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Abstract. Spatial interactions within a landscape may lead to
large inputs of reactive nitrogen (Nr) transferred from culti-
vated areas and farms to oligotrophic ecosystems and induce
environmental threats such as acidification, nitric pollution or
eutrophication of protected areas. The paper presents a new
methodology to estimate Nr fluxes at the landscape scale by
taking into account spatial interactions between landscape el-
ements. This methodology includes estimates of indirect Nr
emissions due to short-range atmospheric and hydrological
transfers. We used the NitroScape model which integrates
processes of Nr transformation and short-range transfer in a
dynamic and spatially distributed way to simulate Nr fluxes
and budgets at the landscape scale. Four configurations of
NitroScape were implemented by taking into account or not
the atmospheric, hydrological or both pathways of Nr trans-
fer. We simulated Nr fluxes, especially direct and indirect Nr
emissions, within a test landscape including pig farms, crop-
lands and unmanaged ecosystems. Simulation results showed
the ability of NitroScape to simulate patterns of Nr emis-
sions and recapture for each landscape element and the whole
landscape. NitroScape made it possible to quantify the con-
tribution of both atmospheric and hydrological transfers to
Nr fluxes, budgets and indirect Nr emissions. For instance,
indirect N2O emissions were estimated at around 21 % of the
total N2O emissions. They varied within the landscape ac-
cording to land use, meteorological and soil conditions as
well as topography. This first attempt proved that the Ni-
troScape model is a useful tool to estimate the effect of spa-
tial interactions on Nr fluxes and budgets as well as indirect
Nr emissions within landscapes. Our approach needs to be

further tested by applying NitroScape to several spatial ar-
rangements of agro-ecosystems within the landscape and to
real and larger landscapes.

1 Introduction

Agricultural activities are a major source of emissions of re-
active nitrogen (Nr). Two types of emission may be distin-
guished: (i) direct Nr emissions from areas where nitrogen
is applied as mineral fertilizer or manure, (ii) indirect Nr
emissions which may occur far from areas of nitrogen ap-
plication and result from a cascade of transfers and trans-
formations of Nr through the environment (Galloway et al.,
2003). Indirect Nr emissions depend on the farming system
and the characteristics of the area: variations in meteorolog-
ical and soil conditions, topography, spatial distribution of
Nr sources and sinks which are spatially heterogeneous, in
intensity and nature, at a scale of several square kilometres
(Beaujouan et al., 2001; Dragosits et al., 2002). Atmospheric
NH3 emitted from an animal house or a field can be deposited
to the soil and foliage of nearby ecosystems (Fowler et al.,
1998). Similarly, ecosystems at the bottom of slopes can re-
capture groundwater NO−3 that originates in Nr applied up-
stream. Those transfers significantly modify the Nr budget of
oligotrophic ecosystems and may lead to indirect N2O and
NO emissions (Skiba et al., 2006; Reay et al., 2009). Indi-
rect N2O emissions, consecutive to atmospheric deposition
of ammonia (NH3) and recapture of nitrates (NO−3 ), are es-
timated around 20 % of the total N2O emissions in Europe
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(IPCC, 2006). A relevant scale to study the fate of Nr is
therefore an area, namely the landscape, in which interac-
tions occur between ecosystems and farm management, re-
sulting from atmospheric and hydrological transfers which
may be large at short-range, i.e. distances of several square
kilometres to several tens of square kilometres. In rural areas,
the landscape may include a river or stream catchment, sev-
eral livestock buildings, agricultural fields and semi-natural
ecosystems such as forests and wetlands (Cellier et al., 2011).

Several attempts were carried out to estimate indirect Nr,
especially N2O, emissions from measurements (e.g. Deurer
et al., 2008; Reay et al., 2009) or from the IPCC methodol-
ogy (IPCC, 2006) based on emission factors (e.g. Mosier et
al., 1998; Nevison, 2000; Denier van der Gon and Bleeker,
2005). However, those estimates were highly uncertain and
rarely account for both atmospheric and hydrological inter-
actions, as well as farm management. Modelling is help-
ful to study complex dynamic systems such as landscapes,
where spatial interactions occur and direct measurements of
Nr fluxes are time and cost consuming due to the complex-
ity of the system. Several models were developed to simu-
late Nr fluxes in rural landscapes. Most of them focused on
aquatic ecosystems to describe Nr concentrations and fluxes
within and at the outlet of a catchment which may corre-
spond to the landscape scale described above (e.g. Beven,
1997; Whitehead et al., 1998; Beaujouan et al., 2002) or to
larger, i.e. regional scales (e.g. Arnold et al., 1998; Billen

and Garnier, 2000). Recent studies attempted to assess the
effect of anthropogenic activities on aquatic and terrestrial
ecosystems, especially croplands, by coupling hydrological
and crop models (e.g. Beaujouan et al., 2001; Ducharne et
al., 2007). Other recent modelling studies tried to integrate
all compartments of a rural landscape but focusing on one
compartment only, the others being described with less de-
tail. A few studies focused on anthropogenic transfers within
the terrestrial (croplands, grasslands and farm compartments)
and aquatic ecosystems (e.g. Hutchings et al., 2004). Other
studies focused on atmospheric transfers between terrestrial
ecosystems to assess emission, transfer and deposition of
NH3 at the landscape scale (Theobald et al., 2004; Kros et
al., 2011) or indirect N2O emissions at the regional scale
(Denier van der Gon and Bleeker, 2005). However, none
of those models dealt with both atmospheric and hydrologi-
cal Nr transfers in a consistent way regarding temporal and
spatial scales. The NitroScape model (Duretz et al., 2011)
was therefore developed to integrate processes of Nr trans-
fer and transformation with temporal and spatial consistency
between various compartments of a rural landscape: the at-
mosphere, several compartments of the terrestrial ecosys-
tems (livestock buildings, croplands and grasslands) and the
aquatic ecosystems (wetlands, streams and groundwater).

In this paper we describe a new approach to estimate direct
and especially indirect Nr emissions in relation to spatial in-
teractions by using the NitroScape model. We also estimate
the relative contribution of indirect Nr emissions to the Nr
fluxes and budgets within a test landscape and the relative
contribution of both atmospheric and hydrological pathways
to indirect Nr emissions. The test landscape includes live-
stock buildings, croplands (maize and wheat) and unman-
aged ecosystems.

2 Materials and methods

2.1 The NitroScape model

The NitroScape model integrates in a spatially distributed
and dynamic way four types of models representing pro-
cesses of Nr transfer and transformation within the four cor-
responding compartments of a rural landscape: the atmo-
sphere, the hydrological network, the agro-ecosystems and
the farm buildings (Duretz et al., 2011, Fig. 1). For each com-
partment of NitroScape, models were selected according to
their ability to simulate Nr processes at the landscape scale
and their consistency within the NitroScape model regarding
temporal and spatial scales:

– the atmospheric model OPS (van Jaarsveld, 2004) de-
scribes processes of dispersion, transfer and deposition
of Nr pollutants over a domain where surface charac-
teristics may vary in space. It works at various spa-
tial scales by combining long-range (Lagrangian) and
short-range (Gaussian) modelling of pollutant transfer.
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We used the grid-based version of OPS describing NH3
processes only and working at a time step of 12 h (one
day- and one night-time calculation per 24 h). OPS was
validated for NH3 concentrations simulated on a land-
scape of 3 km by 3 km (van Pul et al., 2008);

– the hydrological model TNT (Beaujouan et al., 2002)
represents water and NO−

3 transfer in the hydrologi-
cal network of a catchment. It accounts for runoff, ex-
filtration, leaching, deep flows and uptake from deep
soils (below 180 cm). It is mainly based on the assump-
tions of the hydrological model TOPMODEL (Beven,
1997). It is a distributed model that takes into account
dual porosity (retention and drainage porosity). Com-
putations are performed at a daily time step, following
a mono-directional (a pixel flows into only one pixel)
or multi-directional (one pixel can flow into several pix-
els) scheme. This scheme directly depends on the sur-
face topography and is calculated from a digital eleva-
tion model at the beginning of the simulation;

– the agro-ecosystem model CERES-EGC (Gabrielle et
al., 2006) is a process-based model which simulates
water, carbon and nitrogen cycles in agro-ecosystems
at a daily time step and at the field scale. It mod-
els vegetation growth and development, energy bal-
ance, evapotranspiration, heat and water transfer in soil
above 180 cm. It accounts for mineral and organic N
inputs from the farmer and simulates NO−

3 leaching
and gaseous emissions of NH3, N2O and NO. Wa-
ter and NO−3 fluxes are modelled by using a semi-
empirical Darcy’s law. Simulation of NH3 emissions
uses the approach of the process-based model from
Génermont and Cellier (1997). CERES-EGC uses the
semi-empirical model NOE (H́enault et al., 2005) to
simulate N2O emissions from both nitrification and den-
itrification processes. It also uses the module devel-
oped by Laville et al. (2005) to simulate NO emissions
from nitrification processes. Total denitrification in soil
is expressed as the product of a potential denitrifica-
tion rate with three factors related to soil water content,
NO−

3 content, and temperature. The fraction of denitri-
fied NO−

3 that evolves as N2O is considered as constant.
Similarly, nitrification is expressed as the product of a
potential nitrification rate with three factors related to
soil water content, temperature and NH+

4 as substrate
of a Michäelis-Menten reaction. As for denitrification,
a soil-specific proportion of total nitrification evolves as
N2O;

– the farm model FASSET (Berntsen et al., 2003) simu-
lates Nr species in a dynamic way and accounts for Nr
transfer at the farm scale and exchanges with the outside
of the landscape. It was adapted by (i) including produc-
tion of animal manure either in the livestock housing or
in the field and manure storage and (ii) removing the

agro-ecosystem component of FASSET. The updated
version of FASSET, namely FASSET-farm, runs at a
daily time step and deals with a range of livestock sys-
tems, livestock housing types and manure store types.
NH3 losses from manure in animal housing and ma-
nure storage are modelled according to Hutchings et
al. (1996). N2O emissions by farms (livestock hous-
ings and manure storage) are calculated using the IPCC
methodology (IPCC, 2006).

Since all those processes occur simultaneously, the four mod-
els were integrated into a common modelling framework us-
ing the PALM dynamic coupler (Buis et al., 2006). They are
called modules hereafter. An additional module, namely the
linker, was developed and integrated into PALM to specify
the exchange of data between the other four modules. It re-
ceived and sorted fluxes and made it possible to calculate Nr
budgets.

For simulating spatial interactions, a raster approach was
used in NitroScape, in which the landscape was divided into
pixels. TNT and OPS, which perform simulations on a grid,
were directly integrated in this framework, using a one-to-
one relationship between pixels. Individual runs of CERES-
EGC and FASSET-farm were performed as many times as
there were pixels occupied by an agro-ecosystem or a live-
stock building. Exchange of data between modules was per-
formed at the pixel scale: each agro-ecosystem pixel received
and sent data which were different from those of its neigh-
bouring pixels.

The modules of NitroScape exchanged data in a dynamic
way at a daily time step (i.e. the shortest time step common
to all modules) during the simulation. Each module provided
information to the other modules for the next daily time step.

2.2 The methodology to estimate indirect and direct
emissions of Nr

The concept of indirect emissions was generally considered
for N2O emissions, less often for other Nr species (NH3,
NO−

3 , NO). It represents the fraction of local emissions
which result from Nr transfer by the atmospheric and hydro-
logical pathways, and not from direct anthropogenic applica-
tion of Nr.

The NitroScape model made it possible to account for and
simulate the indirect emissions of several Nr species (NH3,
NO−

3 , N2O, NO) and the interactions between them. The rel-
ative contribution of short-range transfers of Nr on Nr fluxes
and budgets was estimated by implementing four configura-
tions of NitroScape in which atmospheric or hydrological or
both pathways of Nr transfer were accounted for or not. The
indirect emissions were estimated as the difference between
emissions simulated by accounting for all types of Nr trans-
fer and emissions simulated by cutting one or two pathways
of transfer:
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– the “all transfers” (all) configuration corresponded to
the reference configuration in which (i) NH3 was emit-
ted, laterally transferred through the atmospheric path-
way and deposited in areas which could be far from ar-
eas of Nr application, and (ii) NO−3 was lost by leach-
ing in interaction with the groundwater, laterally trans-
ferred through the hydrological pathway (runoff and lat-
eral transfer in the saturated zone) and recaptured in ar-
eas which could be far from areas of Nr application;

– the “atmospheric transfers” (atm) configuration corre-
sponded to the case in which only short-range lateral
transfers by the atmospheric pathway were calculated.
This was implemented by (i) sending null wet depo-
sition and null NO−3 concentration to the hydrological
module to prevent leaching and lateral transfers of NO−

3
and (ii) cutting recapture of groundwater NO−

3 by crop-
lands and unmanaged ecosystems. NO−

3 recapture re-
sulted from two types of interaction between the soil
unsaturated zone and the groundwater: (i) capillary rise
and (ii) groundwater uprising when the water table rose
and brought groundwater and dissolved NO−

3 into the
soil unsaturated zone. Daily NO−3 leaching was stored
to be taken into account in the final budget of each pixel;

– the “hydrological transfers” (hydro) configuration cor-
responded to the case in which only short-range lateral
transfers by the hydrological pathway were calculated.
This was implemented by sending null NH3 emissions
from agro-ecosystems and farm buildings to the atmo-
spheric module, which prevented lateral transfers and
deposition of NH3. Daily NH3 emissions were stored to
be included in the final budget of each pixel;

– the “no short-range transfer” (not) configuration corre-
sponded to the case in which lateral transfers by both
atmospheric and hydrological pathways were cut. This
was implemented by (i) sending null NH3 emissions
from agro-ecosystems and farm buildings to the atmo-
spheric module to prevent emissions, lateral transfers
and deposition of NH3, (ii) sending null wet deposi-
tion and null NO−

3 concentration to the hydrological
module to prevent leaching, lateral transfers and recap-
ture of groundwater NO−3 by croplands and unmanaged
ecosystems. Daily NH3 emissions and daily NO−3 leach-
ing were stored to be taken into account in the final bud-
get of each pixel.

Total indirect Nr (Nr being NH3 or NO−

3 or NO or N2O)
emissions in theall configuration were calculated as:

Nr,ind,all=Nr,tot,all−Nr,tot,not (1)

where Nr,tot,all are the total Nr emissions in theall configura-
tion and Nr,tot,not are the total Nr emissions in thenot config-
uration.

The indirect Nr emissions due to atmospheric transfers
were calculated as:

Nr,ind,atm=Nr,tot,atm−Nr,tot,not (2)

where Nr,tot,atmare the total Nr emissions in theatmconfigu-
ration.

The indirect Nr emissions due to hydrological transfers
were calculated as:

Nr,ind,hydro=Nr,tot,hydro−Nr,tot,not (3)

where Nr,tot,hydroare the total Nr emissions in thehydrocon-
figuration.

Direct Nr emissions corresponded to Nr emissions in the
not configuration.

In contrast with most previous approaches on indirect Nr
emissions, which could only account for a landscape or a
catchment as a whole, this approach made it possible to give
an estimate of indirect emissions for each pixel and thus each
agro-ecosystem type. However, for a given pixel, indirect Nr
emissions were related to Nr applied in other agro-ecosystem
pixels and not, as generally made, to Nr applied in this pixel.

The model outputs were also used to estimate the indirect
emission factors as defined by the IPCC guidebook (IPCC,
2006). Indirect emission factors were calculated for the
whole landscape and for croplands and unmanaged ecosys-
tems by accounting for pixels related to each type of agro-
ecosystem. They were calculated from the following equa-
tions derived from Mosier et al. (1998):

EF4=N2Oind,atm/captNH3 (4)

EF5g=N2Oind,hydro/captNO3 (5)

EF=N2Oind,all/captN (6)

where EF4 is the emission factor due to atmospheric NH3
deposition, EF5g is the emission factor due to hydrological
NO−

3 recapture, EF is the emission factor due to both atmo-
spheric deposition and hydrological recapture, captNH3 is the
total NH3 deposition resulting from atmospheric transfers,
captNO3 is the total NO−

3 recapture resulting from hydrologi-
cal transfers and captN is the total Nr recapture corresponding
to atmospheric deposition and hydrological recapture.

2.3 The test landscape

NitroScape was applied to a simplified landscape with a size
of 1.75×1.75 km2 represented by a matrix of 70×70 pixels
of 25× 25 m2 each. That corresponded to the minimal land-
scape size at which hydrological transfers occur and to the
number and size of pixels needed to simulate atmospheric
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deposition. The agricultural activity on this landscape corre-
sponded to farm management in intensive rural areas with
mixed crops and pig farming (Fig. 2a). From a topographi-
cal point of view, the landscape was characterized by a linear
slope with a gradient of 50 m between the highest and the
lowest parts of the landscape (Fig. 2c). Meteorological data
used for the simulation were taken from a meteorological
station located on the Kervidy-Naizin catchment (48◦01′ N,
2◦83′ O, Brittany, France). This catchment was characterized
by humid climatic conditions (total rainfall: 1968 mm, aver-
age relative humidity: 90 %) and a relatively small range of
temperature (average temperature: 10◦C, standard deviation:
5◦C). The prevailing winds were from the north-east and the
south-west, with an average wind speed of about 1.8 m s−1

(Fig. 2b). The soil type was a uniform silty loamy soil. Farms
were mixed crop-pig farms characterized by indoor pigs (200
sows, 2000 piglets and 2000 baconers). Pig feed was mainly
based on imported feed such as wheat, soybean, barley, fish-
meal and fat. Baconers were also fed with barley, pea, rye and

rapeseed. Croplands cultivated on the farm were wheat and
maize (Fig. 2a). Wheat received three applications of min-
eral fertilizer in February (60 kg N ha−1), March (60 kg N
ha−1) and April (120 kg N ha−1). Maize received one ma-
nure application in March (120 kg N ha−1) and two mineral
fertilizer applications in April (60 kg N ha−1). The unman-
aged ecosystems received no fertilizer or manure, but only
Nr from atmospheric transfer and deposition of NH3 or from
hydrological transfer and recapture of NO−

3 .
Within that landscape 39 fields of 49 pixels each and one

field of 41 pixels were dedicated to maize, 39 fields of 49 pix-
els each and one field of 41 pixels were dedicated to wheat,
four fields of 245 pixels each were dedicated to unmanaged
ecosystems and 16 pixels were dedicated to pig buildings
(Fig. 2a). One of the four unmanaged ecosystems (UM 1)
was located in the north-west, i.e. the highest part of the
landscape; another unmanaged ecosystem was located in the
centre of the landscape (UM 3), close to one of the livestock
building. The other two unmanaged ecosystems were located
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Table 1.Average Nr fluxes within the whole landscape. Nr inputs were 191 kg N ha−1 yr−1 in average within the whole landscape.

Configuration NH3 emissions NH3 dry deposition NO−3 leaching NO−3 inputs N2O emissions NO emissions
(kg NH3-N (kg NH3-N (kg NO−

3 -N (kg NO3-N (kg N2O-N (kg NO-N
ha−1 yr−1) ha−1 yr−1) ha−1 yr−1) ha−1 yr−1) ha−1 yr−1) ha−1 yr−1)

all 39.2 9.0 65.6 7.5 5.6 0.9
not 38.7 0.0 45.3 0.0 4.4 0.9
atm 39.4 9.1 61.5 0.0 5.1 0.9
hydro 38.7 0.0 61.5 8.3 5.5 0.9

in the lowest part of the landscape: one in the north-east close
to the other livestock building (UM 2) and the other in the
south-east of the landscape (UM 4) far from the livestock
buildings (Fig. 2a).

NitroScape simulations integrated a whole year from
1 January to 31 December.

3 Results – discussion

NitroScape made it possible to simulate Nr fluxes and bud-
gets at the whole landscape scale, their spatial distribution
within the landscape as well as the interactions between the
different types of Nr transfer, especially by the atmospheric
and hydrological pathways. This first attempt was made on a
theoretical landscape which was constructed in such a way
that the spatial arrangement of croplands and unmanaged
ecosystems made it possible to simulate a range of Nr trans-
fers from croplands and livestock housings to unmanaged
ecosystems. Only indirect Nr emissions occur in unmanaged
ecosystems, induced by both atmospheric and hydrological
pathways (see Duretz et al., 2011, for more details). This
would not have been possible by using a real landscape char-
acterized by such a diversity of agro-ecosystems within a
small area of around 3 km2. Further work is needed to evalu-
ate the ability of the NitroScape model to simulate Nr fluxes
and budgets, including short-range transfers and indirect Nr
emissions, within real and larger landscapes.

3.1 Total Nr fluxes (Nr being NH3 or NO−
3 or NO or

N2O) at the landscape scale

Total (i.e. direct and indirect) NH3 emissions, NO−3 losses,
NO and N2O emissions were calculated from theall con-
figuration. Their comparison with fluxes calculated from the
other three configurations (i.e.not, atmandhydro) provided
a first overview of the relative weight of direct and indirect
Nr emissions at the whole landscape scale.

Total NH3 emissions by the whole landscape, includ-
ing farms (livestock housings and manure storage), crop-
lands and unmanaged ecosystems, were around 39 kg NH3-N
ha−1 yr−1 in average in the four configurations (Table 1). To-
tal NH3 dry deposition was around 9 kg NH3-N ha−1 yr−1 in
the all andatm configurations, while it was around zero in

thenot andhydroconfigurations. These differences between
the all andatm configurations in the one hand and thenot
andhydroconfigurations in the other hand show an effect of
NH3 transfer and deposition by the atmospheric pathway on
NH3 emissions by agro-ecosystems at the landscape scale.
Total NO−

3 losses to the groundwater from both leaching and
dilution varied at the landscape scale between 45.3 kg NO−

3 -
N ha−1 yr−1 in the not configuration and 65.6 kg NO−3 -N
ha−1 yr−1 in the all configurations in average, with values
around 61.5 kg NO−3 -N ha−1 yr−1 in thehydroandatmcon-
figurations (Table 1). That result indicates that both hydro-
logical and atmospheric transfers of Nr play a role in NO−3
losses at the landscape scale.

Total NO emissions by the whole landscape were around
0.9 kg NO-N ha−1 yr−1 in average within the whole land-
scape in the four configurations (Table 1). There were no
indirect NO emissions due to atmospheric or hydrological
or both transfers. Since the atmospheric model OPS did not
account for NO transfer, discrepancies in NO emissions be-
tween the four configurations, if they had occurred, might
have only resulted from processes of nitrification and denitri-
fication in emitting areas. Total N2O emissions by the whole
landscape were estimated around 5 kg N2O-N ha−1 yr−1 in
average in the four configurations (Table 1). They were 5.6,
4.4, 5.1 and 5.5 kg N2O-N ha−1 yr−1 in theall, not, atmand
hydroconfigurations, respectively. That result indicates that,
as for NO−

3 losses, both hydrological and atmospheric trans-
fers play a role in N2O emissions at the landscape scale. The
soil was a silty loamy soil, but its texture had no direct ef-
fect on processes of NO and N2O production in CERES-
EGC, and consequently in NitroScape, since those processes
in CERES-EGC only depended on soil NO−

3 or NH+

4 con-
tent, soil water content and temperature, and constants.

3.2 Direct NH3 emissions, NO−3 losses and N2O emis-
sions within the landscape

Direct NH3 emissions, NO−3 losses and N2O emissions were
calculated from thenot configuration.

Direct NH3 emissions by croplands and unmanaged
ecosystems were estimated at around 38.7 kg NH3-N
ha−1 yr−1 in average, but they ranged from 0 to 121 kg
NH3-N ha−1 yr−1 (Fig. 3a). Thus, direct NH3 emissions
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of theall, atmandhydroconfigurations than in thenot configuration.

represented 20 % of the Nr inputs in average at the landscape
scale. This value was close to the maximal value of 19 %
derived from EEA/EMEP Guidebook (2009) giving a maxi-
mal NH3 emission factor of 68 % for pig slurry and 1 % for
mineral fertilizer. That value is higher than the value of 9 %
derived from the results presented by Leip et al. (2011) for
EU27 and taking into account mineral fertilizers and manure
for Nr inputs. NH3 emissions varied within the landscape ac-
cording to the Nr input patterns. The highest NH3 emissions
were simulated for croplands located in the north-east of the
landscape which was the lowest part of the landscape and
where soil was highly saturated. Nitrification was therefore
limited, leading to high NH+4 content (H́enault et al., 2005)
and therefore high NH3 emissions (Ǵenermont and Cellier,
1997). The lowest NH3 emissions were simulated for the un-

managed ecosystems located in the north-west of the land-
scape where soil was not saturated.

Direct NO−

3 losses to the groundwater by leaching were
estimated at around 45.3 kg NO−

3 -N ha−1 yr−1, but they
ranged from 0 to 150 kg NO3-N ha−1 yr−1 (Fig. 4a). Direct
NO−

3 losses corresponded to 23 % of the Nr inputs in average
at the landscape scale. The highest leaching values were sim-
ulated for the wheat fields located in the west and the centre
of the landscape, while the lowest ones were simulated for
the unmanaged ecosystems and the croplands located in the
east of the landscape where soil was saturated. The leach-
ing rates mainly varied according to the land use and the Nr
inputs.

Direct N2O emissions by croplands and unmanaged
ecosystems were around 4.4 kg N2O-N ha−1 yr−1 in average,
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Figure 4. (a) Direct NO3
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Fig. 4. (a) Direct NO−

3 losses to the groundwater in thenot configuration and indirect NO−3 losses in the(b) all, (c) atm and (d) hydro

configurations (kg NO−3 -N ha−1 yr−1). Negative values in(b), (c) and(d) mean that NO−3 losses are lower in each of theall, atmandhydro
configurations than in thenot configuration.

ranging from 0 to more than 60 kg N2O-N ha−1 yr−1

(Fig. 5a). The value of the average direct N2O emission fac-
tor was then estimated at 2.3 % of the Nr inputs. This value
was higher than the expected value of 1 % given by the IPCC
methodology (IPCC, 2006) and the value of 0.6 % reported
by Reay et al. (2009). The highest direct N2O emissions were
simulated for pixels located in the north and the east of the
landscape. These areas were the lowest parts of the landscape
where soil was highly saturated, leading to high denitrifica-
tion rates (H́enault et al., 2005). Direct N2O emissions also
varied according to the land use and the Nr inputs, with the
highest direct N2O emissions simulated for the wheat fields
receiving more Nr inputs. The lowest direct N2O emissions
were simulated for the unmanaged ecosystems receiving no
direct Nr inputs.

3.3 NH3 deposition and NO−
3 recapture within the land-

scape

NH3 dry deposition on croplands and unmanaged ecosys-
tems was around 9 kg NH3-N ha−1 yr−1 in average in the
all andatm (Table 1) configurations, but they ranged from
0.2 to 360 kg NH3-N ha−1 yr−1 (Fig. 6a and b). The highest
NH3 deposition rates were simulated close to the farm build-
ings. The lowest NH3 deposition rates were simulated in the
north-west and the south-east of the landscape for pixels not
located in the lee of the farm buildings. NH3 deposition was
theoretically zero in thenot andhydroconfigurations. There
was no interaction between the atmospheric and hydrologi-
cal pathways for NH3 deposition. The simulated NH3 depo-
sition rates ranged within the same values as those observed
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Fig. 5. (a)Direct N2O emissions in thenot configuration and indirect N2O emissions in the(b) all, (c) atmand (d)hydroconfigurations (kg
N2O-N ha−1 yr−1). Negative values in(b), (c) and(d) mean that N2O emissions are lower in each of theall, atmandhydroconfigurations
than in thenot configuration.

by Fowler et al. (1998), with high deposition rates close to
the downwind of the farm buildings (Loubet et al., 2009).
The lowest NH3 deposition rates were found in the north-
west and the south-east of the landscape for pixels located
far from the farm buildings and receiving low Nr inputs from
them due to wind direction distribution.

NO−

3 inputs, including direct inputs and recapture, result-
ing from capillary rise and groundwater uprising was around
7.5 (resp. 8.3) kg NO−3 -N ha−1 yr−1 in average in theall
(resp.hydro) configuration, ranging from 0 to 130 kg NO−3 -
N ha−1 yr−1 (Fig. 7a resp. 7b). NO−3 recapture was theoreti-
cally zero in thenot andatmconfigurations. However, there
was interaction between the atmospheric and hydrological
pathways for NO−3 recapture: NO−3 inputs were higher when
accounting for hydrological transfers only than accounting
for both hydrological and atmospheric transfers. A hypoth-
esis to explain that discrepancy of 0.8 kg NO−

3 -N ha−1 yr−1

might be that the atmospheric compartment was a sink for
NH3 emitted by agro-ecosystems and, consequently, agro-
ecosystems were sinks for NO−

3 . Those sinks were not ac-
counted for in thehydroconfiguration which led to a higher
accumulation of NO−3 in soils, then higher NO−3 recapture in
thehydroconfiguration than in theall one. The highest val-
ues of NO−

3 inputs by both capillary rise and groundwater
uprising were found for the unmanaged ecosystems in the
east of the landscape, especially for groundwater uprising
(around 60 kg NO−3 -N ha−1 yr−1). That means that ground-
water reached the soil surface in the east of the landscape
with a higher NO−3 content than the soil NO−3 content of the
unmanaged ecosystems. On the contrary, the highest values
of NO−

3 inputs by capillary rise were simulated for the maize
fields located in the west of the landscape (around 5 kg NO−

3 -
N ha−1 yr−1). Soil water content was lower in the west than
in the east of the landscape resulting in a higher capillary rise.
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Figure 6. NH3 deposition in the (a) all and (b) atm configurations (kg NH3-N ha-1 yr-1). Fig. 6.NH3 deposition in the(a) all and(b) atmconfigurations (kg NH3-N ha−1 yr−1).
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Figure 7. NO3
- inputs by capillary rise and groundwater uprising in the (a) all and (b) hydro 

configurations (kg NO3
--N ha-1 yr-1). 

Fig. 7.NO−

3 inputs by capillary rise and groundwater uprising in the(a) all and(b) hydroconfigurations (kg NO−3 -N ha−1 yr−1).

That might be explained by the fact that the east of the land-
scape received water by rainfall and lateral transfers from the
upper part of the landscape, while the west of the landscape
mainly received water by rainfall. The highest NO−

3 inputs to
soils by lateral transfers were simulated in the north-east of
the landscape where water accumulated.

3.4 Indirect emissions of NH3, NO−
3 and N2O within the

landscape

Indirect Nr emissions were calculated by using the method-
ology described in Sect. 2.2.

Indirect NH3 emissions due to both atmospheric and hy-
drological transfers were 0.5 kg NH3-N ha−1 yr−1 in aver-
age, ranging from−7 to 108 kg NH3-N ha−1 yr−1 (Table 1,
Fig. 3b). Indirect NH3 emissions resulting from atmospheric

(resp. hydrological) transfers and deposition (resp. recapture)
were 0.7 (resp. 0) kg NH3-N ha−1 yr−1 in average, ranging
from 0 to 108 (resp.−14 to 7) kg NH3-N ha−1 yr−1 (Table 1,
Fig. 3c resp. 3d). Hydrological transfers and recapture did
not lead to indirect NH3emissions, while atmospheric trans-
fers and deposition led to indirect NH3 emissions. Moreover,
indirect NH3 emissions due to both atmospheric and hydro-
logical transfers were not the sum of indirect NH3 emissions
due to atmospheric transfers and those due to hydrological
transfers. That result indicates interactions between the at-
mospheric and hydrological pathways of Nr transfer. In the
all, atm andhydro configurations the highest indirect NH3
emissions were simulated close to the farm buildings located
in the north-east of the landscape where soil saturation led to
low nitrification.
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Indirect NO−

3 losses to the groundwater due to both at-
mospheric and hydrological transfers were 20.3 kg NO−

3 -N
ha−1 yr−1 in average, ranging from−20 to 283 kg NO−3 -
N ha−1 yr−1 (Table 1, Fig. 4b). Indirect NO−3 losses to the
groundwater due to atmospheric (resp. hydrological) trans-
fers were 16.2 (resp. 16.2) kg NO−

3 -N ha−1 yr−1 in aver-
age, ranging from−9 to 151 (resp.−24 to 121) kg NO3-N
ha−1 yr−1 (Table 1, Fig. 4c resp. 4d). Thus, indirect NO−

3
leaching due to both hydrological and atmospheric transfers
were not the sum of indirect NO−3 leaching due to hydro-
logical transfers and those due to atmospheric transfers. Like
for NH3 emissions, there were interactions between the hy-
drological and atmospheric pathways of Nr transfer. Like for
NO3 recapture described above, those interactions might be
related to exchange of the different species of Nr between
the soil-groundwater compartment, the agro-ecosystems and
the atmospheric compartment. In theall andhydroconfigu-
rations the highest indirect NO−3 losses were simulated for
the wheat fields located in the east of the landscape while the
lowest ones were for the unmanaged ecosystems. Hydrolog-
ical lateral transfers therefore led to accumulation of NO−

3 at
the bottom of the slope. High losses might be explained by
the conditions of soil saturation which might lead to strong
interaction with the groundwater and potentially high dilu-
tion of NO−

3 in the groundwater. In theatm configuration
the highest indirect NO−3 losses were simulated close to the
farm buildings located in the centre of the landscape, espe-
cially for the wheat fields. In this part of the landscape high
Nr inputs from fertilizer application and NH3 deposition as
well as favourable conditions for nitrification led to high soil
NO−

3 content and consequently high NO−

3 leaching.
Indirect N2O emissions due to both atmospheric and hy-

drological transfers were 1.2 kg N2O-N ha−1 yr−1 in aver-
age, ranging from−33 to 29 kg N2O-N ha−1 yr−1 (Table 1,
Fig. 5b). They therefore represented 21 % of the total N2O
emissions in average at the landscape scale, which is in ac-
cordance with the value of 20 % proposed by IPCC (2006)
and the value of 25 % reported by Reay et al. (2009). Indirect
N2O emissions due to atmospheric (resp. hydrological) trans-
fers were around 0.7 (resp. 1.1) kg N2O-N ha−1 yr−1, rang-
ing from −1 to 26 (resp.−34 to 29) kg N2O-N ha−1 yr−1

(Table 1, Fig. 5c resp. 5d). Like for NH3 and NO−

3 fluxes,
indirect N2O emissions due to both atmospheric and hydro-
logical transfers were not the sum of indirect N2O emissions
due to atmospheric transfers and those due to hydrological
transfers. There were interactions between the hydrological
and atmospheric pathways of Nr transfer, especially Nr ex-
changes between the soil, the vegetation and the atmosphere.
The highest indirect N2O emissions were simulated at dif-
ferent locations within the landscape according to the type of
transfer. Indirect N2O emissions due to atmospheric transfers
were located close to the farm buildings, especially those lo-
cated in the north-east of the landscape. The highest indirect
N2O emissions due to hydrological transfers were simulated

for the maize fields and the unmanaged ecosystems located in
the north-east of the landscape which received high amounts
of NO−

3 from recapture and where conditions of soil satura-
tion were favourable to denitrification and then N2O emis-
sions. Negative indirect N2O emissions due to hydrological
transfers were simulated for the wheat fields located in the
north-east of the landscape, which might be explained by di-
lution of NO−

3 in the groundwater. The highest indirect N2O
emissions due to atmospheric transfers were simulated close
to the farm buildings, especially those located in the north-
east of the landscape where NH3 deposition led to higher soil
NO−

3 content. In the other parts of the landscape, NH3 depo-
sition led to lower N2O emissions, which might be explained
by the fact that NH3 deposition led to an increase of NO−

3
uptake by plants.

3.5 Indirect N2O emission factor

The values of the indirect N2O emission factors (i.e. EF4,
EF5g and EF) simulated for the whole landscape were
around 8, 9 and 6 % in theatm, hydroandall configurations,
respectively (Fig. 8). For croplands only, those values were
around 10, 9 and 4 % in theatm, hydro and all configura-
tions, respectively. For the unmanaged ecosystems only, they
were around 3, 10 and 6 % in theatm, hydroandall config-
urations, respectively. The values of the indirect N2O emis-
sion factor were therefore higher for the unmanaged ecosys-
tems than for croplands. The unmanaged ecosystems emit-
ted more N2O than croplands for the same amount of recap-
tured NO−

3 . That might be explained by competition for NO−

3
between plant uptake and denitrification with higher NO−

3
uptake by croplands than by unmanaged ecosystems. More-
over, the high productivity of croplands might also be linked
to high water uptake by croplands, leading to reducing soil
saturation, then reducing denitrification and consequently re-
ducing indirect N2O emissions by croplands in comparison
with unmanaged ecosystems. Another hypothesis to explain
patterns of indirect N2O emissions might be that atmospheric
NH3 deposition was more limiting than hydrological NO−

3
recapture: deposited NH3 needed to be first nitrified before
being denitrified, while NO−3 might be directly denitrified.
This hypothesis might also explain the discrepancy between
EF4 and EF5g for unmanaged ecosystems. This result sup-
ports the idea of the land-use receptor approach proposed by
Denier van der Gon and Bleeker (2005) to estimate atmo-
spheric indirect emissions.

The values of the indirect N2O emission factor due to
hydrological transfers might be compared with the ones of
the EF5g emission factor derived from the IPCC method-
ology: 1.5 % ranging between 0.3 and 6 % (Mosier et al.,
1998), 0.1 % ranging between 0.01 and 1 % (Nevison, 2000),
0.75 % ranging between 0.05 and 2.5 % (IPCC, 2006). They
were higher than the maximum values proposed by those au-
thors. The values of the indirect N2O emission factor due
to atmospheric transfers were higher than the ones of the
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Figure 8. Indirect N2O emission factor in the atm (EF4), hydro (EF5g) and all (EF) 

configurations for the whole landscape, all croplands and the four unmanaged ecosystems. 

Values are in percentage of kg N2O-N emitted by kg N captured. 
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Fig. 8. Indirect N2O emission factor in theatm (EF4),hydro (EF5g) andall (EF) configurations for the whole landscape, all croplands and
the four unmanaged ecosystems. Values are in percentage of kg N2O-N emitted by kg N captured.

EF4 emission factor derived from the IPCC methodology:
1 % ranging between 0.2 and 2 % (Mosier et al., 1998),
2.5 % ranging between 0.5 and 4 % (Denier van der Gon
and Bleeker, 2005), 1 % ranging between 0.2 and 5 % (IPCC,
2006). The values of EF4 proposed by those authors included
both short-range and long-range transfers and they were re-
lated to NH3, NH+

4 and NOx emissions, while values cal-
culated from NitroScape only included short-range transfers
and NH3 emissions. Moreover, there were large uncertain-
ties on values derived from the IPCC methodology and IPCC
(2006) revised the EF4 values since emissions from some un-
managed ecosystems were higher than those previously re-
ported (e.g. Denier van des Gon and Bleeker, 2005). The high
values of EF4 simulated with NitroScape might result from
high denitrification rates leading to both high direct and in-
direct N2O emissions.

NitroScape simulations were carried out on a small test
landscape and showed the role of short-range transfers in Nr
fluxes, but further simulations on real landscapes are required
to estimate Nr fluxes, budgets and indirect Nr emission fac-
tors on real conditions.

4 Conclusions

The NitroScape model integrates processes of Nr (Nr be-
ing NH3, NO−

3 , N2O or NO) transformation and short-range
transfer in a dynamic and spatially distributed way to sim-
ulate Nr fluxes and budgets at the landscape scale. By us-
ing four configurations of NitroScape taking into account
or not the atmospheric, hydrological or both pathways of
Nr transfer, we showed the ability of NitroScape to simu-
late patterns of Nr losses and recapture, and their large vari-
ability, for each landscape element (i.e. pixel with a size of
25 m×25 m) within a test landscape. Moreover, NitroScape

made it possible to estimate the relative contribution of in-
direct Nr emissions to the Nr fluxes and budgets within the
landscape, the relative contribution of the atmospheric and
hydrological pathways to indirect Nr emissions as well as in-
teraction between both pathways. The need of an integrated,
spatially distributed and dynamic model is emphasized by the
high variability of Nr losses and gains which were simulated
within the landscape, and the effect of landscape topography
and short-range processes on Nr fluxes. We also showed that
N2O emissions by unmanaged ecosystems were affected by
both atmospheric deposition of NH3 and hydrological recap-
ture of NO−

3 , which emphasized the need to model dynami-
cally both atmospheric and hydrological transfers of Nr. Tak-
ing into account both pathways of Nr transfers led to simulate
high values of indirect N2O emissions, estimated at around
21 % of the total N2O emissions. Indirect N2O emissions
were affected by both the location of NH3 deposition and
NO−

3 recapture within the landscape and the land use of re-
ceptors. Thus, the spatial arrangement of agro-ecosystems,
especially those located in areas of Nr recapture, may affect
N2O emissions. This hypothesis needs to be further tested by
applying NitroScape to various scenarios of spatial arrange-
ments of agro-ecosystems within the landscape and to real
and larger landscapes.
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