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Abstract. This study used MODIS observed phytoplankton
absorption coefficient at 443 nm (Aph) as a preferable index
to characterize phytoplankton variability in optically com-
plex waters. Aph derived from remote sensing reflectance
(Rrs, both in situ and MODIS measured) with the Quasi-
Analytical Algorithm (QAA) were evaluated by comparing
them with match-up in situ measurements, collected in both
oceanic and nearshore waters in the Taiwan Strait (TWS). For
the data with matching spatial and temporal window, it was
found that the average percentage error (ε) between MODIS
derived Aph and field measured Aph was 33.8% (N = 30,
Aph ranges from 0.012 to 0.537 m−1), with a root mean
square error in log space (RMSElog) of 0.226. By compari-
son,ε was 28.0% (N = 88, RMSElog = 0.150) between Aph
derived from ship-borneRrs and Aph measured from water
samples. However, values ofε as large as 135.6% (N = 30,
RMSE log = 0.383) were found between MODIS derived
chlorophyll-a (Chl, OC3M algorithm) and field measured
Chl. Based on these evaluation results, we applied QAA to
MODIS Rrs data in the period of 2003–2009 to derive clima-
tological monthly mean Aph for the TWS. Three distinct fea-
tures of phytoplankton dynamics were identified. First, Aph
is low and the least variable in the Penghu Channel, where
the South China Sea water enters the TWS. This region main-
tains slightly higher values in winter (∼17% higher than that
in the other seasons) due to surface nutrient entrainment un-
der winter wind-driven vertical mixing. Second, Aph is high
and varies the most in the mainland nearshore water, with
values peaking in summer (June–August) when river plumes
and coastal upwelling enhance surface nutrient loads. Inter-
annual variation of bloom intensity in Hanjiang River estu-

Correspondence to:S. Shang
(slshang@gmail.com)

ary in June is highly correlated with alongshore wind stress
anomalies, as observed by QuikSCAT. The year of minimum
and maximum bloom intensity is in the midst of an El Niño
and a La Nĩna event, respectively. Third, a high Aph patch
appears between April and September in the middle of the
southern TWS, corresponding to high thermal frontal proba-
bilities, as observed by MODIS. Our results support the use
of satellite derived Aph for time series analyses of phyto-
plankton dynamics in coastal ocean regions, whereas satel-
lite Chl products derived empirically using spectral ratio of
Rrs suffer from artifacts associated with non-biotic optically
active materials.

1 Introduction

While the concentration of phytoplankton pigments in the
surface ocean reflect both variability in phytoplankton stand-
ing stocks and physiological state (e.g. Behrenfeld et al.,
2005; Westberry et al., 2008), it has a clear impact on
the optical properties of the water, allowing its relatively
straight-forward retrieval from remote sensing measurements
(e.g. Sathyendranath et al., 1994). The most common pig-
ment product retrieved from ocean color remote sensing is
chlorophyll-a concentration (Chl, mg m−3; frequently used
symbols throughout the manuscript are summarized in Ta-
ble 1). However, because of the optical complexity in
nearshore waters (Carder et al., 1989; Zhang et al., 2006) and
the simple spectral ratio approach (O’Reilly et al., 2000) used
for the derivation of Chl, Chl product can be problematic in
optically complex nearshore waters. Alternatively, analytical
approaches (IOCCG, 2006) based on the radiative transfer
theory have been developed to retrieve the spectral absorp-
tion coefficient of phytoplankton (aph, m−1). Using phy-
toplankton absorption, instead of Chl, as a superior metric
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Table 1. Symbols, abbreviations and description.

Symbol Description Unit

ABI Areal Bloom Index m−1

aph Absorption coefficient of phytoplank-
ton;aph(412) meansaph at 412 nm;
aph(443) meansaph at 443 nm

m−1

Aph aph(443) m−1

at-w Total absorption without pure water
contribution;at-w(443) meansat-w
at 443 nm

m−1

Chl Chlorophyll-a concentration mg m−3

MEI Multivariate ENSO Index
QAA Quasi-analytical Algorithm

(Lee et al., 2002)
RMSE Root mean square error
Rrs Remote sensing reflectance sr−1

TWS Taiwan Strait

of phytoplankton pigmentation is becoming increasingly ac-
cepted (e.g. Cullen, 1982; Marra et al., 2007), especially
from the remote sensing point of view (Lee et al., 1996; Hi-
rawake et al., 2011). This is because the direct controller
of ocean color is the spectral absorption and scattering prop-
erties of the water media (e.g. Gordon et al., 1988) rather
than pigment concentrations, although the variations of the
latter will change pigment absorption in a non-stable fashion
(e.g. Bricaud et al., 1998; Stuart et al., 1998). However, few
studies based on in situ measurements exist to test whether
aph can be derived from satellite ocean color data with less
uncertainty than Chl. Such evidence is vital in order to con-
firm thataph can function as the preferable index for charac-
terizing phytoplankton variability in the upper ocean. Here
we provide results conducted over the Taiwan Strait (TWS), a
shallow shelf channel that connects the South China Sea with
the East China Sea (see Fig. 1), to demonstrate that (1) phy-
toplankton absorption can be retrieved more accurately than
chlorophyll-a in this optically complex ocean region from
satellite observed ocean color and (2) changes of phytoplank-
ton absorption capture phytoplankton dynamics in a vibrant
and changing environment.

The TWS has complex hydrographic conditions deter-
mined by the relative influence of the South China Sea Warm
Current (SCSWC) and the Kuroshio Branch Water (KBW),
which are warm, saline, and oligotrophic, and the Zhe-Min
Coastal Water (ZMCW), which is cold, fresh, and eutrophic,
and varies seasonally in response to changes in the mon-
soonal wind (e.g. Jan et al., 2002). Several medium-sized
rivers (e.g. Hanjiang and Jiulongjiang Rivers) are located on
the western coast (mainland China) of the strait. Also along
this coast, upwelling develops in summer, driven by the pre-
vailing southwest monsoon which runs parallel to the coast
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Fig. 1 Map of the Taiwan Strait; ZMCW: Zhe-Min Coastal Water; SCSWC: South China Sea 

Warm Current; KBW: Kuroshio Branch Water; the red cross and blue circle symbols show the 

locations where field measured Rrs and MODIS Rrs have match-up in situ observed absorption 

coefficients, respectively; the grey lines indicate the boundaries of the research area of this study. 
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Fig. 1. Map of the Taiwan Strait; ZMCW: Zhe-Min Coastal Water;
SCSWC: South China Sea Warm Current; KBW: Kuroshio Branch
Water; the red cross and blue circle symbols show the locations
where field measuredRrs and MODISRrs have match-up in situ
observed absorption coefficients, respectively; the grey lines indi-
cate the boundaries of the research area of this study.

due to Ekman transport (e.g. Hong et al., 2009). Differ-
ent waters converge in a limited area with a shallow bank
(Taiwan Bank), a ridge (Zhangyun Ridge), and deep chan-
nel (Penghu Channel), creating strong frontal phenomena
(e.g. Chang et al., 2006; Li et al., 2006).

For this study, we first derivedaph from remote sensing
reflectance (Rrs, sr−1) with the quasi-analytical bio-optical
inversion algorithm (QAA, Lee et al., 2002, 2009). In ad-
dition to QAA, there are several algorithms available for the
retrieval of absorption and backscattering coefficients from
Rrs (IOCCG, 2006). Here we used QAA because of its trans-
parency in the analytical inversion process and simplicity in
implementation. We evaluated theRrs derivedaph by com-
paring it with match-up in situ measuredaph collected in both
oceanic and nearshore waters in the TWS. Finally we applied
QAA to MODIS Rrs data for the period 2003–2009 to de-
rive climatological monthly meanaph at 443 nm (aph(443);
also represented as Aph for brevity) and to evaluate spatio-
temporal variation of the mean Aph in the TWS.

2 Data and methods

2.1 Satellite data

Aqua-MODIS daily Level-2 normalized water leaving ra-
diance (nLw, W m−2 nm−1 sr−1, 2005 reprocessed ver-
sion) data were obtained from the NASA Distributed Ac-
tive Archive Center (http://oceancolor.gsfc.nasa.gov/) and
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were subsequently converted toRrs via the ratio of nLw
to extra-terrestrial solar irradiance,F0 (W m−2 nm−1) (Gor-
don, 2005; also seehttp://oceancolor.gsfc.nasa.gov/DOCS/
RSRtables.html). Aqua-MODIS Level-2 Chl daily data dur-
ing 2003–2009, which were derived by using the OC3M em-
pirical algorithm (O’Reilly et al., 2000), were also obtained
from the same source. These data were further processed
into Level-3 products by using Mercator projection, which
was implemented on SeaDAS (http://seadas.gsfc.nasa.gov/
doc/tutorial/sdstut2.html). The spatial resolution of these
data was 1 km by 1 km.

Daily wind field data were obtained from QuikScatterom-
eter (QuikSCAT) observations from 2003 to 2009 (http://
podaac.jpl.nasa.gov), with a spatial resolution of 0.25◦ by
0.25◦ (equivalent to∼25 km by∼25 km). Daily wind stress
(T , N m−2) was calculated from (Stewart, 2008):

T = ρaCDU2
10 (1)

whereρa = 1.3 kg m−3 was the density of air,U10 (m s−1)
was wind speed at 10 m above the sea surface (the QuiS-
CAT measurement), andCD was the drag coefficient.CD
was calculated from Yelland and Taylor (1996) and Yelland
et al. (1998). Wind stress vectors were further decomposed
into alongshore (southwesterly) and cross-shore (northwest-
erly) components by applying a simple vector manipulation.

Aqua-MODIS sea surface temperature (SST,◦C) monthly
mean data (4 km by 4 km resolution) during 2003–2009 were
downloaded fromhttp://oceandata.sci.gsfc.nasa.gov/. Based
on this SST data, we derived a thermal frontal probability
map for the TWS by following Wang et al. (2001). Briefly,
we calculated the SST gradients in eight directions for each
clear pixel and chose the average over the three absolute
maxima as the horizontal gradient for this pixel. Only pixels
whose gradients were equal to or greater than the threshold of
0.5◦C per 4 km were regarded as frontal pixels. The frontal
probability was then obtained by dividing the number of ob-
servations the pixel was frontal, by the accumulative number
of observationsthe pixel had a valid SST value.

2.2 Calculation of mean and anomaly

To address spatio-temporal variations of properties derived
from satellite measurements, temporal and spatial means and
anomalies were calculated for each property. These prop-
erties included the non-water absorption at 443 nm (total
absorption coefficient without contribution from pure wa-
ter; at-w(443), m−1) and Aph from QAAv5, Chl from
OC3M, and QuikSCAT derived alongshore component of
wind stress.

For pixel i in month X year Y , the monthly mean of a
property was obtained by adding up all the available daily
values in the month and then dividing them by the number
of days having valid values. The spatial mean of each prop-
erty in monthX yearY (P X,Y ) was calculated by adding up
all the available monthly mean values in the TWS area in

the month and dividing them by the number of pixels hav-
ing valid retrievals. The TWS area was defined as the ocean
area between the China mainland coast or the 116.5◦ E lon-
gitude and the 122◦ E, and between 22◦ N and 25.5◦ N (see
Fig. 1, the area enclosed by the dashed grey lines, the main-
land coastline and the 122◦ E).

For pixel i in monthX, the climatological monthly mean
of a property (P i,X) was calculated by adding up all the
monthly values for 2003–2009 and then dividing them by
the number of years (=7). The spatial mean of each property
in monthX (P X) was then calculated based on this climato-
logical monthly mean dataset following the above mentioned
procedure for calculation ofP X,Y .

The spatial anomaly of a property in pixeli monthX was
derived fromP i,X −P X. The temporal anomaly of a prop-
erty in monthX yearY was calculated fromP X,Y −P X.

2.3 In situ data

2.3.1 Remote sensing reflectance

In stiu Rrs was derived from measured (1) upwelling radi-
ance (Lu, W m−2 nm−1 sr−1), (2) downwelling sky radiance
(Lsky, W m−2 nm−1 sr−1), and (3) radiance from a standard
Spectralon reflectance plaque (Lplaque, W m−2 nm−1 sr−1).
The instrument used was the GER 1500 spectroradiometer
(Spectra Vista Corporation, USA), which covers a spectral
range of 350–1050 nm with a spectral resolution of 3 nm.
From these three components,Rrs was calculated as:

Rrs= ρ(Lu−F ·Lsky)/(π ·Lplaque)−1 (2)

where ρ is the reflectance (0.5) of the spectralon plaque
with Lambertian characteristics andF is surface Fresnel
reflectance (around 0.023 for the viewing geometry).1

(sr−1) accounts for the residual surface contribution (glint,
etc.), which was determined either by assumingRrs(750) = 0
(clear oceanic waters) or through iterative derivation accord-
ing to optical models for coastal turbid waters as described
in Lee et al. (2010a).

2.3.2 Field-measured absorption coefficients and
chlorophyll-a

Water samples for determination of absorption coefficients
and Chl were collected from surface waters during 2003–
2007 in the TWS. Sampling station depths ranged from
∼10 m to ∼400 m. Measurements of chromophoric dis-
solved organic matter (CDOM) absorption coefficient,ag
(m−1), and Chl were performed according to the Ocean Op-
tics Protocols Version 2.0 (Mitchell et al., 2000), and were
detailed in Hong et al. (2005) and Du et al. (2010). Partic-
ulate absorption coefficient (ap, m−1) was measured by the
filter-pad technique (Kiefer and SooHoo, 1982) with a dual-
beam PE Lambda 950 spectrophotometer equipped with an
integrating sphere (150 mm in diameter) following a mod-
ified Transmittance-Reflectance (T-R) method (Tassan and
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Ferrari, 2002; Dong et al., 2008). This approach was used
instead of the T method recommended in the NASA pro-
tocol (Mitchell et al., 2000) because some of the samples
were collected nearshore. These samples were rich in highly
scattered non-pigmented particles. The standard T-method
will thus cause an overestimate of sample absorption (Tassan
and Ferrari, 1995). Detrital absorption (ad, m−1) was there-
fore obtained by repeating the modified T-R measurements
on samples after pigment extraction by methanol (Kishino et
al., 1985).aph was then calculated by subtractingad from ap,
and the combination ofap andag yields an estimate ofat-w.

Combining all the field studies, we collected 104 sets of
in situ data, with each set includingat-w, aph, ad, ag and
Chl. This in situ dataset covered a wide range of absorption
properties, withat-w(443) ranging from 0.019 to 2.41 m−1,
and the Aph/at-w(443) ratio varying between 9–86%.

Due to frequent cloud cover in the TWS, only 30 match-
ing data pairs were achieved of in situ absorption and Chl
data collected within±24 h of MODIS overpass (Fig. 1, cir-
cle symbols). By comparison, there were 88 sets of in situ
absorption and Chl data having match-up in situRrs mea-
surements (Fig. 1, cross symbols).

3 Evaluation of Rrs derived absorption coefficients in
the Taiwan Strait

Rrs from field measurements and MODIS were fed to
QAA v5 (Lee et al., 2009), respectively, to derive two sets
of at-w andaph. In order to evaluate the quality ofRrs de-
rived aph, we used the root mean square error both in linear
scale (RMSE) and in log scale (RMSElog) and averaged
percentage error (ε) as a measure to describe the similar-
ity/difference between the field measured (f ) and retrieved
data sets (r):

ε =

(
1

n

n∑
i=1

∣∣∣∣ ri −fi

fi

∣∣∣∣
)

·100% (3)

RMSE=

√√√√1

n

n∑
i=1

(ri−fi)2 (4)

RMSE log=

√√√√1

n

n∑
i=1

(log(ri)−log(fi))2 (5)

Results are given in Table 2. Figure 2a and b compares the
derived and measuredat-w andaph values at 443 nm for the
MODIS (the yellow square symbols) and the in situ (the blue
circle symbols) data sets, respectively.

Averaged percentage error (ε) and RMSElog between in
situ measuredaph(412) and MODISaph(412) were 36.1%
and 0.252, respectively, for anaph(412) range of 0.009–
0.539 m−1. Similarly, ε was 33.8% and RMSElog was
0.226 for an Aph range of 0.012–0.537 m−1 (Table 2). These

Table 2. Statistics results between derived and in situ absorption
coefficients and Chl data∗.

Band (nm) RMSE RMSElog ε (%) R2 n

Derived from field measuredRrs (N = 88)

at-w(λ)

412 0.269 0.155 26.1 0.80 88
443 0.197 0.135 23.1 0.87 88
488 0.079 0.117 22.4 0.93 88
531 0.040 0.169 37.7 0.91 88

aph(λ)

412 0.086 0.145 26.9 0.86 88
443 0.093 0.150 28.0 0.87 88
488 0.066 0.189 43.0 0.90 88
531 0.051 0.348 116.1 0.85 88

Chl 5.067 0.429 162.0 0.80 88

Derived from MODISRrs (N = 30)

at-w(λ)

412 0.076 0.150 25.9 0.76 30
443 0.063 0.127 21.1 0.91 30
488 0.021 0.109 20.2 0.91 30
531 0.011 0.142 25.7 0.91 30

aph(λ)

412 0.078 0.252 36.1 0.87 25
443 0.070 0.226 33.8 0.86 25
488 0.019 0.265 34.8 0.87 28
531 0.012 0.267 63.5 0.88 26

Chl 2.063 0.383 135.6 0.81 30

∗ N is the number of data tested, whilen is the number of valid retrievals.

errors decreased whenaph was derived from ship-borneRrs.
For example, theε was 28.0% and the RMSElog was 0.150
for 443 nm (Table 2). Such a difference was not surpris-
ing since additional uncertainties were introduced in satel-
lite match-ups that were associated with imperfections in
atmospheric correction over coastal water for the MODIS
Rrs (Dong, 2010) and the spatio-temporal mismatch between
satellite and field data (1 km2 versus 1 m2, and the tempo-
ral window of±24 h). Among the 88 ship-borne data, there
were 26 collected from waters close to river estuaries. The
RMSE log was 0.172 for Aph, suggesting that the retrievals
of Aph are robust and not impacted by CDOM and detri-
tus in the waters having strong influence of riverine inputs.
All these results were better than the evaluation results re-
ported in the IOCCG Report No. 5 (IOCCG, 2006), which
used the earliest version of QAA (Lee et al., 2002). In that re-
port, no satelliteRrs derivedaph data were evaluated and the
RMSE log between in situRrs derived Aph and field mea-
sured Aph was 0.321 (it was 0.150 in this study). A recent
evaluation of SeaWiFSRrs derived Aph using QAA at an Eu-
ropean coastal site produced a RMSElog of 0.21 (Ḿelin et
al., 2007), which was comparable to our results.

The difference between in situ measured Chl and match-
up Rrs derived Chl (via OC3M) was much larger than found
for Aph (Fig. 2c). Between in situ measured Chl and MODIS
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Fig. 3. Root mean square deviation between normalized spatial
anomaly of Aph and that of Chl (the grey bar), and normalized spa-
tial anomaly ofat-w(443) and that of Chl (the empty bar).

Rrs derived Chl, theε was 135.6% and RMSElog was 0.383.
Between in situ measured Chl and in situRrs derived Chl,
the ε was 162.0% and RMSElog was 0.429. This analysis
of match-up uncertainties clearly indicated improved perfor-
mance ofRrs-retrieved Aph over Chl in the TWS. One fun-
damental reason for such results is thatRrs is largely deter-
mined by the absorption and scattering properties of all the
optically active materials in the water, of which phytoplank-
ton is simply one of them (Mobley, 1994; IOCCG, 2006).
Higher uncertainty associated with Chl is thus anticipated
while trying to retrieve Chl by simple spectral ratio ofRrs in
marine waters where the contribution of non-phytoplankton
components is significant (e.g., TWS).

4 Comparison of the spatial patterns of MODIS Aph
and at-w(443) with Chl in the Taiwan Strait

The above analysis of match-up uncertainties supports the
use ofRrs derived Aph as a preferable index (compared to
Chl) to represent phytoplankton in the optically complex
coastal water of the TWS. A time series of MODIS Aph for
the TWS was thus derived by inputting daily MODISRrs into

QAA v5. Climatological monthly mean Aph during 2003–
2009 were then derived, along withat-w(443) from QAA v5
and Chl from OC3M. Before using this multi-year monthly
mean Aph dataset to address phytoplankton dynamics in the
TWS, we did a further comparison of the spatial patterns of
Aph andat-w(443) with Chl for the entire TWS. This addi-
tional analysis was conducted to address a concern that the
evaluation results shown in Sect. 3 were merely a comparison
of discrete match-up samples in the TWS and most of theRrs
data used in the analysis were in situ measurements, rather
than MODIS measurements, and, therefore, did not represent
the spatially averaged light field that a satellite sensor de-
tects. The spatial patterns of the three properties in the TWS
were revealed by calculating their spatial anomalies and nor-
malizing each to their respective spatial mean. The RMSD
(root mean square deviation) between each normalized spa-
tial anomaly pair of Chl and Aph or Chl andat-w(443) was
calculated as:

RMSD=

√√√√1

n

n∑
i=1

δ2 (6)

whereδ was the difference between each pair of normalized
spatial anomalies, andn was the pixel number (varies from
134 000 to 148 118, depending on percentage of cloud cover
in each month). As shown in Fig. 3, the RMSD was larger
between Chl and Aph (the grey bar) than between Chl and
at-w(443) (the empty bar), especially during the cold season
when the wind was strong and the water was relatively turbid
due to sediment resuspension (Guo et al., 1991). This find-
ing clearly indicates that the spatial pattern of empirically
derived MODIS Chl was more similar to that of MODIS
at-w(443) than MODIS Aph. Thus, the empirical MODIS
Chl product was registering the combined influence of phy-
toplankton pigments and other optically active materials (de-
tritus and CDOM) in the TWS, similar as that found in the
South Pacific Gyre (Lee et al., 2010b). Using analytically de-
rived Aph from MODIS measurements to study phytoplank-
ton dynamics is thus further justified.

www.biogeosciences.net/8/841/2011/ Biogeosciences, 8, 841–850, 2011
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5 Spatio-temporal variation of MODIS Aph in the
Taiwan Strait

The monthly mean of each year and climatological monthly
mean MODIS Aph dataset were used to analyze the spatio-
temporal variations of Aph during 2003–2009.

First, the annual mean Aph and its standard deviation
(STD) were derived from the climatological monthly mean
MODIS Aph. The STD identifies a highly variable area lo-
cated alongshore the China mainland, and an area showing
low temporal variation located in the deepest zone of the
TWS (i.e. the Penghu Channel), adjacent to the South China
Sea (Fig. 4a).

To investigate further the seasonality of Aph in waters of
low temporal variation, we chose a square in the Penghu
Channel (right bottom of Fig. 4a) and derived its monthly
time series. Although variations are weak, Aph slightly in-
creases during December to March by about 17% over the
mean level of Aph in the other months (Fig. 4b). This sea-
sonal pattern with a winter maximum is similar to in situ
observations of Chl, phytoplankton cell counts, and primary
production at SEATS (18◦ N 116◦ E, South East Asian Time-
series Study station, Tseng et al., 2005) and the entire South
China Sea (Ning et al., 2004; Chen, 2005). This correspon-
dence between seasonal cycles of phytoplankton pigment in
the TWS and the South China Sea is not surprising since
this part of the TWS is dominated by the SCSWC (Jan et
al., 2002). Enhanced nitrate availability in winter due to en-
hanced wind-driven vertical mixing is thought to play a role
in modulating phytoplankton dynamics in this water (Chen,
2005), although photoacclimation and altered grazing pres-
sure may also be important (Behrenfeld et al., 2005; Behren-
feld, 2010).

In contrast to the Penghu Channel water, Aph is highly
variable alongshore the China mainland, influenced by in-
puts of the Jiulongjiang and Hanjiang Rivers (see locations
in Fig. 1) and by upwelling in summer (Hong et al., 2009)
and the Zhe-Min Coastal Water in winter (Jan et al., 2002).
In the nearshore band west of the white line on Fig. 4a,
Aph ranges from 0.048 m−1 in March to 0.088 m−1 in June
(Fig. 4b). Overall, Aph peaks in summer (June–August) at a
value 64% higher than the minimum Aph observed in spring
(March–May). Summer is the season of peak river flow,
which accounts for 44% of the annual discharge (Sun et al.,
2009;http://baike.baidu.com/view/23372.html). Summer is
also the season of southwesterly wind, which drives coastal
upwelling (Hong et al., 2009). Nearshore phytoplankton
blooms, as indexed by the high Aph values, are thus sup-
ported by the availability of nutrients provided by both river
plumes and upwelling.

A close-up view of this nearshore water in May–August
(Fig. 5a) clearly demonstrates the combined impacts of river
plumes and upwelling in summer. Out of each estuary, there
is a tongue of high Aph (generally≥0.1 m−1) advecting
northeastward. This feature is most distinct in June (Fig. 5a).
In the vicinity of Hanjiang River estuary (also nearby the
Dongshan Island), a broad area of especially high Aph is
found, relative to values for the Jiulongjiang River estuary.
This difference is, in part, due to the volume of Hanjiang
River annual flow at 258× 109 m3, which is ∼80% higher
than the Jiulongjiang River (142×109 m3) (Sun et al., 2009).
In addition, a significant upwelling center is located in the
vicinity of Dongshan Island (Hong et al., 2009). These com-
bined factors (upwelling and stronger river plume) result in
stronger blooms for the Hanjiang River estuary area.
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Fig. 5. (a)close-up view of Aph in the nearshore water (west of the
white line alongshore on Fig. 4a) in May–August;(b) The interan-
nual variation of Aph percentage of valid retrievals and alongshore
wind stress anomaly in the area of Hanjiang River estuary in June
during 2003–2009 and the MEI.

To investigate the interannual variation of bloom intensity
for such an upwelling enhanced bloom in the Hanjiang River
estuary area, we used the monthly mean Aph of each year
to derive an annual areal bloom index (ABI). ABI was cal-
culated as the sum of Aph in pixels having Aph≥ 0.1 m−1

for all valid observations in a month (Aph of 0.1 m−1 corre-
sponds to∼1.7 mg m−3 Chl in the TWS, Dong, 2010). The
ABI within a square representing the Hanjiang River estu-
ary (see location on the June image of Fig. 5a; its area is
9400 km2) in June of each year during 2003–2009 is shown
in Fig. 5b (the empty circle), along with the percentage of
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Fig. 6. (a)Spatial anomaly of Aph in the TWS in April–September;
(b) thermal frontal probability in April–September.

valid pixels to retrieve the ABI (the grey bar), the along-
shore wind stress anomaly (the solid circle), and the Multi-
variate ENSO Index (MEI,http://www.cdc.noaa.gov/people/
klaus.wolter/MEI/; the red and blue curve indicates occur-
rence of El Nĩno and La Nĩna, respectively). The ABI
peaks in 2008 and is the lowest in 2004, and is well corre-
lated with the alongshore wind stress anomaly (R2

= 0.67,
n = 7). More positive alongshore wind stress anomalies cor-
respond to stronger southwesterly winds, which drive en-
hanced upwelling, offshore advection of river plumes, and
stronger phytoplankton blooms (and vise versa). However,
the ABI in 2009 is 152 m−1, even lower than the ABI in
2003 (776 m−1). The alongshore wind stress anomaly is pos-
itive in 2009 and negative in 2003, suggesting bloom favor-
ing conditions in 2009 compared to 2003. This abnormally
low number in 2009 is in part due to missing satellite data in
the Hanjiang River estuary area owing to heavy cloud cover.
In total, there are 7771 pixels in the square for ABI estima-
tion. As the grey bar in Fig. 5b shows, during most of the
year, more than 80% of the pixels in the square have valid re-
trievals; while in 2009, only 29% of the pixels had valid Aph
data. Therefore, additional uncertainties of satellite data due
to bad weather conditions must be noted, necessitating care-
ful examination of the data. If we remove data from 2009
where ABI values are abnormally low in number, theR2 be-
tween ABI and the alongshore wind stress anomaly increases
to 0.97 (n = 6).

Interestingly, variations of the ABI show coincidence with
ENSO activities, illustrated by the match of the empty circles
(ABI) and the red and blue curve (MEI) (Fig. 5b). The year
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of the lowest ABI (2004) is in the midst of an El Niño event
(2000–2005), and the year of the highest ABI (2008) is in
the midst of a La Nĩna event (2007–2009). Such an ABI dif-
ference between El Niño and La Nĩna years might be more
significant, if it is influenced by potential differences in cloud
cover between El Niño and La Nĩna years, since 78% of the
total pixels have valid retrievals in 2008 while the percentage
of valid retrievals is as high as 86% in 2004 (see the grey bar
in Fig. 5b). It has been acknowledged that the relationship
between the Asian monsoon and ENSO is mutual but selec-
tively interactive (e.g. Webster and Yang, 1992). However,
which factor is the underlying cause and which is the effect
remain unclear (e.g. Kinter III et al., 2002). Here we have ob-
served a strong coastal bloom in 2008, when the southwest
monsoon is the strongest (during 2003–2009) and a La Niña
event is occurring. We have also observed a weak bloom in
2004, when the southwest monsoon is the weakest (during
2003–2009) and an El Niño event is at its mid-point. Further
study of regional scale ecosystem variability should advance
understanding of the monsoon-ENSO interaction.

Spatial anomalies of Aph also highlight a distinctly high
Aph patch generally located in the middle of the south-
ern TWS, appearing in the period of April to September
(Fig. 6a). This patch is likely associated with (1) shelf break
upwelling in the vicinity of the Taiwan Bank (Li et al., 2000),
(2) island stirring around Penghu Islands (Simpson and Tett,
1986) and (3) upwelling associated with Zhangyun Ridge (Pi
and Hu, 2010). Frontal probabilities derived from MODIS
SST during 2003–2009 are greater than 60% in the area cor-
responding to this Aph patch (Fig. 6b). Since vertical temper-
ature gradients are smaller during cold seasons, these fronts
can only be well developed in the surface water during warm
seasons (April–September). Fronts provide powerful physi-
cal forcings to inject nutrients from deep water into the sur-
face, thus facilitating phytoplankton growth.

6 Conclusions

The current study provided both an assessment of algorithm
performance and a description of phytoplankton dynamics in
the optically complex TWS. Based on our analysis of 104 in
situ measurements in the TWS, we found that the QAA algo-
rithm provided a satisfactory assessment ofaph from both
MODIS and ship borneRrs. We further derived climato-
logical monthly mean Aph (2003–2009) from MODISRrs
with QAA and found a variety of seasonal patterns for Aph
in the TWS. The most interesting result is that the phyto-
plankton bloom in the vicinity of Hanjiang River estuary,
which is enhanced by upwelling in summer, shows an order
of magnitude variation during 2003–2009. This interannual
variability is highly correlated with alongshore wind stress
anomalies and ENSO activities, and demonstrates ecological
responses to changes in environmental forcings, documented
here for the first time by using satellite Aph data. These dy-

namics were not revealed when satellite Chl product was em-
ployed, as there are large uncertainties in the spectral-ratio
derived Chl in nearshore waters (Zhang, 2006). It should be
noted, however, that Aph is not a full reflection of variability
in phytoplankton pigmentation because of the package effect
(Bricaud et al., 1998), even though they are directly related
to each other. Some uncertainties also remain in our satellite
aph products due to issues with variable cloud cover that may
introduce biases in our results, especially in winter. Repeated
observations from multi-sensors and geostationary satellites
may help resolve such problems in the future.
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