.

The ME statistic was not consistent between regions
(Figs. 3 and 4). In the Ross Sea, all models estimated NPP
more accurately than using the mean of the observed data
(ME > 0) whereas none of the models did better than the
observed data mean in BATS and the Black Sea (ME< 0)
(Figs. 3 and 4).

3.2.2 Bias and variance

Target diagrams were used to illustrate the ability of ocean
color models to estimate NPP more accurately than using
the observed mean for each region (values in Table 4) such
that symbols within the solid circle were successful (ME> 0)
and those lying on the circle or outside were not (ME≤ 0).
This ability was a function of both the type of ocean color
model and the region (Fig. 4). The depth/wavelength in-
tegrated models fell within the solid circle for the Ara-
bian and Ross Seas, WAP, and the APFZ; the depth re-
solved/wavelength integrated models for the Mediterranean
and Ross Seas, and WAP; and the depth/wavelength resolved
models for NABE, the Mediterranean, Arabian and Ross
Seas, and APFZ (Fig. 4).

In terms of average bias, the models either overestimated
the observed mean NPP or estimated it with no bias in the
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Fig. 5. Reduction in RMSD at each region based on uncertainties
in individual input parameters, all input parameters, NPP measure-
ments, and both the input parameters and NPP measurements. Val-
ues in parentheses are mean reductions in RMSD across all regions.

five shallowest regions (NEA, Black Sea, Mediterranean Sea,
Ross Sea, WAP; Fig. 4). Conversely, the models all underes-
timated the observed mean NPP at BATS, the Arabian Sea,
and HOT (Fig. 4). However, at NABE and APFZ, the sign
of bias depended on whether depth and wavelength were re-
solved.

In contrast to the bias results discussed above, the abil-
ity of the models to reproduce NPP variability was not a
function of depth, but was more a function of model type.
The depth/wavelength resolved models underestimated NPP
variability in all regions except the APFZ. On average, the
three of types models overestimated the variance at the APFZ
while underestimating the variance in the Black and Mediter-
ranean Seas, HOT, Ross Sea, and WAP (Fig. 4). In the other
four regions, the sign of uRMSD depended on whether depth
and wavelength were resolved. Finally, total RMSD was not
a function of whether or not depth and wavelength were re-
solved (Fig. 4).

3.2.3 Uncertainty analysis

The range of uncertainty in NPP measurements across
all regions (N = 1156) was from ±11 to ±629 mg
C m−2 day−1 with an average uncertainty of±31%
(±175 mg C m−2 day−1). Average uncertainty for Chl-a was
±60% (±0.54 mg m−3), MLD ± 41% (±17 m), PAR± 20%
(±8 E m−2 day−1), and SST± 7% (±1◦C). When the un-
certainty in both the input variables and NPP measurements
were considered at each of the ten regions, average RMSD
significantly decreased by nearly 72% (P < 0.0005) in ev-
ery region (Figs. 2 and 5). Uncertainties in Chl-a and NPP
measurements accounted for the largest individual-based re-
ductions in RMSD across all regions (35% and 36%, respec-
tively) (Fig. 5). The uncertainty in NPP measurements had
the smallest influence (23%) on RMSD in the Mediterranean
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Fig. 6. Average RMSD for each model across all regions. Error
bars are 2× standard error.

Sea but had the largest influence (46% to 60%) for NABE,
HOT, and APFZ (Fig. 5). Uncertainty in Chl-a had the small-
est influence (21%) on RMSD at BATS but had the largest
influence (44% and 53%) at the APFZ and NABE (Fig. 5).
Among uncertainties in the other individual input variables
PAR, MLD, and SST, the average reduction in RMSD was
only 6% (Fig. 5).

3.3 Model performance across all regions

3.3.1 Individual model skill

When individual model skill was averaged over all ten re-
gions, there were no significant differences in mean RMSD
for the 21 ocean color models (Fig. 6). Average RMSD for
the 21 models was 0.30 (±0.02 (2× standard error)). There
were also no significant differences between the three types
of ocean color models (Fig. 6): a. Average RMSD for DIWI,
DRWI, and DRWR models was 0.30 (±0.02), 0.30 (±0.02),
and 0.28 (±0.04), respectively.

3.3.2 Relationship between model-data misfit and
station parameters

The behavior of these models was investigated further by ex-
amining the correlation of model-data misfit to various pa-
rameters across all regions (Fig. 7). The highest correla-
tion coefficient was found for station depth (mean correla-
tion=−0.39) followed by observed NPP (−0.33), latitude
(0.33), and SST (−0.32) (Figs. 7 and 8). The highest corre-
lation between model-data misfit and station depth was for
Model 17 (−0.65) and the lowest was for Model 20 (0.01)
(Fig. 7). The lowest correlation between model-data misfit
and observed NPP was for Model 2 (−0.05) while Model
20 had the highest (−0.77) (Fig. 7). For both latitude and
SST, Model 3 had the lowest correlation (0.04 and−0.04)
while Model 17 had the highest (0.73 and−0.72) (Fig. 7).
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Although Chl-a, MLD, and PAR did not produce correla-
tions to |model-data misfit| that were higher than|0.30| for
groups of models, some individual models did stand out for
Chl-a (Models 17 and 20) and MLD (Model 2) (Fig. 7). For
PAR, no individual model had a correlation that was higher
than|0.30| (Fig. 7).

The general relationship between model-data misfit and
station depth was such that the models overestimated NPP
at shallow stations, underestimated NPP at deep stations,
and had the greatest skill at stations in 2500–3500 m water
depth (Fig. 8). The models generally produced a smaller
range of NPP values than observed: they overestimated
NPP when NPP was low and underestimated NPP when
NPP was high, with optimal model-data fit at NPP∼900–
1000 mg C m−2 day−1 (Fig. 8). For SST, the models tended
to overestimate NPP at SST below 5◦C, overestimate NPP
at SST between 5 and 15◦C, and underestimate NPP at SST
above 20◦C (Fig. 8). The correlation between model-data
misfit and latitude (Fig. 7) was likely driven by the high cor-
relation between SST and latitude (−0.96).

3.3.3 Model performance as a function of water
column depth

In terms of average RMSD from the 21 models, skill was sig-
nificantly higher (P < 0.01) at stations with depths greater
than 250 m (Fig. 9). When the uncertainty of both the input
variables and NPP measurements were considered, model
skill significantly increased across the three depth ranges but
the relationship between them was unchanged. When only
the stations shallower than 250 m were considered, those
<125 m had significantly lower skill (mean RMSD= 0.44±

0.05 standard deviation) than those between 125 and 250 m
(0.39±0.05). However, stations between 125 and 250 m had
significantly lower skill than those greater than 250 m.

In terms of the performance of individual models within
these depth intervals (Fig. 10), only Model 7 (Kameda and

Ishizaka, 2005) had no substantial change in skill (relative
to the change in skill for the other models) as a function
of station depth (Fig. 10a). Within each of the three depth
ranges, model skill (as a group) was a function of either SST
(Fig. 10b) or surface Chl-a but not both (Fig. 10c). For
stations with depths between 0–250 m, the models had sta-
tistically higher skill (P < 0.0001) at SST> 20◦C than at
SST< 20◦C (Fig. 10b) but had no difference in skill at the
three ranges of surface Chl-a (Fig. 10c). For depths between
250–750 m, model skill was highest at SST> 20◦C, interme-
diate at SST< 10◦C, and lowest at SST between 10–20◦C
(P < 0.0001; Fig. 10b) but no difference in model skill at the
three ranges of surface Chl-a (Fig. 10c). For depths greater
than 750 m, there was no difference in model skill at the three
ranges of SST (Fig. 10b) although model skill was highest
(P < 0.005) at surface Chl-a concentrations<0.5 mg m−3

and>1.0 mg m−3 (Fig. 10c). Although these statistical com-
parisons (ANOVA) were based on groups of models, a few
individual models did not have similar statistics. For exam-
ple, within the 250–750 m depth range, Models 2 (Howard
and Yoder, 1997) and 21 (Ondrusek et al., 2001) had a wide
range of skill at the three surface Chl-a ranges whereas all of
the models as a group did not (Fig. 10c).

4 Discussion

4.1 Region-specific model performance

The average skill of the ocean color models assessed in this
study varied substantially from region to region. Although
the sample size of in situ NPP measurements and number of
ocean color models tested were much higher than in the pre-
vious multi-regional PPARR study (Campbell et al., 2002),
our results were similar in that model skill was a strong func-
tion of region. Although we cannot compare results in most
cases because of sample size differences, the NABE NPP
measurements compared in this study were identical to those
used in Campbell et al. (2002) and thus in this case we can
compare ocean color model skill between the two studies.
The average RMSD among 12 ocean color models at NABE
from Campbell et al. (2002) was 0.31 whereas the average
RMSD from our study was 0.14. Our results suggest that the
increase in skill is due to either or both: (1) improvements
to particular algorithms that were used here and in Campbell
et al. (2002); (2) the higher sample size of better-performing
models since the Campbell et al. (2002) study, at least in the
NABE region where ocean color model skill increased by
nearly 50%.

Ocean color models were most challenged in the Black
and Mediterranean Seas; these two regions also had the
largest proportion of station depths that were less than 250 m
(Black Sea 44%; Mediterranean Sea 36%) where average
model skill was lowest. These results suggest that the shal-
low depths of the Black and Mediterranean Seas resulted in
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the poor skill of ocean color models, especially given the
high sensitivity of model-data misfit to station depth (see
Sect. 4.4).

There was no difference in mean RMSD between the
NABE and APFZ, the two regions where models had the
highest skill. These regions shared multiple characteristics
that may have led to the high skill of the models: they were
among the deepest stations in the study, mean NPP was be-
tween 900–1000 mg C m−2 day−1, and most importantly the
NPP measurements were obtained over one month of a single
year that sampled the spring phytoplankton bloom, and were
thus characterized by low variability. If a longer temporal
coverage of the NABE and APFZ were available, the sea-
sonal variability of NPP would have been stronger, possibly
further challenging the models to estimate NPP. The NABE
and APFZ had the lowest observed variability in NPP (±24%

standard deviation of the mean) followed by the Arabian Sea
and HOT (±33%). The Arabian Sea and HOT regions fol-
lowed the NABE and APFZ in the hierarchy of model skill
thus one might suspect that model skill is driven by the level
of NPP variability in the region. However, we found this not
to be the case among the remaining regions (BATS, NEA,
Ross Sea, and WAP) where models performed equally and
NPP variability was not consistent. There may be a thresh-
old of NPP variability (<35%) that affects model skill, how-
ever, the four regions where models had the highest skill were
also among the deepest stations. Therefore, the high perfor-
mance of the models at the NABE, APFZ, Arabian Sea, and
HOT may be driven by a combination of low NPP variability
(<35%), deep station depth (>2000 m), and moderate NPP
(900–1000 mg C m−2 day−1).
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Fig. 9. Average RMSD for all 21 models at each depth range. Green
error bars are 2× standard error. Red bars represent the maximum
reduction in RMSD when the uncertainty in both the input variables
and in situ NPP measurements are considered.

Of the eight regions investigated by Campbell et
al. (2002), ocean color models had the lowest skill in those
characterized by High-Nitrate Low-Chlorophyll (HNLC) re-
gions, i.e. the equatorial Pacific and the Southern Ocean. In
their comparison of globally modeled NPP using satellite-
derived input variables, Carr et al. (2006) found that modeled
NPP significantly diverged in HNLC regions.

Using the results from the present study along with a re-
cent PPARR study that compared ocean color model NPP es-
timates to in situ data in the tropical Pacific where 60% of the
stations were in HNLC waters (Friedrichs et al., 2009), we
can further assess model estimates in HNLC regions. Mean
RMSD of 21 ocean color models tested in the tropical Pa-
cific was 0.29 (Friedrichs et al., 2009), which is similar in
skill to the Arabian Sea (0.22) and HOT (0.26) where the 21
models tested here performed relatively well (skill was only
higher in the NABE and APFZ regions). The average RMSD
from the three Southern Ocean regions tested here (Ross Sea,
WAP, and APFZ) was 0.28. Comparing these regions to the
average RMSD of the other four regions in this study (BATS,
NEA, the Black Sea, and Mediterranean Sea= 0.38), ocean
color models performed better in HNLC regions such as the
Southern Ocean and tropical Pacific. Therefore, it appears
that the set of ocean color model algorithms tested here and
in Friedrichs et al. (2009) may represent an improvement
over those used in Campbell et al. (2002), specifically in that
the NPP model estimates in HNLC regions are performing
just as well if not better than in non-HNLC regions.

Contrary to expectations, the ocean color models tested
here were not particularly challenged in extreme conditions
of Chl-a and SST. The three Southern Ocean regions had an
average SST of 1◦C and a wide range values of Chl-a yet
the models had higher skill there than in regions with much
warmer SST and average Chl-a concentrations. Our results
show agreement with Carr et al. (2006) such that the rela-
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Fig. 10. Model skill (RMSD) for each model at(a) three depth
ranges,(b) three SST ranges at each depth range, and(c) three sur-
face Chl-a ranges at each depth range. The station sample size (N)

for each depth range and SST/surface Chl-a range is also listed.

tionship between SST and ocean color model-data misfit is a
function of SST range. At SST less than 10◦C, model-data
misfit increases with increasing SST while at SST greater
than 10◦C, misfit decreases with increasing SST (Fig. 8).

Carr et al. (2006) showed that model estimates of
NPP diverged the most in the Southern Ocean, at SST
<10◦C, and at Chl-a concentrations above 1 mg m−3.
Our results were similar such that the standard devia-
tions among the 21 ocean color model estimates tested
here were significantly higher (P < 0.0001) in areas
with SST <10◦C (±684 mg C m−2 day−1) versus SST
>10◦C (±554 mg C m−2 day−1), Chl-a > 1 mg m−3

(±818 mg C m−2 day−1) versus Chl-a < 1 mg m−3

(±315 mg C m−2 day−1), and in the Southern Ocean
(±692 mg C m−2 day−1) versus areas outside the Southern
Ocean (±548 mg C m−2 day−1). However, if we consider
individual regions, the highest divergence (P < 0.0001)
in model estimates of NPP was in the Mediterranean Sea
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(±1021 mg C m−2 day−1). Thus in the Mediterranean Sea,
ocean color models are not only highly challenged in terms
of model skill, but also produce the greatest divergence
in NPP estimates. It is important to note that model
divergence is not always associated with low model skill
in terms of model-data misfit or RMSD. For example,
RMSD among the 21 models was exactly the same between
waters with Chl-a concentrations less than 1 mg m−3 (mean
RMSD= 0.34) and those above this concentration (mean
RMSD= 0.34).

4.2 Model-type performance across all regions

Some of the models tested here were originally developed
and tuned for specific regions included in our analysis, and
this may explain their higher performance in those regions.
Surprisingly, even though certain models performed signifi-
cantly better than others in specific regions, the ocean color
models generally performed equally well in terms of their
average model skill across all ten regions. The simplest em-
pirical relationship performed no worse than the most com-
plex depth and wavelength resolved models. These results
are consistent with Friedrichs et al. (2009) who also reported
no effect of ocean color model complexity on model skill.

The most striking result among the models was their per-
formance in the Southern Ocean where the extremely low
temperatures should have not only affected model skill, but
also challenged models that did not use SST as an input vari-
able. Surprisingly, there was no statistically significant dif-
ference in model skill in the three Southern Ocean regions
between models that used SST (17 models; mean RMSD
= 0.27 (±0.09)) and those that did not (4 models; mean
RMSD = 0.31 (±0.14)). Given the wide SST range of the
regions tested here, one may expect models that used SST
to outperform those that did not due to the temperature-
dependent maximum carbon fixation rate of phytoplankton
(Eppley, 1972). Across all regions, models that used SST
performed no differently (mean RMSD= 0.30 (±0.12)) than
those that did not (mean RMSD= 0.30 (±0.13)); however,
model-data misfit among models that did not use SST had a
correlation to station SST of−0.58 compared to−0.26 for
models that used SST. Therefore, although model-data misfit
was correlated to SST for models that did not use SST, it was
not high enough to cause a significant difference in skill from
the models that used SST.

4.3 Uncertainties in input variables and NPP
measurements

When uncertainties in both the input variables and NPP mea-
surements were considered, RMSD was reduced by 72%.
The largest influence among the input variables was from
Chl-a (35% reduction in RMSD). As Friedrichs et al. (2009)
found in the tropical Pacific, uncertainties in SST, PAR, and
MLD had a relatively small influence on RMSD. The region-

specific uncertainty values used for Chl-a were based on dif-
ferences between in situ data and SeaWiFS data to assess
the sensitivity of model estimates of NPP to error in satel-
lite data. This was an essential analysis given that ocean
color models were designed to use satellite-derived input
data in order to estimate NPP over large areas and long
time-scales; however, we perturbed in situ input data, not
satellite-derived data thus the reduction in RMSD from un-
certainty in Chl-a would likely not have been as high as 35%
if we had based the perturbations on error in the in situ mea-
surements. Uncertainties in Chl-a for the PPARR tropical
Pacific study based their perturbations on in situ measure-
ment error such that the uncertainties ranged from±50% for
the minimum concentration (±0.01 mg m−3) and±15% for
the maximum concentration (±0.11 mg m−3) resulting in a
24% increase in ocean color model skill (Friedrichs et al.,
2009). Uncertainty in Chl-a for our study averaged±60%
(±0.54 mg m−3) across all regions thus explaining why the
ocean color models here had a greater sensitivity to Chl-a un-
certainty. Our goal was to describe the sensitivity of RMSD
to differences between in situ and satellite-derived data given
that models typically use the latter.

If our estimates of14C measurement uncertainties are cor-
rect, then a 36% reduction in RMSD is substantial enough
to consider these errors when estimating NPP. Assuming that
the change in RMSD based on Chl-a uncertainties is closer
to that found in Friedrichs et al. (2009) (24%) as opposed
to our values (35%), then our estimate of RMSD difference
when uncertainties in both the input variables and NPP mea-
surements are considered would be lower than 72% but not
likely less than 50%. Therefore, our study confirms the im-
portance of both input variable (primarily Chl-a) and NPP
uncertainty when using ocean color models to estimate NPP.
However, in situ NPP data is not always available for one to
consider the error associated with ocean color NPP estimates,
therefore, the input variable uncertainty may be a more prac-
tical approach to addressing the expected range of estimated
NPP. We recommend that ocean color NPP estimates, that
are either published or made available online, are accompa-
nied with the magnitude of uncertainty in the estimates due
to uncertainty in input variables such as SeaWiFS Chl-a and
MLD.

4.4 Water column depth and model performance

One of the clearest patterns emanating from this study was
the relationship between station depth and average model
skill: for stations with water column depths greater than
4000 m, ocean color models typically underestimated NPP
whereas they overestimated NPP at depths shallower than
750 m. This positive NPP bias was even greater for depths
shallower than 250 m. Interestingly, the relationship be-
tween model skill and SST/surface Chl-a was also a func-
tion of depth. The models performed significantly better at
SST>20◦C at depths less than 750 m whereas SST made
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no difference to model skill at stations deeper than 750 m.
Surface Chl-a concentration only affected model skill at the
stations deeper than 750 m such that skill was highest at
concentrations<0.5 mg m−3 and >1.0 mg m−3. However,
one must note that the sample sizes (N) were not consistent
for each depth range and each SST/surface Chl-a range. The
RMSD statistic is partially based onN and thus the inconsis-
tencies in sample size may have biased our results.

Model skill was significantly lower at the shallow stations
and thus the affect of station depth was by far the greatest
variable driving model skill. The reason for this relationship
is not completely clear. If satellite-derived chlorophyll con-
centrations were used in the algorithms, we would have ex-
pected the algorithms to perform better in deep Case-1 waters
(defined as waters where Chl-a is considered the main driver
of optical properties, Morel and Prieur, 1977) because the
standard satellite chlorophyll algorithms are known to have
difficulty in shallow Case-2 waters where other optically sig-
nificant constituents dominate. Here, however, we used in
situ chlorophyll concentrations, which are not likely to be
associated with greater errors in shallower waters. More-
over, surface Chl-a concentration did not affect model skill
at depths less than 250 m where Case-2 waters exist.

Most of the models tested here were developed based on
in situ data collected in Case-1 waters, a likely explanation
for their lower skill in Case-2 waters. A possible reason
for the relationship between model bias and water column
depth is that the models were overestimating the euphotic
zone depth in Case-2 waters and underestimating the eu-
photic zone depth in Case-1 waters. The model contributors,
however, did not provide their estimates of euphotic zone
depth thus we presently have no way of confirming this.

In addition to obtaining estimated euphotic zone depth,
another way of possibly resolving this would be to obtain
depth-specific output from the depth-resolved models. Our
study only required contributors to provide us with integrated
NPP. We suggest that future NPP model assessment studies
require model contributors to provide detailed output that in-
cludes euphotic zone depth estimations in addition to depth-
specific NPP estimates from the depth resolved ocean color
models. Results from such studies may help explain the re-
lationship between model skill/bias and water column depth.

5 Summary and conclusions

The ocean color models tested in this study were not lim-
ited by their algorithm complexity in their ability to estimate
NPP across all regions. However, model improvement is re-
quired to eliminate the poor performance of the ocean color
models in shallow depths or possibly Case-2 waters that are
close to coastlines. Additionally, ocean color chlorophyll-
a algorithms are challenged by Case-2, optically complex
waters (Gordon and Morel, 1983), therefore, using satellite-
derived Chl-a to estimate NPP at coastal areas would likely

further reduce the skill of ocean color models. The reason
for the correlation between station depth and model skill is
unknown: we can only surmise that it is because the algo-
rithms were developed from data in pelagic waters. A more
detailed analysis of ocean color model output is required to
address this, i.e. one that includes model output at specific
depths along with estimations of euphotic zone depth.

Ocean color model performance was highly limited by the
accuracy of input variables. Roughly half of the model-data
misfit could be attributed to uncertainty in the four input vari-
ables, with the largest contributor being uncertainties in Chl-
a. Moreover, another 22% of misfit could be attributed to un-
certainties in the NPP measurements. These results suggest
that ocean color models are capable of accurately estimat-
ing NPP if errors in measurements of input data and NPP are
considered. Therefore, studies that use ocean color models
to estimate NPP should note the degree of error in their es-
timates based on both the input data they use and the region
where NPP is being estimated.

The intent of this study was not to identify the one best
NPP ocean color model even though we clearly illustrated
that no one best model existed for all conditions. The results
provided here can, however, be used to determine which set
of ocean models might be best to use for any given applica-
tion. For example, in shallower regions (<250 m), a modeler
might want to consider using Model 7 (Kameda and Ishizaka,
2005), rather than Model 2 (Howard and Yoder, 1997) or 21
(Ondrusek et al., 2001). In deeper waters, Model 16 (An-
toine and Morel, 1996) might be an excellent choice. Model
3 (Carr, 2002) has much greater skill in warm open ocean re-
gions, than warm shallow regions closer to shore, whereas
Model 5 (Scardi, 2001) has greater skill in warm shallow
regions than warm deep-ocean regions. We hope that our
results (e.g. Fig. 10) can help future investigators make in-
formed selections as to the most appropriate NPP ocean color
model to use for their particular purpose.

Finally, partially in an effort to be consistent with past NPP
comparison efforts, this study assessed model skill based on
RMSD, which illustrates a model’s ability to estimate the
mean and variability of NPP. Another method of assessing
model skill, however, is through Model Efficiency, which de-
termines whether a model can reproduce observations with
skill that is greater than the mean of the observations. When
comparing total RMSD in a variety of regions, those sites
with relatively low variability may perform best, yet in these
regions the Model Efficiency may be low, since the mean of
the observations will produce low RMSD values that are dif-
ficult to “beat”.

Another type of assessment of model skill deals with de-
termining how well models estimate trends in NPP over var-
ious temporal and spatial scales. The only way of determin-
ing this is to compare model estimates of NPP to stations
where in situ measurements are taken year-round over multi-
ple years, unlike the majority of the stations in this study.
A recent study by Saba et al. (2010) assessed both ocean
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color model and biogeochemical circulation model skill at
the BATS and HOT regions where single-station time-series
of NPP data exists. It was found that ocean color models did
not accurately estimate the magnitude of the trends of NPP
over multidecadal time periods, and were even more chal-
lenged over shorter time periods, especially when the models
used satellite-derived Chl-a. Therefore, until longer satellite
ocean color time-series become available, the use of ocean
color models may be more applicable to studies that are in-
terested in estimating the magnitude and variability of NPP
as opposed to the long-term trends.

Supplementary material related to this
article is available online at:
http://www.biogeosciences.net/8/489/2011/
bg-8-489-2011-supplement.zip.
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