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Abstract. Phenology, the timing of recurring life cycle
events, controls numerous land surface feedbacks to the cli-
mate system through the regulation of exchanges of carbon,
water and energy between the biosphere and atmosphere.

Terrestrial biosphere models, however, are known to have
systematic errors in the simulation of spring phenology,
which potentially could propagate to uncertainty in modeled
responses to future climate change. Here, we used the Har-
vard Forest phenology record to investigate and character-
ize sources of uncertainty in predicting phenology, and the
subsequent impacts on model forecasts of carbon and water
cycling. Using a model-data fusion approach, we combined
information from 20 yr of phenological observations of 11
North American woody species, with 12 leaf bud-burst mod-
els that varied in complexity.

Akaike’s Information Criterion indicated support for
spring warming models with photoperiod limitations and, to
a lesser extent, models that included chilling requirements.

We assessed three different sources of uncertainty in
phenological forecasts: parameter uncertainty, model uncer-
tainty, and driver uncertainty. The latter was characterized
running the models to 2099 using 2 different IPCC climate
scenarios (A1fi vs. B1, i.e. high CO2 emissions vs. low CO2
emissions scenario). Parameter uncertainty was the smallest
(average 95 % Confidence Interval – CI: 2.4 days century−1

for scenario B1 and 4.5 days century−1 for A1fi), whereas
driver uncertainty was the largest (up to 8.4 days century−1

in the simulated trends). The uncertainty related to model
structure is also large and the predicted bud-burst trends as

well as the shape of the smoothed projections varied among
models (±7.7 days century−1 for A1fi, ±3.6 days century−1

for B1). The forecast sensitivity of bud-burst to temperature
(i.e. days bud-burst advanced per degree of warming) var-
ied between 2.2 days◦C−1 and 5.2 days◦C−1 depending on
model structure.

We quantified the impact of uncertainties in bud-burst
forecasts on simulated photosynthetic CO2 uptake and evap-
otranspiration (ET) using a process-based terrestrial bio-
sphere model. Uncertainty in phenology model structure led
to uncertainty in the description of forest seasonality, which
accumulated to uncertainty in annual model estimates of
gross primary productivity (GPP) and ET of 9.6 % and 2.9 %,
respectively. A sensitivity analysis shows that a variation of
±10 days in bud-burst dates led to a variation of±5.0 % for
annual GPP and about±2.0 % for ET.

For phenology models, differences among future climate
scenarios (i.e. driver) represent the largest source of uncer-
tainty, followed by uncertainties related to model structure,
and finally, related to model parameterization. The uncer-
tainties we have quantified will affect the description of the
seasonality of ecosystem processes and in particular the sim-
ulation of carbon uptake by forest ecosystems, with a larger
impact of uncertainties related to phenology model structure,
followed by uncertainties related to phenological model pa-
rameterization.
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1 Introduction

Phenology is the study of the timing of recurrent biologi-
cal events and the causes of their temporal change in re-
sponse to biotic and abiotic forces (Lieth and Radford, 1971).
As variability in the timing of phenology is tightly coupled
to variability in climate, phenology can be considered as
an important indicator of climate change (e.g.IPCC, 2007;
Menzel et al., 2006). Numerous studies have documented
the impacts of climate change on plant and tree phenol-
ogy. For instance, the Fourth Assessment Report (AR4) of
the Intergovernmental Panel on Climate Change (IPCC) re-
ported an overall trend towards earlier spring phenological
events (e.g. bud-burst, leaf unfolding, flowering and pollen
release) between 2 and 5 days decade−1 (Rosenzweig et al.,
2007). Menzel et al.(2006) estimated an average advance
of spring phenology in Europe of 2.5 days decade−1 while
Schwartz et al.(2006) similarly showed earlier bud-burst
of 1.1 days decade−1 across most temperate Northern Hemi-
sphere land regions over the 1955–2002 period.Jeong et al.
(2011) reported several different start of season trends at
global and regional scales and suggested a reduction of the
rate of advancement of the start of the season over the period
2000–2008 (0.2 days) compared to the period 1982–1999
(5.2 days).

Although these studies highlighted that spring phenology
has responded to recent climate change, large uncertainties
remain as to how phenology will respond to projected future
climate change. There are several conflicting reports in the
literature about the relative roles of different environmental
factors such as chilling (i.e. the exposure to cool tempera-
tures that is required before dormancy can be broken) and
photoperiod in controlling tree phenology.Körner and Basler
(2010) have argued, photoperiod will constrain the degree to
which future warming causes continued advances in spring
phenology. Other studies (e.g.Chuine et al., 2010; Morin
et al., 2009; Vitasse et al., 2011) suggest that photoperiod has
not been shown to be more dominant than temperature when
predicting bud-burst or flowering. These latter studies argue
that temperature has a more dominant role than photoperiod
during both the endodormancy phase (i.e. an inactive phase
caused by conditions or factors within a plant or seed itself)
and the ecodormancy phase (i.e. the cessation of growth in-
duced by environmental factors) that controls spring phenol-
ogy. Another study (Schleip et al., 2008) suggests the im-
portance of adequately weighting the temperature forcing
to determine the effective temperature which controls each
phenophase. These different hypotheses lead to different pos-
sible structures for phenology models, but the associated un-
certainties in forecasts of phenological responses to climate
change have yet to be quantified.

Uncertainty in model projections can be classified in
three categories: uncertainty due to (1) model parameters;
(2) model structure; and (3) model drivers. The evaluation
of phenological model parameter uncertainty is necessary in

order to estimate the uncertainty in performance of a particu-
lar model structure and for parameter optimization; model
structural uncertainty stems from different model assump-
tions and formulations, with different processes described
differently by each model; model driver uncertainty is due
to uncertainty in future climate scenarios used for ecological
forecasts (Cook et al., 2010).

Model-data fusion (e.g.Keenan et al., 2011; Wang et al.,
2009) provides a promising approach for assessing uncer-
tainties in ecological forecasting. Also referred to as model-
data integration or data assimilation, model-data fusion relies
on the combination of models with observational constraints
through an optimization approach (e.g. simulating annealing,
quasi-newton methods, etc.). In this way, model parameters,
model states and their respective uncertainties can be esti-
mated, conditional on the data (here: consistent phenological
observations by a human observer). With a model-data fu-
sion approach it is possible to objectively incorporate data,
along with associated uncertainties, allowing for a full char-
acterization of posterior distributions of model parameters.
In this way, confidence estimates of model projections can
be obtained, both for current climate conditions and for fu-
ture climate change scenarios (e.g.Keenan et al., 2012a).

Phenology, and in particular bud-burst, controls numerous
land surface feedbacks to the climate systems and ecological
interactions through the regulation of exchanges of carbon,
water and energy between the biosphere and atmosphere (e.g.
Richardson et al., 2009, 2010; Baldocchi, 2008; Morisette
et al., 2009; Fitzjarrald et al., 2001). Uncertainty in the pre-
diction of spring phenology can, therefore, feed-forward to
generate uncertainty in estimates of carbon and water cycling
from terrestrial biosphere models.

Several studies have shown the sensitivity of different bio-
geochemical and terrestrial biosphere models to bud-burst
and other phenological transitions (e.g.Randerson et al.,
2009; Levis and Bonan, 2004; White et al., 2000; Migli-
avacca et al., 2009). Furthermore, recent multi-model synthe-
sis studies have shown that spring phenology is poorly simu-
lated by many terrestrial biosphere models (Richardson et al.,
2012; Keenan et al., 2012b). The results show large biases in
model estimates of carbon cycling due to errors in modeled
phenology (Richardson et al., 2012), and identify phenology
model errors as a systematic cause of poor model perfor-
mance for interannual variability in terrestrial carbon cycling
(Keenan et al., 2012b). Hence, modeled future carbon, water
and energy fluxes, as well as many biosphere-climate inter-
actions projected by terrestrial biosphere models, might be
subject to uncertainty due to the uncertain representation of
phenological responses to climate change.

Herein we present a phenological forecasting study us-
ing phenological data for 11 different North American
tree species observed at Harvard Forest over the last
20 yr (Richardson and O’Keefe, 2009). We characterize the
sources of uncertainty in bud-burst models under present cli-
mate conditions, and also for forecasts for the 21st century.
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Fig. 1. Schematic representation of the model-data fusion approach for model optimization, the forecat mechanism and the characterization
of the three sources of uncertainty. In each box is reported the paragraph where the description of methods (blue characters) and results (red
characters) can be found. The schematic representation of the effects of the different uncertainties on bud-burst projections is also reported.

In addition, we quantify the impacts of these uncertainties for
modeling forest-atmosphere fluxes of carbon and water. The
two main questions behind our analysis are:

1. How big are the different sources of uncertainty in phe-
nological forecasts?

2. How do these uncertainties affect the prediction of
photosynthetic CO2 uptake and evapotranspiration as
described by a process-oriented terrestrial biosphere
model?

To answer these questions we combine phenological ob-
servations collected at Harvard Forest, with 12 different phe-
nological models, using a model-data fusion approach. With
this analysis we characterize the uncertainty of model param-
eters and model structure. We then project model estimates
of phenology forward, along with the associated parameter
uncertainties, using statistically downscaled climate projec-
tions (Delworth et al., 2006; Hayhoe et al., 2007) for two
different IPCC climate change scenarios (A1fi, or high CO2

emissions scenario, and B1 or low CO2 emissions scenario).
This allows us to explore how the uncertainty characterized
using current phenological observations is propagated in the
future, and to quantify how model structural and parameter-
based uncertainty interacts with uncertainty in climate sce-
narios. The schematic representation of the different steps
of the analysis, model-data fusion approach for model opti-
mization and the forecast mechanism is reported in Fig. 1.

To answer the second question we analyze the impact of
the uncertainty of future bud-burst in a widely used terres-
trial biosphere model (Boreal Ecosystems Productivity Sim-
ulator; BEPS,Ju et al., 2006). We evaluate the differences be-
tween gross primary productivity (GPP) and evapotranspira-
tion (ET) as simulated by BEPS with the native phenological
model and forced by the bud-burst forecasts obtained with
the best model formulation selected according to data. Fi-
nally, we evaluate the sensitivity of GPP and ET to different
levels of uncertainty in bud-burst (±10,±1 day).

www.biogeosciences.net/9/2063/2012/ Biogeosciences, 9, 2063–2083, 2012
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Table 1.List of the 11 species used in the analysis, species identifier (Species ID), species Latin and common name, average bud-burst date
(BB), best model according to data (Best Model), coefficient of determination (R2), root mean square error (RMSE, day), Sen’s slope trend
estimated for scenario A1fi and scenario B1 with the best model, with the Akaike Weigthed average (Average wAICc) and the standard
deviation. All trends are expressed in day century−1.

Species Latin name Common BB Best R2 RMSE A1fi A1fi A1fi B1 B1 B1
ID name Model Best wAICc sd Best wAICc sd

ACRU Acer rubrum Red maple 126.2 Alt-CF1 0.77 2.20 −8.7 −8.7 7.2 −3.9 −3.9 3.5
ACSA Acer saccharum Sugar maple 121.5 Par2-CF2 0.82 2.09−7.1 −8.7 5.7 −3.5 −4.3 2.9
BEAL Betula alleghaniensis Yellow birch 126.2 Alt-CF1 0.63 3.44 −9.1 −8.8 8.5 −3.9 −3.8 4.5
BELE Betula lenta Black birch 129.5 SW-CF2 0.32 4.91 −5.0 −6.9 15.7 −1.7 −3.0 7.2
BEPA Betula Papyrifera Paper birch 122.9 Alt-CF1 0.56 3.31 −8.7 −6.4 7.7 −3.8 −2.8 3.6
FAGR Fagus grandifolia Beech 128.3 SW-CF1 0.67 2.22 −7.3 −5.3 8.1 −3.5 −2.4 4.2
FRAM Fraxinus americana White ash 130.2 SW-CF2 0.67 2.73 −5.6 −5.6 7.5 −2.3 −2.3 3.7
PRSE Prunus serotina Black cherry 111.2 SW-CF2 0.74 2.59 −9.3 −9.4 13.4 −5.4 −5.4 2.5
QUAL Quercus alba White oak 133.3 SW-CF2 0.73 3.21−14.7 −14.0 3.9 −7 −6.7 1.6
QURU Quercus rubra Red oak 127.1 SW-CF2 0.74 2.94−12.6 −10.6 5.5 −5.6 −4.7 3.0
QUVE Quercus velutina Black oak 130.6 SW-CF2 0.78 2.63−14.9 −15.2 4.5 −6.8 −7.3 2.0

2 Materials and methods

2.1 Site description and phenological observations

The Harvard Forest (42.54◦ N, 72.18◦ W, el. 220 to
410 m a.s.l.) site used in this study is located in central Mas-
sachusetts, about 100 km west of Boston, USA. The climate
is classified as humid-continental, with a mean July temper-
ature of 20◦C and mean January temperature of 7◦C. Mean
annual precipitation is 1100 mm, and is distributed evenly
across the seasons. The species composition in Harvard For-
est is dominated by transition hardwoods: red oak (Quercus
rubra), red maple (Acer rubrum) black oak (Quercus ve-
lutina), white oak (Quercus alba) and yellow birch (Betula
alleghaniensis). Conifers include eastern hemlock (Tsuga
canadensis), red pine (Pinus resinosa) and white pine (Pi-
nus strobus). Since 1990, springtime phenology observations
have been made at 3–7 day intervals. Leaf development was
monitored on three or more individuals (a total of 39 per-
manently marked trees or shrubs) of 11 woody species (Ta-
ble 1). Phenological observations used here are available on-
line (http://harvardforest.fas.harvard.edu).

In the present analysis we focus on bud-burst dates from
1990 to 2011. We define bud-burst as the date when 50 %
of all buds on an individual tree have recognizable leaves
emerging (Richardson et al., 2009). Our analysis uses tem-
perature and photoperiod as drivers of phenology. Mean daily
air temperatures are computed from the maximum and min-
imum daily temperatures recorded for the period of study at
the Shaler (1964–2002) and Fisher (2001–2011) meteorolog-
ical stations. Photoperiod is computed by using a standard
equation based on latitude and day of year (Monteith and
Unsworth, 1990).

2.2 Phenological models

A large number of different models exist for the simulation
of bud-burst for different species (e.g.Chuine et al., 1999;
Schaber and Badeck, 2003; Morin et al., 2009). The applica-
tion of different models against different datasets of the same
species, however, gave contrasting results about which mod-
eling approach is best (Hunter and Lechowicz, 1992; Chuine
et al., 1998, 1999). The models provide a context for inter-
preting observed interannual and inter-specific variability in
phenology, and to assess which model structure is best sup-
ported by the available data.

The models used in this study are largely based on those
presented byChuine et al.(1999) and updated inRichard-
son and O’Keefe(2009). We define two main categories of
models (Table 2). The model categories differ in their as-
sumptions of how warm and cold temperatures control de-
velopmental processes (Fig. 2). In the spring warming mod-
els, temperatures above a base temperature accumulate until
a threshold (in degree-days) is reached, thus triggering bud-
burst. In the chilling models, cold weather also plays a role.
In the sequential chilling model, a chilling threshold must be
reached before warming is effective; in the alternating and
parallel chilling models, an increase in the amount of chilling
experienced reduces the amount of warming that is required.
For all models, the rates of forcing (or spring warming) and
chilling are calculated based on the threshold approach (CF1)
and on the Sarvas function (CF2) (Sarvas, 1972; Chuine
et al., 1999). In CF1, the rate of chilling and forcing for day
of year(t) are accumulated if the daily air temperature (x(t))
is lower or higher than a specific threshold, respectively. In
the approach CF2, rates of chilling (Rc) and forcing (Rf) ac-
cumulation are both specified as nonlinear functions of daily
x(t) according to the triangular function reported in the Sar-
vas model (Sarvas, 1972). More specifically, in CF2, chilling
is accumulated according to Eqs. (1, 2, 3):
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Table 2.List of phenology models fit to Harvard Forest phenology data, model identifier (Model ID), models class (chilling models or spring
warming models) and fit parameters (number and variables symbols). Spring warming, sequential, alternating and parallel model structures
are described in text and in Fig. 2. CF1 and CF2 refer to different functional forms for forcing and chilling rates, as described in text.t1: time
step at which accumulation of chilling units begins (not used in spring warming models; fit parameter in all other models).C*: chilling state
at which transition from rest to quiescence occurs (fit parameter in sequential and parallel 1 models; not used in other models).t2: time step
at which accumulation of forcing units begins (fit parameter in spring warming models; equal tot1 in alternating and parallel 2 models; date
when cumulative chilling (Sc) is equal toC* in sequential and parallel1 models).F *: forcing state at which transition from quiescence to
bud-burst occurs (fit parameter in spring warming and sequential models; function ofSc in alternating, parallel 1 and parallel 2 models).Tc:
critical temperature for chilling functionRc(t) (not used in spring warming models; fit parameter in all other models).Tf critical temperature
for forcing functionRf(t) (fit parameter in all models).a, b model constants (a > 0, b < 0) relatingF * to Sc, i.e. F * = a exp(bSc(t)) at
t = y. y is the predicted bud-burst date (a, b not used in spring warming, alternating or sequential models; fit parameter in all other models).

Model name Model ID Model Class Fit Parameters

Spring warming CF1 SW-CF1 Spring Warming 3 (t2, Tf , F *)
Spring warming CF2 SW-CF2 Spring Warming 2 (t2, F *)
Alternating CF1 Alt-CF1 Chilling 4 (t1, Tf , a, b); t2 = t1; Tc = Tf
Spring warming CF1 t0 fixed SW-CF1t0 Spring Warming 2 (Tf , F *); t2 = 1 January
Spring warming CF2 t0 fixed SW-CF2t0 Spring Warming 1 (F *); t2 = 1 January
Alternating CF1 t0 fixed Alt CF1t0 Chilling 3 (Tf , a, b); t2 = t1 = 1 January;Tc = Tf
Sequential CF1 Seq-CF1 Chilling 5 (t1, Tf , Tc, C*, F *)
Sequential CF2 Seq-CF2 Chilling 4 (t1, Tc, C*, F *)
Parallel1 CF1 Par1-CF1 Chilling 6 (t1, Tc, Tf , C*, a, b)
Parallel1 CF2 Par1-CF2 Chilling 5 (t1, Tc, Tf , C*, F *)
Parallel2 CF1 Par2-CF1 Chilling 5 (t1, Tc, C*, a, b); t2 = t1
Parallel2 CF2 Par2-CF2 Chilling 4 (t1, Tc, a, b); t2 = t1

Fig. 2. Model representation of the seasonal cycle of terrestrial
ecosystems, from senescence through dormancy (a period of rest,
followed by quiescence) and then active growth. In temperate and
boreal systems, the transition through dormancy to active growth
has been described using a variety of approaches. Threshold points
t0 and t1 may be triggered either by photoperiod or temperature
(i.e. various forms of chilling: sequential, alternating or parallel, as
indicated). At threshold pointt2, bud-burst is triggered when ac-
cumulated forcing reaches a critical state. The manner in which
chilling and forcing accumulates varies among models. Chilling
models describe phenology as a combination of temperature forc-
ing, photoperiod limitation and chilling limitation; Spring warming
models describe phenology as function of temperature forcing and
photoperiod limitation (Table 2 for a list of model). Modified from
Chuine(2000).

Rc = 0 if x(t) ≤ −3.4 or x(t) ≥ 10.4 (1)

Rc =
x (t) + 3.4

Tc + 3.4
if − 3.4 < x(t) ≤ Tc (2)

Rc =
x (t) − 10.4

Tc − 10.4
if Tc < x(t) ≤ 10.4 (3)

whereTc is the species-dependent temperature threshold for
chilling accumulation.Rf is a sigmoid function ofx(t). Forc-
ing is accumulated whenx(t) > 0 as in Eq. (4):

Rf =
28.4

1+ e−0.185(x(t)−18.4))
(4)

Either in spring warming or chilling models, photoperiod
can control the point in time (i.e. a day-length threshold) at
which chilling and forcing begin to have an effect.

For example, parametert2 in Table 2 controls the date at
which forcing and/or chilling begins to be accumulated in
some models. We also compared versions of the models with
no photoperiod control; for these (models denoted by the suf-
fix t0; see Table 2), parametert2 is fixed to 1 January, which
is the value for onset of degree-day accumulation most com-
monly used in other studies.

2.3 Statistical analysis

2.3.1 Model parameters and uncertainty estimations

Model parameters (listed in Table 2) were estimated for
each species and model using bud-burst observations from

www.biogeosciences.net/9/2063/2012/ Biogeosciences, 9, 2063–2083, 2012
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Table 3.1AICc values for a range of different models (see text and Tables 1, 2 for additional information) fit to Harvard Forest bud-burst
data. Species ID are as given in Table 1. The best model, based on Akaike’s Information Criterion corrected for small samples (AICc) has
1AICc = 0 and is indicated by bold type.

Species ID SW-CF1 SW-CF2 Alt-CF1 SW-CF1t0 SW-CF2t0 Alt-CF1t0 Seq-CF2 Seq-CF1 Par-CF2 Par-CF1 Par2-CF2 Par2-CF1

ACRU 11.49 16.24 0.00 28.93 31.59 15.48 35.49 14.51 39.07 13.20 14.51 19.73
ACSA 0.82 3.52 1.43 24.29 21.99 7.81 17.50 7.94 21.21 7.40 0.00 30.07
BEAL 9.19 7.35 0.00 20.16 22.41 11.41 25.03 13.36 28.65 13.32 11.85 19.04
BELE 2.93 0.00 0.12 15.78 15.82 5.66 19.46 11.23 23.08 10.79 51.97 12.20
BEPA 4.67 3.83 0.00 18.75 17.81 6.74 19.46 3.92 23.08 6.76 1.38 10.88
FAGR 0.00 7.25 6.00 27.34 31.55 10.43 29.89 11.25 32.27 7.40 1.60 11.60
FRAM 3.37 0.00 4.13 27.10 28.35 13.59 29.97 13.42 33.28 14.05 16.33 25.54
PRSE 3.56 0.00 3.47 22.44 23.23 7.63 12.56 11.51 12.88 7.37 64.97 17.84
QUAL 8.26 0.00 4.13 7.12 9.03 2.38 7.16 14.73 10.88 4.48 7.97 7.52
QURU 5.93 0.00 5.96 20.40 20.63 5.16 15.33 6.89 18.71 14.37 1.84 14.74
QUVE 3.91 0.00 6.10 14.29 15.03 7.71 1.50 8.70 4.94 7.81 4.39 14.46

MEDIAN 3.91 0.00 3.47 20.40 21.99 7.71 19.46 11.25 23.08 7.81 7.97 14.74
Best Model 1 6 3 0 0 0 0 0 0 0 1 0
1AICc < 2 2 6 5 0 0 0 1 0 0 0 4 0
1AICc < 6 8 8 10 0 0 4 1 1 1 1 5 0
Model Ranking 3 1 2 10 11 4 9 7 12 5 6 8

Harvard Forest as constraints. This allowed for the charac-
terization of species-specific biological responses to environ-
mental cues.

Model optimization and uncertainty analysis was per-
formed using a model-data fusion framework based on sim-
ulated annealing-type routines and Monte Carlo techniques
(Metropolis et al., 1953), as described byRichardson et al.
(2010). The cost function selected for this purpose was the
sum of squared error between observed and modeled data.
Once the best parameter set was identified, the parameter
space was further explored until 1000 parameter sets that
gave statistically equivalent fits to the data were accepted.
A specific parameter set was accepted if it passed aχ2 test
(at 95 % confidence level) for acceptance/rejection, after the
normalization of variance based on the minimum of the cost
function (Franks et al., 1999).

The resulting posterior distributions defined the parameter
space within which approximately equally good agreement
between data and model simulations can be obtained. Uncer-
tainty estimates for model parameters and model predictions
were thus provided directly by the model-data fusion frame-
work, conditional on the data and the cost function.

By running an ensemble of models, with parameter sets
selected from the posterior distributions, we can character-
ize the uncertainty in model predictions (both under current
and future climate scenarios) that is attributed to parameter
uncertainty.

2.3.2 Model selection and evaluation

We used the Akaike Information Criterion (AIC), a method
based on information theory (Akaike, 1973; Anderson et al.,
2000), for model selection purposes. AIC is a measure of
the trade-off between the goodness-of-fit (model explanatory
power) and the model complexity (number of parameters).

The small sample corrected criterion, AICc (Burnham and
Anderson, 2002), is calculated as in Eq. (5):

AICc = n logσ 2
+ 2p +

2p(p + 1)

n − p − 1
, (5)

wheren is the number of samples (i.e. observation years),p

is the number of model parameters andσ 2 is the residual sum
of square divided byn. The competing model formulations
proposed in Table 2 can be ranked according to AICc, where
the model with the lowest AICc is considered best supported
by the data, and most likely to be the “true” model. Can-
didate models can be compared directly by calculating the
difference in AICc scores with the best model (1AICc). If
1AICc is lower than 2, the two models are approximately
equivalent. If1AICc > 6, then the inferior model is about 20
times less likely to be the true model (Table 3).

Finally, for each species, we tested the best model se-
lected by AIC using phenological observations from 2010
and 2011, which had not been used for model calibration.
This evaluation was conducted computing theR2, the slope
of the linear regression analysis (observed vs. modeled), as
well as the root mean square error (RMSE) between observed
and modeled bud-burst dates (Pineiro et al., 2008).

2.3.3 Phenological forecast and propagation of model
uncertainty

With the aim of assessing the potential effects of climate
change on phenology, we ran the models from 1960 to 2099
using climate projections for Harvard Forest. These were
generated by Hayhoe et al. (2007) using the NOAA Geo-
physical Fluid Dynamics Laboratory (GFDL) CM2 global
coupled climate model (Delworth et al., 2006), statistically
downscaled to approximately 10 km spatial resolution. The
CM2 model was run using two scenarios of CO2 and other

Biogeosciences, 9, 2063–2083, 2012 www.biogeosciences.net/9/2063/2012/
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Fig. 3. (a) Time-series of mean annual temperature projections (1960–2099) under the Scenario A1fi
(orange line) and Scenario B1 (blue line); (b) time series of bud-burst dates (BB) modeled for red oak
(Quercus rubra) with the best model selected (Table 1). Blue line represents the BB projected under
the Scenario B1, orange line represents the BB projected under Scenario A1fi. Grey area represents the
uncertainty for the Scenario A1fi, while light purple area represents the uncertainty for Scenario B1;
(c) time series of bud-burst date (BB) modeled for red oak with SW-CF2 (best model), SW-CF2t0 (as
SW-CF2 but without photoperiod limitation), Par2-CF2 (second best model) and with the internal phe-
nological routine in BEPS (green line). Grey crosses represent the phenological observations collected
at Harvard Forest. Models in Fig. 2c are forced by temperatures from the scenario A1fi.
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Fig. 3. (a) Time-series of mean annual temperature projections (1960–2099) under the scenario A1fi (orange line) and scenario B1 (blue
line); (b) time series of bud-burst dates (BB) modeled for red oak (Quercus rubra) with the best model selected (Table 1). Blue line represents
the BB projected under the scenario B1, orange line represents the BB projected under scenario A1fi. Gray area represents the uncertainty
for the scenario A1fi, while light purple area represents the uncertainty for scenario B1;(c) time series of bud-burst date (BB) modeled for
red oak with SW-CF2 (best model), SW-CF2t0 (as SW-CF2 but without photoperiod limitation), Par2-CF2 (second best model) and with the
internal phenological routine in BEPS (green line). Gray crosses represent the phenological observations collected at Harvard Forest. Models
in Fig. 2c are forced by temperatures from the scenario A1fi.

greenhouse gas emissions: the IPCC Special Report on Emis-
sion Scenarios (SRES) higher (A1fi) and lower (B1) emis-
sion scenarios (Nakicenovic et al., 2000). Compared to
a 1960–1990 baseline of 7.1◦C mean annual temperature
and 1100 mm annual precipitation, corresponding values at
the end of simulation (mean 2070–2099) are 12.0◦C and
1270 mm for the A1fi scenario and 9.5◦C and 1240 mm for
the B1 scenario (Fig. 3a).

Uncertainty was propagated by running the models for-
ward with the ensemble of parameter sets that passed theχ2

test at 95 % confidence (Sect. 2.3.1), yielding for each year a
range of model predictions (Fig. 3b).

The uncertainty in model parameters was analyzed by
evaluating the propagation of the uncertainty for each sce-

nario and model structure independently. The ratio of the
mean width of the 95 % confidence interval (CI), computed
for the last and the first decade of the projections, was used to
quantify the degree to which parameter uncertainty changes
between current and future climate conditions.

The uncertainty related to the model structure was char-
acterized by analyzing the average smoothed projected
trend across model formulations and climatic scenarios. The
smoothed bud-burst projection was extracted from the time
series by using a local polynomial regression fitting (Cleve-
land and Devlin, 1988). The interannual variability was com-
puted as the standard deviation of the residual between the
forecasted bud-burst and its smoothed time-series.
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The driver uncertainty related to future climate forcing
was analyzed by computing, for the best model selected for
each species, the trends in advancing bud-burst under the two
different climatic scenarios. Trends were characterized by us-
ing the Sen’s slope estimator and the nonparametric Mann-
Kendall test (Helsel and Hirsch, 2002). The Mann-Kendall
test (Mann, 1945; Kendall, 1976) and the Sen’s slope esti-
mator (Sen, 1968) are non-parametric procedures for trend
testing and estimation of trend magnitude of a univariate time
series, respectively. Non-parametric methods are preferred to
parametric methods (i.e. regression analysis: regression slope
and test) because no assumption is made regarding the proba-
bility distribution of data. The second advantage of nonpara-
metric methods, and in particular for the estimation of trend
magnitudes, is their robustness to outliers or to abrupt breaks
due to inhomogeneous time series (Helsel and Hirsch, 2002).

2.4 Process-based terrestrial biosphere model

2.4.1 Description of Boreal Ecosystem Productivity
Simulator

The Boreal Ecosystem Productivity Simulator (BEPS) was
originally developed to simulate carbon and water fluxes at
daily time steps in a remote sensing framework (Liu et al.,
1997, 2002). Derivatives of this original version have been
developed and tested at various boreal forest and peatland
ecosystems (e.g.Govind et al., 2009, 2011; Sonnentag et al.,
2008; Ju and Chen, 2005; Ju et al., 2006). Spring phenolog-
ical events such as bud-burst are modeled as functions of air
temperature (Ju et al., 2006), with a model structure classifi-
able as spring warming without photoperiod limitation. Af-
ter bud-burst (accumulated growing-degree days above 5◦C
reach 75◦C), leaf area index keeps increasing linearly up to
growing-degree days of 500◦C when prescribed maximum
growing-eason leaf area index for understory and overstory
are reached.

For this study, we used the version of BEPS described by
Ju et al.(2006), parameterizing the soil-vegetation contin-
uum to consist of five soil and two vegetation layers, with
site-specific information for Harvard Forest from the liter-
ature (Urbanski et al., 2007) and the Harvard Forest data
archive. Spanning the period 1960–2099, the model was
driven by half-hourly meteorological forcing data including
incoming shortwave radiation, air temperature, relative hu-
midity, wind speed and precipitation.

For the future climate projection, we used downscaled data
(Hayhoe et al., 2007) from the regionalized projection of
the GFDL-CM global coupled climate-land modelDelworth
et al. (2006) driven with scenario A1fi (IPCC, 2007). For
each run, the model was initialized following the procedure
outlined inJu et al.(2006).

2.4.2 Modeling strategy

Several model runs have been conducted over the period
1960–2099 with BEPS and forced by different bud-burst
forecasts. Due to the computational demand of running
BEPS with the full posterior distribution of uncertainty from
each model, we designed specific experiments to test both the
BEPS native phenology model, and the sensitivity of photo-
synthetic CO2 uptake and ET estimated by BEPS to errors in
simulated bud-burst dates. The different runs are described
below:

– Run 1: BEPS with bud-burst simulated by the native
phenological routine (reference run).

– Run 2: BEPS forced by bud-burst dates simulated by the
best model formulation, selected according to the AICc
as described in Sect. 2.3.1 and the optimized parameters
set.

– Run 3: BEPS forced by 4 different bud-burst dates. The
bud-burst forcing time series has been computed by
adding to the bud-burst simulated with the reference run
±1 and±10 days. These runs are hereafter referred as
BEPS+1. BEPS−1; BEPS+10 and BEPS−10.

The differences in annual GPP and ET between Runs 1
and 2 allow for the quantification of uncertainty in photosyn-
thetic CO2 uptake and ET associated with the BEPS native
bud-burst sub-model. Run 3 allows for the characterization of
the sensitivity of photosynthetic CO2 uptake and ET in BEPS
to variations (shifts) in bud-burst dates. In other words, after
the characterization of the uncertainty around individual fu-
ture bud-burst dates, we look at the effect of constant “extra”
days in spring along the simulation period in terms of carbon
and water fluxes described by BEPS. Hereafter we referred
to Run 3 as the “Sensitivity Runs”.

3 Results

3.1 Performance evaluation of phenological models and
future bud-burst trends

The AICc values show that models belonging to the class
spring warming with photoperiod control tended to be bet-
ter supported by the data than competing model structures
(Table 3). In particular, for seven species the simple spring
warming models (SW-CF2 plus SW-CF1) are selected as best
(Tables 1 and 3). For several species, however, AICc gives
support for chilling models. Among chilling models, alter-
nating (Alt) models are more often selected (3 times as best
and 5 times with1AICc < 2), while sequential (Seq) models
are selected just once. Spring warming models without pho-
toperiod control are never selected as the best model. More-
over, Table 3 shows that the SW-CF2 model has the lowest
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Fig. 4. Coefficient of determination (R2) and slope of the linear regression between observed and pre-
dicted bud-burst with the best model selected (Table 1) for each year (a), for each species (b). Vertical
lines represent the average bud-burst day of the year in each year (a) and for each species (b). Grey bars
represent the average bud-burst dates across species (a) and the average bud-burst for each species (b).
Predicted versus Observed bud-burst dates for the years 2010–2011 simulated for the 11 species and the
best model selected as described in Table 1 (c). Error bars for the predictions represent the propagated
uncertainty of model parameters while for the observed dates is the minimum and maximum bud-burst
dates observed for each individual.
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Fig. 4. Coefficient of determination (R2) and slope of the linear regression between observed and predicted bud-burst with the best model
selected (Table 1) for each year(a), for each species(b). Vertical lines represent the average bud-burst day of the year in each year(a)
and for each species(b). Gray bars represent the average bud-burst dates across species(a) and the average bud-burst for each species(b).
(c) Predicted versus observed bud-burst dates for the years 2010–2011 simulated for the 11 species and the best model selected as described in
Table 1. Error bars for the predictions represent the propagated uncertainty of model parameters while for the observed dates is the minimum
and maximum bud-burst dates observed for each individual.

AICc across all species, followed by Alt-CF1. The time se-
ries of bud-burst dates (1960–2099) simulated for red oak
with the best model selected (SW-CF2) for both scenarios
are shown in Fig. 3b while simulations with different model
structures are reported in Fig. 3c.

TheR2 and the slope of the linear regression between ob-
served and predicted bud-burst dates, with the model selected
as best for the period 1990–2009 (i.e. years used for model
calibration) and for each species, are reported in Fig. 4a
and b, respectively. Figure 4a shows that the best model se-
lected for each species is able to explain the variability of
bud-burst across species for each year. Figure 4b shows that
the best model selected is able to explain the variability of
bud-burst for each species. Figure 4c shows that these cal-
ibrated models were able to successfully predict 2010 and
2011 bud-burst dates (R2

= 0.79; RMSE= 4.3 day). This
represents a strong test of the models, as 2010 had an anoma-
lously early start to the growing season.

Among the significant trends computed with the Sen’s
slope, we have found an average advance in bud-burst across
species of 9.4 (1 sd:±3.4, minimum: 5.0, maximum: 14.9)
day century−1 and 4.3 (1 sd:±1.7, minimum: 1.7, maximum:
7.0) day century−1 for scenario A1fi and B1, respectively.

3.2 Uncertainty of phenological forecasts

3.2.1 Uncertainty of model parameters

The impact of uncertainty in model parameters was evalu-
ated by running the models forward with 1000 realizations
of model parameter sets accepted by theχ2 test. As an ex-
ample, the parameter uncertainty for red oak is depicted with
colored areas in Fig. 3b. The uncertainty in individual years
results in an uncertainty in the projected bud-burst trends.
A summary of the resulting uncertainty in the magnitude

of the projected bud-burst trends simulated for each species
with the best model selected as in Table 1 is given in Fig. 5.
The width of boxplots represents the uncertainty in projected
trends for each species. The uncertainty in future trends var-
ied across species and is larger for simulations conducted
under the scenario A1fi. The average uncertainty, computed
as the average of the 95 % CI, is 2.4 day century−1 (ranging
from ±0.7 day century−1 for ACRU to ±4.1 day century−1

for BELE) for scenario B1 and 4.5 day century−1 (ranging
from ±0.7 day century−1 for ACRU to ±9.2 day century−1

for BELE) for A1fi.
The average ratio of the mean width of the 95 % confi-

dence interval, computed for the last and the first decade
of the projections with the best models, is 1.2 (1 sd:±0.2)
for both scenarios. For many models and many species, un-
certainty at the end of the simulation is similar to that for
the present climate. For models without photoperiod limi-
tation (more often for SW-CF1t0 and SW-CF2t0), and for
some chilling models (Par and Par2 models), the uncertainty
at the end of the simulation doubles (ratio between 2.0 and
5.3) and, in particular under scenario A1fi, there is a large
increase in uncertainty.

3.2.2 Uncertainty of model structure

The smoothed trends computed for a selection of models,
averaged across species, for the two scenarios are reported
in Fig. 6. The average of the model ensembles (gray line in
Fig. 6) and the average computed with the Akaike’s weights
(black line in Fig. 6) according toTurkheimer et al.(2003)
are also shown. Weighted averages and the standard devia-
tion of trends computed across the model structures are re-
ported in Table 1. The average standard deviation of the pro-
jected trends is a measure of the uncertainty in trends related
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Fig. 5. Violin-plot of the trends computed with the Sen’s slope estimator for each species. Bud-burst
dates (BB) BB projections were modeled by using the best model selected and the parameters ensemble
(1000 parameter set) for each species (Table 1). The white circles represent the mean of the distribution.
Red violins represent the predictions under the Scenario A1fi, while blue violins represent the predictions
under the Scenario B1.
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Fig. 5. Box-plot of the trends computed with the Sen’s slope estimator for each species. Bud-burst dates (BB) projections were modeled
by using the best model selected and the parameters ensemble (1000 parameter set) for each species (Table 1). Red boxes represent the
predictions under the scenario A1fi, while blue boxes represent the predictions under the scenario B1.

Fig. 6. Smoothed bud-burst (BB) projected time series under the Scenario A1fi (a) and the Scenario B1
(b). Different lines represent different models listed in Table 1. Orange lines represent Spring Warming
models with photoperiod limitations; green lines represent Spring Warming models without photoperiod
limitations (starting dates fixed at 1 January); blue lines represent some chilling class models with (Al-
ternating, Alt) and without photoperiod limitation (Alt-CF1t0 and Sequential, Seq-CF1). The bud-burst
projection are smoothed by using a local polynomial regression fitting (Cleveland and Devlin, 1988).
Black line represents the Akaike weighted average of model ensembles wile grey line represents the
average.
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Fig. 6.Smoothed bud-burst (BB) projected time series under the scenario A1fi(a) and the scenario B1(b). Different lines represent different
models listed in Table 1. Orange lines represent spring warming models with photoperiod limitations; green lines represent spring warming
models without photoperiod limitations (starting dates fixed at 1 January); blue lines represent some chilling class models with (alternating,
Alt) and without photoperiod limitation (Alt-CF1t0 and sequential, Seq-CF1). The bud-burst projection are smoothed by using a local
polynomial regression fitting (Cleveland and Devlin, 1988). Black line represents the Akaike weighted average of model ensembles wile
gray line represents the average.

to model structure and varies between±3.6 day century−1

for B1 and±7.7 day century−1 for A1fi.
Models more frequently selected as the best (i.e. spring

warming limited by photoperiod and alternating models) pre-
dict a response to future warming in the middle of the model
ensemble. Spring warming models without photoperiod lim-
itations show a strong trend toward early bud-burst, particu-
larly relevant under scenario A1fi, that affect also the arith-
metic average of multi-model ensemble (gray line in Fig. 6).

By 2099, differences in forecast bud-burst date across mod-
els could reach about 10 days for the A1fi scenario. Chill-
ing models and spring warming models with photoperiodic
limitation show less steep projected trends. The trends simu-
lated with these two classes of models level-off around 2060
for scenario B1 while for scenario A1fi a slow reduction in
the slope is observed over time. For scenario B1, the level-
ing off reflects the projected decrease of the rate of tempera-
ture warming (Fig. 3a) while for scenario A1fi the interaction
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Fig. 7. Future sensitivity of bud-burst to temperature (dBB/dT ) as projected by different phenological
models under the Scenario A1fi (a) and the Scenario B1 (b). (dBB/dT ) is computed as the ratio be-
tween the smoothed bud-burst projections for each model and the smoothed temperature. Different lines
represent some of the most representative models listed in Table 2.
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Fig. 7. Future sensitivity of bud-burst to temperature (dBB/dT ) as projected by different phenological models under the scenario A1fi(a)
and the scenario B1(b). (dBB/dT ) is computed as the ratio between the smoothed bud-burst projections for each model and the smoothed
temperature. Different lines represent some of the most representative models listed in Table 2.

Fig. 8. Histogram of the interannual variability predicted by all model structures reported in Table 2 (left
panel) and for all the species reported in Table 1 (right panel). Red histograms represent the interannual
variability under Scenario A1fi, blue histograms represent the interannual variability under Scenario B1.
The standard deviation (1 sd) of the interannual variability is also reported.
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Fig. 8. Histogram of the interannual variability predicted by all model structures reported in Table 2 (left panel) and for all the species
reported in Table 1 (right panel). Red histograms represent the interannual variability under scenario A1fi, blue histograms represent the
interannual variability under scenario B1. The standard deviation (1 sd) of the interannual variability is also reported.

between model structure, parameters and warm temperatures
(see Discussion) contributed to reduce the rate of bud-burst
advancing.

The future sensitivity of bud-burst to temperature is vari-
able across model structures as depicted in the time series
in Fig. 7. We observe a stronger sensitivity for spring warm-
ing models without photoperiod limitation (e.g. SW-CF2t0:
−5.3 day◦C−1 for A1fi, −5.0 day◦C−1 for B1) compared
with spring warming models limited by photoperiod (SW-
CF2: −2.4 day◦C−1 for A1fi, −2.2 day◦C−1 for B1) and
chilling models (e.g. Alt,−2.2 day◦C−1 for both scenarios).
For these models (often selected as the best) and for both
scenarios, sensitivity to temperature is stable or decreases in
time and spans from−2.4 to−2.9 day◦C−1 in the 1960s to
values ranging from−2.3 to −2.4 day◦C−1 by the end of

simulation. Under the scenario B1, the average reduction of
the bud-burst sensitivity to temperature at the end of simu-
lation for the best models selected is about 8.3 % compared
to the sensitivity at the beginning of the simulation. Mod-
els without photoperiod or chilling limitation show an in-
crease of the sensitivity of bud-burst to temperature by the
end of simulation reaching about−6.0 day◦C−1 while par-
allel models showed a quite variable and higher sensitivity to
temperature.

The interannual variability predicted by all models and by
all species over the entire simulation period is reported in
Fig. 8. The blue histograms represent the year-to-year vari-
ations under climate scenario B1 and the red histograms
under the scenario A1fi. For chilling models and spring
warming models without photoperiod limitations, the future
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Table 4.Summary of BEPS simulation protocol. Bud-burst forcing represents the bud-burst dates used for model runs. GPP is the mean Gross
Primary Productivity, ET is the mean evapotranspiration while GPP and ET sensitivity represent the average difference to the reference run
for annual GPP and annual ET expressed as variations of gC m−2 and cm of water per 1 day of variation of bud-burst. The reference run is
the run conducted with BEPS and with bud-burst simulated with its internal phenological routine. In squared parentheses the minimum and
maximum values for each variable are reported.

Run ID Bud-burst forcing GPP ET GPP sensitivity ET sensitivity
run- reference run run- reference run

[gC m−2 yr−1] [cm yr−1] [gC m−2 day−1] [cm day−1]

BEPS BEPS Native phenology 1569.34 46.53 Reference Reference
[Reference Run] [1295.15/1771.29] [40.27/54.57]

BEPSSW-CF2 SW-CF2 1433.30 45.13 8.03 0.08
[1167.22/1680.88] [39.98/52.35] [−1.97/19.16] [−0.01/0.25]

BEPS−10 BEPS Native phenology− 10 days 1636.65 46.94 6.73 0.04
[1343.45/1855.01] [40.69/54.72] [2.85/10.52] [−0.02/0.11]

BEPS−1 BEPS Native phenology− 1 days 1578.78 46.59 9.44 0.07
[1301.54/1784.08] [40.31/54.65] [3.89/21.94] [−0.04/0.25]

BEPS+1 BEPS Native phenology + 1 days 1561.52 46.44 −8.40 −0.08
[1291.42/1757.64] [40.21/54.56] [−21.69/−2.19] [−0.25/0.03]

BEPS+10 BEPS Native phenology + 10 days 1488.87 45.76 –8.05 –0.08
[1214.80/1702.30] [39.80/53.64] [−13.71/−0.97] [−0.19/0.02]

interannual variability predicted is larger than the one pre-
dicted by spring warming models with photoperiod limita-
tion and alternating models. Within different species we do
not observe large differences, except for black cherry. Inter-
annual variability under the scenario A1fi is slightly larger
as shown by the differences in red and blue histograms in
Fig. 8. However, differences within the 2 scenarios are not
statistically significant.

3.2.3 Uncertainty of model drivers

The uncertainty of model drivers is related to the uncertainty
in future climate scenarios used for ecological forecasts and
here we analyzed the differences in phenological forecasts
obtained using the A1fi and B1 scenarios.

The uncertainty of trends for each species was assessed
by computing the Sen’s slope estimator for each of the 1000
projected bud-burst time series, for the best model for each
species (Fig. 5). The differences between blue and red boxes
in Fig. 5 represent differences in mean trends between A1fi
and B1 scenario. Projected trends computed for the best
model selected for each species for the two scenarios are re-
ported in Table 1. A larger uncertainty in bud-burst trends
was evident for scenario A1fi compared to scenario B1.

Among the significant trends computed with the Sen’s
slope, we have found an average advance in bud-burst across
species of 9.4 (1 sd:±3.4, minimum: 5.0, maximum: 14.9)
day century−1 and 4.3 (1 sd:±1.7, minimum: 1.7, maximum:
7.0) day century−1 for scenario A1fi and B1, respectively.

3.3 Uncertainty in gross primary productivity and
evapotranspiration simulated with BEPS

We used the BEPS model to simulate photosynthetic CO2
uptake and ET at Harvard Forest. The runs conducted
with BEPS are in good agreement with GPP estimates re-
ported in Urbanski et al.(2007). For the period 1997–
2004 the mean annual GPP estimated from eddy covariance
measurements is 14.0 MgC Ha−1, the GPP simulated with
BEPSSW-CF2 is 14.9 MgC Ha−1 while the BEPS reference
run is 16.0 MgC Ha−1.

We give a summary of ET and GPP from the differ-
ent BEPS model runs in Table 4. On average the BEPS
native phenology model simulates an earlier bud-burst of
about 17 days (up to a maximum of 59 days) compared
to that simulated with the best model formulation identi-
fied above (i.e. SW-CF2). An example of the time series of
bud-burst simulated with BEPS, SW-CF2 and SW-CF2t0 are
shown in Fig. 3c. Differences between the reference run and
BEPSSW-CF2 represent the impact of uncertainty in model
structure on photosynthetic CO2 uptake and ET modeled.
We observe an average overestimation of the reference run
of 136.0 (±59.2, 1 sd) gC m−2 day−1 for GPP (±9.6 % of the
annual GPP) and 1.38 (±0.77, 1 sd) cm yr−1 for ET. The cor-
relation between the differences in fluxes (1GPP and1ET)
and in bud-burst (1BB) computed between the reference run
and BEPSSW-CF2 is stronger for GPP (r = −0.85p < 0.001,
slope= −6.49 gC m−2 day−1) than for ET (r = −0.55, p <

0.001, slope= −0.055 cm day−1). Figure 9 shows that1ET
and 1BB are strongly negatively correlated (r = −0.82,
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Fig. 9. Relationships between differences in BB (∆BB) simulated with the best model (SW-CF2 as
described in Table 1) and the internal phenological routine of BEPS and the differences in annual ET (a)
and GPP (b) simulated with Reference Run and BEPSSW−CF2 (Table 4). In (a) circles are represented
with different colors according to the BB date simulated with the internal routine of BEPS.
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Fig. 9. Relationships between differences in BB (1BB) simulated with the best model (SW-CF2 as described in Table 1) and the internal
phenological routine of BEPS and the differences in annual ET(a) and GPP(b) simulated with reference run and BEPSSW-CF2 (Table 4). In
(a) circles are represented with different colors according to the BB date simulated with the internal routine of BEPS.

p < 0.001) when the bud-burst occurs late (bud-burst> 115)
while they are poorly correlated (r = −0.38,p < 0.01) when
the bud-burst occurs early (bud-burst< 115). This highlights
that year-to-year variations in GPP are well correlated to
year-to-year variations of bud-burst dates, while year-to-year
variations of ET depend on variations in bud-burst in years
with late bud-burst but not in years with early bud-burst, sug-
gesting the role of other meteorological factors controlling
ET late in the season when bud-burst occurs early.

The results of the sensitivity runs (i.e. differences be-
tween the reference run and BEPS−1, BEPS+1, BEPS−10
and BEPS+10) are reported in Table 4 . These represent the
sensitivity of annual GPP and ET to uncertainty in bud-burst
dates due to model parameter uncertainty (reported as sensi-
tivity of fluxes to±1 day of bud-burst uncertainty). The time
series of the residuals (1GPP,1ET) to the reference run are
reported in Fig. 10. We observe an average increase in an-
nual GPP of 4.3 % (67.3± 16.4 (1 sd) gC m−2) for 10 days of
advance in bud-burst and a decrease−5.1 % (−80.5± 20.3
(1 sd) gC m−2) for 10 days of delay in bud-burst. The sen-
sitivity runs confirm that ET responds less to variations of
bud-burst than does GPP: ET varies by 0.92 % and−1.6 %
for a change in bud-burst of−10 and +10 days, respectively.
The average sensitivity of annual GPP to±1 day change in
bud-burst simulated by BEPS is 8.15 gC m−2 day−1, while
for annual ET is 0.07 cm day−1 (variation of annual fluxes
per 1 day of variation of bud-burst). The sensitivity of ET
to ±10 days of variations in bud-burst is asymmetric (green
and gray boxes in Fig. 10) and larger for a +10 days change

than a –10 days change. Moreover, year-to-year variability in
1ET is larger compared to1GPP.

The within-year sensitivity of1GPP and1ET to varia-
tions in 1BB is reported in Fig. 11a, b and confirms that
the sensitivity of GPP is similar both for early and late bud-
burst, while the sensitivity of ET is less pronounced for the
run BEPS−10 and in particular for the years with earlier bud-
burst (blue line in Fig. 11b). Within-year sensitivity of the
average soil moisture in summer to1BB and the within-year
sensitivity of the percentage change in summer soil moisture
to 1BB are shown in Fig. 11c, d. The average soil moisture
in summer is lower for years with earlier bud-burst, and the
sensitivity of summertime soil moisture to variations in bud-
burst dates is lower for years with earlier bud-burst.

Table 5 summarizes the correlation and the slopes of the
linear regression computed between1GPP and1ET simu-
lated with the different sensitivity runs and different meteoro-
logical and environmental conditions. Year-to-year variations
in 1GPP are correlated with the bud-burst dates, spring and
mean annual temperature and the sensitivity (i.e. slope of the
linear regression analysis) is stronger for the run BEPS−10.
The interannual variability of1ET is poorly correlated with
environmental conditions except for temperature and snow
depth for the run BEPS−10. The interannual variability of
summer1ET is more correlated with the main meteorologi-
cal variables (Table 5) compared to annual1ET.
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Fig. 10. Barplot of the percentage of variations of annual cumulated GPP (a) and ET (b) simulated with
the runs BEPS+10, BEPS−1, BEPS+1 and BEPS+10 (Table 4) with respect to the Reference Run.
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Fig. 10. Barplot of the percentage of variations of annual cumulated GPP(a) and ET (b) simulated with the runs BEPS−10, BEPS−1,
BEPS+1 and BEPS+10 (Table 4) with respect to the reference run.

4 Discussion

4.1 Sources of uncertainty of phenological forecasts

Our analysis has characterized different sources of uncer-
tainty in phenological forecasts. Here we have explicitly
accounted for uncertainty in estimated model parameters
(parameter uncertainty), uncertainty due to model struc-
ture (model uncertainty) and uncertainty due to the forcing
drivers (driver uncertainty).

Our analysis suggests that, once model parameters are op-
timized according to the data, parameter uncertainty is the
smallest (average 95 % CI:±2.4 day century−1 for scenario
B1 and±4.5 day century−1 for A1fi) and the most straight-
forward to quantify by using a model-data fusion frame-
work (model-data-optimization routine). Driver uncertainty
is the largest, up to 8.4 day century−1 of difference in trends
computed with the two scenarios and the best models, and
the most complicated to quantify given the uncertainty in
future climate projections. Model uncertainty is also large
and comparable with driver uncertainty: the predicted bud-
burst trends, as well as the shape of the smoothed projec-
tions (Fig. 6), showed large variability across models (1sd:
±3.6 day century−1 for B1 and±7.7 day century−1 for A1fi).

With the best model selected for each species and its opti-
mized parameters set, an average trend towards earlier spring
by 4.4 day (scenario B1) and 8.8 day (scenario A1fi) over the
coming century is predicted.

Although the parameter uncertainty is smaller than other
sources of uncertainty, we observe that in some species (such
as yellow birch, white oak, red oak and sugar maple) forecast

bud-burst trends vary greatly depending on the parameter sets
used in some models.

Although, forecast uncertainty due to parameter uncer-
tainty scales with time does not increase for all the model
structures. The increase of uncertainty by the end of simula-
tion is model-dependent and it is larger for those model struc-
tures less supported by data (e.g. spring warming without
photoperiodic limitation and parallel models). When these
models are used for long-term forecast of spring phenology,
the non-stationary of uncertainty in time should be carefully
considered.

The above considerations suggest an interaction between
the parameter uncertainty and the driver uncertainty. More
specifically, we found higher uncertainty for the high CO2
emissions scenario (Fig. 5). The expansion of the propa-
gated uncertainty under the A1fi scenario indicates the im-
portance of reducing the uncertainty in model parameters
(which could be accomplished with longer time series of ob-
servations) and, more importantly, in reducing driver uncer-
tainty (i.e. uncertainty in climate scenario).

Driver uncertainty is related to uncertainty in future cli-
mate scenarios used to run the phenological models and it is
quantified as the difference between runs of the same model
forced by different drivers. As shown in Fig. 6, the differ-
ences in bud-burst simulated by different models at the end of
the simulation period is larger with the scenario A1fi (Fig. 6a)
than with scenario B1 (Fig. 6b). In particular, models less
supported by the AICc are more sensitive to changes in driver
scenarios (e.g. up to 2 weeks for spring warming class mod-
els without photoperiod limitation and for some versions of
parallel and sequential models). Therefore, accurate model
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Fig. 11. (a) Within-years sensitivity of GPP (∆GPP) to variations of BB (∆BB); (b) within-years sensi-
tivity of ∆ET to ∆BB; (c) within-years sensitivity of the average soil moisture in summer to ∆BB; (d)
within-years sensitivity of the percentage of variations of summer soil moisture to ∆BB. Different lines
represent the within-years sensitivity. Years are grouped according to the distribution of the day of the
year (DOY) of bud-burst (i.e. from years with early bud-burst to years with late bud-burst as reported in
the legend). The purple line represent the within-years sensitivity computed using all data.
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Fig. 11. (a)Within-years sensitivity of GPP (1GPP) to variations of BB (1BB); (b) within-years sensitivity of1ET to 1BB; (c) within-
years sensitivity of the average soil moisture in summer to1BB; (d) within-years sensitivity of the percentage of variations of summer soil
moisture to1BB. Different lines represent the within-years sensitivity. Years are grouped according to the distribution of the day of the year
(DOY) of bud-burst (i.e. from years with early bud-burst to years with late bud-burst as reported in the legend). The purple line with (*)
represents the within-years sensitivity computed using all data.

selection could also help to reduce uncertainty related to
model drivers.

The mean temperature increase expected with scenario
A1fi is about 3 times larger than that projected for scenario
B1. However, some models predict an adjustment of the ap-
parent sensitivity of bud-burst to temperature over the next

century (Fig. 7). In general, there is a reduction in the amount
that bud-burst advances for a given increase in temperature.
We note that this should not be seen as an adaptation of trees
to climate change. Rather, this reflects photoperiod and/or
chilling constraints (according to the species), which effec-
tively limit the degree to which the bud-burst can advance
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Table 5.Slope of the linear regression analysis computed between1GPP,1ET and summertime1ET (from June to August) and different
meteorological variables. In parentheses the Pearson’s correlation coefficient is reported. The differences of GPP (1GPP) and ET (1ET) are
computed as the differences in annual GPP [gC m−2 yr−1] and ET [cm yr−1] between the runs BEPS−10, BEPS−1, BEPS+1, BEPS+10 and
the reference run (Table 3). Tann is the mean annual temperature, Tspring is the springtime mean temperature (i.e. from March to May), Tsoil
is the mean soil temperature, Prec [mm] is the annual cumulated precipitation and Snow [cm] is the average snow depth. Bold characters
represent statistical significant correlations (p < 0.001).

1GPP BEPS−10 BEPS−1 BEPS+1 BEPS+10

BB 0.70 (0.45) 0.07 (0.20) −0.08 (−0.23) −0.85 (−0.44)
Tann −4.76 (−0.57) −0.57 (−0.33) 0.63 (0.31) 3.85 (0.38)
Tspring −5.46 (−0.59) −0.75 (−0.38) 0.71 (0.32) 4.37 (0.38)
Tsoil −5.36 (−0.50) −0.70 (−0.31) 0.67 (0.26) 4.14 (0.31)
Prec −0.02 (−0.19) −0.003 (−0.16) −0.01 (0.26) 0.02 (0.17)
Snow 1.09 (0.36) −0.06 (0.10) −0.13 (−0.19) −0.76 (−0.20)

1ET BEPS−10 BEPS−1 BEPS+1 BEPS+10

BB 0.010 (0.41) 0.001( 0.29) −0.001 (−0.18) −0.011 (−0.30)
Tann −0.042 (−0.33) −0.008 (−0.29) 0.005 (0.19) 0.040 (0.21)
Tspring −0.048 (−0.33) −0.008 (0.28) 0.006 (0.21) 0.049 (0.23)
Tsoil −0.032 (−0.19) −0.007 (−0.23) 0.005 (0.14) 0.029 (0.12)
Prec 2.14×10−4 (−0.14) −5.13×10−6 (−0.02) −2.78×10−5 (−0.08) −1.94×10−4 (−0.08)
Snow 0.020 (0.43) 0.002 (0.25) −0.002 (−0.21) −0.020 (−0.28)

1ET (JJA) BEPS−10 BEPS−1 BEPS+1 BEPS+10

BB −0.011 (0.59) −0.002 (0.53) 0.002 (0.47) 0.019 (0.63)
Tann 0.056 (0.60) 0.009 (0.54) −0.009 (0.51) −0.087 (0.57)
Tspring 0.097 (0.59) 0.011 (0.55) −0.010 (0.48) −0.096 (0.55)
Tsoil 0.062 (0.51) 0.011 (0.49) −0.011 (0.44) −0.097 (0.48)
Prec 3.83×10−4 (0.33) 6.29×10−5 (0.30) −7.58×10−5 (0.33) −6.24×10−4 (0.33)
Snow −0.012 (0.34) −0.001 (0.23) 0.002 (0.27) 0.017 (0.29)

in spring. For instance, considering the average trends com-
puted for all species, spring warming models without pho-
toperiod limitation (e.g. SW-CF2t0) predict an earlier bud-
burst compared to spring warming models (e.g. SW-CF2)
of 11.5 day century−1 for scenario A1 and 5.7 day century−1

for B1.
Here, we focused on the uncertainty related to the socio-

economic scenario used (A1fi vs B1). However, regarding
climate data, other uncertainties can also be explored.Cook
et al. (2010), showed the impact of the temporal and spa-
tial resolution of climate scenario in phenological modeling,
as well as the uncertainty related to the use of different gen-
eral circulation models (GCM). This uncertainty could be as-
sessed by analyzing the ensemble spread obtained by running
one phenological model with climate drivers from different
GCMs.

The model uncertainty is comparable to driver uncertainty,
and both the predicted bud-burst trends and the shape of the
smoothed projections show a large variability across models
(Fig. 6). In this regard, the importance of photoperiod limita-
tion is highlighted by (1) the large difference (up to 10 days
by the end of our simulations) between spring warming mod-
els with and without photoperiod limitation, and by (2) the

similarity of the sensitivity of bud-burst to temperature for
models that feature photoperiod limitation.

For some chilling class models (e.g. parallel models), we
observe that in some years the predicted bud-burst dates were
highly uncertain and unrealistic (e.g. no bud-burst predicted).
As noted in an earlier study (Morin et al., 2009), this effect
might be related to interactions between parameter uncer-
tainty and model structural uncertainty. Thus, in anomalous
years (i.e. very warm winter), for certain extreme parame-
ter sets, the winter chilling requirements were not fulfilled
and models failed to predict bud-burst in spring (i.e. no bud-
burst predicted). This occurred more often for scenario A1fi
than scenario B1, highlighting the need to reduce this source
of uncertainty by either reformulating the model structure or
better constraining model parameters by using more obser-
vations (longer time series or broader geographic coverage).

Several model structures and parameterizations resulted in
predicted bud-burst dates that are not sensitive to warm tem-
peratures during winter and early spring, which limits the de-
gree to which modeled bud-burst can advance under future
climate scenarios. Up to a certain level of projected warm-
ing in climate, different model structures predict a differ-
ent absolute value of bud-burst but a similar behavior of the
shape and trend of the projections. In these conditions, spring
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temperature is the main driver, while photoperiod and chill-
ing are less limiting. For high CO2 emissions scenarios, pho-
toperiod and chilling become important limiting factors lead-
ing to a different shape of projected spring phenology. Our
model selection ranking (spring warming with photoperiodic
limitation have been selected more frequently than chilling
models) supports the position ofKörner and Basler(2010)
in the current debate about the interactions between warm
temperatures in spring, cold temperatures during dormancy
and photoperiod, and the degree at which they will control
phenology under future climate warming. However, it should
be considered that although this study is conducted over a
relatively long time series, it includes only one site, which
may limit our ability to effectively constrain the photope-
riod parameter. Moreover, one of the major limitations re-
lated to currently available observational datasets is that these
might be too short to span a wide range of climatic condi-
tions needed to constrain more complex models (Richardson
et al., 2012). For this reason, data from warming experiments
or common garden experiments (e.g.Morin et al., 2010), as
well as new long-term datasets of consistent phenological ob-
servations from across a wide geographic range and climatic
conditions, could be of great value for constraining model
parameterization (i.e. to reduce parameters uncertainty) and
for testing and developing phenology models (i.e. to reduce
model uncertainty).

Finally, the uncertainty described above and multi-model
trends reported in Fig. 6 suggest that when constructing a
multi-model ensemble, not all model structures should be
weighted equally. More weight should be given to those
models that are better supported by the data, and less weight
to those that are not supported by the data. Akaike weights
(Turkheimer et al., 2003) can be used for this purpose.

4.2 Impacts of uncertainty in bud-burst forecasts on
photosynthetic CO2 uptake and evapotranspiration
modeling

The uncertainties of phenological forecasts might have im-
portant implications for the land surface energy budget and
for carbon and water cycling modeling because of the sen-
sitivity of biogeochemical models to bud-burst dates (Levis
and Bonan, 2004; White et al., 2000). The prognostic routine
in commonly used terrestrial biosphere models (e.g.Thorn-
ton et al., 2002; White et al., 1997; Lawrence et al., 2011; Ju
et al., 2006) is often based only on the heat sums or grow-
ing degree-day assumption (i.e. roughly similar to models
SW-CF1t0 and SW2-CF2t0), and model parameters are not
optimized against phenological observations. In our analy-
sis, simple model structures such as these were not well sup-
ported by the data (with the addition of photoperiod or chill-
ing, model performance was greatly improved). This might
lead to a poor description of spring phenology either in
terms of bud-burst or seasonal development of leaf area in-
dex (Richardson et al., 2012; Lawrence et al., 2011). Hence,

this source of error likely propagates to the seasonality of
carbon, water and energy fluxes projected by land surface
models (Richardson et al., 2012; Keenan et al., 2012b).

In our modeling exercise with BEPS we explored the ef-
fects on evapotranspiration and photosynthetic CO2 uptake
due to (1) the uncertainty in phenological model routines not
optimized embedded in the model (i.e. differences between
the reference run and BEPSSW-CF2) and to (2) the uncer-
tainty in model parameters (i.e. sensitivity runs: BEPS−10,
BEPS−1, BEPS+1, BEPS+10).

Model uncertainty (i.e. differences in GPP and ET ob-
tained with the reference run and the BEPSSW-CF2) lead to
biases of 9.6 % for annual GPP and 2.9 % for annual ET,
indicating the importance of improving the model’s default
phenological routines.

Beside the uncertainty related to model structure, pheno-
logical forecasts for future climate scenarios are uncertain
because of the uncertainty in phenological model parame-
ters. We have quantified that parameter uncertainty can be
considered, conservatively, as up to±10 days. We explored
the impact of this uncertainty on terrestrial biosphere mod-
els through a sensitivity analysis and showed (Table 4) that
a variation of±10 and±1 day in bud-burst dates lead to a
variation of about±5 % in annual GPP (8.15 gC m−2 day−1,
i.e. a sensitivity of annual GPP to 1 day of variation in bud-
burst) and about±2 % in annual ET (0.07 cm−1 day−1, i.e.
sensitivity of annual ET to 1 day of variation in bud-burst).

The sensitivity of GPP to bud-burst uncertainty assessed
in this study is comparable with recent empirical estimates:
Richardson et al. (2010) found a relationships between inter-
annual phenological anomalies in spring onset and interan-
nual CO2 uptake anomalies ranging from 1.20 (se:±6.20)
to 20.2 (se:±2.90) gC m−2 day−1 (supplementry Table 5 in
Richardson et al., 2010); Richardson et al. (2009a), indicated
that a one-day advance in spring onset date in two different
North American forests was associated with an increase in
GPP of 12.30 (se:±2.50) gC m−2 day−1. Although the im-
pact on GPP of uncertainty in model parameters is lower
than uncertainty due to phenological model structure, this
is of the same magnitude (or slightly lower) of the sensi-
tivity of GPP to anomalies in bud-burst as reported in the
abovementioned empirical studies. This emphasizes the im-
portance of correctly modeling phenological transition dates
in order to successfully predict annual CO2 uptake and its in-
terannual variability, as well as other biosphere-atmosphere
interactions and climate system feedbacks.

As shown in Fig. 11a, b the sensitivity of GPP to bud-burst
is relatively constant while the sensitivity of ET to variations
in bud-burst decreases substantially for the runs BEPS−10,
in particular in years with earlier bud-burst. We observe that
an earlier bud-burst of 10 days in spring is not always as-
sociated with an increase in ET (Fig. 11b, c, d), perhaps
because with early bud-burst the soil water reservoir is in-
evitably depleted by late summer. As shown in Fig. 11c, ac-
cording to BEPS, earlier bud-burst is associated with lower
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average soil moisture in summer. Moreover, the sensitivity of
summer soil moisture to variations of±10 days in bud-burst
(Fig. 11d) is very small in years with early bud-burst, and
increases in years with late bud-burst. Similar patterns have
been reported in boreal forest stands (Kljun et al., 2006) and
in a broadleaved forest in Central Europe (Leuzinger et al.,
2005) where an earlier spring phenology increased transpira-
tion rates, leaving less moisture in the soil in summer.

BEPS runs suggest that at Harvard Forest, the photosyn-
thetic CO2 uptake is more sensitive than the ET to uncer-
tainty in phenology (Figs. 9, 10 and 11). Regarding water cy-
cling, Lawrence and Slingo(2004) andWhite et al.(1999),
showed that the three primary components of ET, namely,
transpiration, soil evaporation and canopy evaporation re-
spond in a opposite direction to changes in phenology. For
instance, a certain amount of soil evaporation can occur in-
dependently of the seasonal development of leaves in years
with late bud-burst. Or, while bud-burst and spring leaf de-
velopment enhances transpiration, it may limit surface soil
evaporation because of the lower amount of transmitted so-
lar radiation below the canopy. Moreover, in years with early
bud-burst, the enhancement of ET in spring might lead to
lower soil moisture in summer limiting the increase of tran-
spiration in summer and then buffering the sensitivity of total
ET to bud-burst. However, these considerations are based on
modeling studies and empirical studies would be useful to
better understand the sensitivity of ET to spring phenology.

5 Conclusions

The evaluation of different phenology models with a model-
data fusion approach and the long-term Harvard Forest phe-
nology record indicate support for spring warming models
with photoperiod limitation and to a lesser extent chilling
models with alternating description of chilling accumulation.
Models without the explicit description of the photoperiod
limitation (or where accumulation of degree-days is arbitrar-
ily assumed to begin on 1 January) are the least supported by
the data.

We characterize and quantify the three different sources
of uncertainty in phenological forecasts: parameter uncer-
tainty, model uncertainty, and driver uncertainty. Parame-
ter uncertainty is the smallest, and most readily quantified
whereas driver uncertainty is larger and the most unquantifi-
able. Model structure uncertainty is comparable with driver
uncertainty, but can be quantified by combining models with
different complexity and observational data. The uncertainty
in model structure affects the temperature sensitivity of bud-
burst simulated by phenology models.

Phenology regulates many ecosystem feedbacks to cli-
mate, and here we quantify the impact of uncertainties in
bud-burst forecasts to simulated carbon and water cycling.
We conclude that the structure and the optimization of pa-
rameters of the phenological routine is an important source

of uncertainty for terrestrial biosphere models. The photo-
synthetic CO2 uptake is more sensitive than the ET to un-
certainty in phenology, and the impact of uncertainty in phe-
nological model parameters on carbon uptake is of the same
magnitude of the sensitivity of productivity to year-to-year
variations of bud-burst. For ET, the impact of this uncertainty
is more relevant in years with late bud-burst given the asym-
metric response of water cycling to variations of bud-burst
observed with our model.

To reduce model uncertainties it is necessary to continu-
ously strive to re-evaluate model predictions against new ob-
servational datasets. Of particular value would be data from
diverse populations (i.e. including genetic variability) grow-
ing under divergent environmental conditions. To push mod-
els to their limits, these data should include variations in both
temperature (data from transplant or warming experiments
would be particularly valuable) and, to the fullest extent pos-
sible, photoperiod. These data will permit the development of
better phenological routines, and the reduction of uncertain-
ties in forecasts of ecosystem responses to climate change
that are mediated by phenology.

Acknowledgements.Research at Harvard Forest is partially
supported by the National Science Foundation’s LTER program
(award number DEB-0080592), and the Office of Science (BER),
US Department of Energy (DOE) (award number DE-SC0004985).
ADR acknowledges support from the National Science Foundation
through the Macrosystems Biology program (award EF-1065029).
OS was partially supported by the US Geological Survey Status
and Trends Program, the US National Park Service Inventory and
Monitoring Program, and the USA National Phenology Network
(grant number G10AP00129 from the USGS). The contents of
this paper are solely the responsibility of the authors and do not
necessarily represent the official views of either USGS or NSF.

Edited by: G. Wohlfahrt

References

Akaike, H.: Information theory and an extension of the maximum
likelihood principle, in: Proceedings of the Second International
Symposium on Information Theory, edited by: Petrov, B. N. and
Csaki, F., Akademiai Kiado, Budapest, 267–281 (Reproduced
in Kotz, S. and Johnson, N. L. (Eds.), 2003), Breakthroughs in
Statistics, vol. I, Foundations and Basic Theory, Springer-Verlag,
New York, 610–624, 1973.

Anderson, D. R., Burnham, K. P., and Thompson, W. L.: Null
hypothesis testing: Problems, prevalence, and an alternative, J.
Wildlife Manage., 64, 912–923, 2000.

Baldocchi, D.: Breathing of the terrestrial biosphere: Lessons
learned from a global network of carbon dioxide flux measure-
ment systems, Aust. J. Bot., 56, 1–26, 2008.

Burnham, K. P. and Anderson, D. E.: Model selection and mul-
timodel inference: A practical information-theoretic approach,
2nd Edn., Springer-Verlag, New York, 2002.

Biogeosciences, 9, 2063–2083, 2012 www.biogeosciences.net/9/2063/2012/



M. Migliavacca et al.: Uncertainty of phenological responses to climate change 2081

Chuine, I. A.: Unified model for tree phenology, J. Theor. Biol.,
707, 337–347, 2000.

Chuine, I., Cour, P., and Rousseau, D. D.: Fitting models predict-
ing dates of flowering of temperate-zone trees using simulated
annealing, Plant Cell Environ., 21, 455–466, 1998.

Chuine, I., Cour, P., and Rousseau, D. D.: Selecting models to pre-
dict the timing of flowering of temperate trees: Implications for
tree phenology modelling, Plant Cell Environ., 22, 1–13, 1999.

Chuine, I., Morin, X., and Bugmann, H.: Warming, photoperiods,
and tree phenology, Science, 329, 277–278, 2010.

Cleveland, W. and Devlin, S.: Locally-weighted regression: An ap-
proach to regression analysis by local fitting, J. Am. Stat. Assoc.,
83, 596–610, 1988.

Cook, B., Terando, A., and Steiner, A.: Ecological forecasting
under climatic data uncertainty: A case study in phenological
modeling, Environ. Res. Lett., 5, 044014, doi:10.1088/1748-
9326/5/4/044014, 2010.

Delworth, T. L., Broccoli, A. J., Rosati, A., Stouffer, R. J., Balaji, V.,
Beesley, J. A., Cooke, W. F., Dixon, K. W., Dunne, J., Dunne, K.
A., Durachta, J. W., Findell, K. L., Ginoux, P., Gnanadesikan, A.,
Gordon, C. T., Griffies, S. M., Gudgel, R., Harrison, M. J., Held,
I. M., Hemler, R. S., Horowitz, L. W., Klein, S. A., Knutson, T.
R., Kushner, P. J., Langenhorst, A. R., Lee, H.-C., Lin, S.-J., Lu,
J., Malyshev, S. L., Milly, P. C. D., Ramaswamy, V., Russell, J.,
Schwarzkopf, M. D., Shevliakova, E., Sirutis, J. J., Spelman, M.
J., Stern, W. F., Winton, M., Wittenberg, A. T., Wyman, B., Zeng,
F., and Zhang, R.: GFDL’s CM2 global coupled climate models.
Part I: Formulation and simulation characteristics, J. Climate, 19,
643–674, 2006.

Fitzjarrald, D. R., Acevedo, O. C., and Moore, K. E.: Climatic con-
sequences of leaf presence in the eastern United States, J. Cli-
mate, 14, 598–614, 2001.

Franks, S. W., Beven, K. J., and Gash, J. H. C.: Multi-objective
conditioning of a simple SVAT model, Hydrol. Earth Syst. Sci.,
3, 477–488,doi:10.5194/hess-3-477-1999, 1999.

Govind, A., Chen, J. M., Margolis, H., Ju, W., Sonnentag, O., and
Giasson, M. A.: A spatially explicit hydro-ecological modeling
framework (BEPS-Terrainlab v2.0): Model description and test
in a boreal ecosystem in eastern North America, J. Hydrol., 367,
200–216, 2009.

Govind, A., Chen, J. M., Bernier, P., Margolis, H., Guindon, L.,
and Beaudoin, A.: Spatially distributed modeling of the long-
term carbon balance of a boreal landscape, Ecol. Modell., 222,
2780–2795, 2011.

Hayhoe, K., Wake, C., Anderson, B., Liang, X.-Z., Maurer, E., Zhu,
J., Bradbury, J., DeGaetano, A., Stoner, M., and Wuebbles, D.:
Regional climate change projections for the Northeast USA, Mit-
igation and Adaptation Strategies for Global Change, 13, 425–
436, 2007.

Helsel, D. and Hirsch, R.: Statistical methods in water resources, in:
Techniques of water resources investigations, edited by: Survey,
U. S. G., 1–522, 2002.

Hunter, A. F. and Lechowicz, M. J.: Foliage quality changes during
canopy development of some northern trees, Oecologia, 89, 316–
323, 1992.

IPCC: Climate change 2007: Synthesis report, IPCC, Geneva,
Switzerland, 104 pp., 2007.

Jeong, S.-J., Ho, C.-H., Gim, H.-J., and Brown, M. E.: Phenology
shifts at start vs. end of growing season in temperate vegetation

over the northern hemisphere for the period 1982–2008, Glob.
Change Biol., 17, 2385–2399, 2011.

Ju, W. and Chen, J. M.: Distribution of soil carbon stocks in
Canada’s forests and wetlands simulated based on drainage class,
topography and remotely sensed vegetation parameters, Hydrol.
Process., 19, 77–94, 2005.

Ju, W., Chen, J. M., Black, T. A., Barr, A. G., Liu, J., and Chen,
B.: Modelling multi-year coupled carbon and water fluxes in a
boreal aspen forest, Agr. Forest Meteorol., 140, 136–151, 2006.

Keenan, T. F., Carbone, M., Reichstein, M., and Richardson, A. D.:
The model-data fusion pitfall: Assuming certainty in an uncertain
world, Oecologia, 167, 587–597, 2011.

Keenan, T. F., Davidson, E., Moffat, A., Munger, J. W., and Richard-
son, A. D.: Using model-data fusion to interpret past trends, and
quantify uncertainties in future projections, of terrestrial ecosys-
tem carbon cycling, Glob. Change Biol.,doi:10.1111/j.1365-
2486.2012.02684.x, in press, 2012a.

Keenan, T. F., Baker, I., Barr, A., Ciais, P., Davis, K., Dietze, M.,
Dragoni, D., Gough, C. M., Grant, R., Hollinger, D., Hufkens,
K., Poulter, B., McCaughey, H., Rackza, B., Ryu, Y., Schaefer,
K., Tian, H., Verbeeck, H., Zhao, M., and Richardson, A. D.:
Terrestrial biosphere model performance for inter-annual vari-
ability of land-atmosphere CO2 exchange, Glob. Change Biol.,
18, 1971–1987,doi:10.1111/j.1365-2486.2012.02678.x, 2012b.

Kendall, M. G.: Rank Correlation Methods, 4th Edn., Griffin, 1976.
Kljun, N., Black, T. A., Griffis, T. J., Barr, A. G., Gaumont-Guay,

D., Morgenstern, K., McCaughey, J. H., and Nesic, Z.: Response
of net ecosystem productivity of three boreal forest stands to
drought, Ecosystems, 9, 1128–1144, 2006.

Körner, C. and Basler, D.: Warming, photoperiods, and tree phenol-
ogy response, Science, 329, 278–278, 2010.

Lawrence, D. M. and Slingo, J. M.: An annual cycle of vegetation in
a GCM. Part I: Implementation and impact on evaporation, Clim.
Dynam., 22, 87–105, 2004.

Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thorton, P. E.,
Swenson, S. C., Lawrence, P. J., Zeng, X., Yang, Z.-L., Levis, S.,
Skaguchi, K., Bonan, G. B., and Slater, A. G.: Parameterization
improvements and functional and structural advances in version
4 of the Community Land Model, J. Adv. Model. Earth Syst., 3,
27 pp., doi:10.1029/2011MS000045, 2011.

Levis, S. and Bonan, G. B.: Simulating springtime temperature pat-
terns in the community atmosphere model coupled to the com-
munity land model using prognostic leaf area, J. Climate, 17,
4531–4540, 2004.

Leuzinger, S., Zotz, G., Asshoff, R., and Korner, C.: Responses of
deciduous forest trees to severe drought in Central Europe, Tree
Physiol., 25, 641–650, 2005.

Lieth, H. and Radford, J. S.: Phenology, resource management, and
synagraphic computer mapping, Bioscience, 21, 62–70, 1971.

Liu, J., Chen, J. M., Cihlar, J., and Park, W. M.: A process-based
boreal ecosystem productivity simulator using remote sensing in-
puts, Remote Sens. Environ., 62, 158–175, 1997.

Liu, J., Chen, J. M., Cihlar, J., and Chen, W.: Net primary produc-
tivity mapped for Canada at 1-km resolution, Global Ecol. Bio-
geogr., 11, 115–129, 2002.

Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas,
R., Alm-Kubler, K., Bissolli, P., Braslavska, O., Briede, A.,
Chmielewski, F. M., Crepinsek, Z., Curnel, Y., Dahl, A., Defila,
C., Donnelly, A., Filella, Y., Jatcza, K., Mage, F., Mestre, A.,

www.biogeosciences.net/9/2063/2012/ Biogeosciences, 9, 2063–2083, 2012

http://dx.doi.org/10.5194/hess-3-477-1999
http://dx.doi.org/10.1111/j.1365-2486.2012.02684.x
http://dx.doi.org/10.1111/j.1365-2486.2012.02684.x
http://dx.doi.org/10.1111/j.1365-2486.2012.02678.x


2082 M. Migliavacca et al.: Uncertainty of phenological responses to climate change

Nordli, O., Penuelas, J., Pirinen, P., Remisova, V., Scheifinger,
H., Striz, M., Susnik, A., Van Vliet, A. J. H., Wielgolaski, F. E.,
Zach, S., and Zust, A.: European phenological response to cli-
mate change matches the warming pattern, Glob. Change Biol.,
12, 1969–1976, 2006.

Mann, H. B.: Nonparametric tests against trend, Econometrica, 13,
245–259, 1945.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and
Teller, E.: Equations of state calculations by fast computing ma-
chines, J. Chem. Phys., 21, 1087–092, 1953.

Migliavacca, M., Meroni, M., Busetto, L., Colombo, R., Zenone, T.,
Matteucci, G., Manca, G., and Seufert, G.: Modeling gross pri-
mary production of agro-forestry ecosystems by assimilation of
satellite-derived information in a process-based model, Sensors,
9, 922–942, 2009.

Monteith, J. L. and Unsworth, M. H.: Principles of environmental
physics, edited by: Arnold, E., London, 291 pp., 1990.

Morin, X., Lechowicz, M. J., Augspurger, C., O’Keefe, J., Viner,
D., and Chuine, I.: Leaf phenology in 22 North American tree
species during the 21st century, Glob. Change Biol., 15, 961–
975, 2009.

Morin, X., Roy, J., Sonie, L., and Chuine, I.: Changes in leaf phe-
nology of three European oak species in response to experimental
climate change, New Phytol., 186, 900–910, 2010.

Morisette, J. T., Richardson, A. D., Knapp, A. K., Fisher, J. I.,
Graham, E. A., Abatzoglou, J., Wilson, B. E., Breshears, D. D.,
Henebry, G. M., Hanes, J. M., and Liang, L.: Tracking the rhythm
of the seasons in the face of global change: Phenological research
in the 21st century, Front. Ecol. Environ., 7, 253–260, 2009.
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Piñeiro, G., Perelman, S., Guerschman, J. P., and Paruelo, J. M.:
How to evaluate models: Observed vs. predicted or predicted vs.
observed?, Ecol. Modell., 216, 316–322, 2008.

Randerson, J. T., Hoffman, F. M., Thornton, P. E., Mahowald, N.
M., Lindsay, K., Lee, Y. H., Nevison, C. D., Doney, S. C., Bo-
nan, G., Stockli, R., Covey, C., Running, S. W., and Fung, I.
Y.: Systematic assessment of terrestrial biogeochemistry in cou-
pled climate-carbon models, Glob. Change Biol., 15, 2462–2484,
2009.

Richardson, A. D. and O’Keefe, J.: Phenological differences be-
tween understory and overstory: A case study using the long-
term Harvard Forest records, in: Phenology of ecosystem pro-
cesses, edited by: Noormets, A., Springer Science + Business,
New York, 87–117, 2009.

Richardson, A. D., Hollinger, D. Y., Dail, D. B., Lee, J. T., Munger,
J. W., and O’Keefe, J.: Influence of spring phenology on sea-
sonal and annual carbon balance in two contrasting New England
forests, Tree Physiol., 29, 321–331, 2009.

Richardson, A. D., Williams, M., Hollinger, D., Moore, D., Dail,
D., Davidson, E., Scott, N., Evans, R., Hughes, H., Lee, J., Ro-
drigues, C., and Savage, K.: Estimating parameters of a forest
ecosystem C model with measurements of stocks and fluxes as
joint constraints, Oecologia, 164, 25–40, 2010a.

Richardson, A. D., Black, T. A., Ciais, P., Delbart, N., Friedl, M.
A., Gobron, N., Hollinger, D. Y., Kutsch, W. L., Longdoz, B.,
Luyssaert, S., Migliavacca, M., Montagnani, L., Munger, J. W.,
Moors, E., Piao, S., Rebmann, C., Reichstein, M., Saigusa, N.,
Tomelleri, E., Vargas, R., and Varlagin, A.: Influence of spring
and autumn phenological transitions on forest ecosystem produc-
tivity, Philos. T. Roy. Soc. B, 365, 3227–3246, 2010b.

Richardson, A. D., Anderson, R. S., Arain, M. A., Barr, A. G.,
Bohrer, G., Chen, G., Chen, J. M., Ciais, P., Davis, K. J., De-
sai, A. R., Dietze, M. C., Dragoni, D., Garrity, S. R., Gough,
C. M., Grant, R., Hollinger, D. Y., Margolis, H. A., Mccaughey,
H., Migliavacca, M., Monson, R. K., Munger, J. W., Poulter, B.,
Raczka, B. M., Ricciuto, D. M., Sahoo, A. K., Schaefer, K., Tian,
H., Vargas, R., Verbeeck, H., Xiao, J., and Xue, Y.: Terrestrial
biosphere models need better representation of vegetation phe-
nology: Results from the North American Carbon Program Site
Synthesis, Glob. Change Biol., 18, 566-584, 2012.

Rosenzweig, C., Casassa, G., Karoly, D. J., Imeson, A., Liu, C.,
Menzel, A., Rawlins, S., Root, T. L., Seguin, B., and Try-
janowski, P.: Assessment of observed changes and responses in
natural and managed systems. Climate Change 2007: Impacts,
Adaptation and Vulnerability, Contribution of Working Group II
to the Fourth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Parry, M. L., Canziani, O. F., Pa-
lutikof, J. P., van der Linden, P. J., and Hanson, C. E., Cambridge
University Press, Cambridge, UK, 79–131, 2007.

Sarvas, R.: Investigations on the annual cycle of development on
forest trees active period, Communicationes Instituti Forestalis
Fenniae, 76–110, 1972.

Sen, P. K.: Estimates of the regression coefficient based on
Kendall’s tau, J. Am. Stat. Assoc., 63, 1379–1389, 1968.

Schaber, J. and Badeck, F. W.: Physiology-based phenology models
for forest tree species in Germany, Int. J. Biometeorol., 47, 193–
201, 2003.

Schleip, C., Menzel, A., and Dose, V.: Norway spruce (Picea abies):
Bayesian analysis of the relationship between temperature and
bud burst, Agr. Forest Meteorol., 148, 631–643, 2008.

Schwartz, M. D., Ahas, R., and Aasa, A.: Onset of spring starting
earlier across the northern hemisphere, Glob. Change Biol., 12,
343–351, 2006.

Sonnentag, O., Chen, J. M., Roulet, N. T., Ju, W., and Govind, A.:
Spatially explicit simulation of peatland hydrology and carbon
dioxide exchage: Influence of mesoscale topography, J. Geophys.
Res.-Biogeo., 113, G02005,doi:10.1029/2007JG000605, 2008.

Thornton, P. E., Law, B. E., Gholz, H. L., Clark, K. L., Falge, E.,
Ellsworth, D. S., Golstein, A. H., Monson, R. K., Hollinger, D.,
Falk, M., Chen, J., and Sparks, J. P.: Modeling and measuring the
effects of disturbance history and climate on carbon and water
budgets in evergreen needleleaf forests, Agr. Forest Meteorol.,
113, 185–222, 2002.

Turkheimer, F. E., Hinz, R., and Cunningham, V. J.: On the unde-
cidability among kinetic models: from model selection to model
averaging, J. Cerebr. Blood F. Met., 23, 490–498, 2003.

Urbanski, S., Barford, C., Wofsy, S., Kucharik, C., Pyle, E., Bud-
ney, J., McKain, K., Fitzjarrald, D., Czikowsky, M., and Munger,
J. W.: Factors controlling CO2 exchange on timescales from
hourly to decadal at Harvard Forest, J. Geophys. Res.-Biogeo.,
112, G02020,doi:10.1029/2006JG000293, 2007.

Biogeosciences, 9, 2063–2083, 2012 www.biogeosciences.net/9/2063/2012/

http://dx.doi.org/10.1029/2007JG000605
http://dx.doi.org/10.1029/2006JG000293


M. Migliavacca et al.: Uncertainty of phenological responses to climate change 2083

Vitasse, Y., Francois, C., Delpierre, N., Dufrene, E., Kremer, A.,
Chuine, I., and Delzon, S.: Assessing the effects of climate
change on the phenology of European temperate trees, Agr. For-
est Meteorol., 151, 969–980, 2011.

Wang, Y. P., Trudinger, C. M., and Enting, I. G.: A review of appli-
cations of model-data fusion to studies of terrestrial carbon fluxes
at different scales, Agr. Forest Meteorol., 149, 1829–1842, 2009.

White, M. A., Thornton, P. E., and Running, S. W.: A continental
phenology model for monitoring vegetation responses to interan-
nual climatic variability, Global Biogeochem. Cy., 11, 217–234,
1997.

White, M. A., Running, S. W., and Thornton, P. E.: The impact
of growing-season length variability on carbon assimilation and
evapotranspiration over 88 years in the eastern US deciduous for-
est, Int. J. Biometeorol., 42, 139–145, 1999.

White, M. A., Thornton, P. E., Running, S. W., and Nemani, R. R.:
Parameterization and sensitivity analysis of the BIOME-BGC
terrestrial ecosystem model: Net primary production controls,
Earth Interact., 4, 1–85, 2000.

www.biogeosciences.net/9/2063/2012/ Biogeosciences, 9, 2063–2083, 2012


