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Abstract. Bivalve shells can provide excellent archives of
past environmental change but have not been used to in-
terpret ocean acidification events. We investigated carbon,
oxygen and trace element records from different shell lay-
ers in the musselsMytilus galloprovincialiscombined with
detailed investigations of the shell ultrastructure. Mussels
from the harbour of Ischia (Mediterranean, Italy) were trans-
planted and grown in water with mean pHT 7.3 and mean
pHT 8.1 near CO2 vents on the east coast of the island. Most
prominently, the shells recorded the shock of transplantation,
both in their shell ultrastructure, textural and geochemical
record. Shell calcite, precipitated subsequently under acid-
ified seawater responded to the pH gradient by an in part
disturbed ultrastructure. Geochemical data from all test sites
show a strong metabolic effect that exceeds the influence
of the low-pH environment. These field experiments showed
that care is needed when interpreting potential ocean acidifi-
cation signals because various parameters affect shell chem-
istry and ultrastructure. Besides metabolic processes, seawa-
ter pH, factors such as salinity, water temperature, food avail-
ability and population density all affect the biogenic carbon-
ate shell archive.

1 Introduction

Over the last two centuries, human activities have increased
the atmospheric CO2 concentration by about 31 % (Lüthi et
al., 2008; Solomon et al., 2009). Approximately one third
of the anthropogenic carbon added to the atmosphere is ab-
sorbed by the oceans. Uptake of atmospheric CO2 results
in a decrease in ocean water pH, an effect referred to as
“ocean acidification” (Caldeira and Wickett, 2003). As a
consequence, marine calcareous organisms are increasingly
stressed. This is because net calcification rates are affected
by decreased calcium carbonate saturation and carbonate ion
availability (Fabry et al., 2008; Guinotte and Fabry, 2008;
Hall-Spencer et al., 2008).

Previous studies focused on the response of marine calci-
fied organisms to increased CO2 levels to predict the com-
bined impact of future ocean acidification and increasingly
elevated seawater temperatures (Orr et al., 2005; Davies et
al., 2007; Fine and Tchernov, 2007; Hoegh-Guldberg et al.,
2007; Carroll et al., 2009; Cigliano et al., 2010; Dias et
al., 2010; Gutowska et al., 2010; Rodolfo-Metalpa et al.,
2010, 2011). Other approaches focussed on past acidifica-
tion events (Kump et al., 2009; Zeebe and Ridgwell, 2011),
such as the Paleocene-Eocene Thermal Maximum 55 mil-
lion years ago (PETM; Zachos et al., 2005; Sluijs et al.,
2007; Iglesias-Rodriguez et al., 2008; Gibbs et al., 2010).
Previously applied methods include model organisms cul-
tured under laboratory conditions (e.g. Russell et al., 2004;
Kisakürek et al., 2011), mesocom experiments (e.g. Engel
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Fig. 1. (a)Sketch of tripartite shell structure ofM. galloprovincialis. Note periostracum, calcite and aragonitic nacreous layers. The sketch
shows the general structure of the shell without a scale. Black boxes indicate sampling sites for isotope analysis. P+C = periostracum and
calcite layer; C = calcite layer; C+N = calcite and nacreous layer; N = nacreous layer. “Cn” indicates channel network (“pipe system”) in the
upper part of the periostracum.(b) Mytilus galloprovincialisfrom experimental site B1. Note partial lack of periostracum and absence of
encrusting or colonizing marine biota in upper image (white circles, labelled 1 and 2, corresponding to close up images to the right) and
incomplete nacreous layer with small holes (white rectangle, corresponding to close up image to the right) in lower image. On 26 Septem-
ber 2009, i.e. prior to transplantation, specimens were labelled with a yellow marker in order to differentiate pre- and post-transplantation
shell material.

et al., 2005; Riebesell et al., 2007), studies using naturally
acidified sites (e.g. Hall-Spencer et al., 2008; Manzello et
al., 2008; Kroeker et al., 2011) and the investigation of ge-
ological archives (e.g. Mutterlose et al., 2007; Kump et al.,
2009; Gibbs et al., 2010). Brief monitoring and culturing ex-
periments (several months to few years; Klein et al., 1996b;
Berge et al., 2006; Thomsen et al., 2010) have shortcom-
ings as they provide only limited evidence for longer term
adaptation strategies of marine ecosystems (e.g. Guinotte and
Fabry, 2008; Ellis et al., 2009; Gutowska et al., 2010). Stud-
ies dealing with geological archives suffer from the lack of
biological information and are limited by problems of time
control (e.g. Ragland et al., 1979; Gomez-Alday and Elorza,
2003; Aubry et al., 2007; R̈ohl et al., 2007). The majority
of geological archive work deals with planktonic organisms
from pelagic core material (Raffi et al., 2005; Gibbs et al.,
2006; Giusberti et al., 2007; Mutterlose et al., 2007; West-
erhold et al., 2007). In contrast, studies with focus on the
impact of past acidification events on fossil coastal neritic
settings are scarce (Scheibner and Speijer, 2008).

One of the most promising archives of past coastal sea-
water properties are bivalves (Buick and Ivany, 2004; Lopez
Correa et al., 2005; Latal et al., 2006; Foster et al., 2009).
Bivalves are sessile organisms that over time record environ-
mental changes in their aragonitic and calcitic shells (Wit-
baard et al., 1994; Vander Putten et al., 2000; Elliot et al.,
2003; Immenhauser et al., 2005; Hippler et al., 2009) and
at least their calcitic shells hardparts have, under favourable
conditions, a high fossilization potential (Elorza and Garci-
aGarmilla, 1996; Gomez-Alday and Elorza, 2003; Immen-
hauser et al., 2005).

The effects of ocean seawater acidification on the bioper-
formance of the blue musselMytilus edulishas previously
been the topic of mainly biological research (Bamber, 1987;
Michaelidis et al., 2005; Berge et al., 2006; Gazeau et al.,
2007). TheM. edulisgroup, involving the three speciesM.
edulis, M. galloprovincialisandM. trossulus(Koehn, 1991;
Aguirre et al., 2006) was investigated for growth patterns
(shell length), tissue weight and overall activity and health of
these organisms (Bamber, 1987; Berge et al., 2006; Beesley
et al., 2008).Mytilus edulishas a very wide geographical
distribution from the subtropics to the Arctic regions, while
M. trossulusandM. galloprovincialisare more environmen-
tally restricted (Gosling, 2003), but tolerate a wide temper-
ature range (Aral, 1999). The environmental adaptability of
M. eduliswith respect to its wide distribution range including
freshwater (Shumway, 1977; Gillikin et al., 2006a, b; Tynan
et al., 2006), brackish (Hietanen et al., 1988) and marine set-
tings qualifies the blue mussel as an adaptable and widely
used test organism.

Generally, bivalve shells have three layers: the perios-
tracum and two calcium carbonate layers (Fig. 1a). The pe-
riostracum forms a quinone-tanned protein layer on the out-
side of the shell (Fig. 1a; Kennedy et al., 1969), protects the
shell, serves as a seal of the extrapallial space for the achieve-
ment of supersaturation conditions (Marin and Luquet, 2004)
and provides the site of nucleation for calcium carbonate
(Checa, 2000). Carbonate shell layers can be distinguished
optically as well as by means of their microstructure and
mineralogy. The inner layer consists of iridescent, nacreous
aragonite (Fig. 1b; Marin and Luquet, 2004) and is composed
of 10–20 µm wide tablets that form parallel arranged 0.5 µm
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thick lamellae (Fig. 1a). The outer shell layer has a prismatic
structure and is composed of calcite prisms (Fig. 1a).

Here we report on the outcome of a study with focus on
M. galloprovincialisexposed to different seawater pH along
a natural gradient in CO2 levels near volcanic vents (pHT
range 6.6–7.1) off Ischia. We explore and combine the po-
tential of three different proxies within the same carbonate
archive: (i) shell isotope and major and trace element geo-
chemistry; (ii) shell ultra- and microstructure imaging, and
(iii) crystallographic texture analysis. The aims of this work
are twofold. Firstly, we test, the potential of bivalve shell
geochemistry and ultrastructure as recorders of environmen-
tal change and particularly seawater acidification. Secondly,
we assess the sensitivity of the bivalve metabolism to ex-
perimental transplantation shock. This work has significance
for those concerned in future effects of ocean acidification,
paleo-environmental analysis and carbonate archive research
in general.

2 Materials and methods

2.1 Field study

The field site lies on the east coast of Ischia (40◦43.81′ N,
13◦57.98′ E), south of Castello Aragonese where vents acid-
ify the seawater (Fig. 2). The vents emit gas composed of
90–95 % CO2, 3–6 % N2, 0.6–0.8 % O2, 0.2–0.8 % CH4 and
0.08–0.1 % Ar and lacked toxic sulphur compounds (Hall-
Spencer et al., 2008). Published data ofδ13C(CO2) from
gas vents along the eastern margin of Ischia indicate13C-
enriched values of +0.5 to−0.8 % (Tedesco, 1996). The sea-
water pHT range is 6.6 to 8.1 depending on distance from
the vents. Seawater carbon (DIC) isotope values measured
during late fall and early winter, i.e. the time interval when
the transplantation experiment was undertaken, range from
0.2 ‰ (Ischia harbour, IP, Fig. 2c) to 0.8 ‰ seawater off Is-
chia (C and OS Fig. 2c, d), whilst aδ13CDIC of 0.9 ‰ was
found for vent areas (B1 and ES Fig. 2d; Table 1). During
spring and summer months, when plankton bloom removes
isotopically light carbon from seawater, seawaterδ13CDIC is
more positive (1–1.4 ‰) and differences between harbour,
experimental site B1 and control site C are more reduced.
During this time, seawaterδ13CDIC approaches regional val-
ues as reported in Pierre (1999).

Ischia seawater oxygen isotope values measured during
late fall and early winter, i.e. the time interval when the trans-
plantation experiment was undertaken, range from 1.1 ‰
SMOW (Ischia harbour, IP, Fig. 2c; Table 1) to 1.2 ‰ SMOW
seawater at the vent areas (B1 and ES Fig. 2d; Table 1)
and off Ischia (C and OS Fig. 2c, d; Table 1). These data
are in agreement with regional seawater oxygen isotope val-
ues (1.2–1.3 ‰ SMOW) representing April water samples
(Pierre, 1999).

Fig. 2. Map of Italy (a) and the Island of Ischia(b). (c) Schematic
map of Ischia harbour with location of the seawater sampling points
IP (Ischia Port) and OS (oceanic seawater), as well the location
of M. galloprovincialis, marked by the purple dot.(d) Schematic
map of the natural experiment sites off Ischia in the vicinity of
CO2 vents. Specimens ofM. galloprovincialiswere transplanted in
September 2009 from the harbour (pH 8.07) to control site C (mean
pHT 8.07) and experimental site B1 (mean pHT of 7.25, minimum
pHT 6.83) where they were kept until December 2009 (modified af-
ter Hall-Spencer et al., 2008). Seawater sampling sites are labelled
OS and ES.

Several adultM. galloprovincialis (>40 mm length) col-
lected from the Ischia port (pHT 8.07) (Fig. 2b, c) were trans-
planted to a control site with normal pHT (C in Fig. 2b, d;
mean pHT 8.07) and to an experimental site with acidified
seawater (B1 in Fig. 2b, d; mean pHT 7.25, minimum pHT
6.83). Samples were labelled with a yellow marker glued
onto the shell edge (Fig. 1b) to differentiate between shell
precipitated before and after transplantation. The mussels
were kept at the test sites for 68 days (28 September to 2 De-
cember 2009). Seawater temperature, pHT and total alkalin-
ity (At) were monitored for the duration of the experiment
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Table 1. Parameters of harbour and field experimental sites. Mean± S.D. seawater chemistry calculated over the experiment period at the
experimental site B1 and control site C. pHT is in total scale;pCO2 in µatm; HCO−

3 , CO2−

3 , CO2 and DIC (dissolved inorganic carbon) are

in µmol kg−1; saturation state (�) of aragonite and calcite. IP = Ischia port (harbour); OS = ocean seawater off Ischia; ES = experimental site.

meanT pHT pCO2 HCO−

3 CO2−

3 CO2 DIC � � δ18O δ13C δ18O δ13C
(◦C) (µatm) (µmol kg−1) (µmol kg−1) (µmol kg−1) (µmol kg−1) calcite aragonite (‰ SMOW) (‰ VPDB) (‰ SMOW) (‰ VPDB)
late summer to
early winter

late fall/
early winter

late fall/
early winter

spring spring

Harbour 18.9 8.07 n.d. 2993 n.d. n.d. n.d. n.d. n.d. 1.1 0.2 1.2–1.3 1.4
(IP) (±0.98) (±0.07) (±136) (±0.02) (±0.02) (±0.02) (±0.02)

Site C 21 8.07 474 2015 235 15 2265 5.42 3.55 1.2 0.8 1.2–1.3 1.4
(OS) (±4.2) (±0.04) (±58) (±74) (±35) (±2) (±43) (±0.74) (±0.52) (±0.02) (±0.02) (±0.02) (±0.02)

Site B1 20.7 7.25 5494 2428 61 173 2661 1.37 0.98 1.2 0.9 1.2–1.3 1.4
(ES) (±4.2) (±0.44) (±5520) (±108) (±45) (±175) (±226) (±0.95) (±0.69) (±0.02) (±0.02) (±0.02) (±0.02)

(Table 1). Refer to Hall-Spencer et al. (2008), Martin et
al. (2008), Cigliano et al. (2010) and Rodolfo-Metalpa et
al. (2010) for details of the experimental and analytical ap-
proach.

2.2 Methods: carbon and oxygen isotope and elemental
geochemistry

Carbon and oxygen-isotope analyses of 170 powder sam-
ples ofM. galloprovincialisB1 and C (Table S1, Supplement)
extracted from mussel shells and 28 seawater samples were
performed with a ThermoFinnigan MAT 253 ratio mass spec-
trometer equipped with a Gasbench II at the isotope labora-
tory of the Institute for Geology, Mineralogy and Geophysics
(Ruhr-University Bochum, Germany). Repeated analyses of
certified carbonate standards (NBS 19, IAEA CO-1 and CO-
8) and internal standards show an external reproducibility
of ≤0.02 ‰ forδ13C and≤0.06 ‰ forδ18O for the powder
samples. An internal laboratory standard (Na2CO3) was used
for the seawaterδ13CDIC samples. The 1σ -reproducibility of
the measured values is 0.19 ‰δ13CDIC. All isotope results
are reported in per mil (‰) relative to the V-PDB standard
in the conventional manner. For analyses of the seawater
δ13CDIC vials were treated with 85 % phosphoric acid and
then flushed with helium. Subsequently, carbonate hardness
was determined and the required amount of sample material
was added into the prepared vials. Seawaterδ18O was ana-
lyzed in the laboratories of Johanneum Research Centre in
Graz (Austria). Seawaterδ13CDIC andδ18O from Ischia har-
bour, control and experimental sites are given in Table 1.

In total two different sampling approaches were applied
for powder samples. One approach used bulk shell samples
(including all shell layers and shell layers in variable ad-
mixtures; Fig. 1a) following a transect along the maximum
growth axis of the shell. For the second approach, shells
were cut perpendicularly to the maximum growth axis and
calcite samples were extracted using a micro drilling sys-
tem (MicroMill, Mechantek (esi/New Wave); Dettman and
Lohmann, 1995). For detailed information of the analyti-
cal procedure refer to Immenhauser et al. (2005). For the
sake of data comparability, aragonitic (nacreous) layer iso-

tope data were normalized against calcite isotope values us-
ing the equation of Rubinson and Clayton (1969) forδ13C
and that of Tarutani et al. (1969) forδ18O.

Elemental geochemistry analysis was performed on a
M. galloprovincialis shell from experimental locality B1
(Fig. 2b, d) using a Cameca SX50 electron microprobe at
the Department of Earth and Environmental Sciences of the
LMU Munich; Germany. The probe was operated at 15 keV
acceleration and 20 nA beam current. Barium (Ba), calcium
(Ca), chlorine (Cl), iron (Fe), magnesium (Mg), manganese
(Mn), phosphorus (P), silicon (Si), sodium (Na) and stron-
tium (Sr) were measured. Albite (Na), apatite (Ca and P),
baryte (BaSO4) (Ba), Fe2O3 (Fe), ilmenite (MnTiO3) (Mn),
periclase (Mg), SrSO4 (Sr), vanadite (Cl) and wollastonite
(Si) were used as standards. Matrix correction was performed
by the PAP procedure (Pouchou and Pichoir, 1984). The re-
producibility of standard analyses was<1 % for each rou-
tinely analysed element. The PAP corrected data were stoi-
chiometrically calculated as carbonate. Samples were taken
over the entire shell, but emphasis was placed on the shell
formed directly before and after the transplantation (Fig. 1b).

2.3 Methods: shell microstructure and texture analysis

The microstructure and texture ofM. galloprovincialisshells
were investigated under a scanning electron microscope
(SEM) using polished thin sections and fragments of sur-
face samples as well as under electron backscattered diffrac-
tion (EBSD). We use the following macroscopic reference
frame: all sample wafers were obtained from a longitudinal
cut through the shell that ranged from the hinge to the com-
missure of the valve. The sample wafers were∼200 microm-
eter thick and placed 90 degrees to the plane of cut onto a
glass holder. Samples were subsequently prepared on both
sides of the shell as highly polished, 150 µm thick sections.
The surface of the thin sections was subsequently etched for
45 s with a suspension of alumina nanoparticles. The samples
were then cleaned, dried, and coated with the thinnest pos-
sible conducting carbon coating (SEM: 4–6 µm and EBSD:
15 µm). Scanning electron micrographs and EBSD patterns
were obtained on a LEO Gemini 1530 SEM and a JEOL
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Table 2. Thickness characteristics of different shell layers ofM. galloprovincialisB1 and Cin µm. Shell thickness was measured before and
after transplantation. N.d. = no data; n.f. = not formed, i.e. shell was not precipitated.

Mytilus galloprovincialis Mytilus galloprovincialis
from site C pHT 8.07 in µm from site B1 pHT 7.25 in µm

Calcite layer 130–500 215–820
– commissure 200–250 215–230
– near commissure (after transplantation, C and B1) 200–250 340–430
– transition from harbour site to experimental site n.d. 620
– near commissure (before transplantation, C and B1) 500 760–820
– middle of the shell 130 430–520

Nacreous layer 5–440 10–150
– commissure 0–10 n.f.
– near commissure (after transplantation, C and B1) 0–10 n.f.
– transition from the harbour site to experimental site n.d. n.f.
– near commissure (before transplantation, C and B1) 40 10–150
– middle of the shell 440 10–100

Total shell (calcite and nacreous layer) 135–570 225–970
– commissure 200–260 215–230
– near commissure (after transplantation, C and B1) 200–260 340–430
– transition from the harbour site to experimental site n.d. 620
– near commissure (before transplantation, C and B1) 540 770–970
– middle of the shell 570 440–620

JSM 6500F SEM each equipped with the HKL Technology
“Channel 5” EBSD system. Images and EBSD patterns were
generated using an accelerating voltage of 20 kV and a beam
current of 3.0 nA. The lattice orientation of grains was de-
termined with a spatial resolution of 2–3 µm and an absolute
angular resolution of±0.5 degrees. Electron backscattered
diffraction patterns with a mean angular uncertainty of 1 de-
gree and above were discarded. Several EBSD maps were
conducted from each wafer, starting at the commissure and
moving towards the hinge. Calcite c-axes of the pole figures
always point to the outer rim of the shell and rotate (for the
calcitic shell portion) with the curvature of the shell.

3 Results

3.1 Macroscopic observations

Macroscopic examination ofM. galloprovincialisB1 sam-
ples transplanted to the acidified experimental site (pHT
7.25, Fig. 2d) developed characteristic features of the perios-
tracum, the calcitic and the aragonitic shell layers: (i) Mus-
sels lacked encrusting or colonizing marine biota (Fig. 1b);
(ii) near the umbo, the oldest part of the shell, the perios-
tracum was abraded while (iii) the nacreous layer lacked its
normal lustre and was pitted with small holes (∼0.1 mm) and
scattered with white spots (Fig. 1b). In contrast,M. gallo-
provincialisC from the control site C (pHT 8.07) were char-
acterized by shells encrusted by marine biota and displayed
a lustrous nacreous layer.

Fig. 3. Calcite layer SEM images fromMytilus galloprovin-
cialisB1 and Cfragments of the surface. Images are from outer mar-
gin precipitated from normal marine seawater pH(a, b) and from
shells precipitated from acidified seawater(c, d). (a andb) Calcite
layer ofM. galloprovincialisfrom control site C (pHT = 8.07). Note
well structured calcite layer. White stippled box indicates aragonite
layer. (c and d) Calcite layer ofM. galloprovincialis from acidi-
fied experimental site B1. Note portions of calcite layer with disor-
ganized shell structure (white stippled oval) within otherwise well
organized calcite shell.

www.biogeosciences.net/9/1897/2012/ Biogeosciences, 9, 1897–1914, 2012
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Fig. 4. Thin section view of calcite layer ofM. galloprovincialisfrom acidified seawater site B1.(a) Blue colour indicates shell precipitated
prior to transplantation and red colour indicates shell precipitated after transplantation to acidified test site B1.(b) SEM image of shell
precipitated parallel to the longest growth axis and directly before and after transplantation. Note pronounced differences in the orientation
of the calcite layer across transplantation event (white, stippled line). Locations of respective pole figures(c) and(d) are indicated. (c and
d) Pole figures representing stereographic projections of crystallographic axes and planes. The strength of clustering is specified with the
MUD (multiples of uniform density) value that gives the distribution pattern of EBSD data relative to that of a random distribution.

Fig. 5.Thin-section view ofM. galloprovincialisfrom experimental site B1.(a) Blue colour indicates shell precipitated prior to transplanta-
tion and red colour indicates shell precipitated after transplantation to acidified experimental site. (b andc) Electron backscattered diffraction
(EBSD) maps. Note location of b and c in Fig. 5a. Different colours indicate different orientations of calcite prisms. White points denote
those regions within the shell where Kikuchi patterns could not be indexed. The three RGB colour components code for the three Euler
angles of crystal orientation. In order to visualize all patterns the whole range of Euler angles are plotted (Euler 1 between 0–180◦, Euler
2 between 0–180◦ and Euler 3 between 0–120◦). Note rather homogenous (brown to lilac,b) colours in well structured calcite shell prior
to transplantation. The EBSD map of shell portions precipitated after the transplantation indicates a wider range of colours and spatially
disorganized calcite prisms indicating shell precipitation under acidified environments.

Biogeosciences, 9, 1897–1914, 2012 www.biogeosciences.net/9/1897/2012/
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Fig. 6.Thin-section view ofM. galloprovincialisfrom control site C.(a) Blue colour indicates shell precipitated prior to transplantation and
orange colour indicates shell precipitated after transplantation to control site. (b andc) Electron backscattered diffraction (EBSD) maps and
pole figures. Note location of b and c in Fig. 6a. Different colours indicate different orientations of calcite prisms. Black points denote those
regions within the shell where Kikuchi patterns could not be indexed. The three RGB colour components code for the three Euler angles of
crystal orientation. In order to visualize all patterns the whole range of Euler angles are plotted (Euler 1 between 0–180◦, Euler 2 between 0–
180◦ and Euler 3 between 0–120◦). Note homogenous (green to blue) colours in well structured calcite shell prior to and after transplantation.
The differences between the maps are due to different step sizes. Pole figures representing stereographic projections of crystallographic axes
and planes. MUD = Multiples of Uniform Density.

3.2 Shell ultrastructure, microstructure and texture

Figure 1a displays a sketch of the major structural units of
the shell’s ultrastructure based on SEM observations of trans-
plantedM. galloprovincialisB1 and C. In the following, dif-
ferences and similarities of shell portions that represent the
pre-transplantation growth period and such that represent the
post-transplantation growth period are compared.

The thickness of the calcite and aragonite layers varies sig-
nificantly over the life time of individual specimen whilst the
thickness of the periostracum remains more constant. The
calcite shell ranges from 120 to 830 µm and the nacreous
layer ranges from 5 to 1520 µm in thickness (Table 2). The
calcite shell layer formed from seawater at sites B1 and C has
thinned to about 70 % in the case of experimental siteM. gal-
loprovincialisB1 and to about 55 % of its former thickness in
the case of control siteM. galloprovincialisC (Table 2). InM.
galloprovincialisB1 the nacreous shell layer was not formed,

while it is present in samples from site C as a 5–10 µm thick
layer (Table 2).

Figure 3 depicts comparable portions ofM. galloprovin-
cialisB1 and Cshells formed after the transplantation. The cal-
cite layer of samples from control site seawater pH environ-
ments (Site C, pHT 8) is well ordered (Fig. 3a to b), while,
in contrast, the calcitic layer of theM. galloprovincialisB1
specimen from the acidified experimental site (pHT of 7.25)
is unordered. This effect is most pronounced in the portion
of the shell formed directly after the transplantation into the
acidified environment (Fig. 4b). With time, the shell structure
formed under acidified seawater conditions takes up the for-
merly structured organization, albeit with localized patches
of disordered shell calcite prisms (Fig. 3c and d). The later
observation is considered significant.

Electron backscattered diffraction measurements fromM.
galloprovincialisB1 are displayed in Figs. 4 and 5. The SEM
image in Fig. 4b shows the shell’s microstructure across the

www.biogeosciences.net/9/1897/2012/ Biogeosciences, 9, 1897–1914, 2012
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Fig. 7. Thin section view ofM. galloprovincialis from acidified experimental site B1. Blue colour indicates shell precipitated prior to
transplantation and red colour indicates shell precipitated after transplantation. Gray boxes numbered 1 through 7 indicate the position of the
microprobe maps. The maps 1 to 5 were measured across the calcitic shell layer only. Maps 6 and 7 are shown in Fig. 8 and are located at
the mid-shell and the hinge. Map 6 was measured across the calcitic and aragonitic layers, map 7 was measured across the aragonitic layer.
Magnesium and sodium microprobe maps 1 through 5 are numbered in ascending order from the commissure to the hinge (corresponding to
the boxes with the microprobe maps). Due to the incisive difference between the element magnesium (Mg) and sodium (Na), these elements
are illustrated. The concentration of elements is given in weight percent (Wt). The element distribution in the shell displays no discernible
pattern while concentrations of Mg and Na follow opposite trends.

transition from normal to acidified seawater. Calcite prisms
formed prior to the transplantation are aligned in paral-
lel (Fig. 4b) and the corresponding electron backscattered
diffraction pattern shows a unimodal distribution (Fig. 4c).
After the transplantation, a microstructural disarrangement
of the shell fabric is observed (Fig. 4b). This feature is
perhaps best explained as an adaptation shock of the mus-
sel to the transplantation. After adaptation to the new envi-
ronment,M. galloprovincialisB1 precipitates an ordered but
thinner calcite shell layer with prisms arranged in parallel
(Fig. 3c, d). The electron backscattered diffraction projection
patterns in Fig. 4d, documenting post-transplantation shell
growth, display bimodal, or more distribution.

The shell texture, specifically the 3-D orientation of calcite
fibre c-axes, displays a similar transplantation effect (Fig. 5).
A well ordered array of calcite fibre c-axes is precipitated
prior to the transplantation (Fig. 5b). Less ordered fibre c-
axes characterize the portion of the shell formed directly after
the transplantation (Fig. 5c).

Electron backscattered diffraction analyses of control site
M. galloprovincialisC are displayed in Fig. 6. The shell
texture, specifically the 3-D orientation of calcite fibre c-
axes, displays a well ordered array precipitated prior and
after transplantation (Fig. 6b and c). Electron backscattered

diffraction projection patterns in Fig. 6b and c show a uni-
modal distribution.

3.3 Shell geochemistry

3.3.1 Elemental abundances

Microprobe analysis results of samples obtained fromM.
galloprovincialisB1 are listed in Table S2 (Supplement).
Magnesium and sodium abundances are summarized in
seven distribution pattern maps shown in Figs. 7 and 8. Clear
differences in Ca, Mg, Na and P elemental composition be-
tween shell portions representing normal control site and
such representing acidified experimental site seawater are
recognized. All other elements were either evenly distributed
or below detection limit.

While Ca values are around 390 000 ppm (39 wt %) in
all measured maps, P shows a highly variable concentra-
tion distribution pattern of 1510 (0.151 wt %) to 4680 ppm
(0.468 wt %). Both elements, however, are enriched in the
calcite in comparison to the aragonite layer. Magnesium and
sodium show opposing distribution patterns. While magne-
sium is only present in the calcite layer, sodium is present
in both layers. In contrast to magnesium, however, sodium
is more abundant in the nacreous layer (10 600 ppm or
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Fig. 8. Thin section view ofM. galloprovincialisfrom acidified ex-
perimental site B1. Blue colour indicates shell precipitated prior
to transplantation and red colour indicates shell precipitated after
transplantation to acidified test site. Gray boxes numbered 1 to 7
indicate the position of the microprobe maps. The maps 1 to 5 are
shown in Fig. 7. Magnesium and sodium concentration is given in
weight percent. Differences in element concentrations in map 6 re-
flect differences between calcite and aragonite layer. Magnesium
and sodium are incorporated in calcite layer. Nacreous layer dis-
plays considerably higher concentrations of sodium. Judging from
elemental maps, the shell hinge is composed almost entirely of arag-
onite.

1.060 wt %) compared to the calcite layer (about 4500 ppm or
0.450 wt %; Table S2). The sodium content decreases grad-
ually from the shell hinge to the most recent portions of the
shell.

Magnesium shows a different distribution pattern with in-
creasing and decreasing trends between shell hinge and com-
missure. In part, this distribution is related to the thickness of
the aragonite versus the calcite layer with Mg incorporated

far more substantially into calcite. Initially, Mg increases
in abundance from the shell hinge towards the commissure,
this as the nacreous shell layer thins whilst the calcitic layer
thickens (Table S2). At the commissural end of the shell (i.e.
in the youngest portions of the shell), Mg abundances within
the calcite layer first increase and then decrease.

3.3.2 Carbon and oxygen isotope ratios from specific
shell layers

In order to assess the relative significance of each individual
shell layer (periostracum, calcite layer, nacreous/aragonite
layer) on bulkδ13C andδ18O isotope data and in order to cap-
ture the internal variability, sub-samples were drilled from
individual layers in selected shells (Fig. 1a). Isotope data are
listed in Table S1 (Supplement) and shown in Fig. 9 whilst
seawater isotope values are given in Table 1. Due to the com-
plexity of the data set, the main features are summarized be-
low. Previous work by Rubinson and Clayton (1969;δ13C)
and Tarutani et al. (1969;δ18O) reported on the crystallo-
graphical effects of isotope fractionation in inorganic arag-
onite and calcite precipitates. Therefore,δ13CAragonite val-
ues in Fig. 9a and c were normalized for calcite. In a com-
prehensive study, however, Lecuyer et al. (2004) found no
evidence that oxygen isotope fractionation between mollusc
aragonite and water differs from that of mollusc calcite and
water. Aragonite oxygen-isotope values in Fig. 9b and d were
normalized by the much smaller factor of 0.06 ‰ as proposed
in Tarutani et al. (1969) but it seems unclear if this step is jus-
tified for biogenic carbonates.

Bulk carbon isotope values fromM. galloprovincialisB1
shells prior to transplantation range from−1.6 to −0.2 ‰
(standard deviation (σ) = 0.02 ‰). Calcite and aragonite
δ13C ratios scatter between 1.3 and−0.3 ‰ (σ = 0.02 ‰).
Shell material from experimental site B1 (pHT 7.25) has
δ13C values of 2.4 ‰ (σ = 0.02 ‰) (with periostracum) and
around 2.0 ‰ (σ = 0.02 ‰) (without periostracum), i.e. a
difference of less than 0.5 ‰.

Furthermore,M. galloprovincialisB1 and C values reveal
differences between the three layers (Fig. 9 and Table S1).
The lightestδ13Cshellvalues were recorded in the nacre-layer.
Samples combining calcite and nacreous layer are enriched
in 13C. The values combining periostracum and calcite layer
and such data from the calcite layer alone are intermediate in
isotopic composition. This pattern is not always detectable in
M. galloprovincialisfrom sites B and C. Furthermore, sub-
samples combining (i) periostracum and calcite layer and
(ii) calcite and nacreous layer show an ontogenetic trend
to higher values from the hinge to the commissure, i.e. in
growth direction.

Oxygen isotope ratios were analyzed from sub-samples
drilled from individual layers in selected shells (Fig. 1a) as
well as from bulk samples. Results are shown in Table S1
and summarized in Fig. 9. Bulkδ18O data fromM. gal-
loprovincialisB1 formed prior to transplantation range from
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Fig. 9. Differential carbon and oxygen isotope ratios representing shell layer and mixed samples (legend and Fig. 1a) of four specimens of
M. galloprovincialisB1 and C(a–d) plotted against distance from commissure. Different specimen are characterized by their different shell
length and experimental site, e.g.M. galloprovincialisC (4.0 cm, 2) refers to a specimen with a shell length of 4 cm that was dislocated to
control site C. Isotope values from two specimen from the same site, differentiated by their length, are labelled by a circle and a triangle,
respectively. (a throughd) Mytilus galloprovincialisshell isotope values from experimental site B1(a, b) and control site C(c, d). Colour
code represents different layers analyzed. Note considerable differences in isotope values from different shell layers. Aragonitic (nacreous)
layer isotope data were normalized against calcite isotope values using the equation of Rubinson and Clayton (1969) forδ13C and that of
Tarutani et al. (1969) forδ18O.

−0.4 to 0.6 ‰ (σ = 0.02 ‰). Without periostracum material,
data range from−0.3 to 0.6 ‰ (σ = 0.02 ‰). In shell ma-
terial precipitated under acidified seawater conditions,δ18O
bulk ratios are in the order of 0.8 ‰ (σ = 0.01 ‰). In sam-
ples lacking periostracum material, lower values of 0.6 ‰
(σ = 0.02 ‰) are found. All of these values are depleted in
18O relative to theδ18Oseawaterof 1.2 ‰ SMOW.

Furthermore,M. galloprovincialisB1 and C values reveal
isotopic differences between shell layers (Fig. 9 and Ta-
ble S1), with the nacreous layer being depleted. From the old-
est shell portions (hinge) to the youngest shell portions (com-
missure)δ18O values decrease. This includes samples taken
from (i) the periostracum and the calcite layers, (ii) samples
from the calcite layer and (iii) samples drilled from the cal-

cite and nacreous layers (Fig. 9). In contrast, samples drilled
within the transect in the nacreous layer remain invariant.

3.3.3 Isotope time series analysis of calcite shell
samples: acidified versus normal seawater
environments

In order to capture the geochemical pattern contained in
shell material across the transplantation interval, a high res-
olution isotope record focusing on the calcite layer ofM.
galloprovincialisB1 andM. galloprovincialisC was analyzed.
Data are listed in Table S1 (Supplement) and results are dis-
played in Fig. 10. The data set is complex but clearly indi-
cates that fractionation patterns in different shell layers of
the same mussel differ considerably. The main features are
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Fig. 10.Times seriesδ13C andδ18O ratios plotted against distance from shell commissure. Different specimens/shells are labelled according
to shell length.Mytilus galloprovincialisC (5.4 cm) refers, for example, to a specimen with shell length of 5.4 cm transplanted from the
harbour to the control site C. (a andb) Horizontal, black stippled line separates data from shell material precipitated before (right) and after
(left) transplantation. Note considerable negative excursion in both carbon and oxygen data in August 2009 followed by marked positive
trend until December 2009. Negativeδ18O shift is probably best interpreted as effect of an anomalous warm and long heat-wave (HW).
Positive shift is only in part related to temperature alone and is probably related to seawater pH change and metabolic effects. DIC-S refers
to seawaterδ13CDIC value during summer 2009 and DIC-W theδ13CDIC value of seawater during winter 2009. (c andd) Data fromM.
galloprovincialisC showing transition from Ischia harbour to normal pH control site C. Near identical isotope pattern as recorded at site B1
is found albeit with smaller amplitudes.

summarized below and are placed against seawater values as
shown in Table 1.

Calcite layer carbon and oxygen isotope ratios ofM. gal-
loprovincialisB1 prior to transplantation range from−2.4
to −0.6 ‰ (δ13Cshell;σ = 0.02 ‰) and −1.4 to 0.1 ‰
(δ18Oshell;σ = 0.03 ‰). Isotope ratios of shell material pre-
cipitated directly after the transplantation, are enriched in
13C and range between 0 and 0.3 ‰ (σ = 0.02 ‰) and18O
(−0.1 and−0.5 ‰; σ = 0.03 ‰). In calcite precipitated af-
ter the adaptation of the shell to acidified seawater at ex-
perimental site B1 (Fig. 2b, d), strongly elevatedδ13C ra-
tios of 1.9 to 2.4 ‰ (σ = 0.02 ‰) andδ18O ratios of 0.2
to 0.5 ‰ (σ = 0.03 ‰) are found. The maximum difference
in pre- and post-transplantationδ13C calcite layer is in the
order of 4 ‰ and around 1.9 ‰ forδ18O. This difference
is considerable. The maximum difference in pre- and post-
transplantationδ13C bulk shell materials is smaller, i.e. up to
2.5 ‰ and about 1.0 ‰ forδ18O.

Carbon and oxygen isotope ratios ofM. galloprovin-
cialisC prior to transplantation range from−2.2 to−0.9 ‰
(δ13Cshell; σ = 0.02 ‰) and−1.4 to−0.9 ‰ (δ18Oshell; σ =

0.03 ‰). Shell material precipitated after the adaptation to
the normal seawater conditions at control site C (Fig. 2b, d)
ranges between−0.7 to−0.1 ‰ (δ13Cshell; σ = 0.02 ‰) and
δ18O ratios of 0.1 to 0.4 ‰ (σ = 0.03 ‰). The maximum dif-
ference in pre- and post-transplantationδ18O calcite layer is
around 1.8 ‰ (2 ‰ forδ13Ccalcite), i.e. about 50 % of the
difference found in shells kept under acidified conditions.
For bulk samples, the maximum difference in pre- and post-
transplantationδ13Cshell is 1.4 ‰ and around∼1.6 ‰ for
δ18Oshell.

4 Interpretation and discussion

4.1 Sensitivity ofMytilus shell geochemistry and
ultrastructure to environmental change

All mussels of theM. edulisgroup show a distinct biological
control on biomineralization (Heinemann et al., 2008) and, in
their rather complex, tripartite shell structure (Fig. 1), a high
level of mineralogical and geochemical complexity. The data
shown here are clear evidence that this internal complexity is
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underexplored from the viewpoint of geochemistry and crys-
tallography and represents a significant obstacle for those
dealing with the paleo-environmental analysis of fossil ma-
terial.

Additional complexity comes from the metabolic effects
active during the incorporation of carbonate ions from sea-
water and organic matter taken up as food and incorporated
as bicarbonate ions into the bivalve shells (Lorens and Ben-
der, 1977; Klein et al., 1996a, b; Vander Putten et al., 2000;
Lecuyer et al., 2004; Dalbeck et al., 2006; Wanamaker et al.,
2007; Heinemann et al., 2008). During winter months, Ischia
harbour seawaterδ13CDIC is considerably depleted (mean of
0.2 ‰) due to sewage water from Ischia Porto village. Low-
est DIC carbon isotope values of−0.5 ‰ (andδ18Oseawaterof
0.8 ‰ SMOW) were measured from a water sample taken di-
rectly beside one of the sewage pipes in the harbour. During
much of spring to early fall, when biogenic carbonate secre-
tion preferentially removes12C from seawater, mean harbour
DIC values reach 1 ‰ and more (DIC-S in Fig. 10a, c). In
late fall and winter months, seawaterδ13CDIC of the control
site C is in the order of 0.8 ‰ (DIC-W in Fig. 10c), whilst it
is 0.9 ‰ near the vent areas (DIC-W in Fig. 10a; cf. Fig. 2d
and Table 1). The slightly more positive seawaterδ13CDIC
at the acidified experimental site B1 (Fig. 10a) is probably
due to the13C-enriched values of the volcanic CO2 (Tedesco,
1996). During spring and summer months control (C) and
experimental site (B1) seawater values approach the regional
values of 1.2 to 1.4 ‰ reported in Pierre (1999).

Mussels were transplanted near end of September and
moved to the control and the experimental sites (Fig. 2d). Bi-
valves experienced an approximate113CDIC of about 0.4 ‰
from Ischia harbour (spring and summer,12C-depleted) to
the test and experimental site (late fall to winter months,
12C-enriched). Shellδ13Ccalcite values are depleted by about
1.5 to 2 ‰ relative to pre-transplantation harbour seawater
δ13CDIC conditions of 0.8 to 1 ‰ (Fig. 10a, c). Following
previous work (Vander Putten et al., 2000; Wanamaker et
al., 2007; Immenhauser et al., 2008), this depletion is indica-
tive of metabolic processes and an organic carbon source.
Directly prior to the transplantation event, shellδ13Ccalcite
shifts to even more depleted values (HW in Fig. 10). We
propose that mussels suffered from an anomalous warm and
long heat-wave during the summer 2009, which caused mas-
sive mortalities of corals, gorgonians, sponges and bivalves
around Ischia (Rodolfo-Metalpa et al., 2011). This heat wave
is equally recorded in the negative shift in shellδ18O values
directly prior to the transplantation (Fig. 10b, d).

Post-transplantationδ13Ccalcitebecomes increasingly more
positive. Towards the end of the transplantation experiment,
δ13Ccalcite from the control site C is depleted by about 1 ‰
relative to seawater DIC (Fig. 10c), whilst it is enriched by
more than 1 ‰ relative to seawater DIC at the experimen-
tal site B (Fig. 10a and Table 1). The conspicuousδ13C
shift is probably best understood in the context of sudden,
transplantation-related changes in food availability and pop-

ulation density as well as seasonal changes in seawater DIC
between harbour and experimental sites seawater. The off-
set between harbour seawaterδ13CDIC and shellδ13Caragonite
andδ13Ccalcite lie in the same overall range (0.2 to 1.5 ‰ for
aragonite) as reported in Grossman and Ku (1986).

The maximum118Oshell in pre- and post-transplantation
is 1.9 ‰. The shift from lighter to heavierδ18Oshell ratios
(Fig. 10b, d), reflects, in the view of the authors, only in
part the abrupt transplantation change from warmer harbour
temperatures to gradually cooler water masses at the test and
control site (Fig. 2d). A heat wave in July and August 2009
with peak water temperatures of 26◦C stressed bivalves in Is-
chia harbour. Conspicuously, depletedδ18Oshell ratios in pre-
transplantation shell material (Fig. 10b and d) are evidence
for this event. Applying the temperature equation of Ander-
son and Arthur (1983) for calcite to theM. galloprovincialis
shell data, a pre-transplantation shellδ18O ratio of −1.5 ‰
(δ18Oseawaterof 1.1 ‰ SMOW) corresponds to a seawater
temperature of 27.6◦C, a value that is in reasonable agree-
ment (+1.6◦C) with average august harbour water tempera-
tures of 26◦C. After the transplantation in September, seawa-
ter temperatures at the control and the experimental site were
still at 24◦C but fell to 20◦C during October. Peak December
oxygen isotope values of 0.5 ‰ (Fig. 10b and d), in contrast,
measured from shell calcite precipitated after the transplanta-
tion to control and experimental sites (δ18Oseawaterof 1.2 ‰
SMOW), correspond to calculated seawater temperature of
19◦C. This calculated value disagrees by 3◦C with measured
seawater temperatures of 16◦C for December.

On the level of a working hypothesis, it seems likely, that
changes in seawater pH (Bamber, 1987; Michaelidis et al.,
2005; Berge et al., 2006; Beesley et al., 2008) influenced the
shell oxygen isotope values, perhaps via calcification rates
(Kleypas et al., 1999; Fabry et al., 2008) to some degree.
Seawater pH, however, does not explain the observed iso-
tope shifts in shells dislocated to the control site C that is
characterized by a normal seawater pH. This is considered
evidence that, under environmental stress such as the summer
heat wave and the transplantation shock,M. galloprovincialis
shell δ18O is in disequilibrium with ambient seawater. The
later observation is significant for shell calciteδ18O seawa-
ter temperature reconstructions. In essence, shellδ18O values
overestimate seawater temperatures by approximately 1.5 to
3◦C.

Shell elemental compositions as shown in Figs. 7 and 8 are
difficult to interpret. Differences in for example Mg abun-
dance between calcite and aragonite are strongly controlled
by the crystallographic properties of these carbonate materi-
als (e.g. Okumura and Kitano, 1986; Dalbeck et al., 2006).
In contrast to magnesium and calcium, however, sodium is
more abundant in the nacreous layer compared to the calcite
layer. Our results confirm the experiment of Okumura and
Kitano (1986), which co-precipitated alkali ions with arag-
onite and calcite. They showed that sodium ions substitute
for calcium in the aragonite lattice. The spatial differences
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in Ca, Mg, Na and P elemental composition within either
aragonite or calcite layers are probably meaningful on the
level of biomineralization, i.e. the effect of acidified seawa-
ter, temperature and other environmental factors on element
incorporation. Previous work has documented that Ca2+ and
Mg2+ are transported across the epithelium via inter- and/or
intra-cellular pathways (Watabe et al., 1990). Cations are ei-
ther actively pumped across the cell membrane or move by
passive diffusion through extracellular fluids to the site of
calcification (Weiner and Dove, 2003; Addadi et al., 2006).
At present, the authors accept that a detailed level of knowl-
edge regarding the biologically controlled incorporation of
elements in the shell ofM. galloprovincialis is not reached
and an in-depth interpretation of these data is beyond the
scope of this paper.

The observed differences in the shell ultrastructure in
specimen dislocated to experimental site B1 and control site
C are significant and document the sensitivity of this previ-
ously underexplored proxy to environmental change. While
the portions of the shell, that were biomineralized under nor-
mal seawater pHT of 8.07 (control site C in Figs. 2d, 3a, b
and 6c) are well ordered, the shell portions that precipi-
tated under acidified seawater conditions (site B1; Fig. 2d, 4b
and 5c) directly after the transplantation show a more un-
structured shell microstructure than the control. Shell por-
tions precipitated some weeks after the transplantation are
rather well structured but contain spatially irregular shell
portions with disordered calcite prisms (Fig. 3c, d). These
detailed insights into the shell ultrastructure are equally en-
couraging and illustrated through the measured EBSD maps
(Figs. 4 and 5).

Another important macroscopic feature refers to the arag-
onite or nacreous layer. In shell material from the acidified
test environment B1, the aragonite layer is characterized by
small, spatially isolated holes (diameters of∼0.1 mm), an
overall reduced thickness and a dull surface (Fig. 1b). These
dissolution effects may be caused by the acid base balance
regulation of the mussel in acidified conditions (Michaelidis
et al., 2005). Mussels that were transported to control C (pHT
8.07) lack these features but are in contrast characterized by
a highly lustrous nacreous layer.

M. galloprovincialisB1 and Cshow both a distinct thinning
of the calcite shell layer directly after the transplantation. A
connection with the implementation process itself can not be
excluded but the shells remain relatively thin after their adap-
tation to the new environment. Many independent factors,
however, influence bivalve shell formation and thickness.
Given that a shell thinning is present at sites with acidified
and at sites with normal seawater pH, the relation between
shell thickness and environmental factors is probably com-
plex. All of these above features, structured versus unstruc-
tured shell organization, differences in the appearance of the
nacreous layer, calcite layer thinning and marked changes in
geochemical signature, have a considerable fossilization po-
tential. These results are considered encouraging.

4.2 Environmental impact versus experimental bias

Mytilus shells are complex biomineral structures (Lowen-
stam and Weiner, 1989) precipitated under controlled ex-
tracellular processes (Crenshaw, 1980; Falini et al., 1996;
Gotliv et al., 2003; Gaspard et al., 2008). Factors that af-
fect the complex metabolic processes that in turn govern
biomineralization include: (i) environment (Vander Putten et
al., 2000) and here particularly seawater temperature (Gross-
man and Ku, 1986; Klein et al., 1996a; Bauwens et al.,
2010),δ13C of different carbon species in seawater (Dietzel
and Kirchhoff, 2002; Hoefs, 2009 and references therein),
salinity (Epstein and Mayeda, 1953; Bayne, 1976) and pH
(Bamber, 1987; Michaelidis et al., 2005; Berge et al., 2006;
Beesley et al., 2008); (ii) food availability (Gosling, 2003);
and (iii) the degree of competition and population density
(Gosling, 2003).

The potentially intricate combination of the above fac-
tors complicates the interpretation of geochemical and ultra-
structural data shown here. This is because specimen ofM.
galloprovincialiswere dislocated to environments not only
characterized by different seawater temperatures and pH (Ta-
ble 1) but where also exposed to sites with, in respect to
their former harbour environment, different nutrient levels
and seawaterδ13CDIC and mussels experienced an abrupt
change in population density. The abrupt change in the spa-
tial orientation of calcite fibres c-axes across the transplanta-
tion suture shown in Fig. 4b is perhaps best explained by the
transplantation shock because this suture line is present in
samples dislocated to experimental (acidified) seawater site
B1 as well as in such brought to control site C with normal
pH. The transplantation shock therefore resulted in artefact
features that are not expected in natural settings where en-
vironmental changes tend to be more gradual. This includes
for example seasonal changes in seawater temperature, food
availability but also gradual changes in population density.

The above consideration document the potential limita-
tions of the field experimental setup applied here. First, our
experiment was too short (68 days) to allow specimens to
recover from the transplantation shock and to fully adapt
to normal grow rates. Second, bivalves might have been
stressed due to abnormally high seawater temperatures prior
to the transplantation. Third, natural settings are by defini-
tion complex multi-factor systems. This background level
of complexity, combined with experimental artefacts such
as transplantation shock features limits the interpretation of
geochemical and structural features observed to some de-
gree. Culturing experiments, performed under constant en-
vironmental parameters and food availability (Thomsen and
Melzner, 2010; Thomsen et al., 2010; Heinemann et al.,
2011) are poor analogues of naturally complex environments
but allow for a precise relation of specific environmental fac-
tors to textural or geochemical features observed in the test
shells. In this sense, the outcome of the experiment shown
here is considered a successful failure. Successful, as the data
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clearly document the potential of combined geochemical and
shell ultrastructure proxy analysis. A failure, as it is at present
not possible to precisely allocate specific environmental pa-
rameters to specific geochemical or structural features.

5 Conclusions

Based on the data shown here, the following conclusions are
drawn:

1. Live specimen ofM. galloprovincialis were trans-
planted from Ischia harbour to nearby CO2 vents and
exposed to mean seawater pHT 8.07 and 7.25. The
shells responded with differential changes in shell car-
bon, oxygen and elemental composition, by a marked
thinning of the calcite layer and by an – at least partial –
lack of structure in the orientation of calcite prisms. In
addition, the nacreous layer of mussels grown in exper-
imental sites under acidified seawater was thin, dull and
partially dissolved.

2. The marked trends inδ18O across mussel shells grown
after transplantation cannot be explained by seawater
temperatures and pH differences alone. Oxygen-based
seawater temperature calculations overestimate mea-
sured seawater temperatures by 1.5 to 3◦C. Pending
more data, we suspect that environmental stress, and
most dominantly seawater temperature and transplan-
tation shock, affected mussel metabolism which in turn
influenced the shellδ18O ratios.

3. Pronounced shifts inδ13C may reflect abrupt changes
in food availability and population density when the
mussels were transplanted to the CO2 vent area. Re-
markably, the pre- to post-transplantation113Ccalcite of
shells exposed to acidified experimental site seawater
was about twice (4 ‰) that (2 ‰) found in shells precip-
itated from control site normal seawater pH. This point
to an influence of seawater pH on bivalve metabolism
and probably food availability that is again influenced
by seawater pH.

4. Different shell layers, i.e. periostracum, aragonite and
calcite layers show remarkable differences in both car-
bon and oxygen isotope values even when aragonite is
normalized to calcite values. This notion questions the
value of bulk data from bivalve shells.

5. Differences in shell elemental abundances in mussels
exposed to acidified seawater at experimental site com-
pared to normal conditions at control site are difficult to
interpret. First order elemental differences are related to
crystallographical differences between calcite and arag-
onite. Nevertheless, the spatial differences in Ca, Mg,
Na and P elemental composition within one shell layer
are highly complex and probably meaningful on the
level of metabolic controls during biomineralization.

6. We have documented the successful application of a
combined geochemical and shell ultrastructural/textural
proxy analysis from complex natural archives. The
transplantation shock clearly recorded in the mussel
shells is a problem and suggests that specimen must be
kept several months at test sites before they adapt to the
new environment. Our field experiments show that cau-
tion is required when using bivalve shells to interpret
past ocean acidification evens as shells can respond to a
range of factors along with the effects of high CO2.

7. It is proposed that the combination of field experiments
and laboratory cultures will lead to an improved under-
standing of factors affecting shell growth and its use in
interpretations of ocean acidification events.

Supplementary material related to this article is
available online at:http://www.biogeosciences.net/9/
1897/2012/bg-9-1897-2012-supplement.pdf.
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