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Abstract. Due to their negative water budget most recent
semi-/arid regions are characterized by vast evaporates (salt
lakes and salty soils). We recently identified those hyper-
saline environments as additional sources for a multitude
of volatile halogenated organohalogens (VOX). These com-
pounds can affect the ozone layer of the stratosphere and
play a key role in the production of aerosols. A remote
sensing based analysis was performed in the Southern Aral
Sea basin, providing information of major soil types as well
as their extent and spatial and temporal evolution. VOX
production has been determined in dry and moist soil sam-
ples after 24 h. Several C1- and C2 organohalogens have
been found in hyper-saline topsoil profiles, including CH3Cl,
CH3Br, CHBr3 and CHCl3. The range of organohalogens
also includes trans-1,2-dichloroethene (DCE), which is re-
ported here to be produced naturally for the first time. Us-
ing MODIS time series and supervised image classification
a daily production rate for DCE has been calculated for the
15 000 km2 ranging research area in the southern Aralkum.
The applied laboratory setup simulates a short-term change
in climatic conditions, starting from dried-out saline soil that
is instantly humidified during rain events or flooding. It
describes the general VOX production potential, but allows
only for a rough estimation of resulting emission loads. VOX
emissions are expected to increase in the future since the area
of salt affected soils is expanding due to the regressing Aral
Sea. Opportunities, limits and requirements of satellite based
rapid change detection and salt classification are discussed.

1 Introduction

Organic compounds containing halogens – especially chlo-
rine – have been considered for a long time to be of industrial
origin only. Volatile organohalogens (VOX) are effectively
linked to atmospheric chemistry cycles, leading to potentially
significant feedbacks on cloud formation, Earth’s albedo and
eventually the regional and global climate.

Since the middle of the 1970’s over 5000 different
organohalogens have been discovered to be produced by
nature, involving biogeochemical, biochemical and micro-
bial processes. This includes de-novo producers like fungi,
halophilic bacteria and archaea, plants, animals, and insects
(e.g. Gribble, 2010).

Relevant data on the quantity and variety of low molecu-
lar weight organohalogens in the terrestrial environment are
limited. This compartment receives significant fluxes of in-
organic halides via the deposition of sea salt aerosols, com-
bustion processes, and from weathering processes of rocks as
well as vertically intruding salt diapirs.

VOX have been found in natural soils as well as sedi-
ments of hyper-/saline salt lakes (Schöler and Keppler, 2003;
Weissflog et al., 2005). A number of studies is dealing with
the release of organohalogens from coastal marshes and other
wetlands, where halogenation was suggested to depend on
fungal and bacterial activity (e.g. von Glasow and Crutzen,
2007). There is also increasing evidence of an abiotic forma-
tion in soils involving humic substances and iron (Keppler et
al., 2000, 2002; Huber et al., 2009). Emission budgets for
longer-lived halocarbons, mainly of interest for stratospheric
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chemistry, have been published for peatlands (e.g. Dimmer
et al., 2001), wetlands (Varner et al., 1999), salt marshes
(Rhew et al., 2000) as well as terrestrial vegetation (Yokouchi
et al., 2000).

The global source strengths of organohalogens from soils
and vegetation are poorly constrained. Keppler et al. (2005)
highlighted the need for a better quantification of longer-
lived halomethanes such as CH3Cl and CH3Br from recently
discovered, additional natural terrestrial sources. For exam-
ple, Wishkerman et al. (2008) elucidated the reaction of plant
pectin with bromide forming CH3Br. This appears abiot-
ically at ambient temperatures and the emissions are dou-
bled with every 5◦C rise. The natural production of CH3Br
and CHCl3 has been proven by Weissflog et al. (2005) for
hyper-saline sediments of Southern Russian and Kalmykian
salt lakes. Huber et al. (2009) found soil pH-levels, Cl−/Br−

content as well as soil organic content and structural features
of the soil organic matter to be important drivers behind the
biogeochemical formation of trihalomethanes. These results
have important implications for the VOX release from veg-
etation and soils located in regions that are particularly af-
fected by climate change (i.e. heat waves and drought). How-
ever, the global source strength remains uncertain.

First indications of the predicted climate change will ap-
pear within the next few decades. Towards the end of the
21st century a clear increase of dry areas is expected for
Middle Asia as well as for Africa, as shown in Fig. 1. For
both regions the current situation of land degradation and
desertification becomes more problematic due to a constant
anthropogenic influence, such as overgrazing, pollution and
physical overstraining. In some regions the proposed climate
change will lead in consequence of higher temperature, more
frequent heat waves, lower rainfall and higher evaporation to
an increase in quantity and scale of hyper-saline salt lakes,
salty soils and salt-dust storms, as it is now observable e.g. in
Middle Asia. Due to their negative water budget most recent
semi-/arid regions are characterised by vast evaporates (salt
lake sediments) and salty soils.

This study aims to combine remote sensing and laboratory
data on VOX production to examine the potential of satellite
products for an estimate of regional VOX production rates of
hyper-saline environments.

To extrapolate small-scale experiments to supra-regional
and global scales it is necessary to provide spatial infor-
mation on number, size, and seasonal dynamics of saline
ecosystems. Satellite based remote sensing will enhance
the accuracy of extrapolated small scale VOX emission data
to regional scales. It is superior to simply multiplying
the average production rates with the Aralkum target area,
which exhibits a variability of sediments and soil types, each
characterized by varying salt composition and Corg content
(Dukhovny et al., 2008).

Within this study, hyper-saline ecosystems of different ge-
ographical origin, different geochemical character and differ-
ent development states have been compared for their VOX

production potential. The Central Asian Aralkum, whose
soils have been tested for VOX production, serves as an
example for a highly dynamic, spreading saline ecosystem,
composed of hyper saline crusts and saline soils which ap-
peared after desiccation of the Aral Sea (Fig. 2). A re-
mote sensing based analysis was performed in the south-
ern Aral Sea basin, providing information on main soil
types as well as their extent and spatial distribution and
temporal evolution.

The remote sensing approach counteracts distortions of
simplified average production data and considers the fast
evolution of soil surface as well as soil salt content and soil
humidity of the Aralkum.

2 Methods

2.1 Study area

The study area (Figs. 2 and 3) is located within the au-
tonomous Republic of Karakalpakstan (Uzbekistan), cover-
ing an area of approximately 15 000 km2. With the regres-
sion of the fourth largest lake of the world, a huge saline
desert emerged on the former seabed, which is called the
“Aralkum” (Breckle et al., 2001). Former harbour cities
like Muynak (Uzbekistan) are now located tens of kilome-
ters away from the present shoreline. From an ecological
point of view, it is considered as the world’s largest area
where primary succession is taking place (Wucherer and
Breckle, 2001).

Decreasing water flow in the Amu Darya river (the Oxus
of ancient times) caused dramatic loss of wetlands and the
associated reed communities in the rich ecosystem of the
Amu Darya river delta (Sivanpillai and Latchininsky, 2007).
The shrinking Aral Sea exposed about 50 000 km2 of its for-
mer seabed (Micklin, 2007), which shows a wide variety of
different landscape and soil types. The major part of the
desiccated seabed is considered as a highly unstable land-
scape with a high ecological hazard in terms of desertifica-
tion and eolian erosion (Dukhovny et al., 2008). Salt af-
fected areas are considered as a major source for salt and
dust storms in the region and appeared after regression of the
Aral Sea (Razakov and Kosnazarov, 1996; Orlovsky et al.,
2001; Singer et al., 2003; Mees and Singer, 2006).

2.2 Monitoring land cover dynamics

Classification of Terra MODIS time-series was performed
to assess the land cover dynamics in the study area be-
tween 2000 and 2008 and to monitor different stages of soil
salinisation. The MOD09 8-day Surface Reflectance Data
of the Terra MODIS satellite (Moderate Resolution Imag-
ing Spectroradiometer) was chosen as primary data source.
Seven spectral bands, centered at 648 nm, 858 nm, 470 nm,
555 nm, 1240 nm, 1640 nm, and 2130 nm respectively, were
processed to obtain the full spectral range and improve class
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Fig. 1. Backdrop image: global desertification vulnerability (USDA-NRCS, Soil Survey Division, World Soil Resources, Washington
D.C. 1996). Gray shading: global distribution of recent salt lakes and salt soils (after Williams, 2002). Pink dots indicate the study ar-
eas mentioned in this study: Aralkum desert in Central Asia, Kalmykia in southern Russia, coastal wetlands of Namibia, and inland salt flats
of Botswana.

Fig. 2. Highly dynamic, spreading saline ecosystem: the Aralkum in Central Asia. Terra MODIS images acquired on July 2000, 2009 and
2010. Images displayed in false color band combination 7-2-1. Red squares indicate the study area.

separability. The almost daily availability of MODIS satel-
lite images since the year 2000 enables recording landscape
dynamics in a very high temporal resolution. Ground refer-
ence data for classification of satellite images were collected
during field surveys in the study area in 2007, 2008 and

2009 in accordance to the FAO LCCS (Land Cover Classi-
fication System), whereas 650 ground reference points were
collected, including photos of the sampling sides, vegeta-
tion mapping and important soil characteristics. A quality
assessment of the input data was performed, using the TiSeG
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Fig. 3. Location of the study area in the southern Aral Sea Basin.
The map shows the major land cover transformations that took place
where the sea surface has desiccated between 2000 and 2008. The
image backdrop is a Terra MODIS scene acquired on 20 July 2009.
Red square indicates the study area.

software (Time Series Generator) (Colditz et al., 2008). Ad-
ditional input information for the classification procedure
was provided through the calculation of the NDVI (Normal-
ized Differentiated Vegetation Index) and several band ra-
tios where tested and evaluated for their potential to improve
discriminating salt affected areas. Besides data noise, time
series exhibit significant temporal autocorrelation. In order
to reduce the redundancy in feature space, metrics (basic
statistics such as mean, standard deviation, minimum, maxi-
mum, and range) were calculated and further used as baseline
dataset for the classification. Decision trees (DT) were found
to be the most suitable method for classifying the input data,
and have successfully been applied in other studies (DeFries
et al., 1995; Hansen et al., 2000). The classification of the
time series was conducted with the QUEST algorithm (Quick
Unbiased Efficient Statistical Tree) (Loh and Shih, 1997),
which is implemented in the software add-on “RuleGEN
1.02” running in the standard image processing environment
“ENVI 4.7” (ITT Visual Information Solutions).

The classification results were used to perform a post-
classification change-detection analysis for the time steps
2000–2004, 2004–2008 and 2000–2008. The approach used
in this study provides “from-to” change information and the

kind of landscape transformation that have occurred. The
land-cover change areas between the different classes were
then calculated. Validation was performed using an indepen-
dent sample of validation points to assess classification ac-
curacy. Validation points from 2008 were measured directly
in the field, whereas for 2000 and 2004, validation points
were randomly generated and evaluated visually using Land-
sat TM imagery and NDVI temporal signatures. For further
details of the method see Löw et al. (2012).

2.3 Soil chemistry and VOX emission

Soil samples for VOX analysis have been taken in May 2009.
After pre-screening certain soil types in the study area using
Landsat 5 TM classification based soil maps (Dukhovny et
al., 2008), specific sample sites have been selected along sev-
eral transects, focusing on unaffected natural topsoil. Top-
soil profiles (0–2 cm) were sampled for each site, where
available the soil/salt crusts were additionally sampled be-
tween 0–0.5 cm. Sampling sites were positioned by means of
GPS measurements including photos of the sampling sites,
soil surface characterization and geo-botanic mapping by a
standardized form sheet based on LCCS.

Soil samples were kept cool and shipped to Heidelberg
(Germany), frozen at−26◦C, freeze-dried, milled and sieved
(mesh<315 µm). XRD analyses were performed applying
a Bragg-Brentano powder diffractometer (Philips PW 3020
Goniometer) with secondary beam monochromator. Soil or-
ganic carbon content is calculated from total carbon content
and inorganic carbon (carbonate), using a CS analyzer (Leco
SC-1444DR), and a carbonate bomb (Müller and Gastner,
1971), respectively.

The method to determine the VOX formation in top-
soil samples followed the procedure described by Huber et
al. (2009). In brief, dried and milled soil samples were trans-
ferred to 20 ml headspace glass vials and incubated for 24 h at
40◦C in the dark. The VOX production has been determined
using a custom-made purge & trap system, connected to a gas
chromatograph with mass spectrometer (Varian STAR 3400
GC and Saturn 2000 ion trap MS). The setup describes the
general VOX production potential. It does not enable direct
correlation to emissions, but allows for a rough estimation
of resulting emission loads. To discover the effect of soil hu-
midity different assays have been performed, adding distilled
water to selected soil samples or directly testing the dried soil
(Huber et al., 2009). Detection limits have been determined
to 0.1–0.01 ng g−1 dry soil, depending on species and matrix.

Preconditioning the samples enables to compare the soil
production potential for different sample depths, locations
and geographical regions and allows for statistical evalua-
tion of possible drivers. The applied sample preparation sup-
presses the majority of biogenic VOX producers, such as
bacteria, algae and archaea. Based on literature (e.g. Mor-
ley et al., 1983; Islam et al., 1997) a single freezing period
of more than 24 h with temperatures of less than−20◦C
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Table 1. Matrix of land cover change derived from MODIS time series classification. Area statistics for 2000, 2004 and 2008.

Land cover class 2000 2004 2008

Typ Description (km2) (%) (km2) (%) (km2) (%)

Shrubland Mainly shrubs (e.g. Haloxylon aphyllum,
Tamarix sp.), vegetation coverage> 15 %

4493 30.1 3828 25.6 5649 37.8

Reed Reeds, mainly dominated by Phragmites sp.,
partly with other vegetation (mostly shrubs)

2961 19.8 3891 26.0 1737 11.6

Bare Area Bare soils and unconsolidated materials,
sand sheets and dunes, soils with scattered
vegetation, vegetation coverage< 15 %

2261 15.1 1974 13.2 3024 20.2

Salt Soil Salt affected soils (e.g. Solonchaks, Takyrs) 2014 13.5 3036 20.3 3707 24.8
Salt Crust Salt crusts surrounding Aral Sea shoreline 320 2.2 695 4.7 717 4.8
Water Shallow lakes, reservoirs and the Aral Sea 2888 19.3 1514 10.1 105 0.7

Total 14 940 100 14 940 100 14 940 100

results in 60 % mortality of soil microorganisms. Depend-
ing on species, environment and temperature the microbial
population might recover within several days. However, the
microbial residues (Corg source) remain in the sample and
will be exposed to geochemical reactions.

Depending on sample location, the low organic content
of saline sediments partly originates from algae/bacterial
mats. Based on experiments by Weissflog et al. (2005) one
would expect even higher emission rates when incubating
unprepared samples for several weeks or months.

3 Results and discussion

3.1 Change detection and soil condition

Using MODIS time series and supervised image classifica-
tion, different stages of salinization were classified for the
years 2000, 2004 and 2008, ranging from salt crusts within
a narrow stripe adjacent to the sea, to extensive Solonchaks
and almost salt free sand sheets. Overall accuracies were
consistently high with 82.8 %, 81.5 % and 79.5 %, and Kappa
statistics of 78 %, 77 % and 73 %, respectively. It is shown
that the recession of the Aral Sea results in a quick build up
of extensive salt crust directly adjacent to the sea. Almost
all of these salt pans covered by salt crusts developed into
a series of different salt soil types (e.g. Solonchak, Takirs)
and then, in some parts of the area, into almost sand free
bare areas. This trend was found to occur within 8 yr at
some locations, demonstrating that a significant proportion
of the former seabed features highly unstable surface types
(Fig. 3). The changing hydrological situation of wetlands
over the years is obvious (Fig. 2). Important types of land
cover change between 2000–2004 and 2004–2008 were “wa-
ter to salt soils”, “water to salt crusts” and the conversion of
salt soils to bare area (Table 1).

The composition of main minerals, calculated through
XRD semi-quantitative analysis is given in Fig. 4. All
locations, except T3, are dominated by SiO2 minerals
(quartz: 47–83 %). Location T3 itself is situated within the
rapid developing salt flats surrounding the residual water
body of Aral Sea and is dominated by precipitated salts (sul-
phates 35 %, halides 32 %, carbonates 20 %). Compared to
that, T6 represents a typical sandy topsoil, dominated by
83 % silicates with only 10 % sulfates and 7 % carbonates.
The area surrounding T6 dried out very recently and is a
region that is influenced by accumulation of sand and ae-
olian dust. Locations T7 and T5 can be seen in an inter-
mediate class with∼50 % silicates, versus∼20 % carbon-
ates and∼15 % halide. Both sites are being flooded reg-
ularly (T7, storage lake Sudochie) in other words periodi-
cally influenced by increased soil humidity and elevated level
of saline groundwater (T5, next to old, temporally flooded
dam). Through capillary forces these humid soils accumu-
late salt at the soil surface, forming distinct crusts of several
millimetre thickness.

Soil organic content (Corg) varied between 0.2 % and 0.5
weight %. Highest organic values were found in dry sedi-
ments of the water reservoir Sudochie at site T7 with 1,6 %.
Accordingly, T7 has to be compared carefully with other
“salt soils” in the study area – e.g. T5 and T10, which gave a
similar RS-signal but provide different hydrological features.

3.2 VOX production in Aralkum samples

VOX emission experiments were performed for each 0–2 cm
soil sampling interval. As shown in Fig. 4 most soil sam-
ples produce trans 1,2-dichloroethene (DCE) in the range of
0,1 ng g−1 soil dry weight (DW), within 24 h after humidi-
fication. DCE is widely known as breakdown or degrada-
tion product of anthropogenic VOX pollution, particularly in
groundwater and soil. Our data (Fig. 4 and Table 3) reveal
the frequent formation of DCE in several saline soils from
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Fig. 4. Mineral content and Corg versus DCE production. Samples of topsoil layer 0–2 cm (including crusts), incubated for 24 h after adding
water. DCE determination by purge & trap headspace GC-MS. Production rates are given in [ng kg−1 * day]. Land cover classes of location
T1 till T11 are classified through MODIS time series analysis (see Table 1). Corg values are given as numbers additionally.

Middle Asia, Southern Africa and Southern Russia, but the
confirmation of the underlying production mechanism is still
under investigation. DCE might also be produced through
degradation of higher chlorinated precursors such as tri-,
tetrachloroethene and trichloroethane, since recent research
has revealed chemically-precipitated ferrous iron to act as an
abiotic active reductant for VOX (e.g. Brown et al., 2009).

Regarding Fig. 4 the successively formed sandy soils of
the locations T6 and T10 do not show any DCE forma-
tion, which possibly can be explained by their very low Corg
content. Surprisingly soil T7, which displays highest Corg
content and provides favourable high soil humidity in the
field does not produce any DCE under laboratory conditions.
Whereas site T11, a rather sandy soil type, but several ten
years matured after desiccation, reached highest DCE val-
ues. T11 is situated southeast of Muynak and lies within the
former Amu Darya river delta. Desiccation after 1970–1980
and regularly flooding during springtime was followed by the
usage for livestock feeding. The mechanism of DCE forma-
tion and possible inhibiting factors remain unclear.

For a rough estimate of regional DCE production poten-
tial, the land cover class data of Table 1 are combined with
the DCE formation data of Fig. 4. Calculated DCE produc-
tion data for the years 2000, 2004 and 2008 are shown in
Table 2. Production data refer to a 24 h production time un-
der the favourable condition of a moist soil system (e.g. after
flooding or rain events) and elevated summer temperatures
of 25–35◦C air temperature; climate conditions that may
result in topsoil temperatures of up to 55◦C. Due to diffi-
cult sampling conditions close to the remaining water body,
no samples could be taken for the land cover class “Water”.
Land cover class “Reed” was not included as well. For class
“Shrubland” and “Bare Area” the corresponding emission
loads vary between the sample sites considerably. This can
be explained by grouping different soil types to one soil class

(according to the method used) as well as fractional misinter-
pretation of soil signals by MODIS. The measured plots were
selected in such a way that they represent the spatial variation
of land cover classes and the variations in VOX production
are therefore to be expected. Mapping specific features like
salt quality, organic content or humidity to assign soil sub
classes can not be realized without a hyperspectral data ap-
proach (e.g. Schmid et al. 2004; Dehaan and Taylor, 2002).
Herein the limits of the applied method become evident. To
demonstrate the limits of MODIS data Fig. 5 contains spec-
tral signature variations of main land cover classes in contrast
to laboratory data of spectral profiles for gypsum, halite, cal-
cium carbonate, sodium bicarbonate, and sodium sulphate –
data taken from Metternicht and Zinck (2003).

Hypothetically, based on the 0–2 cm data a productive day
in 2008 could have led to a notable production up to a to-
tal of 23 kg DCE for the research area of 15 000 km2. This
number increases drastically when applying the method to
the remaining salt affected soils of the 50 000 km2 ranging
Aralkum and the surrounding salt affected soils. Expand-
ing the production time to the whole spring season, with its
high temperatures but still moist soil system, will further in-
crease the DCE production. Enhanced production rates can
be expected in the future when remaining hyper-saline water
bodies of the Aral Sea dry out (Micklin, 2010). Including
emission data of the deeper soil layers will potentially top up
the overall production. Since DCE is only one of a range of
chemical substances, the total VOX production loads could
potentially increase significantly.

Regional and global emission models often base on a rel-
atively small number of plots chosen as representative areas
for large heterogeneous or fragmented landscapes (e.g. small
farming). That way, the given sample frequency for the rel-
atively homogenous bottom of the Aral Sea is not very dif-
ferent from other experiments focusing on e.g. CH4, NOx or
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Table 2. Estimated production of trans 1,2-DCE for the research area (ca. 15 000 km2) based on 0–2 cm soil profile data. Determined DCE
production within 24 h after humidification of the soil sample. Production rates are given for each land cover class in g DCE/covered area
and day.

Land cover DCE
class and production Land cover area DCE production
corresponding site [mg km−2 *d] [km2] [g/cover area * d]

2000 2004 2008 2000 2004 2008

Shrubland
T-9 1004 4493 3828 5649 4511 3843 5672

T-11 2703 12 144 10 347 15269
Reed no site – 2961 3891 1737 – – –

Bare Area
T-1 991 2261 1974 3024 2241 1956 2997
T-4 889 2010 1755 2688
T-6 n.d. n.d. n.d. n.d.

Salt Soil
T-5 1090 2014 3036 3707 2196 3310 4042
T-7 n.d. n.d. n.d. n.d.

T-10 n.d. n.d. n.d. n.d.

Salt Crust T-3 915 320 695 717 293 636 656
Water no site – 2888 1514 105 – – –

Sum high 16 873 16 249 22 963
Sum mid 9009 9544 13 057
Sum low 4803 4479 6327

n.d. = not detectable, “–” = not measured

Table 3. Typical VOX emission characteristic of saline soils and sediments of different origin using purge-and-trap GC/MS analysis; 24 h
incubation time under condition of moisten or dry saline sediment [ng m−2].

Uzbekistan South Russia Botswana
Southern Aral Volgograd Namibia Makgadigkadi

Sea region Walfishbay Pan

Site description endorheic basin, salt pan (from dry river mouth, dry salt pan,
partly seasonally diaper), seasonally maritime seasonally covered

flooded covered with water coastline with water/grass

GPS 43◦58′46 N 49◦7′50 N 23◦5′30 S 20◦32′12 S
59◦0′24 E 46◦41′35 E 14◦27′35 E 25◦58′31 E

pH soil crust 8.5–10 6.9–8.3 7.8–9.0 9.5–10,3
Conc. range Cl− [g kg−1] 6.1–120 22–51 17–81 25–82
Conc. range Br− [mg kg−1] n.d. 112–315 43–312 64–204
Cl−/Br− (molar ratio) – 260–450 470–990 780–990

Chloromethane CH3Cl n.d. 15 240 * 14 410 * n.d.
Bromomethane CH3Br n.d. 1040* 1160* n.d.
Tribromomethane CHBr3 n.d. 2570* n.d. n.d.
Trichloromethane CHCl3 4640 1480 3620 2190
Dibromochloromethane CHBr2Cl n.d. n.d. n.d. 9800
Dichlorobromomethane CHBrCl2 n.d. n.d. n.d. n.d.
Trans-1,2-Dichloroethene C2H2Cl2 2640 n.d. 20 700 8270
Trichloroethene C2HCl3 290 n.d. n.d. 1290
Tetrachloroethene C2Cl4 n.d. n.d. 430 360

* Detected under dry condition n.d. = not detectable. All other data points have been detected under moist condition.
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Fig. 5. Spectral signature variations of main land cover classes
(bare area, salt soil and salt crust). Data recorded from pixels cov-
ering the soil sampling sites respectively pixels selected for train-
ing of the image classifier algorithm. Reflectance measurements
(blue dots) were interpolated for better visual readability (blue dot-
ted lines). For comparison with laboratory data the image back-
drop shows spectral profiles of gypsum, halite, calcium carbon-
ate, sodium bicarbonate, and sodium sulphate in the visible, near,
and mid-infrared (400–2500 nm). Data source: Metternicht and
Zinck (2003); recorded by the GER 3700 Spectroradiometer.

CO2 production from much more inhomogeneous soil sys-
tems. Categorical land cover classes have been used before
to extrapolate emission rates of certain gases by e.g. Hines et
al. (1993), Stow et al. (1998), Zhang et al. (2011), Bubier et
al. (2005) and Melack et al. (2004).

3.3 Comparing samples from Aralkum, southern
Africa and southern Russia

VOX production data for saline sediments of southern Africa,
as well as southern Russia and the Aralkum are compared in
Table 3. Sampling procedure and analytical method for these
locations are similar to the experiments performed in the Ar-

alkum. Saline sediments at the Namibian coastline as well
as the Makgadikgadi salt flats in central Botswana outrange
the DCE production of the former sediments of Aral Sea.
CHCl3 occurs consistently, whereas others seem to be spe-
cific to one location or special soil conditions. Indications
for a pH-dependent production mechanism can be derived
from Table 3 as well, which meets the findings of Huber et
al. (2009). As expected the production of Br-VOX can be
correlated to soils bromide content. Inland salt lakes that are
fed by ancient marine salt deposits (e.g. Southern Russia)
often show elevated bromide content and corresponding Br-
VOX emissions. Saline environments that are mainly fed by
erosion processes often show relatively low bromide content
(e.g. Aral sea). No brominated VOX could be found for the
Aralkum, which correlates to the low concentration of bro-
mide in the soil samples. Substantial amounts of brominated
VOX have been found in saline sediments that are influenced
by (ancient) sea water, brackish ground water or sea spray
(e.g. Namibia, Southern Russia, Botswana).

Interestingly some compounds (CH3Cl, CH3Br) were
found under dry conditions, others exclusively for moist soil
(compare Table 3). The underlying formation scheme for a
thermolysis production might have similarities to the pectin
reaction reported by Wishkerman et al. (2008) and offers a
possible pathway of degradation of biotic material (e.g. al-
gae mats) that remains in the topsoil during dry seasons. All
in all, Table 3 and literature data indicate the main factors for
the VOX production mechanism to be pH-level, soil organic
content as well as salt content/composition (halide, sulfate,
carbonate) and soil humidity (water content) – (e.g. Huber et
al., 2009; Weissflog et al., 2005).

Comparison of the VOX species composition, shown in
Table 3, discloses a incoherency of possible formation mech-
anisms between the sites and per VOX species – caused
by different geochemical and microbial conditions. Differ-
ent VOX production rates and composition under dry versus
moist conditions do not automatically allow differentiating
between a geochemical or a microbial mechanism since both
rely on moist environments. It is not yet clear to which ex-
tent microbial and geochemical production mechanisms con-
tribute for each sample site, respectively can not be compared
between the sites.

Based on our findings an efficient VOX production is no
longer bound to rain events and flooding only, but becomes
conceivable throughout the whole year, depending on cli-
matic factors and geographical region. The results emphasize
the global relevance of hyper-saline environments as poten-
tial source areas for VOX formation.

Consequently, the question emerges whether and how, re-
cent and future saline terrestrial ecosystems will have an im-
pact on the global VOX budget, including seasonal effects
like dissolution of halite minerals during rain events fol-
lowed by recrystallisation, as well as annually shifting soil
temperature and soil humidity.
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Fig. 6. Proposed flow chart for extrapolation of VOX emission from soil measurements to larger scales.

Literature data on soil VOX emission is mainly based on
soils from boreal zones, humid tropics, temperate mid lat-
itudes and sub-polar regions. Little or no information is
available for dry mid latitudes and dry sub-/tropical regions
(e.g. Bubier et al., 2005). Albers et al. (2011) and others
discuss the spatial variability of VOX production in northern
Europe, revealing spatial heterogeneities of the VOX emis-
sion as an important issue. In contrast to temperate soils the
dried-out Aral Sea exposes sandy-clayey sediments, which
are often covered by salt crusts. Thus the existing knowl-
edge from temperate soils can not be transferred easily to
dry hyper-/saline sediments with usually no O, A and B hori-
zon and Corg contents of<2 %. For this reason, existing
models on the influence of soil type and texture on VÒX
emission from production data cannot be adapted to (hyper)-
saline terrestrial ecosystems to estimate their emission loads.
Our scenario describes the special situation of humidification
and slurrying the upper soil layer/crust during rain events,
which alters texture and porosity of dry soil. VOX are effec-
tively stripped from the resulting hyper-/saline mixture by
salting out effect and temperature effects. The same effects
will take place in salt flats mentioned in Table 3, covering
hundreds of square kilometres with surface temperatures of
up to 55◦C. Thus, the spontaneous emission of VOX from
topsoil sediments becomes very likely.

4 Conclusions

There is no analytical large-scale method available for deter-
mining VOX with appropriate sensitivity. Open Path FT-IR
Spectroscopy might work for some chlorinated organic com-
pounds, but is limited to mid to high concentration in the
range of mg m−3. Airborne measurements often fail due to
administrative obstacles and high expenses. Other methods
lead to imbalances of the soil system by sampling or hous-
ing, in which chamber experiments are difficult to handle in
landscapes with little or no infrastructure. Therefore, cur-
rently the best approach is to recourse to laboratory based
VOX analysis from soil core samples, ideally supported by
field chamber experiments. The question remains, how to
extrapolate VOX emissions from small-scale soil measure-
ments to landscape scale. Here we have shown that synergis-
tic use of VOX emission data and remote sensing products
may be a suitable approach for estimating the VOX produc-
tion in saline ecosystems, as well as extrapolation of field
measurements to larger scales. Our setup reproduces a short-
term change in climatic conditions starting from dried-out
saline soil, humidified during rain events or flooding. It de-
scribes the general VOX production potential and allows a
rough estimate of the emission load.

At this stage the applied remote sensing method contains
uncertainties regarding the accuracies of land cover classifi-
cation with focus on salt composition and soil humidity. Sev-
eral salt types show different spectral profiles (Fig. 5), which
can be measured by means of remote sensing data (Ben-Dor
et al., 2002; Drake, 1995; Hunt et al., 1972). Highly saline
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soils can be distinguished from low or even non-saline soils
(Metternicht and Zinck, 2003, 2009). But comparing field
and laboratory data much lower reflectance values for real
samples becomes apparent (Fig. 5), which might be caused
in the mixed signal problem of the 500× 500 m MODIS pix-
els (plant and soil fractions between salt crusts). Furthermore
different surface conditions and coarseness affects back radi-
ation. Since the emission of VOX is mainly connected to
surface salt composition, a higher level of detail is needed to
calculate the soil classes with sufficient accuracy.

To detect rapid changes in surface composition and land
cover of saline environments, with adequate precision and
at different temporal and spatial scales is a future challenge
(e.g. salt type, dissolving and re-crystallization following
rain events). The application of hyper spectral data (e.g. En-
Map) becomes essential to meet the problem of MODIS’s
small number of spectral bands, which shield pronounced
spectral information, such as curve parameter and attributes
(Figs. 5 and 6). In order to enhance understanding of small-
scale surface heterogeneities and their influence on regional
VOX emission rates, a multi-scale classification system is
needed, including sensors with different spatial and tem-
poral resolution. A possible methodological procedure is
summarized in Fig. 6.

Special attention has to be paid, when correlating en-
vironmental parameters with VOX emission and when as-
signing VOX emission to distinct land cover classes, which
are directly or indirectly influenced by these parameters and
distinguishable by means of remote sensing.
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