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Abstract. Changes in marine phytoplankton communities at
short-time scales have rarely been examined. As a part of
the DYNAPROC 2 cruise (14 September–17 October 2004),
conducted in the NW Mediterranean Sea, we daily sampled
and determined taxonomic composition and abundance of
the microphytoplankton and the dominant microzooplank-
tonic groups from both net and bottle sampling, during 4 cy-
cles of 5 days. Hydrological conditions were characterised
by the dominance of a stratified water column and nutrient-
depleted conditions. However the stratification index re-
vealed a destabilization of the water column from the be-
ginning of the second cycle, related to a wind stress event
accompanied with coastal water intrusion. This conducted to
an increase of taxonomic richness and a general decrease of
evenness, depicting the dominance of species with the best
fitness. We also emphasised on the great interest of taxo-
nomic studies, as able to provide valuable information on
biogeochemical-important groups of species, potential wa-
ter masses indicators and trophic aspects of the community
that are ignored or largely underestimated with other kind of
phytoplankton studies, such as pigment analysis.

Correspondence to:R. Leḿee
(lemee@obs-vlfr.fr)

1 Introduction

Marine phytoplankton constitutes the base of the pelagic
food-web and is responsible for about half of the net annual
primary production on Earth (Field et al., 1998; Falkowski
et al., 2004). Current studies on monitoring marine phyto-
plankton are mainly based on satellite-derived values from
remote sensing (Kyewalyanga et al., 2007) or deal with the
pigment diversity (Marty et al., 2002), rather than examining
changes in diversity or species composition. This is surpris-
ing since it is generally believed that ecosystems functioning,
stability and efficiency are linked to diversity (e.g., Loreau
et al., 2001). Moreover, the few existing studies on marine
phytoplankton communities assessed seasonal to pluriannual
periods (Venrick et al., 1997; Caroppo et al., 1999; Gómez
and Gorsky, 2003). Short-time scale studies of the phyto-
plankton diversity dynamics (i.e. day to day or more often)
have concerned lakes (Padisák et al., 1988; Padisák, 1993;
Pinckney et al., 1998) or were based on pigment analyses
or automated submerged flow cytometer in seawater systems
(Bidigare and Ondrusek, 1996; Thyssen et al., 2008). Short
term dynamics of marine phytoplankton abundance and di-
versity are then poorly documented even if phytoplankton
could be considered as a good indicator for quick environ-
mental changes (see review in Thyssen et al., 2008).

In order to study the impact of natural disturbances (as
wind events and changes in the mixing depth) on marine mi-
crophytoplankton abundance and taxonomic diversity as well
as related dynamics of main microzooplanktonic groups, we
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analysed samples taken during 4 periods of 5 days from
the cruise DYNAPROC 2 (DYNAmic of rapid PROCesses
in water column that control vertical flux of matter) per-
formed in the NW Mediterranean from September to Novem-
ber 2004. This expected transition period from summertime
oligotrophic stratified system to autumnal system was con-
sidered favourable and pertinent because of higher frequen-
cies of wind events. It was completing the DYNAPROC 1
cruise conducted in May 1995 in order to document the ef-
fects of episodic wind events on the dynamics of the ecosys-
tem during a post-bloom period, characterised by the transi-
tion from a mesotrophic to an oligotrophic system (Andersen
and Prieur, 2000). We also analyzed the intake of taxonom-
ical studies in biogeochemical cycle’s studies, mass indica-
tors or trophic aspects. This was feasible since DYNAPROC
2 was a multidisciplinary cruise that documented many hy-
drological parameters and considerable stocks and rates mea-
surements (Andersen et al., 2009).

2 Material and method

2.1 Cruise track

The DYNAPROC 2 cruise was conducted in 2004 from
14 September to 17 October (Julian days 261 to 292) on
board R/VThalassa,at the vicinity of the NW Mediterranean
French JGOFS Station DYFAMED (43◦25′ N, 7◦52′ E), ap-
proximately 45 km South of Cape Ferrat, France, where max-
imal depth is 2350 m. It was divided into two legs (here after
leg 1 and leg 2) that consisted of two cycles of five days each
(cycles 1 to 4). In order to describe the hydrological environ-
ment, a grid of 16 stations, centred on a fixed station (“central
point”), was occupied at least four times during the cruise.
All net and water sampling were done near the central point
during the whole cruise. Many hydrological parameters are
then available since the whole project consisted in evaluat-
ing the DYNAmic of rapid PROCesses in water column that
control vertical flux of matter. In order to quantify the sta-
bility of the water column, an index of the intensity of the
stratification was calculated as suggested by Bowden (1983)
as:8 = g/H ∫

0
−H (ρm–ρ) zdz, where8 is an index of poten-

tial energy anomaly (J m−3), H is the water column height
(m), ρ is the density at any depthz, andρm is the mean den-
sity of the water column. This index estimates the deficit in
potential energy due to a density gradient. A highly mixed
water column will present small values of8. Water density
was derived from temperature-salinity measurements. Inte-
grated values of8 were obtained for the 0–90 m layer for all
stations. More explanations on cruise development and hy-
drological/meteorological evolutions could be found in An-
dersen et al. (2009).

2.2 Field sampling

Two complementary sampling methods were used to sample
the main microplankton groups, in order to obtain the most
exhaustive and accurate description of the species possible,
with emphasis put on phytoplanktonic groups. Hydrologi-
cal bottle sampling allowed collecting small-sized and abun-
dant microphytoplanktonic species. This method was also
appropriate to preserve delicate or colonial organisms. Net
sampling was the most appropriate to efficiently collect less
abundant species (which were often the biggest) since the net
filtered a great volume of seawater. Dominant groups of the
microzooplankton were also enumerated.

3 Hydrological bottle sampling

Samples were collected every 10 m from 90 m to the sur-
face with hydrological NISKIN bottles coupled with a
Seabird CTD (Conductivity-Temperature-Depth) instrument
that recorded continuously hydrological parameters (temper-
ature, salinity, density and in situ fluorescence). Aliquots
of 250 ml of seawater from each depth, fixed with acid
lugol’s solution (final concentration, 2% v/v; Throndsen,
1978) were stored in dark cold room (4◦C) until microscopic
analysis. Samples were collected every day of each cycle
(∼12.00 a.m., ITU), yielding a total of 200 samples. Aliquots
were analysed using the Utermöhl method with sedimenta-
tion of 100 ml seawater in settling chambers. Counts and
observations were done with an inverted light microscope
(Zeiss©Axiovert 35), at 200x and 400x magnification. For
each sample, a minimum of 250 living cells was counted.
Instead of analysing strictly microphytoplankton species,
which are formally defined as ranging from 20 to 200µm, we
preferred counting every species belonging to the 3 groups
typical of the microphytoplankton: diatoms, dinoflagellates
and silicoflagellates. For instance, some small species of
the genusGymnodinium, with a mean size lower than 10µm,
were counted. Coccolithophorids were not counted, since
acid lugol’s solution alters calcified structures. Enumeration
of microzooplanktonic groups (tintinnids and naked ciliates)
was also carried out. Naked ciliates were separated in 3 size
classes (equivalent diameter<30µm, between 30 and 50µm,
>50µm).

4 Net sampling

In addition to the hydrological bottle sampling, we also made
daily net sampling during each cycle using a phytoplankton
net (53µm mesh size, 54 cm diameter and 280 cm length). A
vertical haul was performed from 90 m depth to the surface at
the same time of the day (∼10.00 a.m., ITU) to collect large
microplankton. The volume filtered by the net was calculated
as equivalent to the surface at the opening of the net multi-
plied by the height of sampled water column. Due to bad
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weather, there were no net samples for Julian days 285 and
289. The samples were split once or twice using a Motoda
splitter (Motoda, 1959) and preserved with acid lugol’s solu-
tion (Throndsen, 1978) to 2% final concentration. The cells
were enumerated in 1mL calibrated slides using a light mi-
croscope (Alphaphot 2-YS2, Nikon Instruments, Badhoeve-
dorp, Netherlands). More than 250 living cells were counted
per samples. Dinoflagellates were identified at the genus
level. We focussed more particularly on genusCeratium
Schrank since it is specious in the Mediterranean and often
dominates among large armoured dinoflagellates, thus con-
stituting a good model for biodiversity studies (Tunin-Ley et
al., 2007). Determination of taxa belonging to genusCer-
atium was carried out at intraspecific level. Although they
do not belong to phytoplankton, the total radiolarians were
also enumerated in net samples, without detailed taxonomic
identification, because they exhibited significant abundances.

4.1 Estimation of taxonomic diversity

4.1.1 Taxonomic identification

The species identification of cells within the 3 selected
groups was based on the following references: Trégouboff
and Rose (1957a, b), Massuti and Margalef (1960), Dodge
(1982), Sournia (1986), Ricard (1987), Balech (1988), Hasle
and Syversten (1996), Steidinger and Tangen (1997) and
Horner (2002). In net samples,Ceratiumcells were iden-
tified at the infraspecific level, using the monograph and the
parasystematic nomenclature published by Sournia (1967).
Recent molecular and morphological analysis assigned all
marineCeratiumspecies toNeoceratiumgen. nov. (Ǵomez
et al., 2010). This new genus name was not used in this
work since this naming is still in discussion among special-
ists (Calado and Huisman, 2010). Moreover, it is rarely used
by scientists working on ecology or diversity of microphy-
toplankton. Some limits with regard to identification con-
strained our results. Thus, for small-sized cells, resolution
of light microscopy and fixation with acid lugol made some
determinations difficult. For instance, some Gymnodiniales
(dinoflagellates) determination was completed to the genus
level. However, different species were distinguished via size,
form and ornamentation. In the same way, species name
were not ascribed to some Pseudo-Nitzschia, which were dis-
criminated as several species belonging toPseudo-nitzchia
delicatissima complexor Pseudo-nitzchia seriata complex
(Hasle and Syversten, 1996).

4.1.2 Diversity indexes

Biodiversity parameters were calculated for the main plank-
tonic groups in bottle samples on one hand, and in net sam-
ples on the other hand. The taxonomic richnessS corre-
sponds to the number of taxa in each group. The diversity
was calculated using Shannon’s index H′ = −

∑
pi log2 pi,

where pi = ni/N, ni = number of individuals of one taxon and
N = total number of individuals. Evenness was estimated
as Pielou’s index J′ = H′/log2 S. The net samples were di-
vided into three replicates before counting. This allowed to
apply the nonparametric jackknife 1 method (Manly, 1991),
which gives estimations of the biodiversity parameters after
correcting the bias induced by the sampling effort and the
sampling size (Carpentier and Lepêtre, 1999). For richness,
jackknife 1 = SO+(r1(n-1)/n), where SO is the observed tax-
onomic richness, n the number of replicates and r1 the num-
ber of taxa occurring in one single replicate. For diversity
and evenness, jackknife 1 =68i/n, with 8i = nSt-(n-1)Sti-1,
where St is the estimation of the indicator for the n replicates
and Sti-1 the estimation of the indicator for the n-1 repli-
cates. These estimations were calculated on a minimal basis
of 100 counted cells per replicate, which represents a mini-
mal total of 300 cells per sample. For diversity calculations,
Magurran (2004) recommended to use abundances ranging
from 200 to 500 cells per samples. The jackknife 1 method
was not applied on bottle samples, for which no replicates
were available. In order to identify the important genus or
taxa within dinoflagellates and within genusCeratiumfrom
net samples, a dominance index was also calculated asδ =
100(n1+n2)/N, where n1 and n2 are the abundances of the
two most important taxa and N the total cell concentration
(Hulburt, 1963).

4.2 Data analysis

The variability of the main planktonic groups was analysed
using a multivariate analysis producing a synthesis of co-
occurring factors. The Correspondence Analysis (CA) aims
to describe the total inertia of a multidimensional set of data
in a sample of fewer dimensions (or axes) that is the best
summary of the information contained in the data (Benzecri,
1973). The CA is applied to contingency tables and uses a
Chi square metric. The different calculations of this method
are detailed in Legendre and Legendre (2000). This ordina-
tion method was applied to our matrix describing the plank-
tonic groups in bottle samples (samples in rows and plank-
tonic groups in columns), in order to underline the kinetics
of plankton composition over time. The composite mean
depths’ and the composite mean day’s coordinates, calcu-
lated as the average of the samples of the same depth, or the
average of the samples of the same day, were used as illus-
trative qualitative variables.

Spearman’s rank coefficients (Siegel and Castellan 1988)
were used in order to explore the correlations between plank-
tonic groups diversity and the stratification index, as estima-
tion of a disturbance.
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5 Results

5.1 Physical environment

5.1.1 Meteorological data

Wind regime was characterised by the alternation of strong
wind events and calm periods. The leg 1 was accompanied
with two significant wind events (Fig. 1a), one at the begin-
ning of cycle 1 (day 261 to day 262), which lasted 48 h, and
a latter one during cycle 2 (day 269) with a highest intensity
yet shorter in time. Both corresponded to NE winds, whereas
winds are usually blowing from W or SW in the area at this
period (Raybaud et al., 2008). By contrast, the end of leg 2
was dominated by persistent and strong NE and SW winds
resulting in a decrease of stratification (Fig. 4a). In addition,
an episode with significant precipitations occurred just be-
fore the campaign started.

5.1.2 Hydrological and biological parameters (CTD
acquisition)

The hydrological structure along the main part of the cruise
revealed a typical late summer situation with a stratified wa-
ter column, whereas a transition from summer period to au-
tumn structure was expected (i.e. destratification). Thus, the
thermocline ranged from 20 to 40 m depth (Fig. 1b), with sur-
face temperatures above 20◦C. Salinity dynamics were char-
acterised by the intrusion of Low Salinity Water (LSW) with
likely coastal characteristics (< 38.3) during leg 1 (day 265
to day 274) just under the thermocline (Fig. 1c). This phe-
nomenon, detailed by Andersen et al. (2009) and Raybaud et
al. (2008), was also observed to a lesser degree during cycle 4
(day 283 to day 286). Each time, this resulted in a light shal-
lowing of the thermocline, as a consequence of the dilatation
of the less dense water mass. Along with a deepening of the
temperature and the halocline, the destratification seemed to
be initiated at the end of the cruise. The significant decrease
of the stratification index observed at this period (Fig. 4a) de-
picted the disturbance that occurred in response to the regime
of persistent and strong wind at this time. At the begin-
ning of cycle 1, the fluorescence measurements displayed
a chlorophyll-a peak about 70–80 m depth, followed by an-
other distinctive one about 50 m depth (Fig. 1d). All along
the second part of the cruise, the Deep Chlorophyll Maxi-
mum (DCM) was located just under the thermocline, follow-
ing its shift to a deeper depth. Consequently, the in-vivo flu-
orescence evolution showed up tendency to get deeper at the
end of campaign.

5.2 Abundance and diversity of microplankton

5.2.1 Abundances

Summing over the whole cruise, 151 species of microphy-
toplankton were found in hydrological bottle samples. The
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Fig. 1. Hydrological conditions during DYNAPROC 2 cruise,
(a) Wind strength,(b) Water temperature,(c) Salinity, (d) Relative
fluorescence.

most diverse group was dinoflagellate, with 92 species (32
armoured and 60 unarmoured), followed by 55 species of di-
atoms (35 centrics and 25 pennates). We found only 2 species
of silicoflagellates. Additionally we encounteredLeptocylin-
drus mediterraneuscells (centric diatom), but they were inte-
grated neither in abundance nor in diversity calculation since
they were not alive. Near 58% of taxa were determined to
the species level, 98% to genus level; the rest was composed
of indeterminate armoured dinoflagellates. Maximum abun-
dances for each taxa over the whole cruise period and the
whole water column were indicated in Table 1. The maxi-
mum abundance of total microphytoplankton was often just
under the thermocline and reached more than 40 000 ind l−1

at the beginning of cycle 4 (Fig. 2a). Throughout the study,
diatoms were mostly in the lower depths (Fig. 2b), with abun-
dance ranging from 200 to 800 cell l−1 in surface and from
1000 up to 5000 cell l−1 below the thermocline. Temporally,
two distinct peaks of abundance were observed. The first
one (from 4000 to 5000 cell l−1) occurred at 80 m depth at
the beginning of the first cycle (Julian day 262) and was
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Table 1. List of microphytoplanktonic species encountered in hydrological bottle samples during DYNAPROC 2 cruise, with maximal
abundance recorded in samples in cells per liter.

Species Authorities Max. abundance

Bacillariophyceae
Achnanthessp. a Bory 60
Bacteriastrum delicatulum Cleve 100
Bacteriastrum furcatum Shadbolt 60
Cerataulina dentata Hasle 180
Cerataulina pelagica (Cleve) Hendey 20
Chaetoceros affinis Lauder 60
Chaetoceros decipiens Cleve 60
Chaetoceros didymus Ehrenberg 80
Chaetoceros laciniosus Scḧutt 400
Chaetoceros peruvianus Brightwell 80
Chaetocerossp. a Ehrenberg 40
Chaetocerossp. b Ehrenberg 240
Climacospheniasp. a Ehrenberg 120
Corethronsp. Castracane 3240
Coscinodiscussp. a Ehrenberg 120
Coscinodiscussp. b Ehrenberg 20
Cylindrotheca closterium (Ehrenberg) Reimann & Lewin 180
Dactyliosolen phuketensis (Sundstr̈om) Hasle 600
Entomoneissp. a Ehrenberg 20
Gossleriella tropica Sḧutt 40
Guinardia striata (Stolterfoth) Hasle 200
Haslea wawrikae (Husedt) Simonsen 140
Hemiaulus hauckii Grunow ex Van Heurck 10
Hemidiscus cuneiformis Wallich 20
Lauderia annulata Cleve 150
Leptocylindrus danicus Cleve 140
Leptocylindrus minimus Gran 240
Lyrella sp. a Karajeva 20
Naviculasp. a Bory 50
Naviculasp. b Bory 40
Naviculasp. c Bory 40
Naviculasp. d Bory 2800
Nitzschia bicapitata Cleve 670
Planktonielle sol (Wallich) Scḧutt 30
Pleurosigmasp. a Smith 20
Proboscia alata (Brightwell) Sundstr̈om 160
Pseudo-nitzschiasp. a (Nitzschia delicatissima complex) Peragallo 760
Pseudo-nitzschiasp. b (Nitzschia delicatissima complex) Peragallo 1300
Pseudo-nitzschiasp. c (Nitzschia seriata complex) Peragallo 800
Pseudo-nitzschiasp. d (Nitzschia seriata complex) Peragallo 900
Pseudo-nitzschiasp. e (Nitzschia seriata complex) Peragallo 360
Pseudo-nitzschiasp. f (Nitzschia seriata complex) Peragallo 380
Pseudo-nitzschiasp. g (Nitzschia seriata complex) Peragallo 100
Rhizosolenia decipiens Sundstr̈om 60
Rhizosolenia hebetata f. semispina (Hensen) Gran 40
Synedra pulchella Kützing 160
Synedrasp. a Ehrenberg 20
Thalassionema frauenfeldii (Grunow) Hallegraeff 280
Thalassionema nitzschioides (Grunow) Mereschkowsky 580
Thalassionemasp. a Grunow ex Mereschkowsky 740
Thalassiosirasp. a Cleve 260
Thalassiosirasp. b Cleve 240
Thalassiosirasp. c Cleve 380
Thalassiosirasp. d Cleve 1200
Toxarium undulatum Bailey 20
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Table 1. Continued.

Dinophyceae
Armoured species
Alexandriumsp. a Halim 1200
Alexandriumsp. b Halim 800
Amylax triachanta (Jörgensen) Sournia 20
Ceratium declinatum (Karsten) J̈orgensen 20
Ceratium furca (Ehrenberg) Claparède & Lachmann 20
Ceratium fusus (Ehrenberg) Dujardin 20
Ceratium hexacanthum Gourret 20
Ceratium horridum (Cleve) Gran 20
Ceratium limulus Gourret 10
Ceratium lineatum (Ehrenberg) Cleve 20
Ceratium pentagonum Gourret 50
Ceratium platycorne Daday 20
Ceratocoryssp. a Stein 40
Dinophysis acuminata Clarap̀ede & Lachmann 20
Dinophysis acuta Ehrenberg 20
Dinophysis dens Pavillard 10
Dinophysis hastata Stein 20
Dinophysis pulchella (Lebour) Balech 60
Dinophysis punctata Jörgensen 40
Dinophysis sphaerica Stein 40
Diplopsalissp. a Bergh 2400
Gonyaulax digitale (Pouchet) Kofoid 20
Gonyaulax polygramma Stein 20
Gonyaulaxsp. a Diesing 20
Gonyaulax spinifera (Clapar̀ede & Lachmann) Diesing 40
Heterocapsa rotundata (Lohmann) Hansen 1800
Heterodinium leiorhynchum (Murray & Whitting) Kofoid 80
Heterodiniumsp. a Kofoid 20
Heterodiniumsp. b Kofoid 20
Heterodiniumsp. b Kofoid 20
Katodinium glaucum (Lebour) Loeblich III 4400
Lingulodinium polyedrum (Stein) Dodge 40
Obleasp. a Balech ex Loeblich & Loeblich 70
Oxytoxum constrictum (Stein) B̈utschli 20
Oxytoxum laticeps Schiller 40
Oxytoxum longiceps Schiller 40
Oxytoxum milneri Murray & Whitting 20
Oxytoxum reticulatum (Stein) Scḧutt 40
Oxytoxum scolopax Stein 40
Oxytoxum tesselatum Stein 50
Pavillardiniumsp. a De Toni 40
Phalacroma rapa Jorgensen 10
Phalacroma rotundatum (Clapar̀ede & Lachmann) Kofoid & Michener 60
Phalacromasp. a Stein 20
Podolampas palmipes Stein 40
Podolampas spinifera Okamura 60
Prorocentrum gracile Scḧutt 510
Prorocentrum scutellum Schr̈oder 20
Prorocentrum triestinum Schiller 300
Protoperidinium cassum Balech (Balech) 300
Protoperidinium divergens (Ehrenberg) Balech 20
Protoperidinium ovatum Pouchet 20
Protoperidinium pyriforme (Paulsen) Balech 20
Protoperidiniumsp. a Bergh 800
Schuettiella mitra (Scḧutt) Balech 460
Scrippsiellasp. a (Stein) Loeblich III 12800
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Table 1. Continued.

Spiraulax kofoidii Graham 40
Tryblionella compressa (Bailey) Poulin 280
Undeterminated armoured Dinoflagellate sp. a 40
Undeterminated armoured Dinoflagellate sp. b 20
Undeterminated armoured Dinoflagellate sp. c 20
Naked species
Amphidiniumsp. a Clapar̀ede & Lachmann 4000
Amphidiniumsp. b Clapar̀ede & Lachmann 4020
Asterodinium gracile Sournia 20
Cochlodiniumsp. a Scḧutt 360
Dissodinium pseudolunula Swift ex Elbr̈achter & Drebes 20
Gymnodiniumsp. a Stein 20000
Gymnodiniumsp. b Stein 800
Gymnodiniumsp. c Stein 5600
Gymnodiniumsp. d Stein 8000
Gymnodiniumsp. e Stein 160
Gymnodiniumsp. f Stein 2400
Gymnodiniumsp. g Stein 20
Gymnodiniumsp. h Stein 60
Gymnodiniumsp. i Stein 2400
Gymnodiniumsp. j Stein 16800
Gymnodiniumsp. k Stein 20
Gymnodiniumsp. l Stein 60
Gyrodinium falcatum Kofoid & Swezy 20
Gyrodiniumsp. a Kofoid & Swezy 7200
Gyrodiniumsp. b Kofoid & Swezy 8800
Gyrodiniumsp. c Kofoid & Swezy 2800
Gyrodiniumsp. d Kofoid & Swezy 3500
Gyrodiniumsp. e Kofoid & Swezy 1340
Gyrodiniumsp. f Kofoid & Swezy 1400
Gyrodiniumsp. g Kofoid & Swezy 2000
Gyrodiniumsp. h Kofoid & Swezy 1200
Gyrodiniumsp. i Kofoid & Swezy 20
Kofoidinium velelloides Pavillard 100
Petalodinium porcelio Cachon & Cachon 60
Polykrikos kofoidii Chatton 80
Pronoctiluca pelagica Fabre-Domergue 160
Scaphodinium mirabile Margalef 20
Torodinium teredo (Pouchet) Kofoid & Swezy 140

Dictyochophyceae
Dictyocha fibula Ehrenberg 420
Dictyocha speculum Ehrenberg 750

mainly the centric speciesCorethronsp. probably in senes-
cent phase since intracellular part was sometimes affected.
The second peak occurred at 50 m depth during cycle 3 (Ju-
lian day 278) and was mainly composed of pennate species
represented by the complexesPseudo-nitzchia delicatissima
spp. andPseudo-nitzchia seriataspp. In samples of cycles
1 and 2, we also found the centric speciesLeptocylindrus
mediterraneusand its epiphyte (Fig. 3a), the heterotrophic
flagellateRhizomonas setigera.

In contrast to the diatoms, dinoflagellates showed a pref-
erence for the upper layers during the whole cruise (Fig. 2c).
The group of naked dinoflagellates, mainly represented by
small-sized speciesGyrodiniumspp. andGymnodiniumspp.,
dominated in both legs. Abundance increased from 5000 to
20 000 ind l−1 during leg 1 to 10 000 to 35 000 ind l−1 during
cyles 3 and 4. The observed armoured speciesScrippsiella
sp. was probably associated with the intrusions of less saline
water (Fig. 3b). Silicoflagellates (Dictyochophyceae) abun-
dance was lowest in comparison with the two other groups
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Table 2. List of dinoflagellates genera andCeratiumtaxa encountered in net samples during DYNAPROC 2 cruise, with maximal abundance
recorded in samples in cells per liter.

Dinoflagellates Max. abundance GenusCeratium Max. abundance

Acanthogonyaulax(Kofoid) Graham 6 C. arietinumCleve var.arietinum 10
AmphidiniopsisWoloszynska 3 C. arietinumvar. gracilentum(Jørgensen) Sournia 3
Amphisolenia Stein 8 C. arietinumCleve“arietinum-gracilentum” 71
CentrodiniumKofoid 11 C. azoricumCleve 7
CeratiumSchrank 3734 C. candelabrum(Ehrenberg) Stein var.candelabrum 61
CeratocorysStein 105 C. candelabrumvar. depressum(Pouchet) Jørgensen 70
CorythodiniumLoeblich Jr. & Loeblich III 134 C. candelabrum(Ehrenberg) Stein“candelabrum-depressum” 30
DinophysisEhrenberg 237 C. candelabrum(Ehrenberg) Stein“candelabrum-depressum” 24
DissodiniumKlebs in Pascher 36 C. candelabrum(Ehrenberg) Stein“depressum-candelabrum” 35
GoniodomaStein 1420 C. carrienseGourret var.carriense 16
GonyaulaxDiesing 465 C. carriensevar. volans(Cleve) Jørgensen 18
HeterocapsaStein 26 C. carrienseGourret“carriense-volans” 3
HeterodiniumKofoid 30 C. conciliansJørgensen 237
KofoidiniumPavillard 81 C. contrarium(Gourret) Pavillard 71
MicracanthodiniumDeflandre 3 C. declinatumf. brachiatumJørgensen 145
NoctilucaSuriray 21 C. declinatumf. normaleJørgensen 145
OrnithocercusStein 16 C. declinatumvar. majusJørgensen 30
OxytoxumStein 60 C. euarcuatumJørgensen 26
PalaeophalacromaSchiller 7 C. extensum(Gourret) Cleve 65
PhalacromaStein 346 C. falcatiformeJørgensen 35
PodolampasStein 289 C. falcatum(Kofoid) Jørgensen 16
ProrocentrumEhrenberg 17 C. furcavar. eugrammum(Ehrenberg) Schiller 59
ProtoperidiniumBergh 342 C. furca(Ehrenberg) Clarap̀ede & Lachmann“furca-eugrammum” 4
PyrophacusStein 42 C. furca(Ehrenberg) Clarap̀ede & Lachmann“furca-eugrammum” 59
PyrocystisMurray ex Haeckel 29 C. furca(Ehrenberg) Clarap̀ede & Lachmann“eugrammum-furca” 14
SpatulodiniumCachon & Cachon 53 C. fusus(Ehrenberg) Dujardin 149
SpiraulaxKofoid 79 C. gibberumvar. dispar (Pouchet) Sournia 19

C. gravidumGourret 7
No genera: 27 C. hexacanthumf. hiemalePavillard 4

C. hexacanthumGourret var.hexacanthum 5
C. horridumvar. buceros(Zacharias) Sournia 13
C. horridum(Cleve) Gran“horridum-buceros” 14
C. horridum(Cleve) Gran“buceros-horridum” 298
C. inflatum(Kofoid) Jørgensen 4
C. limulus(GourretexPouchet) Gourret 219
C. longirostrumGourret 30
C. longissimum(Schr̈oder) Kofoid 4
C. macroceros(Ehrenberg) Vanḧoffen var.macroceros 32
C. macroceros(Ehrenberg) Vanḧoffen “macroceros-gallicum” 24
C. massiliensef. armatum(Karsten) Jørgensen 5
C. massiliense(Gourret) Jørgensen var.massiliense 11
C. massiliensevar. protuberans(Karsten) Jørgensen 32
C. minutumJørgensen 11
C. paradoxidesCleve 3
C. pavillardii Jørgensen 12
C. pentagonumf. turgidum(Jørgensen) Jørgensen 80
C. pentagonumvar. tenerumJørgensen 316
C. pentagonumGourret“robustum-tenerum” 62
C. pentagonumGourret“robustum-tenerum” 1587
C. platycorneDaday var.platycorne 96
C. platycornevar.compressum(Gran) Jørgensen 267
C. platycorneDaday“platycorne-compressum” 56
C. platycorneDaday“compressum-platycorne” 99
C. ranipesCleve 22
C. schroeteriSchr̈oder 3
C. setaceumJørgensen 24
C. symmetricumPavillard var.symmetricum 113
C. symmetricumvar. coarctatum(Pavillard) Graham & Bronikovsky 151
C. symmetricumvar. orthoceras(Jørgensen) Graham & Bronikovsky 17
C. trichoceros(Ehrenberg) Kofoid 6
C. triposvar. atlanticum(Ostenfeld) Paulsen 83
C. triposvar. pulchellum(Schr̈oder) Lopez 97
C. tripos(Müller) Nitzsch“atlanticum-pulchellum” 9
C. tripos(Müller) Nitzsch“atlanticum-pulchellum” 35

No species: 34
No infraspecific taxa: 64
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Fig. 2. Abundance of microphytoplankton during DYNAPROC 2 cruise, from hydrological bottle sampling(a) Total microphytoplankton,
(b) Bacillariophyceae,(c) Dinophyceae,(d) Dictyochophyceae.

(Fig. 2d). Two species were found,Dictyocha fibulaand
Dictyocha speculum, the first one being the most abundant.
Silicoflagellates showed marked spatio-temporal variations.
Abundance varied from less than 50 cell l−1 to more than
600 cell l−1. During the 2 first cycles, two maxima of abun-

dance were identifiable (days 264–265 and 270 with a range
from 400 cell l−1 up to 600 cell l−1). The end of cycle 2
marked the decrease of abundance that appeared then really
weak during the two last cycles. Finally, the evolution of
naked ciliates abundances (Fig. 3c) showed a slight increase
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Scrippsiella sp.
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Fig. 3. Abundance of ecologically important planktonic organisms during DYNAPROC 2 cruise, from hydrological bottle sampling(a) The
diatomLeptocylindrus mediterraneus, (b) The dinoflagellateScrippsiellasp.,(c) Naked ciliates, and from net sampling(d) Dinoflagellates
genera andCeratiuminfraspecific taxa.

from 500 to 1250 cell l−1 during the first cycles leading to
maximal value of 2000 cell l−1 in cycles 3 and 4. In each
sample, the great majority (more than 90%) of ciliates was
of small size (less than 30µm).

Microplankton abundance in net samples, corresponding
to radiolarians and large armoured dinoflagellates, decreased
throughout the study, from over 8000 cells per m3 at the be-
ginning to about 3000 cells per m3 at the end of the cruise
(Fig. 3d). Overall, radiolarians were the dominant group

(from 828 to 5344 cell m−3), while Ceratium spp. repre-
sented about 50% (from 834 to 3734 cell m−3) of the total
dinoflagellates.Ceratiumbecame largely dominant within
dinoflagellates at the end of the cruise, while the total mi-
croplankton abundance decreased. The maximum abun-
dances of each taxa from net sampling are indicated in Ta-
ble 2.
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Fig. 4. Evolution of the stratification index in relation to the biodiversity descriptors of the main groups of the microphytoplankton during
DYNAPROC 2 cruise, from hydrological bottle and net sampling(a) Stratification index,(b) Taxonomic richness,(c) Diversity Shannon’s
index,(d) Evenness Pielou’s index.

Table 3. Spearman rank correlations between the stratification index (8) and taxonomic richness, diversity Shannon index and evenness
Pielou index of the microplankton components.

Taxonomic richness S Diversity Shannon index H′ Evenness Pielou Index J′

Microphytoplankton −0.82*** 0.78*** 0.84***

Diatoms −0.73*** −0.47* −0.02

Centric diatoms −0.53* 0.55* 0.76***
Pennate diatoms −0.72* −0.58* 0.31

Dinoflagellates −0.77** 0.81*** 0.71***

Armoured dinoflagellates −0.57* 0.49* 0.33
Naked dinoflagellates −0.85*** 0.40 0.75***

∗ Correlation is significant at the 0.05 level;
∗∗ Correlation is significant at the 0.01 level;
∗∗∗ Correlation is significant at the 0.001 level.
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Fig. 5. Evolution of the dominance index in net samples(a) Dinoflagellates genera dominance index,(b) Ceratiumtaxa dominance index.

5.2.2 Diversity patterns

The total richness of the microphytoplankton from hydrolog-
ical bottle samples varied from 47 to 100 species (Fig. 4b).
The total richness slightly increased during the first cycles,
reached a maximum during the cycle 3 and then decreased
during cycle 4 although values stayed superior to the rich-
ness observed in leg 1. Diatoms and dinoflagellates respec-
tive richness followed the same pattern than total microphy-
toplankton, but the increase was more marked for dinoflag-
ellates richness. Number of diatoms species ranged from
17 to 39, with nearly equal portions of pennates (10 to 21
species) and centrics (7 to 18 species) (Fig. 4b). Dinoflag-
ellate species richness ranged from 28 to 63 species, with a
similar contribution of armoured species (14 to 32 species)
and naked species (12 to 31 species).

In net samples, while a total of 27 dinoflagellates genera
was described (Table 2), the generic richness in dinoflagel-
lates was about 20 genera along the study (Fig. 4b). Within
the genusCeratium, the number of infraspecific taxa in-
creased from 43 to 56 taxa during the cycle 1 and then de-
creased after day 269 to reach a value of 28 taxa.

The diversity of microphytoplankton in bottle samples was
about 3–4 bit ind−1 and was globally constant (Fig. 4c).
Diversity indexes for total dinoflagellates and total diatoms

showed the same feature. Yet, there was a trend of decreas-
ing diversity of armoured species within dinoflagellates and
of the diversity of centric species within diatoms (Fig. 4c).
Actually, the few variations in diversity resulted in opposite
trends in richness and evenness indexes. Indeed, the even-
ness index sensibly decreased for total microphytoplankton
(Fig. 4d), and was mainly driven by a pattern of decreasing
dinoflagellates evenness, both displayed by armoured species
and by naked species to a lesser extent. In contrast, the
evenness of total diatoms remained at a high level without
any clear trend of variation. Evenness of pennate diatoms
was constant whereas it slowly decreased for centric species
(Fig. 4d). Thus, while overall diversity appeared to be quite
invariant, important variations occurred among specific tax-
onomic groups. Exploring the relationship between biodi-
versity and the stratification index, we were able to highlight
a trend: among each microplanktonic communities, the tax-
onomic richness was negatively related to the stratification
index (Table 3). We observed higher diversity indexes of di-
noflagellates and centric diatoms associated to stratified wa-
ters (higher8) while total diatoms and particularly pennate
group diversity was negatively correlated to the stratification
index (Spearman coefficientRs = −0.58,P < 0.05; Table 3).

Biogeosciences, 8, 743–761, 2011 www.biogeosciences.net/8/743/2011/



S. Lasternas et al.: Short-term dynamics of microplankton abundance and diversity 755

In net samples, the evenness varied few during the cycles
1 and 2 for dinoflagellates, but became more variable during
the latter cycles with a final decrease that followed a trend to
increase. Within the genusCeratium, infraspecific diversity
slowly decreased and then consequently increased at the end
of the cruise (Fig. 4c), whereas evenness strongly increased
during the cycle 2 and then decreased as for dinoflagellates
genera at the very end of the last cycle (Fig. 4d). Regarding
to the relationship between diversity in net samples and the
index of stratification, the correlations found were not signif-
icant.

In term of dominance, the genusCeratiumwas prominent
all along the cruise within the dinoflagellates, and was asso-
ciated to the genusGoniodomaduring the first leg, then alter-
natively to the generaGoniodoma, GonyaulaxandPodolam-
pas(Fig. 5a). The associationCeratium/Podolampasat the
middle of cycle 3 corresponded to a minimum of the domi-
nance index (about 50%) whereas during the last cycle, the
dominance of the associationCeratium/Gonyaulaxexceeded
90%.

Within the genusCeratium, the dominance index tended
to increase throughout the study from 44% to a maximum
of 73% at the end, and was globally higher during the 2
last cycles (Fig. 5b). One single taxon,C. pentagonum
var. tenerum, corresponding to the thermophilic variety of
the speciesC. pentagonum, also dominated all along the
cruise. It was associated toC. pentagonum “robustum-
tenerum”, C. horridumvar. buceros, C. symmetricumvar.
orthoceras, C. limulusand C. conciliansduring the cycles
1 and 2, and toC. declinatumf. brachiatum, C. declina-
tum f. normale, C. concilians, C. horridumvar. buceros,
C. platycorne “platycorne-compressum”andC. pentagonum
“robustum>tenerum” during the cycles 3 and 4. These 10
prominent taxa represented a few part of the 64 infraspe-
cific taxa which were encountered in the genusCeratium(Ta-
ble 2).

5.3 Spatio-temporal dynamics of microplankton

The Correspondences Analysis, applied to the abundances
of the main planktonic groups, yielded an interesting syn-
thesis of the spatio-temporal patterns of the microplankton
(Fig. 6). The planktonic groups were discriminated by their
different coordinates on the 2 first factors, explaining respec-
tively 54.8% and 24.3% of the total inertia. Thus, siliceous
organisms, corresponding to centric and pennate diatoms and
silicoflagellates, had negative coordinates on axis 1, while ar-
moured dinoflagellates and the mainly mixotrophic groups,
composed of ciliates and naked dinoflagellates, had coor-
dinates close to 0 on this axis. The axis 2 discriminated
centric diatoms, Dictyochophyceae and armoured dinoflag-
ellates (negative coordinates) from pennate diatoms and the
mainly heterotrophic group (positive coordinates). Projec-
tion of sampling days and sampling depths as illustrative
variables indicated that the planktonic groups had particu-
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Fig. 6. Spatial and temporal dynamics of the microplankton from
hydrological bottle sampling during DYNAPROC 2 cruise. The
Correspondence Analysis was applied on the main microplanktonic
groups. Sampling depths and Julian days were added as illustrative
variables (the coordinates were calculated as the average of samples
of the same days or of the same depth).

lar vertical distribution: the mixotrophic group with ciliates
and naked dinoflagellates was located above the thermocline
in the surface layer; the armoured dinoflagellates were as-
sociated with depths close to 50 m, i.e. close to the mean
depth of the thermocline and the chlorophyll maximum; Dic-
tyochophyceae and more particularly diatoms were charac-
teristic of the deepest layers. In addition, there was an oppo-
sition on axis 2 between the days of the cycles 1 and 2, as-
sociated with diatoms, Dictyochophyceae and armoured di-
noflagellates, and the days of the cycles 3 and 4 associated
with ciliates, naked dinoflagellates and pennate diatoms.

6 Discussion

6.1 Dynamics of microplankton

In the NW Mediterranean Sea, the summer period usually
starts in May–June with the development of the thermo-
cline that lasts until mid-September or late October, when
storms frequency is high. Along with a reinjection of nu-
trients from depth toward upper layers, as a result of mix-
ing effect of the storms and wind events, the development
of a high pressure system following the storm period leads
to calm and sunny weather conditions, known as St Martin’s
summer, which triggers the autumnal phytoplankton bloom
in the NW Mediterranean (Duarte et al., 1999). Despite the
specific choice in timing for the DYNAPROC 2 cruise, the
conditions that we encountered seemed to be characteristic
of late summer stratification, with a well-established ther-
mocline and a situation of nutrient depletion in the surface
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layer (Marty et al., 2008). Although a first wind episode
initiated the destratification, the settlement of a mixing sys-
tem was only obvious at the end of the campaign in re-
sponse to persistent winds during the cycle 4. The domi-
nance of small-sized microplankton species such as ciliates,
mixotrophic and heterotrophic dinoflagellates (mainlyGyro-
dinium spp. andGymnodiniumspp.) and radiolarians also
corresponded to a typical summer situation. Dinoflagellates
usually dominate the microphytoplankton during the strati-
fied period in the NW Mediterranean (Gómez, 2003; Ǵomez
and Gorsky, 2003), since they do prefer conditions of low
turbulence and warm temperatures, while low nutrients con-
centrations in the surface layer and stratification limit the de-
velopment of diatoms and silicoflagellates. The significant
contribution of naked dinoflagellates probably resulted from
a better adaptation to an oligotrophic environment, since sev-
eral species are known to have phagotrophic activity (Stei-
dinger and Tangen, 1997; Stoecker, 1999). Within less abun-
dant armoured dinoflagellates, the prominence ofCeratium
species, which characterised the net samples, has been al-
ready reported in the Ligurian Sea (Halim, 1960; Gómez and
Gorsky, 2003). The present abundances are of the same mag-
nitude, even slightly lower, than those observed in the coastal
waters of Villefranche bay at the same time (Tunin-Ley et al.,
2007). Although the majority ofCeratiumspecies possesses
chloroplasts, the cells can contain vacuoles, which could
result from phagotrophic behaviour (Chang and Carpenter,
1994). Radiolarians also significantly develop in late sum-
mer and autumn (Lange et al., 1997). Within radiolarians,
the polycystines occur in the upper strata of the water column
as they may bear algal symbionts, with maximal abundances
ranging from 25 to 50 m depth in extrapolar areas (Ander-
son et al., 2000). Observed densities were remarkably higher
than those usually observed, with an order of magnitude of
tens to hundreds individuals per cubic meter. During the first
DYNAPROC cruise (May 1995), abundances of radiolarians
ranged from 200 to more than 1000 ind m−3 with maximal
abundances comprised between 50 and 70 m (Andersen et al.,
2001), that represents slightly lower abundances than those
reported for the present cruise. Radiolarians may have sig-
nificantly contributed to primary production since it has been
established their association with photosynthetic symbionts
(Foster et al., 2006). The naked ciliates represented an im-
portant part of the total microplankton, especially during the
leg 2 (day 269 to day 273) and their abundances were consis-
tent with values described in the Villefranche bay at the same
period (Ǵomez and Gorsky, 2003).

In addition to the overall dominance of small-sized di-
noflagellates during the study, we observed a temporal shift
in microplankton composition from a system characterised
by the presence of autotrophic organisms and by the sig-
nificant contribution of siliceous species (leg 1: day 261 to
day 273) to a regeneration-dominated system with mainly
mixotrophic or heterotrophic organisms during leg 2 (day
276 to 291). The slight decrease in silicate concentration

found during leg 2 (Marty et al., 2008) may partly explain
the decline of siliceous organisms. Moreover, the develop-
ment in the deep layer of diatoms, species that are able to
respond very fast to nutrient pulses (Cloern and Dufford,
2005), was clearly associated to local increases in silicate
concentrations (Marty et al., 2008). The disappearance of
the silicoflagellates could then result then from the compe-
tition with diatoms. As the first observed population of di-
atoms dominated byCorethronsp. was senescent, the com-
petition for silica was weak, likely allowing the develop-
ment of the silicoflagellates, whereas the competition for
silica may have increased towards the middle of the cam-
paign with the significant development of mainly pennate di-
atoms. Predation pressure also differed along the study, with
a change in zooplankton species composition (Raybaud et
al., 2008). Both diatoms (which were represented by sev-
eral large-sized species), and silicoflagellates (which are po-
tentially protected from herbivorous copepod predation due
to their large spins) were well represented during leg 1 (Ju-
lian day 259 to 274). Their contribution decreased during leg
2, corresponding with the presence of other predator species
with more generalist and non-selective diets like Pteropods
(Raybaud et al., 2008).

The trophic importance of microzooplankton is well rec-
ognized; nevertheless, this group is often exclusively com-
posed of a ciliate “box” in food web studies and models. We
assumed that the contribution of hetero- and mixotrophic di-
noflagellates is largely underestimated. Since Lessard and
Swift (1985, 1986), we know that about half of dinoflagel-
lates species in marine plankton do not possess chloroplasts
and likely consume other plankton cells. A review of Sherr
and Sherr (2007) showed that dinoflagellate biomass could
sometimes be higher than ciliate biomass while small naked
dinoflagellates may account for a large fraction (up to 90%)
of the total heterotrophic dinoflagellates biomass. This last
point was confirmed in Pacific Ocean by Masquelier and
Vaulot (2007) who found, using epifluorescence microscopy,
that about 80% of heterotrophic dinoflagellates were cells
smaller than 20 µm and noted that typical Utermöhl method
largely underestimated small dinoflagellates abundances. A
large number of dinoflagellates species recorded during our
study were mixotrophic or heterotrophic. For instance, all
Protoperidiniumspecies are known to lack photosynthetic
pigments. Numerous cells of the order Gymnodiniales were
observed, but our preserving and counting methods proba-
bly largely underestimated their abundance (Masquelier and
Vaulot, 2007). Given the abundance and variety of ciliates
and heterotrophic dinoflagellates, the ecosystem of our study
had a heterotrophic microplankton pool that feed on a wide
range of prey, from bacteria to centric diatoms (Sherr and
Sherr, 2007). The heterotrophic microplankton likely had
another important role, that of a significant food resource for
mesozooplankton (Perez et al., 1997; Susuki et al., 1999; Liu
et al., 2005). This has to be taken into consideration when
studying the whole ecosystem functioning.
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The dynamics of marine phytoplankton have been as-
sessed over short scales using pigment analysis (Vidussi et
al., 2000). HPLC technique based on the pigment signa-
ture of major phytoplankton groups constitutes an efficient
tool to have an overview of relative contributions and major
shifts. This technique has been used successfully during DY-
NAPROC 2 (Marty et al., 2008). Additionally, converting
pigments to carbon equivalent could be convenient for link-
ing the overall distribution of phytoplankton to the dynamic
of organic matter. Yet, with this approach, groups of species
that have no specific pigment signature are not identified, as
well as groups without any photosynthetic pigments (i.e. het-
erotrophic dinoflagellates). Furthermore, species composi-
tion cannot be considered. Compared to pigment diversity
analysis our direct microscopic observations supply comple-
mentary information of biogeochemical and ecological in-
terests. Thus, silicoflagellates characterised by a complex
pigment-content composed of acylfucoxanthines (19′-BF et
19′-HF), fuco-, diadino-, diato-xanthine and also chloro-
phyllea, c, andc3 (Daugbjerg and Henriksen, 2001) can not
be monitored using a single pigment determination method
but are easily distinguished microscopically. During DY-
NAPROC 2, the dynamics of silicate compounds does not
only concern diatoms; the siliceous silicoflagellates, even
though less abundant, participated in both silicate and carbon
fluxes. The abundance ofDictyochaspp. encountered dur-
ing the first period of the cruise, argues for a non-negligible
contribution in the silicate cycle and the existence of compe-
tition with diatoms for the nutrient resources, especially sil-
icate. This aspect is highlighted during the first low salinity
event that may have constituted a physiological stress with a
stronger impact on diatoms. Meanwhile silicate was avail-
able; it precisely corresponded with the highest abundances
of silicoflagellates. Assuming that turbulences increased the
velocity of the phytoplankton cells sinking (Ruiz et al., 2004)
and that this velocity also depends on the cell shape, the spe-
cific modification that occurred within the community prob-
ably influenced geochemical processes. In addition to sili-
cate fluxes, our study also provides information on the ni-
trogen cycle. The peculiar consortium constituted by frus-
tule ofLeptocylindrus mediterraneusand the protozoanRhi-
zomonas setigera(Pavillard) Patterson, is involved in ni-
trogen (N2) fixation. As the individuals observed in olig-
otrophic Pacific Ocean (Ǵomez, 2007),R. setigerawas al-
ways found restricted to the central section of the frustules.
Indeed, this aplastial protist is characterised by a symbiosis
with a nitrogen-fixing cyanobacterium (Buck and Bentham,
1998). The dynamics ofL. mediterraneusmay be important
with regard to nitrogen budgets. Its increase in abundance
noted during the second part of cruise may have helped to
sustain the primary production.

6.2 Biodiversity and physical perturbations

The changes described in the microplankton community
should be related to the changes observed in the environment.
This potentially raises two questions. First, did the physical
perturbations that occurred (i.e. wind stress and low salinity
water upcoming) affect the biodiversity of microplankton?
Second, do our data support the Intermediate Disturbance
Hypothesis (IDH)? Indeed, according to Connell (1978), an
intermediate level of disturbance leads to a peak of diver-
sity. In the absence of disturbance, the competitive exclusion
principle (Hardin, 1960) would apply, the less-fit species be-
ing eliminated, resulting in low diversity. In contrast, highly
intense or frequent disturbance can restrict the community to
a few pioneer species, yielding low diversity. This theory,
firstly developed for terrestrial plants, has been largely tested
on phytoplankton, in part as an attempt to solve the “para-
dox of the plankton” (Hutchinson, 1961), that points out the
incoherence between the remarkable high richness observed
in phytoplankton and the few resources which theoretically
prevents the coexistence of numerous species, because of the
principle of competitive exclusion. According to previous
laboratory and enclosure experiments as well as field studies,
mainly focussing on freshwater ecosystems, the IDH appears
to be applicable to phytoplankton (Padisák, 1994; Sommer,
1995; Fl̈oder and Sommer, 1999; Hambright and Zohary,
2000; Elliott et al., 2001; Weithoff et al., 2001; Shea et al.,
2004). But the weakness of this theory is that it considers the
response to an unmeasured event (Reynolds, 1995). While
it appears effectively difficult to define what a disturbance is
and how intense it is, it has been proposed to consider a dis-
turbance an event that alters the niche opportunities available
to the species in a system (Shea et al., 2004).

In our study, the stratification index, being the resultant of
physical perturbations (wind regime, intrusion of low salin-
ity water), can be considered as a proxy of disturbance.
Thus, exploring putative correlations between physical dis-
turbances and biodiversity of phytoplankton from hydrolog-
ical bottles, we observed that the decrease of the evenness
and the increase of the specific richness were associated to
the decrease of the stratification index. Despite the intru-
sion of less saline water and the on-going destratification that
initiated during the first leg, the diversity of the total mi-
croplankton from bottle samples was quite constant along
the study but the richness increased. Although the hori-
zontal advection was weak, the less saline water mass has
brought new species, as illustrating by the development of
the coastalScrippsiellasp., or additional individuals of some
already present species, modifying the relative abundances of
the species and consequently the diversity. We can postulate
that perturbations were weak and progressive along the study,
leading to a consistent total microplankton richness accom-
panied with coexistence of species at the end of the cruise
when the destratification was likely established. Weak and
frequent disturbances (several moderate wind events) would
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have favoured and sustained diversity (here, namely species
richness).

On the opposite, in net samples, the biodiversity followed
a different evolution, with a remarkable increase inCeratium
species dominance within dinoflagellates. Even within the
genusCeratium, which is known to be an interesting model
for biodiversity studies (Tunin-Ley et al., 2007), the evenness
tended to decrease at the very end of the cruise, reflecting an
increase in the dominance of a couple of taxa. This reverse
evolution may illustrate the lower abilities of some dinoflag-
ellates, with low growth rates as inCeratiumtaxa, to adapt
to changes occurring at short-time scale. We can postulate
that those non-opportunistic species can not get benefit from
the gradual disturbance which favoured the diversity of other
groups.

6.3 Indicator and particular species

Species-specific analysis also permits special attention to in-
dicator species. The dinoflagellateScrippsiellasp. is associ-
ated with the less saline water incoming during the first and
the second leg of the cruise. As the species belonging to this
genus are considered as neritic (Hasle and Syvertsen, 1996),
we thus provide evidence for the coastal origin of the water
with this biological marker. The species of this genus was not
determined, even if it was morphologically close toScripp-
siella trochoidea, since Montresor et al. (2003) have sug-
gested the existence of cryptic species in the Mediterranean
Sea. Moreover, several cells of the naked dinoflagellateAs-
terodinium gracile, with five radiating elongated extensions
as presented in Fig. 2a in Gómez and Claustre (2003), were
sampled in our study (one cell at 50 m and the other at 60 m
depth, Julian day 286). This species was initially reported in
Indian Ocean (Sournia, 1986), later in the eastern Mediter-
ranean Sea (Abboud-Abi Saab, 1989) and Gómez and Claus-
tre (2003) found this species in the Tyrrhenian basin consid-
ering it as a possible biological indicator of warming. To
our knowledge, it is the first time thatA. gracilewas found
in the Ligurian Sea and this could indicate an extension of
the spatial distribution of this species. Nevertheless, some
publications suggest that the genusAsterodiniummay corre-
spond to life stages of a highly versatile single species re-
grouping taxa of the generaBrachydinium, KareniaandMi-
croceratium(Gómez et al., 2005; Ǵomez, 2006).

Despite their large size, some dinoflagellate species char-
acterized by non-typical or much modified morphologies are
often underestimated or absent from most of microphyto-
plankton analysis. According to Ǵomez and Furuya (2004),
this could be explained by a specific and not easily accessible
literature and difficulty in the identification, due to folding in
fixed cells. Careful analysis of our samples revealed sev-
eral modified dinoflagellates. They mainly belonged to the
family Leptodiscaceae Taylor (order Noctilucales Heackel).
The species are strongly antero-posteriorly flattened and dis-
play a wing-like extension, called the velum. Two speci-

mens ofScaphodinium mirabilewere found in sub-surface
(10 m depth, Julian day 280 and 2 m depth, Julian day 285).
This species, considered as thermophylic (Stoyanova 1999;
Gómez and Furaya, 2004), has already been found in NW
Mediterranean Sea (Margalef, 1963; Léger, 1971; Ǵomez
and Gorsky, 2003). We encountered 18 specimens ofPetalo-
dinium porcelio, between 10 and 90 m depth (Julian days 279
to 289). It is the first time that this species has been recorded
in Mediterranean Sea since its description in 1969 (Cachon
and Cachon, 1969). The two other cells ofP. porceliowere
reported by Stoyanova (1999) in the Black Sea and by Gómez
and Furuya (2005) in the Pacific Ocean. The most relative
abundant morphologically-modified dinoflagellate wasKo-
foidinium velelloides, which belongs to the family Kofoidini-
aceae Taylor (Sournia, 1986). Seventy-five specimens were
found, from surface to 90 m depth, throughout the study pe-
riod. This species has a complex life cycle and we assumed
that specimens of immature stage resemblingGymnodinium
belong to this species, due to the morphology of the large
velum at mature sampled stages. The species of the genus
is not easy to identify because of the high morphological
variability during the life cycle and the difficulties to delimit
the species from preserved specimens (Gómez and Furaya,
2007). As for genusAsterodinium(see above), those rare
species need more investigation about description as well as
biology and ecology.

7 Conclusions

This is one of the first detailed studies dealing with daily
variations of marine microplankton abundance and diversity,
done with two complementary sampling methods (i.e. hydro-
logical bottles and plankton net). Our results highlighted the
value of such data to complete pigments analysis; the knowl-
edge of microplanktonic short-term abundance and diversity
evolution supplied complementary information of biogeo-
chemical, biological and ecological interests. It allowed a
better understanding of the interactions between autotrophs
and nutrients as well as trophic relations with zooplankton.
Finally, indicators species could also confirm coastal water
intrusion and potential warming of Mediterranean Sea.

This demonstrates that traditional taxonomic studies are
definitely not obsolete, with regard to the recent advances
in automatic digitization and classification (Benfield et al.,
2007) that will considerably decrease the time allocated to
microplankton identification in further studies.

Acknowledgements.We thank the chief scientist, V. Andersen,
for organising the DYNAPROC 2 cruise, and the crew of the
R/V Thalassafor ship operations. We are also grateful to John
Dolan for his advices and kind re-lecture. This study was part
of the PECHE project; financial support was provided by the
I.N.S.U.-C.N.R.S. through the PROOF program (JGOFS-France)
and by the project “La Notion d’Espèce dans le Phytoplancton”
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