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Abstract. Phenology, the timing of recurring life cycle well as the shape of the smoothed projections varied among
events, controls numerous land surface feedbacks to the climodels (7.7 days century* for Alfi, +3.6 days century!
mate system through the regulation of exchanges of carborfor B1). The forecast sensitivity of bud-burst to temperature
water and energy between the biosphere and atmosphere. (i.e. days bud-burst advanced per degree of warming) var-
Terrestrial biosphere models, however, are known to haveéed between 2.2 day€—* and 5.2 daysC~ depending on
systematic errors in the simulation of spring phenology, model structure.
which potentially could propagate to uncertainty in modeled We quantified the impact of uncertainties in bud-burst
responses to future climate change. Here, we used the Haferecasts on simulated photosynthetic Qfptake and evap-
vard Forest phenology record to investigate and characteretranspiration (ET) using a process-based terrestrial bio-
ize sources of uncertainty in predicting phenology, and thesphere model. Uncertainty in phenology model structure led
subsequent impacts on model forecasts of carbon and watéo uncertainty in the description of forest seasonality, which
cycling. Using a model-data fusion approach, we combinedaccumulated to uncertainty in annual model estimates of
information from 20yr of phenological observations of 11 gross primary productivity (GPP) and ET of 9.6 % and 2.9 %,
North American woody species, with 12 leaf bud-burst mod- respectively. A sensitivity analysis shows that a variation of
els that varied in complexity. +10 days in bud-burst dates led to a variationt®.0 % for
Akaike's Information Criterion indicated support for annual GPP and aboti2.0 % for ET.
spring warming models with photoperiod limitations and, to  For phenology models, differences among future climate
a lesser extent, models that included chilling requirements. scenarios (i.e. driver) represent the largest source of uncer-
We assessed three different sources of uncertainty inainty, followed by uncertainties related to model structure,
phenological forecasts: parameter uncertainty, model uncerand finally, related to model parameterization. The uncer-
tainty, and driver uncertainty. The latter was characterizectainties we have quantified will affect the description of the
running the models to 2099 using 2 different IPCC climate seasonality of ecosystem processes and in particular the sim-
scenarios (Alfi vs. B1, i.e. high G@missions vs. low C®  ulation of carbon uptake by forest ecosystems, with a larger
emissions scenario). Parameter uncertainty was the smallegtpact of uncertainties related to phenology model structure,
(average 95 % Confidence Interval — Cl: 2.4 days century followed by uncertainties related to phenological model pa-
for scenario B1 and 4.5 days centutyfor Alfi), whereas rameterization.
driver uncertainty was the largest (up to 8.4 days centlry
in the simulated trends). The uncertainty related to model
structure is also large and the predicted bud-burst trends as
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1 Introduction order to estimate the uncertainty in performance of a particu-
lar model structure and for parameter optimization; model
Phenology is the study of the timing of recurrent biologi- structural uncertainty stems from different model assump-
cal events and the causes of their temporal change in retions and formulations, with different processes described
sponse to biotic and abiotic forcds€th and Radford1977). differently by each model; model driver uncertainty is due
As variability in the timing of phenology is tightly coupled to uncertainty in future climate scenarios used for ecological
to variability in climate, phenology can be considered asforecastsCook et al, 2010.
an important indicator of climate change (el@CC, 2007, Model-data fusion (e.gKeenan et a).2011, Wang et al,
Menzel et al. 200§. Numerous studies have documented 2009 provides a promising approach for assessing uncer-
the impacts of climate change on plant and tree phenol+tainties in ecological forecasting. Also referred to as model-
ogy. For instance, the Fourth Assessment Report (AR4) oflata integration or data assimilation, model-data fusion relies
the Intergovernmental Panel on Climate Change (IPCC) reon the combination of models with observational constraints
ported an overall trend towards earlier spring phenologicalthrough an optimization approach (e.g. simulating annealing,
events (e.g. bud-burst, leaf unfolding, flowering and pollenquasi-newton methods, etc.). In this way, model parameters,
release) between 2 and 5 days decdd@osenzweig et al. model states and their respective uncertainties can be esti-
2007. Menzel et al.(2006 estimated an average advance mated, conditional on the data (here: consistent phenological
of spring phenology in Europe of 2.5 days decablevhile observations by a human observer). With a model-data fu-
Schwartz et al(2006 similarly showed earlier bud-burst sion approach it is possible to objectively incorporate data,
of 1.1 days decadé across most temperate Northern Hemi- along with associated uncertainties, allowing for a full char-
sphere land regions over the 1955-2002 perdedng et al.  acterization of posterior distributions of model parameters.
(2017 reported several different start of season trends ain this way, confidence estimates of model projections can
global and regional scales and suggested a reduction of thike obtained, both for current climate conditions and for fu-
rate of advancement of the start of the season over the periotlire climate change scenarios (&kgenan et a).20123.
2000-2008 (0.2 days) compared to the period 1982-1999 Phenology, and in particular bud-burst, controls numerous
(5.2 days). land surface feedbacks to the climate systems and ecological
Although these studies highlighted that spring phenologyinteractions through the regulation of exchanges of carbon,
has responded to recent climate change, large uncertaintiegater and energy between the biosphere and atmosphere (e.g.
remain as to how phenology will respond to projected futureRichardson et al.2009 201Q Baldocchj 2008 Morisette
climate change. There are several conflicting reports in theet al, 2009 Fitzjarrald et al. 2001). Uncertainty in the pre-
literature about the relative roles of different environmental diction of spring phenology can, therefore, feed-forward to
factors such as chilling (i.e. the exposure to cool temperagenerate uncertainty in estimates of carbon and water cycling
tures that is required before dormancy can be broken) androm terrestrial biosphere models.
photoperiod in controlling tree phenolod¢orner and Basler Several studies have shown the sensitivity of different bio-
(2010 have argued, photoperiod will constrain the degree togeochemical and terrestrial biosphere models to bud-burst
which future warming causes continued advances in springand other phenological transitions (elRanderson et al.
phenology. Other studies (e.Ghuine et al. 2010 Morin 2009 Levis and Bonan2004 White et al, 200Q Migli-
et al, 2009 Vitasse et a.2011) suggest that photoperiod has avacca et al2009. Furthermore, recent multi-model synthe-
not been shown to be more dominant than temperature whesis studies have shown that spring phenology is poorly simu-
predicting bud-burst or flowering. These latter studies argudated by many terrestrial biosphere mod&schardson et al.
that temperature has a more dominant role than photoperio@012 Keenan et a).2012h. The results show large biases in
during both the endodormancy phase (i.e. an inactive phasmodel estimates of carbon cycling due to errors in modeled
caused by conditions or factors within a plant or seed itself)phenology Richardson et al2012, and identify phenology
and the ecodormancy phase (i.e. the cessation of growth inmodel errors as a systematic cause of poor model perfor-
duced by environmental factors) that controls spring phenol-mance for interannual variability in terrestrial carbon cycling
ogy. Another study $chleip et al. 2008 suggests the im- (Keenan et a).2012h. Hence, modeled future carbon, water
portance of adequately weighting the temperature forcingand energy fluxes, as well as many biosphere-climate inter-
to determine the effective temperature which controls eachtactions projected by terrestrial biosphere models, might be
phenophase. These different hypotheses lead to different posubject to uncertainty due to the uncertain representation of
sible structures for phenology models, but the associated urphenological responses to climate change.
certainties in forecasts of phenological responses to climate Herein we present a phenological forecasting study us-
change have yet to be quantified. ing phenological data for 11 different North American
Uncertainty in model projections can be classified intree species observed at Harvard Forest over the last
three categories: uncertainty due to (1) model parameter20yr (Richardson and O’Keef&009. We characterize the
(2) model structure; and (3) model drivers. The evaluationsources of uncertainty in bud-burst models under present cli-
of phenological model parameter uncertainty is necessary imate conditions, and also for forecasts for the 21st century.
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Fig. 1. Schematic representation of the model-data fusion approach for model optimization, the forecat mechanism and the characterization
of the three sources of uncertainty. In each box is reported the paragraph where the description of methods (blue characters) and results (re
characters) can be found. The schematic representation of the effects of the different uncertainties on bud-burst projections is also reported.

In addition, we quantify the impacts of these uncertainties foremissions scenario, and B1 or low €@missions scenario).
modeling forest-atmosphere fluxes of carbon and water. Th& his allows us to explore how the uncertainty characterized
two main questions behind our analysis are: using current phenological observations is propagated in the
future, and to quantify how model structural and parameter-
1. How big are the different sources of uncertainty in phe- nased uncertainty interacts with uncertainty in climate sce-
nological forecasts? narios. The schematic representation of the different steps
L . of the analysis, model-data fusion approach for model opti-
2. How do thes_e uncertainties affect the pre_d|c_t|0n Ofmization and the forecast mechanism is reported in Fig. 1.
photo_synthetlc C@ uptake z_ind evapotrangpwapon a5 1o answer the second question we analyze the impact of
described by a process-oriented terrestrial b|ospherc?he uncertainty of future bud-burst in a widely used terres-
model? trial biosphere model (Boreal Ecosystems Productivity Sim-

To answer these questions we combine phenological Obylator; BEPS,Ju et al, 2006. We evaluate the differences be-

servations collected at Harvard Forest, with 12 different phe-tWeen gross primary productivity (GPP) and evapotranspira-

nological models, using a model-data fusion approach. Withfion (ET) as simulated by BEPS with the native phenological
this analysis we characterize the uncertainty of model parammede! and forced by the bud-burst forecasts obtained with
eters and model structure. We then project model estimatel1® Pest model formulation selected according to data. Fi-
of phenology forward, along with the associated parametelna"y' we evaluat_e th_e sensitivity of GPP and ET to different
uncertainties, using statistically downscaled climate projec-leve'S of uncertainty in bud-burst(0, £1 day).
tions Delworth et al, 2006 Hayhoe et al.2007) for two

different IPCC climate change scenarios (A1fi, or high,CO
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Table 1. List of the 11 species used in the analysis, species identifier (Species ID), species Latin and common name, average bud-burst date
(BB), best model according to data (Best Model), coefficient of determinaﬁa)] (oot mean square error (RMSE, day), Sen’s slope trend
estimated for scenario Alfi and scenario B1 with the best model, with the Akaike Weigthed average (Average wAICc) and the standard
deviation. All trends are expressed in day century

Species  Latin name Common BB Best R? RMSE Alfi Alfi  Alfi B1 Bl Bl
ID name Model Best wAlICc sd Best wAICc sd
ACRU  Acer rubrum Red maple 126.2 Alt-CF1 0.77 220 -8.7 -8.7 7.2 -3.9 -39 35
ACSA  Acer saccharum Sugar maple 1215 Par2-CF2 0.82 2.09-7.1 -8.7 57 -35 -43 29
BEAL Betula alleghaniensis Yellow birch  126.2 Alt-CF1 0.63 344 -9.1 -8.8 85 -39 -3.8 45
BELE Betula lenta Black birch 1295 SW-CF2 0.32 491 -5.0 -6.9 157 -1.7 -3.0 7.2
BEPA Betula Papyrifera Paper birch 1229 Alt-CF1 0.56 3.31 -8.7 —6.4 7.7 -3.8 —-2.8 3.6
FAGR  Fagus grandifolia Beech 128.3 SW-CF1  0.67 222 -7.3 -5.3 81 -35 —-24 42
FRAM  Fraxinus americana White ash 130.2 SW-CF2 0.67 273 -56 —5.6 75 -23 -23 37
PRSE  Prunus serotina Black cherry 111.2 SW-CF2 0.74 259 -9.3 —-94 134 -54 -54 25
QUAL  Quercus alba White oak 133.3 SW-CF2 0.73 3.21-147 -140 39 -7 —-6.7 1.6
QURU  Quercus rubra Red oak 127.1 SW-CF2 0.74 294-126 -10.6 55 -56 -4.7 3.0
QUVE  Quercus velutina Black oak 130.6 SW-CF2 0.78 263-149 152 45 -6.8 -73 20

2 Materials and methods
2.1 Site description and phenological observations

The Harvard Forest (42.8M, 72.18W, el. 220 to

2.2 Phenological models

A large number of different models exist for the simulation
of bud-burst for different species (e.Ghuine et al. 1999
Schaber and BadecR003 Morin et al, 2009. The applica-

410ma.s.l.) site used in this study is located in central Mas+jon of different models against different datasets of the same
sachusetts, about 100 km west of Boston, USA. The C|imat%pecies’ however, gave Contrasting results about which mod-
is classified as humid-continental, with a mean July tempereling approach is besHinter and Lechowic21992 Chuine
ature of 20C and mean January temperature 6€7Mean et al, 1998 1999. The models provide a context for inter-
annual precipitation is 1100 mm, and is distributed evenlypreting observed interannual and inter-specific variability in

across the seasons. The species composition in Harvard Foshenology, and to assess which model structure is best sup-
est is dominated by transition hardwoods: red d@kdrcus  ported by the available data.

rubra), red maple Acer rubrun) black oak Quercus ve-
lutina), white oak Quercus alb and yellow birch Betula
alleghaniensis Conifers include eastern hemlocksuga
canadensis red pine Pinus resinospand white pine Ri-

The models used in this study are largely based on those
presented byChuine et al.(1999 and updated irRichard-
son and O’Keefg2009. We define two main categories of
models (Table 2). The model categories differ in their as-

nus strobu Since 1990, springtime phenology observations sumptions of how warm and cold temperatures control de-
have been made at 3—7 day intervals. Leaf development Wa§e|opmenta| processes (F|g 2) In the Spring Warming mod-
monitored on three or more individuals (a total of 39 per- e|s, temperatures above a base temperature accumulate until
manently marked trees or shrubs) of 11 woody species (Taa threshold (in degree-days) is reached, thus triggering bud-
ble 1). Phenological observations used here are available omuyrst. In the chilling models, cold weather also plays a role.
line (http://harvardforest.fas.harvard.gdu In the sequential chilling model, a chilling threshold must be
In the present analysis we focus on bud-burst dates fronteached before warming is effective; in the alternating and

1990 to 2011. We define bud-burst as the date when 50 %arallel chilling models, an increase in the amount of chilling
of all buds on an individual tree have recognizable leavesexperienced reduces the amount of warming that is required.
emerging Richardson et al2009. Our analysis uses tem- For all models, the rates of forcing (or spring warming) and
perature and photoperiod as drivers of phenology. Mean dailyhilling are calculated based on the threshold approach (CF1)
air temperatures are computed from the maximum and minand on the Sarvas function (CF2$drvas 1972 Chuine
imum daily temperatures recorded for the period of study atet al, 1999. In CF1, the rate of chilling and forcing for day
the Shaler (1964—2002) and Fisher (2001-2011) meteorologof year(r) are accumulated if the daily air temperaturé{)
ical stations. Photoperiod is computed by using a standargs |ower or higher than a specific threshold, respectively. In
equation based on latitude and day of yeldofteith and  the approach CF2, rates of chilling) and forcing ®y) ac-
Unsworth 1990. cumulation are both specified as nonlinear functions of daily

x(t) according to the triangular function reported in the Sar-

vas model arvas1972. More specifically, in CF2, chilling

is accumulated according to Egs. (1, 2, 3):

Biogeosciences, 9, 2063683 2012 www.biogeosciences.net/9/2063/2012/
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Table 2. List of phenology models fit to Harvard Forest phenology data, model identifier (Model ID), models class (chilling models or spring
warming models) and fit parameters (hnumber and variables symbols). Spring warming, sequential, alternating and parallel model structures
are described in text and in Fig. 2. CF1 and CF2 refer to different functional forms for forcing and chilling rates, as describegl:itirrext.

step at which accumulation of chilling units begins (not used in spring warming models; fit parameter in all other raddelsling state

at which transition from rest to quiescence occurs (fit parameter in sequential and parallel 1 models; not used in otheroriodels}ep

at which accumulation of forcing units begins (fit parameter in spring warming models; equah@lternating and parallel 2 models; date
when cumulative chilling §c) is equal toC* in sequential and parallell modeldy*: forcing state at which transition from quiescence to
bud-burst occurs (fit parameter in spring warming and sequential models; funcfigrinoélternating, parallel 1 and parallel 2 model&):

critical temperature for chilling functioRc(¢) (not used in spring warming models; fit parameter in all other modElI€yitical temperature

for forcing function R¢(¢) (fit parameter in all modelsy, b model constantsa(> 0, b < 0) relating F* to Sc, i.e. F* = aexp(bSc(1)) at

t = y. y is the predicted bud-burst date ¢ not used in spring warming, alternating or sequential models; fit parameter in all other models).

Model name Model ID  Model Class Fit Parameters

Spring warming CF1 SW-CF1 Spring Warming  13,(T3, F*)

Spring warming CF2 SW-CF2 Spring Warming  13,(F*)

Alternating CF1 Alt-CF1 Chilling a4, Ty, a, b); to =t1; Tc = Tt

Spring warming CF1 10 fixed SW-CF1t0 Spring Warming 72 (*); to = 1 January
Spring warming CF2 t0 fixed SW-CF2t0  Spring Warming F¥); ro = 1 January

Alternating CF1 tO fixed Alt CF1t0  Chilling 30, a, b); tp =t1 = 1 JanuaryT; = T¢
Sequential CF1 Seq-CF1 Chilling B(T;, Tc, C*, F*)
Sequential CF2 Seq-CF2 Chilling 4 (Tc, C*, F¥)
Parallell CF1 Parl-CF1  Chilling 61( Tc, Ty, C*, a, b)
Parallell CF2 Parl-CF2  Chilling B1( Tc, Ts, C*, F*)
Parallel2 CF1 Par2-CF1 Chilling B(Tc, C* a,b);to=11
Parallel2 CF2 Par2-CF2  Chilling 4(Tc,a,b)tr =11
Rc=0 if x(r) <—-3.4 or x(t)>104 Q)
. . x(t)+34 .
@enescence Dormancy Active Growth ) Re = ﬁ if —34<x(t)<Tc (2
fo i 2 x (1) — 104
Rest l Quiescence | Rc = ﬁ if Te<x(t) <104 (©)
Sequential p=========. ) )
N S ————— whereT; is the species-dependent temperature threshold for
chilling accumulationRs is a sigmoid function of (¢). Forc-
I e E— ing is accumulated when(r) > 0 as in Eq. (4):
No Chill (i)
No Chill (ii) Re— 284 )
f= 11 ¢-0185x()-184))

-------- Chilling (T < T.*)

Forcing (T2 77 Either in spring warming or chilling models, photoperiod

Fig. 2. Model representation of the seasonal cycle of terrestrialCan control the point in time (i.e. a day-length threshold) at
ecosystems, from senescence through dormancy (a period of resyhich chilling and forcing begin to have an effect.

followed by quiescence) and then active growth. In temperate and For example, parametes in Table 2 controls the date at
boreal systems, the transition through dormancy to active growthwhich forcing and/or chilling begins to be accumulated in
has been described using a variety of approaches. Threshold pointome models. We also compared versions of the models with
fo andr; may be triggered either by photoperiod or temperature no photoperiod control; for these (models denoted by the suf-
(i.e. various forms of chilling: sequential, alternating or parallel, as fix 1o see Table 2), parameteris fixed to 1 January, which

indicated). At threshold point, bud-burst is triggered when ac- ¢ 0 514 for onset of degree-day accumulation most com-
cumulated forcing reaches a critical state. The manner in which . .
monly used in other studies.

chilling and forcing accumulates varies among models. Chilling
models describe phenology as a combination of temperature forc.. - .
ing, photoperiod limitation and chilling limitation; Spring warming 2.3 Statistical analysis
models describe phenology as function of temperature forcing an
photoperiod limitation (Table 2 for a list of model). Modified from
Chuine(2000.

C&.3.1 Model parameters and uncertainty estimations

Model parameters (listed in Table 2) were estimated for
each species and model using bud-burst observations from

www.biogeosciences.net/9/2063/2012/ Biogeosciences, 9, 2ZiR-2012
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Table 3. AAICc values for a range of different models (see text and Tables 1, 2 for additional information) fit to Harvard Forest bud-burst
data. Species ID are as given in Table 1. The best model, based on Akaike’s Information Criterion corrected for small samples (AlCc) has
AAICc =0 and is indicated by bold type.

Species ID SW-CF1 SW-CF2 Alt-CF1 SW-CF1t0 SW-CF2t0 Alt-CF1t0 Seq-CF2 Seq-CF1 Par-CF2 Par-CF1 Par2-CF2 Par2-CF1
ACRU 11.49 16.24 0.00 28.93 31.59 15.48 35.49 14.51 39.07 13.20 14.51 19.73
ACSA 0.82 3.52 1.43 24.29 21.99 7.81 17.50 7.94 21.21 7.40 0.00 30.07
BEAL 9.19 7.35 0.00 20.16 22.41 11.41 25.03 13.36 28.65 13.32 11.85 19.04
BELE 2.93 0.00 0.12 15.78 15.82 5.66 19.46 11.23 23.08 10.79 51.97 12.20
BEPA 4.67 3.83 0.00 18.75 17.81 6.74 19.46 3.92 23.08 6.76 1.38 10.88
FAGR 0.00 7.25 6.00 27.34 31.55 10.43 29.89 11.25 32.27 7.40 1.60 11.60
FRAM 3.37 0.00 4.13 27.10 28.35 13.59 29.97 13.42 33.28 14.05 16.33 25.54
PRSE 3.56 0.00 3.47 22.44 23.23 7.63 12.56 11.51 12.88 7.37 64.97 17.84
QUAL 8.26 0.00 4.13 7.12 9.03 2.38 7.16 14.73 10.88 4.48 7.97 7.52
QURU 5.93 0.00 5.96 20.40 20.63 5.16 15.33 6.89 18.71 14.37 1.84 14.74
QUVE 3.91 0.00 6.10 14.29 15.03 7.71 1.50 8.70 4.94 7.81 4.39 14.46
MEDIAN 3.91 0.00 3.47 20.40 21.99 7.71 19.46 11.25 23.08 7.81 7.97 14.74
Best Model 1 6 3 0 0 0 0 0 0 0 1 0
AAICC < 2 2 6 5 0 0 0 1 0 0 0 4 0
AAICCc < 6 8 8 10 0 0 4 1 1 1 1 5 0
Model Ranking 3 1 2 10 11 4 9 7 12 5 6 8

Harvard Forest as constraints. This allowed for the characThe small sample corrected criterion, AICBufnham and
terization of species-specific biological responses to environAnderson2002), is calculated as in Eq. (5):
mental cues.
Model thimization and ungertainty analysis was per- A|CC=n|OgGZ+2p+ 2P(P+1)’ )
formed using a model-data fusion framework based on sim- n—p-—1
ulated annealing-type routines and Monte Carlo techniques ) . ,
(Metropolis et al, 1953, as described bfichardson et al. Wheren is the number of samples (i.e. observation years),
(2010. The cost function selected for this purpose was the's the numb_er_of model parameters_ar?ds the residual sum
sum of squared error between observed and modeled dat! Sauare divided by.. The competing model formulations
Once the best parameter set was identified, the paramet@©Posed in Table 2 can be ranked according to AlCc, where
space was further explored until 1000 parameter sets thalpe model with the Iowes.t AICc is considered best supported
gave statistically equivalent fits to the data were accepted?y the data, and most likely to be the “true” model. Can-
A specific parameter set was accepted if it passgd test d!date moqlels can be compared directly by calculating the
(at 95 % confidence level) for acceptance/rejection, after thélifference in AlCc scores with the best modelAICc). If
normalization of variance based on the minimum of the cost®A!CC is lower than 2, the two models are approximately
function Franks et a].1999. equivalent. IfAAICc > 6, then the inferior model is about 20
The resulting posterior distributions defined the parametefiMes less likely to be the true model (Table 3).
space within which approximately equally good agreement Finally, for each species, we tested the best model se-
between data and model simulations can be obtained. Unce}QCted by AIC using phenological observations from 2010

tainty estimates for model parameters and model prediction&"d 2011, which had not been used for m;h)gel calibration.
were thus provided directly by the model-data fusion frame- | NiS evaluation was conducted computing #r the slope

work. conditional on the data and the cost function. of the linear regression analysis (observed vs. modeled), as
By running an ensemble of models, with parameter seté"’e" as the root mean square error (RMSE) between observed

selected from the posterior distributions, we can character@nd modeled bud-burst datdairieiro et al. 2008.

ize the uncertainty in model predictions (both under current . .

and future climate scenarios) that is attributed to paramete?'s'3 UF;ZZ?;:%%%U forecast and propagation of model

uncertainty.

With the aim of assessing the potential effects of climate
2.3.2 Model selection and evaluation change on phenology, we ran the models from 1960 to 2099

using climate projections for Harvard Forest. These were
We used the Akaike Information Criterion (AIC), a method generated by Hayhoe et al. (2007) using the NOAA Geo-
based on information theonpAkaike, 1973 Anderson etal.  physical Fluid Dynamics Laboratory (GFDL) CM2 global
2000, for model selection purposes. AIC is a measure ofcoupled climate modelDelworth et al, 2009, statistically
the trade-off between the goodness-of-fit (model explanatorydownscaled to approximately 10 km spatial resolution. The
power) and the model complexity (humber of parameters).CM2 model was run using two scenarios of £é&nd other

Biogeosciences, 9, 2063683 2012 www.biogeosciences.net/9/2063/2012/
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Fig. 3. (a) Time-series of mean annual temperature projections (1960-2099) under the scenario Alfi (orange line) and scenario B1 (blue
line); (b) time series of bud-burst dates (BB) modeled for red oak (Quercus rubra) with the best model selected (Table 1). Blue line represents
the BB projected under the scenario B1, orange line represents the BB projected under scenario Alfi. Gray area represents the uncertaint
for the scenario A1fi, while light purple area represents the uncertainty for scenarfo)Biine series of bud-burst date (BB) modeled for

red oak with SW-CF2 (best model), SW-CF2t0 (as SW-CF2 but without photoperiod limitation), Par2-CF2 (second best model) and with the
internal phenological routine in BEPS (green line). Gray crosses represent the phenological observations collected at Harvard Forest. Models
in Fig. 2c are forced by temperatures from the scenario Alfi.

greenhouse gas emissions: the IPCC Special Report on Emisrario and model structure independently. The ratio of the

sion Scenarios (SRES) higher (A1fi) and lower (B1) emis-mean width of the 95% confidence interval (Cl), computed

sion scenarios Nakicenovic et al. 2000. Compared to for the last and the first decade of the projections, was used to
a 1960-1990 baseline of 2C mean annual temperature quantify the degree to which parameter uncertainty changes
and 1100 mm annual precipitation, corresponding values abetween current and future climate conditions.

the end of simulation (mean 2070-2099) are 2Z0and The uncertainty related to the model structure was char-
1270 mm for the Alfi scenario and 96 and 1240 mm for  acterized by analyzing the average smoothed projected
the B1 scenario (Fig. 3a). trend across model formulations and climatic scenarios. The

Uncertainty was propagated by running the models for-smoothed bud-burst projection was extracted from the time
ward with the ensemble of parameter sets that passeglthe series by using a local polynomial regression fitti@iee-
test at 95 % confidence (Sect. 2.3.1), yielding for each year dand and Devlin1988. The interannual variability was com-
range of model predictions (Fig. 3b). puted as the standard deviation of the residual between the
The uncertainty in model parameters was analyzed byforecasted bud-burst and its smoothed time-series.
evaluating the propagation of the uncertainty for each sce-
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The driver uncertainty related to future climate forcing 2.4.2 Modeling strategy
was analyzed by computing, for the best model selected for
each species, the trends in advancing bud-burst under the tweveral model runs have been conducted over the period
different climatic scenarios. Trends were characterized by us1960-2099 with BEPS and forced by different bud-burst
ing the Sen’s slope estimator and the nonparametric Mannforecasts. Due to the computational demand of running
Kendall test Helsel and Hirsch2002. The Mann-Kendall BEPS with the full posterior distribution of uncertainty from
test Mann 1945 Kendall 1976 and the Sen’s slope esti- €ach model, we designed specific experiments to test both the
mator Sen 1968 are non-parametric procedures for trend BEPS native phenology model, and the sensitivity of photo-
testing and estimation of trend magnitude of a univariate timesynthetic CQ uptake and ET estimated by BEPS to errors in
series, respectively. Non-parametric methods are preferred teimulated bud-burst dates. The different runs are described
parametric methods (i.e. regression analysis: regression slogeelow:
and test) because no assumption is made regarding the proba-
bility distribution of data. The second advantage of nonpara-
metric methods, and in particular for the estimation of trend
magnitudes, is their robustness to outliers or to abrupt breaks
due to inhomogeneous time seriéke(sel and Hirsch2002).

— Run 1: BEPS with bud-burst simulated by the native
phenological routine (reference run).

— Run 2: BEPS forced by bud-burst dates simulated by the
best model formulation, selected according to the AlCc
2.4 Process-based terrestrial biosphere model as described in Sect. 2.3.1 and the optimized parameters

set.
2.4.1 Description of Boreal Ecosystem Productivity
Simulator — Run 3: BEPS forced by 4 different bud-burst dates. The
bud-burst forcing time series has been computed by
The Boreal Ecosystem Productivity Simulator (BEPS) was adding to the bud-burst simulated with the reference run
originally developed to simulate carbon and water fluxes at +1 and+10 days. These runs are hereafter referred as
daily time steps in a remote sensing framewdrhu (et al, BEPS, 1. BEPS 1; BEPS, 10 and BEPS 0.
1997, 2002). Derivatives of this original version have been
developed and tested at various boreal forest and peatland The differences in annual GPP and ET between Runs 1
ecosystems (e.govind et al, 2009 2011 Sonnentag et al. and 2 allow for the quantification of uncertainty in photosyn-
2008 Ju and Chey2005 Ju et al, 2006. Spring phenolog- thetic CQ uptake and ET associated with the BEPS native
ica| events SUCh as bud_burst are mode|ed as functions Of apud'burst sub-model. Run 3 allows for the characterization of
temperatureJu et al, 2006, with a model structure classifi- the sensitivity of photosynthetic Giptake and ET in BEPS
able as spring warming without photoperiod limitation. Af- t0 variations (shifts) in bud-burst dates. In other words, after
ter bud-burst (accumulated growing-degree days abo@ 5 the characterization of the uncertainty around individual fu-
reach 750), leaf area index keeps increasing |inear|y up to ture bud-burst dateS, we look at the effect of constant “extra”
growing-degree days of 50€ when prescribed maximum days in spring along the simulation period in terms of carbon
growing-eason leaf area index for understory and overstory@nd water fluxes described by BEPS. Hereafter we referred
are reached. to Run 3 as the “Sensitivity Runs”.

For this study, we used the version of BEPS described by
Ju et al.(2006, parameterizing the soil-vegetation contin-
uum to consist of five soil and two vegetation layers, with 3 Results
site-specific information for Harvard Forest from the liter-
ature Urbanski et al. 2007 and the Harvard Forest data
archive. Spanning the period 1960-2099, the model was
driven by half-hourly meteorological forcing data including
incoming shortwave radiation, air temperature, relative hu-
midity, wind speed and precipitation.

For the future climate projection, we used downscaled dat
(Hayhoe et al.2007 from the regionalized projection of
the GFDL-CM global coupled climate-land moda¢lworth
et al. (2009 driven with scenario AlfilPCC, 2007). For
each run, the model was initialized following the procedure
outlined inJu et al.(2006.

3.1 Performance evaluation of phenological models and
future bud-burst trends

The AICc values show that models belonging to the class
spring warming with photoperiod control tended to be bet-
ter supported by the data than competing model structures
Table 3). In particular, for seven species the simple spring
warming models (SW-CF2 plus SW-CF1) are selected as best
(Tables 1 and 3). For several species, however, AlCc gives
support for chilling models. Among chilling models, alter-
nating (Alt) models are more often selected (3 times as best
and 5 times withAAICc < 2), while sequential (Seq) models
are selected just once. Spring warming models without pho-
toperiod control are never selected as the best model. More-
over, Table 3 shows that the SW-CF2 model has the lowest
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Fig. 4. Coefficient of determinationl(z) and slope of the linear regression between observed and predicted bud-burst with the best model
selected (Table 1) for each ye@), for each speciefb). Vertical lines represent the average bud-burst day of the year in eacljayear

and for each specigb). Gray bars represent the average bud-burst dates across pgeied the average bud-burst for each speftigs

(c) Predicted versus observed bud-burst dates for the years 2010-2011 simulated for the 11 species and the best model selected as describec
Table 1. Error bars for the predictions represent the propagated uncertainty of model parameters while for the observed dates is the minimurr
and maximum bud-burst dates observed for each individual.

AICc across all species, followed by Alt-CF1. The time se- of the projected bud-burst trends simulated for each species
ries of bud-burst dates (1960-2099) simulated for red oakwith the best model selected as in Table 1 is given in Fig. 5.
with the best model selected (SW-CF2) for both scenariosThe width of boxplots represents the uncertainty in projected
are shown in Fig. 3b while simulations with different model trends for each species. The uncertainty in future trends var-
structures are reported in Fig. 3c. ied across species and is larger for simulations conducted
The R? and the slope of the linear regression between ob-under the scenario Alfi. The average uncertainty, computed
served and predicted bud-burst dates, with the model selecteass the average of the 95 % Cl, is 2.4 day centdirgranging
as best for the period 1990-2009 (i.e. years used for moderom +0.7 day century! for ACRU to +4.1 day century’
calibration) and for each species, are reported in Fig. 4dor BELE) for scenario B1 and 4.5 day centufy(ranging
and b, respectively. Figure 4a shows that the best model sérom +0.7 day century® for ACRU to +9.2 day century?!
lected for each species is able to explain the variability offor BELE) for Alfi.
bud-burst across species for each year. Figure 4b shows that The average ratio of the mean width of the 95 % confi-
the best model selected is able to explain the variability ofdence interval, computed for the last and the first decade
bud-burst for each species. Figure 4c shows that these cabf the projections with the best models, is 1.2 (14@.2)
ibrated models were able to successfully predict 2010 andor both scenarios. For many models and many species, un-
2011 bud-burst dateskR€ = 0.79; RMSE=4.3 day). This certainty at the end of the simulation is similar to that for
represents a strong test of the models, as 2010 had an anomte present climate. For models without photoperiod limi-
lously early start to the growing season. tation (more often for SW-CF1t0 and SW-CF2t0), and for
Among the significant trends computed with the Sen’ssome chilling models (Par and Par2 models), the uncertainty
slope, we have found an average advance in bud-burst acrosd the end of the simulation doubles (ratio between 2.0 and
species of 9.4 (1sd:3.4, minimum: 5.0, maximum: 14.9) 5.3) and, in particular under scenario Alfi, there is a large
day century! and 4.3 (1 sd=1.7, minimum: 1.7, maximum:  increase in uncertainty.
7.0) day century! for scenario Alfi and B1, respectively.

3.2 Uncertainty of phenological forecasts 3.2.2 Uncertainty of model structure

3.2.1 Uncertainty of model parameters The smoothed trends computed for a selection of models,
averaged across species, for the two scenarios are reported
The impact of uncertainty in model parameters was evalu-in Fig. 6. The average of the model ensembles (gray line in
ated by running the models forward with 1000 realizationsFig. 6) and the average computed with the Akaike’s weights
of model parameter sets accepted by ffetest. As an ex-  (black line in Fig. 6) according tdurkheimer et al(2003
ample, the parameter uncertainty for red oak is depicted withare also shown. Weighted averages and the standard devia-
colored areas in Fig. 3b. The uncertainty in individual yearstion of trends computed across the model structures are re-
results in an uncertainty in the projected bud-burst trendsported in Table 1. The average standard deviation of the pro-
A summary of the resulting uncertainty in the magnitude jected trends is a measure of the uncertainty in trends related
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to model structure and varies betwe#3.6 day century! By 2099, differences in forecast bud-burst date across mod-
for B1 and+7.7 day century? for A1fi. els could reach about 10 days for the Alfi scenario. Chill-
Models more frequently selected as the best (i.e. springhg models and spring warming models with photoperiodic
warming limited by photoperiod and alternating models) pre-limitation show less steep projected trends. The trends simu-
dict a response to future warming in the middle of the modellated with these two classes of models level-off around 2060
ensemble. Spring warming models without photoperiod lim-for scenario B1 while for scenario Alfi a slow reduction in
itations show a strong trend toward early bud-burst, particuthe slope is observed over time. For scenario B1, the level-
larly relevant under scenario Alfi, that affect also the arith-ing off reflects the projected decrease of the rate of tempera-
metic average of multi-model ensemble (gray line in Fig. 6). ture warming (Fig. 3a) while for scenario Alfi the interaction

Biogeosciences, 9, 2063683 2012 www.biogeosciences.net/9/2063/2012/



M. Migliavacca et al.: Uncertainty of phenological responses to climate change 2073

a) ] b) _ |

- - SW-CF1

— SW-CF110
o o | =™ SW-<CF2
— - Al
Al t0

= T — T - — Parl-CF2 e
e 6] = = Par2-CF2 i
[=2 —_— - (=] - -
g | e ~ g oL SQQ—V
& o
=2 D e
5 7 5 7 -
% T - -~ % .- - -~ -
5 ¥ -~ - —— 5 ¥ 4 e - -

L‘F _& N

@~ @~

T T T T T T T T T T
2020 2040 2060 2080 2100 2020 2040 2060 2080 2100
Years Years

Fig. 7. Future sensitivity of bud-burst to temperature (dBB)ds projected by different phenological models under the scenario(@1fi
and the scenario B(b). (dBB/dT’) is computed as the ratio between the smoothed bud-burst projections for each model and the smoothed
temperature. Different lines represent some of the most representative models listed in Table 2.

a) b) 2
B Scenario A1fi

_ _ B Scenario B1

w w O —

(?RD* ‘%

=, =,

= =

5 5 @

L L

8 < - ©

= =

w w

3 3

o o

© ©

5 oo 5

IS IS

o
A o o o Lo I,
u = = = oo I A R (TR 1< w 4 2 uw
Q TS oo o 9 2 B = 45 & 2 85 = 2 ¢
2 5 &5 6 & & o O W ¥ W < xy & 3 3 3
5 2 2 = 5 & ¥ <« © © m uw g o @ g o
< o o
w W

Fig. 8. Histogram of the interannual variability predicted by all model structures reported in Table 2 (left panel) and for all the species
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between model structure, parameters and warm temperaturessmulation. Under the scenario B1, the average reduction of
(see Discussion) contributed to reduce the rate of bud-bursthe bud-burst sensitivity to temperature at the end of simu-
advancing. lation for the best models selected is about 8.3 % compared
The future sensitivity of bud-burst to temperature is vari- to the sensitivity at the beginning of the simulation. Mod-
able across model structures as depicted in the time seriesls without photoperiod or chilling limitation show an in-
in Fig. 7. We observe a stronger sensitivity for spring warm- crease of the sensitivity of bud-burst to temperature by the
ing models without photoperiod limitation (e.g. SW-CF2t0: end of simulation reaching about6.0 day’C~1 while par-
—5.3day’C~1 for Alfi, —5.0day’C~! for B1) compared allel models showed a quite variable and higher sensitivity to
with spring warming models limited by photoperiod (SW- temperature.
CF2: —2.4day’C~! for Alfi, —2.2day’C~! for B1) and The interannual variability predicted by all models and by
chilling models (e.g. Alt—2.2 day’C~1 for both scenarios).  all species over the entire simulation period is reported in
For these models (often selected as the best) and for botkig. 8. The blue histograms represent the year-to-year vari-
scenarios, sensitivity to temperature is stable or decreases mtions under climate scenario B1 and the red histograms
time and spans from-2.4 to—2.9day’C 1 in the 1960s to  under the scenario Alfi. For chilling models and spring
values ranging from-2.3 to —2.4day’C~1 by the end of warming models without photoperiod limitations, the future

www.biogeosciences.net/9/2063/2012/ Biogeosciences, 9, 2Z8#R-2012



2074 M. Migliavacca et al.: Uncertainty of phenological responses to climate change

Table 4. Summary of BEPS simulation protocol. Bud-burst forcing represents the bud-burst dates used for model runs. GPP is the mean Gross
Primary Productivity, ET is the mean evapotranspiration while GPP and ET sensitivity represent the average difference to the reference run
for annual GPP and annual ET expressed as variations of—g?&m cm of water per 1 day of variation of bud-burst. The reference run is

the run conducted with BEPS and with bud-burst simulated with its internal phenological routine. In squared parentheses the minimum and
maximum values for each variable are reported.

Run ID Bud-burst forcing GPP ET GPP sensitivity ET sensitivity
run- reference run  run- reference run
[gCm2yr 1 [emyr—1] [gCm—2day 1] [cmday 1]
BEPS BEPS Native phenology 1569.34 46.53 Reference Reference
[Reference Run] [1295.15/1771.29] [40.27/54.57]
BEPSw-ck2 SW-CF2 1433.30 45.13 8.03 0.08
[1167.22/1680.88] [39.98/52.35] —[1.97/19.16] }0.01/0.25]
BEPS 19 BEPS Native phenology 10 days 1636.65 46.94 6.73 0.04
[1343.45/1855.01] [40.69/54.72] [2.85/10.52] —(0.02/0.11]
BEPS 1 BEPS Native phenology 1 days 1578.78 46.59 9.44 0.07
[1301.54/1784.08] [40.31/54.65] [3.89/21.94] —(.04/0.25]
BEPS, 1 BEPS Native phenology + 1 days 1561.52 46.44 —8.40 —0.08
[1291.42/1757.64] [40.21/54.56] —P1.69/-2.19] [-0.25/0.03]
BEPS; 10 BEPS Native phenology + 10 days  1488.87 45.76 -8.05 —-0.08

[1214.80/1702.30] [39.80/53.64] —[13.71/-0.97]  [-0.19/0.02]

interannual variability predicted is larger than the one pre-3.3 Uncertainty in gross primary productivity and

dicted by spring warming models with photoperiod limita- evapotranspiration simulated with BEPS

tion and alternating models. Within different species we do

not observe large differences, except for black cherry. Inter\we used the BEPS model to simulate photosynthetio CO
annual variability under the scenario Alfi is slightly larger yptake and ET at Harvard Forest. The runs conducted

as shown by the differences in red and blue histograms ifwith BEPS are in good agreement with GPP estimates re-
Fig. 8. However, differences within the 2 scenarios are Notported in Urbanski et al.(2007). For the period 1997—

statistically significant. 2004 the mean annual GPP estimated from eddy covariance
, ) measurements is 14.0 MgC Hg the GPP simulated with
3.2.3  Uncertainty of model drivers BEPSsw-cr2 is 14.9MgC Hal while the BEPS reference

; 1
The uncertainty of model drivers is related to the uncertauntyrun IS 16.3'0 MgC Ha. .
. . X : We give a summary of ET and GPP from the differ-
in future climate scenarios used for ecological forecasts and .
; . . ent BEPS model runs in Table 4. On average the BEPS

here we analyzed the differences in phenological forecasts .. . .

. . ' . native phenology model simulates an earlier bud-burst of
obtained using the Alfi and B1 scenarios.

%bout 17 days (up to a maximum of 59 days) compared

The uncertainty of trends for each species was assessao that simulated with the best model formulation identi-
by computing the Sen’s slope estimator for each of the 100 hied above (i.e. SW-CF2). An example of the time series of

rojected bud-burst time series, for the best model for eac ; .
proje . . bud-burst simulated with BEPS, SW-CF2 and SW-CF2t0 are
species (Fig. 5). The differences between blue and red boxe A .
N . ; shown in Fig. 3c. Differences between the reference run and
in Fig. 5 represent differences in mean trends between Alf

and B1 scenario. Projected trends computed for the bes EPSsw-cr2 represent the impact of uncertainty in model
model selected for each species for the two scenarios are r(_{}s/_\t/ructure on photosynthetic GQiptake and ET modeled.

: Lo e observe an average overestimation of the reference run
ported in Table 1. A larger uncertainty in bud-burst trends 5 1 0
was evident for scenario Alfi compared to scenario B1. gﬁiil%%g?azné idgg:g’ r7n7 dla;/(;) Z(r)rz ;T?Oftgf%gfggr‘?

Among the significant trends computeq with the Sensrelation between the differences in fluxesGPP andAET)
slope, we have found an average advance in bud-burst across

species of 9.4 (1sdt3.4, minimum: 5.0, maximum: 14.9) 223 g\é)gg-burstf(;liaﬁor;ﬂgtregFt))grt\(/v_eer(l)tgg refe(r)eggf run
day century® and 4.3 (1 sci:1.7, minimum: 1.7, maximum: W-CF2 9 — = O99p = VUL

, : : slope= —6.49gC nr2day!) than for ET ¢ = —0.55,
7.0) day century?! for scenario Alfi and B1, respectively. 0.081 slope- 20.055 cn{de)lyl). Figure 9€shows thaAfE?'

and ABB are strongly negatively correlated £ —0.82,
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Fig. 9. Relationships between differences in BREB) simulated with the best model (SW-CF2 as described in Table 1) and the internal
phenological routine of BEPS and the differences in annugdrand GPRb) simulated with reference run and BERG 2 (Table 4). In
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p < 0.001) when the bud-burst occurs late (bud-burétl 5) than a —10 days change. Moreover, year-to-year variability in
while they are poorly correlated & —0.38, p < 0.01) when  AET is larger compared ta GPP.
the bud-burst occurs early (bud-buesi15). This highlights The within-year sensitivity oAGPP andAET to varia-
that year-to-year variations in GPP are well correlated totions in ABB is reported in Fig. 11a, b and confirms that
year-to-year variations of bud-burst dates, while year-to-yeathe sensitivity of GPP is similar both for early and late bud-
variations of ET depend on variations in bud-burst in yearsburst, while the sensitivity of ET is less pronounced for the
with late bud-burst but not in years with early bud-burst, sug-run BEPS 19 and in particular for the years with earlier bud-
gesting the role of other meteorological factors controlling burst (blue line in Fig. 11b). Within-year sensitivity of the
ET late in the season when bud-burst occurs early. average soil moisture in summera®B and the within-year
The results of the sensitivity runs (i.e. differences be-sensitivity of the percentage change in summer soil moisture
tween the reference run and BERS BEPS; 1, BEPS 19 to ABB are shown in Fig. 11c, d. The average soil moisture
and BEPS 1) are reported in Table 4 . These represent thein summer is lower for years with earlier bud-burst, and the
sensitivity of annual GPP and ET to uncertainty in bud-burstsensitivity of summertime soil moisture to variations in bud-
dates due to model parameter uncertainty (reported as senddurst dates is lower for years with earlier bud-burst.
tivity of fluxes to+1 day of bud-burst uncertainty). Thetime  Table 5 summarizes the correlation and the slopes of the
series of the residual2\GPP,AET) to the reference run are linear regression computed betweaGPP andAET simu-
reported in Fig. 10. We observe an average increase in anated with the different sensitivity runs and different meteoro-
nual GPP of 4.3% (673 16.4 (1 sd) gCm?) for 10 days of  logical and environmental conditions. Year-to-year variations
advance in bud-burst and a decreagel % (80.5+20.3 in AGPP are correlated with the bud-burst dates, spring and
(1sd) gCm?) for 10 days of delay in bud-burst. The sen- mean annual temperature and the sensitivity (i.e. slope of the
sitivity runs confirm that ET responds less to variations of linear regression analysis) is stronger for the run BERBS
bud-burst than does GPP: ET varies by 0.92% add6 %  The interannual variability oAET is poorly correlated with
for a change in bud-burst ef10 and +10 days, respectively. environmental conditions except for temperature and snow
The average sensitivity of annual GPP4t@ day change in  depth for the run BEPSo. The interannual variability of
bud-burst simulated by BEPS is 8.15gC#uay 1, while summerAET is more correlated with the main meteorologi-
for annual ET is 0.07 cmday (variation of annual fluxes cal variables (Table 5) compared to anna&T.
per 1 day of variation of bud-burst). The sensitivity of ET
to £10 days of variations in bud-burst is asymmetric (green
and gray boxes in Fig. 10) and larger for a +10 days change
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Fig. 10. Barplot of the percentage of variations of annual cumulated @GPRnd ET (b) simulated with the runs BERSg, BEPS 1,
BEPS, 1 and BEPS 1¢ (Table 4) with respect to the reference run.

4 Discussion bud-burst trends vary greatly depending on the parameter sets
used in some models.

Although, forecast uncertainty due to parameter uncer-
tainty scales with time does not increase for all the model
structures. The increase of uncertainty by the end of simula-
Our analysis has characterized different sources of uncertion is model-dependent and it is larger for those model struc-
tainty in phenological forecasts. Here we have explicitly tures less supported by data (e.g. spring warming without
accounted for uncertainty in estimated model parameterphotoperiodic limitation and parallel models). When these
(parameter uncertainty), uncertainty due to model struc-models are used for long-term forecast of spring phenology,
ture (model uncertainty) and uncertainty due to the forcingthe non-stationary of uncertainty in time should be carefully
drivers (driver uncertainty). considered.

Our analysis suggests that, once model parameters are op- The above considerations suggest an interaction between
timized according to the data, parameter uncertainty is théhe parameter uncertainty and the driver uncertainty. More
smallest (average 95 % C#:2.4 day century® for scenario  specifically, we found higher uncertainty for the high £0
B1 and=+4.5 day century® for A1fi) and the most straight- emissions scenario (Fig. 5). The expansion of the propa-
forward to quantify by using a model-data fusion frame- gated uncertainty under the Alfi scenario indicates the im-
work (model-data-optimization routine). Driver uncertainty portance of reducing the uncertainty in model parameters
is the largest, up to 8.4 day centafyof difference in trends  (which could be accomplished with longer time series of ob-
computed with the two scenarios and the best models, andervations) and, more importantly, in reducing driver uncer-
the most complicated to quantify given the uncertainty in tainty (i.e. uncertainty in climate scenario).
future climate projections. Model uncertainty is also large Driver uncertainty is related to uncertainty in future cli-
and comparable with driver uncertainty: the predicted bud-mate scenarios used to run the phenological models and it is
burst trends, as well as the shape of the smoothed projejuantified as the difference between runs of the same model
tions (Fig. 6), showed large variability across models (1sd:forced by different drivers. As shown in Fig. 6, the differ-
+3.6 day century? for B1 and+7.7 day century® for A1fi). ences in bud-burst simulated by different models at the end of

With the best model selected for each species and its optithe simulation period is larger with the scenario Alfi (Fig. 6a)
mized parameters set, an average trend towards earlier spritfan with scenario B1 (Fig. 6b). In particular, models less
by 4.4 day (scenario B1) and 8.8 day (scenario Alfi) over thesupported by the AlCc are more sensitive to changes in driver
coming century is predicted. scenarios (e.g. up to 2 weeks for spring warming class mod-

Although the parameter uncertainty is smaller than otherels without photoperiod limitation and for some versions of
sources of uncertainty, we observe that in some species (sugrarallel and sequential models). Therefore, accurate model
as yellow birch, white oak, red oak and sugar maple) forecast

4.1 Sources of uncertainty of phenological forecasts
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Fig. 11. (a) Within-years sensitivity of GPPAGPP) to variations of BBABB); (b) within-years sensitivity oAET to ABB; (c) within-

years sensitivity of the average soil moisture in summexBB; (d) within-years sensitivity of the percentage of variations of summer soll
moisture toABB. Different lines represent the within-years sensitivity. Years are grouped according to the distribution of the day of the year
(DOY) of bud-burst (i.e. from years with early bud-burst to years with late bud-burst as reported in the legend). The purple line with (*)
represents the within-years sensitivity computed using all data.

selection could also help to reduce uncertainty related tacentury (Fig. 7). In general, there is a reduction in the amount
model drivers. that bud-burst advances for a given increase in temperature.
The mean temperature increase expected with scenarid/e note that this should not be seen as an adaptation of trees
Alfi is about 3 times larger than that projected for scenarioto climate change. Rather, this reflects photoperiod and/or
B1. However, some models predict an adjustment of the apehilling constraints (according to the species), which effec-
parent sensitivity of bud-burst to temperature over the nextively limit the degree to which the bud-burst can advance
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Table 5. Slope of the linear regression analysis computed betwgeRP,AET and summertim@&ET (from June to August) and different
meteorological variables. In parentheses the Pearson’s correlation coefficient is reported. The differencea@R¥HRIGd ETAET) are

computed as the differences in annual GPP [g€yr—1] and ET [cm yr 1] between the runs BEPSo, BEPS. 1, BEPS, 1, BEPS, 19 and

the reference run (Table 3). Tann is the mean annual temperature, Tspring is the springtime mean temperature (i.e. from March to May), Tsoil
is the mean soil temperature, Prec [mm] is the annual cumulated precipitation and Snow [cm] is the average snow depth. Bold characters
represent statistical significant correlatiops< 0.001).

AGPP BEPS 1 BEPS 1 BEPS,1 BEPS, 10
BB 0.70 (0.45) 0.07 (0.20) —0.08 (-0.23) —0.85 (-0.44)
Tann —4.76 (-0.57) —0.57 (-0.33) 0.63 (0.31) 3.85 (0.38)
Tspring —5.46 (~0.59) —0.75 (-0.38) 0.71 (0.32) 4.37 (0.38)
Tsoil —5.36 (-0.50) —0.70 (-0.31) 0.67 (0.26) 4.14 (0.31)
Prec —-0.02 (-0.19) —0.003 (-0.16) —0.01 (0.26) 0.02 (0.17)
Snow 1.09 (0.36) —0.06 (0.10) —0.13 (-0.19) —0.76 (-0.20)
AET BEPS 19 BEPS 1 BEPS,1 BEPS, 10
BB 0.010 (0.41) 0.001( 0.29) —0.001 (-0.18) —0.011 (-0.30)
Tann —0.042 (-0.33) —0.008 (-0.29) 0.005 (0.19) 0.040 (0.21)
Tspring —0.048 (-0.33) —0.008 (0.28) 0.006 (0.21) 0.049 (0.23)
Tsoil —0.032 (-0.19) —0.007 (-0.23) 0.005 (0.14) 0.029 (0.12)
Prec 2.141074(-0.14) -5.13x10%(—0.02) —2.78x107°(—0.08) —1.94x10~4(—0.08)
Show 0.020 (0.43) 0.002 (0.25) —0.002 (-0.21) —0.020 (-0.28)
AET (JJA) BEPS 1 BEPS ; BEPS;1 BEPS, 10
BB —0.011 (0.59) —0.002 (0.53) 0.002 (0.47) 0.019 (0.63)
Tann 0.056 (0.60) 0.009 (0.54) —0.009 (0.51) —0.087 (0.57)
Tspring 0.097 (0.59) 0.011 (0.55) —0.010 (0.48) —0.096 (0.55)
Tsoil 0.062 (0.51) 0.011 (0.49) —0.011 (0.44) —0.097 (0.48)
Prec 3.83x1074 (0.33) 6.2%107°(0.30) —7.58x107°(0.33)  —6.24x10"4(0.33)
Show —0.012 (0.34) —0.001 (0.23) 0.002 (0.27) 0.017 (0.29)

in spring. For instance, considering the average trends comsimilarity of the sensitivity of bud-burst to temperature for
puted for all species, spring warming models without pho-models that feature photoperiod limitation.
toperiod limitation (e.g. SW-CF2t0) predict an earlier bud- For some chilling class models (e.g. parallel models), we
burst compared to spring warming models (e.g. SW-CF2)observe that in some years the predicted bud-burst dates were
of 11.5 day century! for scenario Al and 5.7 day centary  highly uncertain and unrealistic (e.g. no bud-burst predicted).
for B1. As noted in an earlier studyMorin et al, 2009, this effect
Here, we focused on the uncertainty related to the sociomight be related to interactions between parameter uncer-
economic scenario used (Alfi vs B1). However, regardingtainty and model structural uncertainty. Thus, in anomalous
climate data, other uncertainties can also be expld@€edk  years (i.e. very warm winter), for certain extreme parame-
et al. (2010, showed the impact of the temporal and spa-ter sets, the winter chilling requirements were not fulfilled
tial resolution of climate scenario in phenological modeling, and models failed to predict bud-burst in spring (i.e. no bud-
as well as the uncertainty related to the use of different genburst predicted). This occurred more often for scenario Alfi
eral circulation models (GCM). This uncertainty could be as-than scenario B1, highlighting the need to reduce this source
sessed by analyzing the ensemble spread obtained by runniraf uncertainty by either reformulating the model structure or
one phenological model with climate drivers from different better constraining model parameters by using more obser-
GCMs. vations (longer time series or broader geographic coverage).
The model uncertainty is comparable to driver uncertainty, Several model structures and parameterizations resulted in
and both the predicted bud-burst trends and the shape of theredicted bud-burst dates that are not sensitive to warm tem-
smoothed projections show a large variability across modelperatures during winter and early spring, which limits the de-
(Fig. 6). In this regard, the importance of photoperiod limita- gree to which modeled bud-burst can advance under future
tion is highlighted by (1) the large difference (up to 10 days climate scenarios. Up to a certain level of projected warm-
by the end of our simulations) between spring warming mod-ing in climate, different model structures predict a differ-
els with and without photoperiod limitation, and by (2) the ent absolute value of bud-burst but a similar behavior of the
shape and trend of the projections. In these conditions, spring
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temperature is the main driver, while photoperiod and chill- this source of error likely propagates to the seasonality of
ing are less limiting. For high C£emissions scenarios, pho- carbon, water and energy fluxes projected by land surface
toperiod and chilling become important limiting factors lead- models Richardson et al2012 Keenan et a}.2012h).
ing to a different shape of projected spring phenology. Our In our modeling exercise with BEPS we explored the ef-
model selection ranking (spring warming with photoperiodic fects on evapotranspiration and photosynthetic, GPtake
limitation have been selected more frequently than chillingdue to (1) the uncertainty in phenological model routines not
models) supports the position &forner and Baslef2010 optimized embedded in the model (i.e. differences between
in the current debate about the interactions between warnthe reference run and BEB®cr2) and to (2) the uncer-
temperatures in spring, cold temperatures during dormancyainty in model parameters (i.e. sensitivity runs: BER$
and photoperiod, and the degree at which they will controlBEPS 1, BEPS, 1, BEPS 10).
phenology under future climate warming. However, it should Model uncertainty (i.e. differences in GPP and ET ob-
be considered that although this study is conducted over &ined with the reference run and the BER&F2) lead to
relatively long time series, it includes only one site, which biases of 9.6 % for annual GPP and 2.9% for annual ET,
may limit our ability to effectively constrain the photope- indicating the importance of improving the model’s default
riod parameter. Moreover, one of the major limitations re- phenological routines.
lated to currently available observational datasets is that these Beside the uncertainty related to model structure, pheno-
might be too short to span a wide range of climatic condi-logical forecasts for future climate scenarios are uncertain
tions needed to constrain more complex modRisiiardson  because of the uncertainty in phenological model parame-
etal, 2012. For this reason, data from warming experimentsters. We have quantified that parameter uncertainty can be
or common garden experiments (eMprin et al, 2010, as  considered, conservatively, as up#d0 days. We explored
well as new long-term datasets of consistent phenological obthe impact of this uncertainty on terrestrial biosphere mod-
servations from across a wide geographic range and climatiels through a sensitivity analysis and showed (Table 4) that
conditions, could be of great value for constraining modela variation of+10 and+1 day in bud-burst dates lead to a
parameterization (i.e. to reduce parameters uncertainty) andariation of aboutt5 % in annual GPP (8.15gCtAday 1,
for testing and developing phenology models (i.e. to reducd.e. a sensitivity of annual GPP to 1 day of variation in bud-
model uncertainty). burst) and about=2 % in annual ET (0.07 cmtday 2, i.e.
Finally, the uncertainty described above and multi-modelsensitivity of annual ET to 1 day of variation in bud-burst).
trends reported in Fig. 6 suggest that when constructing a The sensitivity of GPP to bud-burst uncertainty assessed
multi-model ensemble, not all model structures should bein this study is comparable with recent empirical estimates:
weighted equally. More weight should be given to those Richardson et al. (2010) found a relationships between inter-
models that are better supported by the data, and less weiglannual phenological anomalies in spring onset and interan-
to those that are not supported by the data. Akaike weightsiual CQ uptake anomalies ranging from 1.20 (3€6.20)
(Turkheimer et al.2003 can be used for this purpose. to 20.2 (se=+2.90)gC mr2day ! (supplementry Table 5 in
Richardson et al., 2010); Richardson et al. (2009a), indicated
4.2 Impacts of uncertainty in bud-burst forecasts on  that a one-day advance in spring onset date in two different
photosynthetic CO, uptake and evapotranspiration North American forests was associated with an increase in
modeling GPP of 12.30 (se+2.50) gC mr2day 1. Although the im-
pact on GPP of uncertainty in model parameters is lower
The uncertainties of phenological forecasts might have im-than uncertainty due to phenological model structure, this
portant implications for the land surface energy budget ands of the same magnitude (or slightly lower) of the sensi-
for carbon and water cycling modeling because of the sentivity of GPP to anomalies in bud-burst as reported in the
sitivity of biogeochemical models to bud-burst dates (Levis abovementioned empirical studies. This emphasizes the im-
and Bonan, 2004; White et al., 2000). The prognostic routineportance of correctly modeling phenological transition dates
in commonly used terrestrial biosphere models (€rgprn- in order to successfully predict annual €@ptake and its in-
ton et al, 2002 White et al, 1997 Lawrence et a).2011; Ju terannual variability, as well as other biosphere-atmosphere
et al, 2009 is often based only on the heat sums or grow- interactions and climate system feedbacks.
ing degree-day assumption (i.e. roughly similar to models As shown in Fig. 11a, b the sensitivity of GPP to bud-burst
SW-CF1t0 and SW2-CF2t0), and model parameters are nds relatively constant while the sensitivity of ET to variations
optimized against phenological observations. In our analy-in bud-burst decreases substantially for the runs BEES
sis, simple model structures such as these were not well supn particular in years with earlier bud-burst. We observe that
ported by the data (with the addition of photoperiod or chill- an earlier bud-burst of 10 days in spring is not always as-
ing, model performance was greatly improved). This mightsociated with an increase in ET (Fig. 11b, c, d), perhaps
lead to a poor description of spring phenology either in because with early bud-burst the soil water reservoir is in-
terms of bud-burst or seasonal development of leaf area inevitably depleted by late summer. As shown in Fig. 11c, ac-
dex Richardson et al2012 Lawrence et a).2011). Hence, cording to BEPS, earlier bud-burst is associated with lower
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average soil moisture in summer. Moreover, the sensitivity ofof uncertainty for terrestrial biosphere models. The photo-
summer soil moisture to variations £f10 days in bud-burst  synthetic CQ uptake is more sensitive than the ET to un-
(Fig. 11d) is very small in years with early bud-burst, and certainty in phenology, and the impact of uncertainty in phe-
increases in years with late bud-burst. Similar patterns haveological model parameters on carbon uptake is of the same
been reported in boreal forest stanl§yn et al., 200§ and magnitude of the sensitivity of productivity to year-to-year
in a broadleaved forest in Central Europpe(zinger et a].  variations of bud-burst. For ET, the impact of this uncertainty
2005 where an earlier spring phenology increased transpirais more relevant in years with late bud-burst given the asym-
tion rates, leaving less moisture in the soil in summer. metric response of water cycling to variations of bud-burst
BEPS runs suggest that at Harvard Forest, the photosymebserved with our model.
thetic CQ uptake is more sensitive than the ET to uncer- To reduce model uncertainties it is necessary to continu-
tainty in phenology (Figs. 9, 10 and 11). Regarding water cy-ously strive to re-evaluate model predictions against new ob-
cling, Lawrence and Sling¢2004 andWhite et al.(1999, servational datasets. Of particular value would be data from
showed that the three primary components of ET, namelydiverse populations (i.e. including genetic variability) grow-
transpiration, soil evaporation and canopy evaporation reing under divergent environmental conditions. To push mod-
spond in a opposite direction to changes in phenology. Foels to their limits, these data should include variations in both
instance, a certain amount of soil evaporation can occur intemperature (data from transplant or warming experiments
dependently of the seasonal development of leaves in yeansould be particularly valuable) and, to the fullest extent pos-
with late bud-burst. Or, while bud-burst and spring leaf de- sible, photoperiod. These data will permit the development of
velopment enhances transpiration, it may limit surface soilbetter phenological routines, and the reduction of uncertain-
evaporation because of the lower amount of transmitted soties in forecasts of ecosystem responses to climate change
lar radiation below the canopy. Moreover, in years with early that are mediated by phenology.
bud-burst, the enhancement of ET in spring might lead to
lower soil moisture in summer limiting the increase of tran-
Spira'[ion in summer and then buﬁering the SenSitiVity Of tOtal Acknow|edgementﬁesearch at Harvard Forest is partia”y
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