
Biogeosciences, 9, 2177–2193, 2012
www.biogeosciences.net/9/2177/2012/
doi:10.5194/bg-9-2177-2012
© Author(s) 2012. CC Attribution 3.0 License.

Biogeosciences

Bacterial assemblages of the eastern Atlantic Ocean reveal both
vertical and latitudinal biogeographic signatures

C. J. Friedline1, R. B. Franklin 2, S. L. McCallister2,3, and M. C. Rivera1,2

1Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA
2Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
3Center for Environmental Studies, Virginia Commonwealth University, Richmond, VA, USA

Correspondence to:M. C. Rivera (mcrivera@vcu.edu)

Received: 6 December 2011 – Published in Biogeosciences Discuss.: 3 January 2012
Revised: 5 May 2012 – Accepted: 10 May 2012 – Published: 18 June 2012

Abstract. Microbial communities are recognized as major
drivers of the biogeochemical processes in the oceans. How-
ever, the genetic diversity and composition of those commu-
nities is poorly understood. The aim of this study is to in-
vestigate the composition of bacterial assemblages in three
different water layer habitats: surface (2–20 m), deep chloro-
phyll maximum (DCM; 28–90 m), and deep (100–4600 m) at
nine stations along the eastern Atlantic Ocean from 42.8◦ N
to 23.7◦ S. The sampling of three discrete, predefined habi-
tat types from different depths, Longhurstian provinces, and
geographical locations allowed us to investigate whether ma-
rine bacterial assemblages show spatial variation and to de-
termine if the observed spatial variation is influenced by cur-
rent environmental conditions, historical/geographical con-
tingencies, or both. The PCR amplicons of the V6 region
of the 16S rRNA from 16 microbial assemblages were py-
rosequenced, generating a total of 352 029 sequences; af-
ter quality filtering and processing, 257 260 sequences were
clustered into 2871 normalized operational taxonomic units
(OTU) using a definition of 97 % sequence identity. Com-
munity ecology statistical analyses demonstrate that the east-
ern Atlantic Ocean bacterial assemblages are vertically strati-
fied and associated with water layers characterized by unique
environmental signals (e.g., temperature, salinity, and nutri-
ents). Genetic compositions of bacterial assemblages from
the same water layer are more similar to each other than
to assemblages from different water layers. The observed
clustering of samples by water layer allows us to conclude
that contemporary environments are influencing the observed
biogeographic patterns. Moreover, the implementation of a
novel Bayesian inference approach that allows a more effi-

cient and explicit use of all the OTU abundance data shows a
distance effect suggesting the influence of historical contin-
gencies on the composition of bacterial assemblages. Surface
bacterial communities displayed a general congruency with
the ecological provinces as defined by Longhurst with mod-
est exceptions usually associated with unique hydrographic
and biogeochemical features. Collectively, our findings sug-
gest that vertical (habitat) and latitudinal (distance) biogeo-
graphic signatures are present and that both environmental
parameters and ecological provinces drive the composition
of bacterial assemblages in the eastern Atlantic Ocean.

1 Introduction

Prokaryotes are responsible for cycling the organic and inor-
ganic compounds essential for life, and are the main drivers
of global biogeochemistry. Our knowledge of the micro-
bial loop and its significance in the carbon and nutrient cy-
cles of the ocean has grown exponentially over the last 35
years. The introduction of culture-free techniques for enu-
merating bacteria (Hobbie et al., 1977), coupled with the
increased sample throughput provided by flow cytometry
(Gasol and del Giorgio, 2000), have revealed some signifi-
cant roles prokaryotes play, accounting for the majority of
total biomass and respiration in the ocean as well as the ma-
jority of primary production on earth (Fuhrman and Azam,
1982; Azam et al., 1983; Fuhrman and Campbell, 1998; del
Giorgio and Duarte, 2002). Although prokaryotes are ubiq-
uitous and abundant in marine ecosystems, relatively little is
known about the diversity and composition of the complex
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microbial communities found there. In particular, it remains
unclear what the principle drivers are that control the dis-
tribution of marine microbes, or how this diversity may in-
fluence the biogeochemical functioning of marine ecosys-
tems (Anderson et al., 2010). Likewise, our understanding of
how microbial diversity varies over time and space is lack-
ing, hampering our ability to forecast potential alterations in
microbial community structure and ecological function that
may result from global climate change.

Methodological constraints have historically limited our
ability to study microbial diversity, and any biogeochemical
implications it may have, but these restrictions have lessened
with the development of genomic technologies. In particular,
the coupling of polymerase chain reaction (PCR) amplifica-
tion and high-throughput tag sequencing has become a pop-
ular tool to survey microbial communities (Huse et al., 2008;
Giovannoni and Stingl, 2005; Massana et al., 2008). More re-
cently, next-generation sequencing technology, such as 454
pyrosequencing, has been applied, yielding amounts of data
in orders of magnitude greater than conventional sequenc-
ing approaches (Huse et al., 2008; Kirchman et al., 2010;
Agogue et al., 2011). These molecular techniques often make
use of the gene that encodes the small subunit ribosomal
RNA (16S rRNA) as a phylogenetic marker. However, there
are currently no clear rules for the depth of phylogenetic re-
lationships that define taxonomic ranks with this system; as a
result, efforts to study microbial diversity are further compli-
cated by the lack of an acceptable classification scheme for
defining diversity units (Cases and de Lorenzo, 2002). Mi-
crobiologists proceed by using operational taxonomic units
(OTUs) in which a pre-defined level of sequence identity is
necessary for organisms to be classified as distinct taxa.

During the past decade, the application of molecular tech-
niques to survey ocean microbial communities has become
quite popular, with most research efforts focused on cat-
aloging microbial diversity (Breitbart et al., 2002; Venter
et al., 2004; Rusch et al., 2007) or documenting how specific
environmental conditions influence the distribution of se-
lected taxa (Galand et al., 2009; Hewson et al., 2009; Agogue
et al., 2011). As a result, we know that prokaryotic diversity
is high in the ocean, that these communities tend to be domi-
nated by a few abundant taxa, and that the communities show
high richness in rare species (Breitbart et al., 2002; Venter
et al., 2004; Sogin et al., 2006; Huber et al., 2007; Gilbert
et al., 2009; Roesch et al., 2007). As our techniques improve,
and our inventory of microbial taxa grows, the next challenge
for ocean microbial ecologists is to place this diversity in
broader ecological contexts. Very little is known about the
distribution of bacteria in the ocean as it relates to physic-
ochemical parameters or ocean biogeochemistry. Moreover,
what little information we do have has been largely region-
specific (Hewson et al., 2006; Galand et al., 2009; Yokokawa
et al., 2010), limiting both our understanding of the factors
that structure ocean bacterial communities across biomes as
well as our ability to study biogeographic patterns.

The purpose of the research presented here was to uti-
lize high-throughput pyrosequencing technology to explore
the diversity of bacterial assemblages in the eastern At-
lantic Ocean, while simultaneously considering whether
these communities exhibited biogeographic patterns at large
spatial scales. Ecologists recognize the observed biogeo-
graphical patterns of community composition can be the re-
sult of at least three different not mutually exclusive mecha-
nisms: (1) environmentally-defined features or niche-based
community processes, (2) stochastic process like ecologi-
cal drift, dispersal and speciation, and (3) the effects of his-
torical contingencies (Ricklefs and Schluter, 1994; Nekola
and White, 1999; Hubbell, 2001; Chave, 2004). Historical
events, including dispersal limitations and ancestral environ-
mental conditions, define different biological provinces. This
biological provincialism is manifested by the observation of
distance decay in community similarity after decoupling the
distance from current environmental effects (Martiny et al.,
2006a). Samples were collected along a 7700 km meridional
transect, and the relative importance of environmental con-
ditions versus spatial separation was evaluated using both
ecological statistics and a novel application of Bayesian hy-
pothesis testing. The sampling of three discrete environments
across several geographic locations or provinces, combined
with the finer resolution provided by the Bayesian approach,
allowed us to uncover the potential influence of both contem-
porary environmental features and historical effects (provin-
cialism) on the biogeographic patterns of the bacterial com-
munities of the eastern Atlantic Ocean.

2 Materials and methods

2.1 Study area and water sample collection

Sampling was conducted in November 2008 on a merid-
ional transect from 50.2◦ N to 31.4◦ S during the cruise ANT
XXV/1 on the RV Polarsternas it traveled from Bremer-
haven (Germany) to Cape Town (South Africa). Consid-
ering Longhurst’s conceptual model, which partitioned the
ocean into biogeochemical provinces based on thermoha-
line properties, remotely-sensed data of chlorophyll concen-
trations, nutrient fields, and seasonal changes in the mixed-
layer depth (Longhurst, 1998), we collected samples from six
major provinces: North Atlantic Subtropical East (NASE),
North Atlantic Tropical Gyral (NATR), Western Tropical At-
lantic (WTRA), Eastern Tropical Atlantic (ETRA), South At-
lantic Gyral Province (SATL), and Benguela Current Coastal
(BENG). Water samples (∼50 l) were collected for bacte-
rial community analysis from nine different stations along
the transect; at selected stations, water was collected from
multiple depths yielding a total of sixteen samples for py-
rosequencing (Fig.1). Surface water samples were collected
from a Teflon “Fish” sampler fixed alongside the ship; water
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Fig. 1. Collection locations of 16 water samples analysed in this
study. Figure created with Ocean Data View (Schlitzer, 2011) with
shape file overlay fromVLIZ (2009).

from depth was obtained from a rosette sampler connected to
Conductivity/Temperature/Depth (CTD) instrumentation.

2.2 Oceanographic variables and nutrient
concentrations

A Seabird 911 Plus CTD with a WET Labs ECO-FL flu-
orometer was used to record the water temperature, salin-
ity, and chlorophylla fluorescence (Chla), associated with
each bacterial sample. In addition, samples for determina-
tion of dissolved nutrients were collected concomitantly and
processed according to standard methods for seawater anal-
ysis (see also Koch and Kattner, 2012). Available data in-
cluded dissolved organic carbon and nitrogen (DOC, DON),
nitrate (NO−

3 ), nitrite (NO−

2 ), ammonium (NH+4 ), phosphate
(PO3−

4 ), and dissolved silicate (Si) concentrations.

2.3 Preparation of bacterial community samples

Samples for molecular analysis of bacterial community com-
position were obtained by sequential filtration using 142 mm
diameter Isopore™ polycarbonate membranes (Millipore,
Billerica, MA, USA). Water was first passed through a 3 µm
pore-size filter (Millipore TSTP 14250), to remove the eu-

karyotic fraction of the community, and then through a
0.2 µm pore-size filter (Millipore GTTP 14250) to concen-
trate the prokaryotic biomass. Each filter was immediately
placed in a sterile polyethylene sample bag with 10 ml of
filter-sterilized TENS buffer (50 mM Tris-HCL (pH 8.0),
20 mM EDTA, 400 mM NaCl, and 0.75 M sucrose) and
stored at−80◦C as perRusch et al.(2007). Frozen sam-
ples were subsequently shipped in a dry shipper filled with
liquid nitrogen and then returned to−80◦C freezer until
DNA extraction could be performed (within 1 month). To-
tal DNA was extracted from the 0.2 µm filters using the Mo-
Bio UltraClean® Water DNA Isolation Kit (Cat #14800-NF,
Carlsbad, CA, USA). DNA concentrations were determined
using a Nanodrop 8000 Spectrophotometer (Thermo Sci-
entific, Wilmington, DE, USA). DNA extracts were dried
and shipped to the International Census of Marine Microbes
(ICoMM) program at Marine Biological Laboratory (MBL)
in Woods Hole, MA (USA) for 454 pyrosequencing.

2.4 PCR amplification and sequencing of the 16S rRNA
gene fragments

To analyze community diversity, bacteria-specific primers
complementary to the hypervariable region 6 (V6) of the
16S rRNA gene were used to generate PCR amplicons us-
ing a combination of five forward and four reverse primers
(Huber et al., 2007; Huse et al., 2008, 2010). Three inde-
pendent PCR reactions were performed for each sample; the
products were combined and analyzed using standard MBL
protocols on 454 GS-FLX sequencer (454 Life Sciences,
Branford CT, USA). The sequence data generated from the
present study are available via the Visualization and Analysis
of Microbial Population Structures (VAMPS) web interface
(http://vamps.mbl.edu), identified as ICMAOT Bv6.

2.5 Sequence data processing

Trimmed Fasta sequences containing neither sequencing
primer nor multiplexing barcode tag were downloaded from
the VAMPS website. The initial trimming, performed at
MBL (Huse et al., 2007), removed suspected low-quality
reads containing unexpected sequencing tags, primers, or
ambiguous bases, and any sequences that were less than 50
nucleotides in length after trimming. We further filtered the
reads which contained suspected homopolymers (n > 4) and
were longer than 75 bases, to increase the sample classifica-
tion accuracy by reducing the effect of sequencing errors and
PCR-generated chimeras. The sequence reads were clustered
into OTUs using the tools implemented in mothur (Schloss
et al., 2009).

The sequencing reads were first classified using the mothur
implementation of the Ribosomal Database Project (RDP)
classifier (Wang et al., 2007), and all reads that were not clas-
sified as Bacteria were excluded. The remaining sequence
reads were reduced to a unique set of sequences by collapsing
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to one sequence all the sets of identical sequences. The
unique sequences were aligned using mothur (Schloss, 2009)
to a V6-specific, curated, pre-aligned database derived from
the SILVA alignment. The full database (50 000 sites) is
distributed from www.mothur.org and contains 14 956 se-
quences while our database (2985 sites) contains 13 275 bac-
terial sequences, following removal of any sequence contain-
ing ambiguous bases. Briefly, BLAST (Altschul et al., 1990)
was used to determine the boundaries of the V6 region within
the full 16S rRNA SILVA alignment, and the region was ex-
tracted to generate a multiple sequence alignment containing
all the unique sequences with the gap pattern of the origi-
nal SILVA alignment. To further reduce sequencing noise,
the reads were pre-clustered such that any set of sequences
with a single nucleotide change were considered as equiva-
lent (Huse et al., 2010). As a result of the pre-clustering step,
reads that were found only once in the sample set (singletons)
were removed from the analysis. From this non-singleton
alignment, a pairwise distance matrix was created (treating
multiple gaps as one) and used to construct OTUs using
average-linkage clustering at 97 % identity, which loosely
translates as species-level separation. Because initially every
sequenced read had been assigned a taxonomic classification,
each OTU taxonomic classification is the consensus derived
from the classification of the individual reads comprising the
OTU (50 % bootstrap support over 1000 iterations, similar
to Claesson et al., 2009). The abundances of the resulting
OTUs were normalized using the smallest sample number
(n = 6687). Those OTUs that, following normalization, had
zero abundance in all samples (n = 555), were removed from
further analysis; the total number of reads left after normal-
ization was 106 613, clustered into 2871 OTUs.

2.6 Ecological statistics

Richness estimates for each community were obtained using
CatchAll version 3.0 (Bunge, 2011). The CatchAll paramet-
ric estimates (“Best Model”) are reported along with tradi-
tional non-parametric species richness estimates, ACE (Chao
and Lee, 1992) and Chao1 (Chao, 1984). The CatchAll para-
metric estimator is particularly attractive in this setting be-
cause it tends to avoid underestimation common with ACE
and Chao1 when diversity is high, and is robust to outliers
(Bunge, 2011). Rarefaction curves were also generated us-
ing mothur to assess the degree to which sampling effort was
saturated.

Sequencing results were analyzed using principal coordi-
nate analysis. PCoA was conducted using the Bray-Curtis
index of similarity to group samples based on the normal-
ized abundance data. The first two coordinates were plot-
ted as a means of visualizing the relative similarity in com-
munity composition across samples. Analysis of similarity
(ANOSIM) (Clarke, 1993) was used to test whether groups
were different using the Bray-Curtis index and 10 000 per-
mutations. Spearman correlation analysis was used to com-

pare the PCoA coordinates to OTU abundance to determine
taxonomic drivers of the PCoA separation. Similarly, a cor-
relation analysis was performed to determine the environ-
mental parameters best linked to community separation in
PCoA space. The environmental variables tested were depth,
salinity, temperature, Chla, DOC, DON, NO−

3 , NO−

2 , NH+

4 ,
PO3−

4 , and Si. A series of Mantel (Rossi, 1996) and partial
Mantel tests (Smouse et al., 1986) were used to examine
the relationship between bacterial community structure, en-
vironmental conditions, and geographic separation. Specifi-
cally, we compared the following matrices: community com-
position as Bray-Curtis similarity based on OTU abundance,
spatial separation as surface distance in km (Stott, 2011),
and environmental similarity calculated using Gower’s co-
efficient (Gower, 1971). The environmental matrix included
depth (log transformed), salinity, temperature, Chla, and dis-
solved nutrients. When necessary, similarity matrices were
transformed to dissimilarity matrices as: Dissimilarity = 1−

Similarity. Because environmental measurements were not
made for sample 8, it was excluded in any data manipulations
that included environmental properties. The significance of
the Mantel and partial Mantel test results was determined
via permutation using 10 000 iterations. All ecological statis-
tics were performed using the PAST software package ver-
sion 2.10 (Hammer and Harper, 2001).

2.7 Bayesian inference

In addition to the ecological statistics described above, we
also employed a Bayesian inference statistical framework to
examine the bacterial community dataset. The input used
for Bayesian inference, as in the classical community ecol-
ogy approach, was the highly-dimensional contingency table
containing the distribution of read abundances, in which the
columns correspond to each one of the 2871 OTUs identified
and the rows to the 16 sampling locations. In order to cor-
rect for unequal sampling in both approaches, the OTU abun-
dances were normalized to the smallest sample size as de-
scribed by mothur (Schloss et al., 2009). Experimental mea-
surements, like OTU abundance, that generate an array of
named characters for each sample studied, can be classified
as character-type data and represented as a data matrix; when
analyzed in a multivariate framework, each one of the OTUs
is essentially treated as a phenotypic character (i.e., trait) of
the community.

The classical approach to the analysis of this type of con-
tingency table for community comparisons requires the com-
putation of a measure of resemblance and the generation of a
distance matrix (e.g., Bray-Curtis dissimilarity between all
pairs of samples) from the data, followed by the applica-
tion of numerical methods such as cluster analysis and rep-
resentation as a dendrogram. This methodology is one of
the many numerical techniques and concepts developed by
Sokal and Sneath(1963, 1973) for classification based on
phenetics principles. More recently,Legendre and Legendre
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(1998) apply the same techniques and principles to ecologi-
cal groupings.

Our approach conceptually follows the general princi-
ples of numerical classification, but applies a Bayesian
hypothesis-testing framework instead of a distance-based
clustering algorithm to generate the dendrogram (i.e., tree)
best summarizing the relationships among the samples. In-
stead of reducing the contingency table to a distance matrix
prior to the generation of the dendrogram, the Bayesian ap-
proach makes an explicit and more efficient use of all OTU
abundance data by operating directly on each one of the
columns of the contingency table. In practice, Bayesian in-
ference methods directly consider all of the OTU data when
generating a tree topology because they use the product of the
likelihoods of all the OTUs and the summation over all pos-
sible tree topologies. By using standard statistical methodol-
ogy within a probabilistic model of changes, Bayesian infer-
ence requires the following assumptions: (1) the properties of
a community can be modeled as a collection of independent
and identically distributed (i.i.d.) OTU abundances, (2) the
abundance pattern for any OTU is independent of the pattern
for any other OTU, and (3) the distribution and abundance
pattern of all OTUs contain information about the relation-
ships of the sampled communities. In this analysis, the null
hypothesis is that the ocean contains a single random bac-
terial assemblage and that, in the absence of environmental
disturbing forces, all samples are assumed to have the same
community structure. The effect of the environmental dis-
turbing forces on this random bacterial assemblage will re-
sult in the differentiation into distinct bacterial assemblages
from the common, ancestral bacterial assemblage. Bayesian
inference was then used to estimate the unrooted tree topol-
ogy that best describes the relationships among the bacterial
assemblages. In our case, the relationship between 16 sam-
ples is described by one of 2.13×1014 alternative tree topol-
ogy hypotheses. The relationships of the samples illustrated
by the tree topology reflect only similarity in the composi-
tion and abundance of OTUs and no direct molecular evo-
lutionary relationships are assumed, because no molecular
sequence evolution model was employed. Bayesian tree in-
ference, as implemented in MrBayes, can reconstruct tree
topologies using four different types of data: nucleotides,
proteins, restriction enzymes, and standard morphology char-
acter data. Any type of analysis using OTU abundance data
to determine relationships between communities implicitly
or explicitly assumes that the OTU distribution data provides
information that uniquely characterize the community, and
we assume that this can be equated with phenotypic or mor-
phological character data. We have modeled the OTU abun-
dance data using the model for standard morphology data
type in MrBayes, which allows one to describe the characters
utilizing up to ten discrete character states (0–9). Character
data is defined as information about the attributes of the ob-
jects under study and those characters can be visualized as
a set of independent variables existing in a set of mutually

exclusive discrete character states. In our case, each OTU
is considered a character and its abundance represents one
of the many different character states the data can assume.
The OTU abundance values across our 16 samples ranged
from zero to thousands, similar to morphology or character
data with a large variance. Because MrBayes input can ac-
commodate up to 10 character states, the OTU abundance is
converted to a score between 0 and 9 by range-standardizing
the normalized abundances according to Eq. (1) as inThiele
(1993) andSchols et al.(2004).

AOScoded= round

[
9×

(
AOSnorm − min[AOnorm]

)
range[AOnorm]

]
. (1)

In this formula,AOScoded represents the normalized abun-
dance value of OTUO in sampleS range-standardized to
a discrete value in the range [0, 9]. Min[AOnorm] denotes
the minimum normalized OTUO abundance value in the
matrix across all 16 samples and range[AOnorm] represents
the value of the range of the normalized OTU abundances
across all 16 samples. The 10 transformed values represent
character states that are compatible with the standard model
for discrete morphology data as implemented by MrBayes 3
(Huelsenbeck and Ronquist, 2001). However, because OTUs
that are distributed only among a few states across all sam-
ples will be treated equally, we need to account for varia-
tions in character state changes of different magnitude. For
example, an OTU distributed among samples with all 0 and
1 will be treated equally if that same OTU was distributed
with those 1 changed to 9. To do this, we converted each
integer value to its four-bit binary equivalent, in effect qua-
drupling the number of matrix columns (e.g., 9 was con-
verted to 1001, and 1 to 0001). Using MrBayes, topolo-
gies were reconstructed from the range-standardized/binary-
encoded matrix using the default parameters for the stan-
dard 0–9 character states morphology model with the follow-
ing assumptions: (1) equal state frequencies, (2) across-sites
rate variation following a gamma distribution, (3) all sites
are informative and unordered, and (4) 10 million iterations
(Huelsenbeck and Ronquist, 2001). Trace plots runs from the
MrBayes runs were analyzed for mixing using Tracer 1.5
(http://tree.bio.ed.ac.uk/software/tracer) and the model fit of
gamma for across-site rate variation was evaluated using a
Bayes factors (Kass and Raftery, 1995). Finally, consider-
able testing, simulations, and data randomizations were per-
formed prior to the application of Bayesian inference to this
data set, and a formal proof and extension to the approach
will be discussed elsewhere (Friedline and Rivera, 2012).

3 Results and discussion

In this study, we report the vertical and latitudinal distri-
bution and abundance of bacteria along an eastern Atlantic
Ocean transect (Fig.1). Specifically, our goals were to de-
termine: (1) if the bacterial communities from the surface,
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Fig. 2. Rarefaction curves for the 16 samples from the eastern At-
lantic Ocean. The curves were obtained by resampling the normal-
ized NS sequence reads using therarefaction.singlefunction from
mothur, and plotted as the number of operational taxonomic units
(OTUs) versus the number of normalized sequence reads sampled.
An OTU is composed of a set of sequences with a similarity equal
to or greater than 97 %. Each curve corresponds to a different sam-
ple (1–16) with the latitude of the sampling location as a subscript
in the legend. Samples assignments to the DCM, photic, and deep
zones are shown in Fig.5.

DCM, and deep water layers were significantly different,
(2) if the composition of those communities show a pattern
of decreasing similarity with geographical distance, and (3) if
the numerous physical processes defining the different eco-
logical provinces may also influence the structure of the bac-
terial communities. In addition, because the seaward bound-
aries of Longhurst provinces were set at approximately 320–
640 km from shore, and our cruise track was 480–720 km off
shore, we anticipated an effect from the coastal waters of
the Canary Current upwelling system (Taylor et al., 2011).
The Canary Current ecosystem (12–43◦ N) borders NASE,
NATR, WTRA and ETRA, and consists of complex hydro-
graphic features that contribute to unique biogeographic sub-
regions (Aristegui et al., 2009a). The association and poten-
tial entrainment of bacterial assemblages within these dis-
tinct hydrographic features may also have an impact on com-
munity composition and diversity. Further, we used the depth
of the pycnocline, the euphotic zone, and the DCM as indica-
tors of the physical state of the water column and considered
whether communities from equivalent vertical zones were in-
fluenced by similar physical processes. Our study takes ad-
vantage of the latest sequencing technologies to understand
the phylogenetic composition and structure of those bacterial
communities, and then places the information in a biogeo-
graphic as well as a biogeochemical context.

3.1 Sequencing statistics and diversity estimates

Pyrosequencing generated 352 029 raw sequence reads
(22 002± 9959 reads/sample); summary statistics are shown
in Table1. After filtering out low-quality reads and remov-
ing sequence reads present only once (singletons), a total of
257 260 non-singleton (NS) reads remained. It has been ob-
served that sequencing and base-calling errors are potentially
responsible for singletons, which can artificially inflate diver-
sity estimates (Quince et al., 2008; Reeder and Knight, 2009;
Kunin et al., 2010). After average-linkage clustering, 3426
OTUs were identified, using an average 97 % sequence iden-
tity per OTU.

In order to correct for the broad range in sample sizes,
the OTU abundances were normalized to the smallest sample
size, resulting in a total of 2871 OTUs. Overall, we find an
average of 16 079± 7374 NS reads per sample, with a range
between 6687 and 36 569 reads (samples 11 and 9, respec-
tively). The reads have an average length of 62±3 bases and
GC content of 47 %± 5 % When all filtered reads are con-
sidered, we find that of the 628± 270 unique reads/sample,
408±163 reads/sample are found only once per sample (i.e.,
singletons). The estimates of sample richness vary across
a wide range (Table1), the highest of which come from
CatchAll (1979± 1737). Within the CatchAll richness esti-
mates, sample 16 had the lowest estimate (521 OTUs) while
sample 12 had the highest (7295 OTUs). Comparison of the
rarefaction curves (Fig.2) shows that some of the bacte-
rial communities have reached an asymptote, indicating they
were completely sampled. Even given normalization, our rar-
efaction curves indicate that there are still several commu-
nities for which more sampling may be needed in order to
adequately assess community composition. Analysis of the
rarefaction curves suggests that some of the deep-water com-
munities (e.g., 2, 8, and 12) are more diverse than the rest of
the communities, as previously shown for the bathypelagic
bacterial communities of the North Atlantic (Agogue et al.,
2011).

3.2 Bacterial community composition

Analysis of the normalized abundance of OTUs across all
communities reveals that nearly half of the reads are dis-
tributed among only the top 25 OTUs (Table2). These
25 OTUs represent less than 1 % of the total richness. This
suggests that our communities are structured around a rela-
tively small number of very abundant OTUs and, possibly,
a large number of sparsely represented OTUs. This conclu-
sion is further supported by the fact that 35 % of the to-
tal read abundance is represented by the top 10 most abun-
dant OTUs (0.3 %), 75 % by the top 86 OTUs (3 %), and
95 % by the top 589 OTUs (20 %). A total of 35 OTUs
are common to all 16 samples, representing 52 % of the to-
tal read abundance. Of these ubiquitous OTUs, many are
prominent marine organisms, including six OTUs affiliated
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Fig. 3.Relative abundance and affiliation of the 72 bacterial taxonomic families identified in this study with>50 % RDP classifier bootstrap
support. A total of 962 OTUs (34 %) were assigned taxonomy to the family level, representing 58 % of the total read abundance. The size of
the bars represents the proportion of the particular family in a sample.Incertae sedisis denoted as “is”. Each color corresponds to a different
sample (1–16) with the latitude of the sampling location as a subscript in the legend.

with the Alphaproteobacteria SAR11 clade (22 % of the to-
tal read abundance), four from the Cyanobacteria Family II
(8 %), and one identified asAlteromonas(3 %). Previous
global ocean surveys have identifiedPelagibacter(SAR11)
andProchlorococcus(Family II) as the dominant clades in
surface waters (Giovannoni and Stingl, 2005; Giovannoni
et al., 2005; Rusch et al., 2007; Gilbert et al., 2012).

Analysis of the distribution range of the 25 most abundant
OTUs immediately suggests a significant difference in OTU
abundance across the three different habitats (Table2). Dif-
ferences in the abundance of OTUs associated with the same
taxonomic level across the three different habitats appear to
support the ecotype concept (Cohan and Perry, 2007; Cohan,

2002), which predicts the existence of multiple OTUs from
the same taxonomic groups adapted to local ecological con-
ditions. For example OTUs 31 and 24, both taxonomically
affiliated to Pelagibacter, appear to show different habitat
preferences, as shown in the top two rows of Table2. These
differences appear even more dramatic when we consider
the relative, per-sample contribution of the 72 bacterial tax-
onomic families identified, thus revealing taxa-specific dis-
tributions across sampling locations (Fig.3). Although tax-
onomic families like the Alphaproteobacteria SAR11 and
Cyanobacteria Family II clades are found across all sam-
ples, others like some of the Gammaproteobacteria families,
were identified only in the samples from deep waters. It is

www.biogeosciences.net/9/2177/2012/ Biogeosciences, 9, 2177–2193, 2012



2184 C. J. Friedline et al.: Bacterial assemblages of the eastern Atlantic Ocean

Table 1. Sequencing statistics and OTU richness estimates for 16
bacterial communities along the eastern Atlantic Ocean. The statis-
tical estimates of the total OTU richness of each sampled commu-
nity were determined from the observed OTUs using the CatchAll
parametric estimator and the non-parametric estimators Chao1 and
ACE; all implemented in CatchAll V3.0. NS = Non-singletons, the
remaining reads after the removal of reads present only once (sin-
gletons). SD = standard deviation. SE = standard error.

Mean/sample SD Range

Total NS reads 16 079 7374 6687–36 569
NS read length 62 3 51–74
NS GC % 47 5 18–67
Total unique reads 628 270 225–1271
Total singleton reads 408 163 182–864
Total OTUs at 3 % 721 193 446–1157

Mean/sample (SD) SE (SD) Range

CatchAll 1979 (1737) 508 (738) 521–7295
Chao1 994 (503) 91 (62) 432–2619
ACE 1400 (933) 155 (117) 466–4507

Table 2.Taxonomic affiliation of the 25 most abundant operational
taxonomic units (OTUs) across all 16 Atlantic Ocean bacterial com-
munities sampled. The table shows the total normalized OTU abun-
dance (n) as well as the mean and standard deviation according to
habitat. The number of samples in each zone are 4, 7, and 5 for
surface, DCM, and deep, respectively. The numerical identifier of
each OTU is shown in parentheses in the first column to differenti-
ate OTUs with identical taxonomic labels.

Taxa (OTU) n Surface DCM Deep

Pelagibacter(31) 9615 907 (133) 574 (130) 393 (213)
Pelagibacter(24) 9188 201 (11) 676 (170) 730 (381)
GpIIa (282) 4606 632 (423) 187 (283) 153 (295)
Alteromonas(2602) 2987 58 (32) 55 (69) 474 (415)
Proteobacteria (3151) 2505 196 (49) 205 (117) 58 (83)
GpIIa (2949) 2256 2 (2) 281 (274) 56 (48)
Proteobacteria (928) 1621 0 (1) 81 (159) 210 (119)
Bacteria (273) 1460 0 (1) 193 (208) 21 (26)
Pelagibacter(63) 1439 5 (2) 169 (65) 48 (52)
Gammaproteobacteria (367) 1417 54 (17) 145 (103) 36 (16)
Marinobacter(467) 1368 1 (1) 69 (139) 177 (175)
Proteobacteria (3026) 1357 138 (92) 87 (72) 39 (73)
Pelagibacter(127) 1335 263 (47) 26 (19) 20 (38)
Pelagibacter(45) 1297 66 (22) 130 (82) 25 (23)
Chlorophyta (1015) 1239 0 (0) 173 (380) 6 (10)
Rhodobacteraceae (110) 1187 82 (57) 105 (102) 25 (28)
GpIIa (286) 1164 37 (11) 125 (259) 28 (25)
Flavobacteria (3178) 1118 78 (33) 67 (24) 67 (46)
Actinobacteria (496) 1043 0 (0) 22 (21) 178 (122)
Alphaproteobacteria (41) 1041 70 (17) 90 (44) 26 (24)
Alcanivorax(206) 978 8 (12) 27 (44) 152 (134)
Pseudoalteromonas(1556) 976 14 (4) 37 (46) 133 (101)
Thalassobius(113) 974 54 (12) 97 (132) 17 (23)
Bacteria (179) 971 155 (88) 26 (14) 34 (60)
Alphaproteobacteria (168) 964 116 (27) 54 (16) 24 (36)

particularly interesting that there are several taxonomic fam-
ilies that are found exclusively in sample 2 (NASE province
and Eurafrican Mediterranean water mass). It is possible that
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Fig. 4. Venn diagrams comparing the OTU richness identified in
the Longhurst provinces sampled in this study. Panel A compares
OTU richness identified in all the samples (All,n = 2871), samples
from the photic zone (Photic,n = 1845), and samples from deep
waters (Deep,n = 1913). Panel B compares OTU richness iden-
tified in all the deep chlorophyll maximum zone samples (DCM,
n = 1416). Also panel B compares the OTU richness identified
in the DCM zone for two of the most abundant taxonomic fam-
ilies, SAR11/Pelagibacter(n = 107) and Family II/Cyanobacteria
(n = 25). The studied provinces are grouped and labelled in the di-
agram for all samples (ALL) as follows: North Atlantic Subtropical
East (NASE, 3 samples), North Atlantic Tropical Gyral (NATR, 2
samples), Eastern and Western Tropical Atlantic (ETRA/WTRA;
ETRA, 2 samples; WTRA, 8 samples), and South Atlantic Gyral
and Benguela Current Coastal (BENG/SATL; BENG, 3 samples;
SATL, 1 sample). The photic diagram compares two samples each
for NASE, NATR, and BENG/SATL provinces and five samples for
the ETRA/WTRA provinces. The deep diagram compares one sam-
ple each for NASE and BENG/SATL provinces and three samples
for ETRA/WTRA provinces. The DCM, SAR11 and Family II dia-
grams compare one sample for the NATR province and two samples
for each one of the other provinces. Samples from the DCM, photic,
and deep zones were defined as in Fig.5.

some of those unique taxa are endemic to the Mediterranean
communities and were transported into the Atlantic by the
Mediterranean outflow waters.

These observations suggest a differential composition of
the bacterial communities, dependent not only on depth
(habitat) but also on geographical location. To further illus-
trate these observations, we used Venn diagrams to com-
pare the distribution of OTUs across the three water layers
(surface, DCM, and deep) and the four ecological provinces
(Fig. 4). Of the 2871 OTUs identified, 1942 are found in
the WTRA/ETRA provinces, 1355 in the NASE province,
753 in the NATR province, and 733 in the BENG/SATL
provinces. Samples from the photic zone (surface and DCM)
have a total richness of 1845 OTUs, while the deep-water
samples have a total richness of 1913. Consistently, the high-
est richness is found in WTRA and ETRA provinces, which
agrees with previous research that has demonstrated that ma-
rine prokaryotes exhibit a latitudinal gradient of increasing
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diversity toward the equator (Fuhrman et al., 2008). Overall,
the Venn diagrams demonstrate that there are province- and
depth-specific OTUs, revealing both habitat and geographi-
cal (spatial) signal in the genetic composition of the commu-
nities.

3.2.1 Surface communities

The surface layer of the ocean has high exposure to solar ra-
diation, and is very low in inorganic nutrients such as phos-
phorous and nitrogen; some researchers have even classified
this environment as extreme because it is so oligotrophic
(Treusch et al., 2009). Further, surface waters influenced
by particular wind bands may experience significant wind-
induced turbulence and atmospheric deposition of aerosols,
pollutants and Aeolian dust (Pohl et al., 2011; Xie et al.,
2011). Analysis of the surface samples (i.e., those with a
depth of 20 m or less) shows that over 75 % of the abundance
is dominated by only five taxonomic groups: the Alphapro-
teobacteria clade SAR 11 (26 %± 3 %), the Cyanobac-
teria clade GpIIa (10 %± 5 %), the Gammaproteobacteria
(10 %± 2 %), other Proteobacteria (14 %± 1 %), the Bac-
teroidetes (9 %± 2 %) and the Verrucomicrobia (3 %± 5 %).
Similar patterns of dominant, surface-water taxa and com-
munity composition shifts related to diatom blooms were
recently observed during a six-year time series in the En-
glish Channel (Gilbert et al., 2012). In sample 5, from a
bloom encountered along the transect, the Cyanobacteria
comprised only 2 % of the abundance, while the Verrucomi-
crobia, the Gammaproteobacteria, the Bacteroidetes and the
Actinobacteria are over-represented and comprise 37 % of
the total abundance. The altered community composition of
this diatom-dominated bloom agrees with previous observa-
tions (Carlson et al., 2002; West et al., 2008; Gilbert et al.,
2012) suggesting that the phytoplankton bloom may play an
important role in determining the structure and composition
of the bacterial community.

3.2.2 DCM communities

The DCM is the region in the ocean water column with the
highest concentration of Chla, which forms when the simul-
taneous availability of high concentrations of inorganic nu-
trients and appropriate intensity and wavelength of light gen-
erate the optimal conditions for phytoplankton development.
Seven communities from the DCM layer were analyzed in
this study, representing all six ecological provinces along the
transect. The depth of the DCM layer varied from 28 m in
the BENG province to 90 m in the NATR province. Most
of the sequence diversity present in the DCM communities
is dominated by the following groups: Alphaproteobacteria
clade SAR 11 (25 %± 4 %), the Cyanobacteria clade GpIIa
(10 %± 4 %), the Gammaproteobacteria (13 %± 5 %) and
the Bacteroidetes (7 %± 2 %).

Table 3. Spearman correlations between environmental variables
and principal coordinate analysis (PCoA) ordination. Table shows
number of available data points (n), Spearman correlations (rs), and
significance value (p). Only significant relationships are shown.

Coordinate Env. variable n rs p

1
PO3−

4 15 0.82 0.000
NO−

3 15 0.81 0.000
Depth(log) 16 0.73 0.001
Si 15 0.59 0.021
DOC 14 −0.85 0.000
Temperature 16 −0.82 0.000
DON 14 −0.67 0.009

2
NO−

2 15 −0.76 0.001
Chl-a 15 −0.68 0.005
Salinity 16 −0.55 0.027

3.2.3 Deep communities

Recent studies have demonstrated a rich diversity within the
bacterial communities residing in the deep waters of the
ocean, despite the high pressure, low temperatures, and an
absence of light that might otherwise be expected to restrict
bacterial distributions (Nagata et al., 2000; Hewson et al.,
2006; Sogin et al., 2006; Reinthaler et al., 2010; Agogue
et al., 2011). Five of the communities we studied were ob-
tained from this water layer (i.e., below the pycnocline, rang-
ing in depth from 100–4600 m). Two of the samples (8 and
11) were obtained from the South Atlantic Central Water
(SACW) within the WTRA province at depths of 100 and
200 m, respectively. The three other samples, from depths
greater than 1000 m (Sample 2: 1100 m, 12: 1300 m, and
14: 4604 m), were obtained from distinct geographical lo-
cations (NASE, WTRA, and BENG provinces, respectively)
and different water masses with variable physical parame-
ters (mainly temperature and salinity). The water masses in-
cluded are Eurafrican Mediterranean water (EMW), Antarc-
tic Intermediate Water (AAIW), and Antarctic Bottom Wa-
ter (AABW). The deep-zone communities are dominated
by the Proteobacteria (73 % abundance), with the SAR11
clade representing 28 % of the total abundance. The phyla
Cyanobacteria, Bacteroidetes, and Actinobacteria represent
7 %, 4 %, and 4 % of the deep zone communities’ abun-
dance, respectively. Gammaproteobacteria are enriched in
the deep-zone communities, representing 24 % of the abun-
dance. Among the Gammaproteobacteria, the Alteromon-
adales and the Oceanospirillales families represent 11 % and
3 % of the abundance, respectively. In comparison with the
communities from the surface and the DCM zone, the deep
zone communities showed a higher relative abundance of
the Gammaproteobacteria, Actinobacteria, Firmicutes, and
Bacteroidetes. Relative enrichment, in deep water samples,

www.biogeosciences.net/9/2177/2012/ Biogeosciences, 9, 2177–2193, 2012



2186 C. J. Friedline et al.: Bacterial assemblages of the eastern Atlantic Ocean

Table 4. Top 10 correlated (Spearman,rs) OTUs with principal
coordinate analysis (PCoA) ordination. Counts (n) are normalized
read abundance and an OTU numerical identifier is shown in paren-
theses to differentiate OTUs with identical taxonomic labels.

Coordinate Taxa (OTU) n rs (PCoA)

1
Francisella(509) 533 0.90
Actinobacteria (496) 1043 0.86
Proteobacteria (934) 55 0.83
Vibrionaceae (1166) 93 0.81
Alphaproteobacteria (1301) 138 0.81
Pelagibacter(24) 9188 0.79
Bacteria (1293) 56 0.78
Proteobacteria (1204) 301 0.77
Actinobacteria (493) 474 0.76
Proteobacteria (928) 1621 0.75

2
Porphyrobacter(1678) 33 0.79
Bacteria (2272) 76 0.75
Actinobacteria (2111) 29 0.74
Gammaproteobacteria (2241) 86 0.74
Marichromatium(2244) 25 0.74
Bacteria (2269) 18 0.73
Proteobacteria (2532) 6 0.73
Pelagibacter(2607) 6 0.73
Colwellia (2192) 30 0.73
Actinomycetales (2215) 6 0.73

3
GpIIa (287) 247 0.87
GpIIa (286) 1164 0.74
Bacteria (464) 54 0.74
Rhodobacteraceae (97) 5 0.72
Proteobacteria (452) 23 0.71
Bacteria (390) 10 0.70
Maricaulis (380) 21 0.70
Shimia(93) 34 0.68
Rhodobacteraceae (95) 17 0.68
Proteobacteria (141) 3 0.68

for the same phyla has been observed by others (Mart́ın-
Cuadrado et al., 2007; Sogin et al., 2006; Agogue et al.,
2011).

3.3 Ecological drivers

3.3.1 Spatial and environmental controls on bacteria
assemblages

In addition to increasing our understanding of the genetic
diversity and distribution of bacteria in the Atlantic Ocean,
the pyrosequencing data allowed us to explore the relation-
ship between bacterial assemblage structure and several envi-
ronmental factors. This was accomplished using multivariate
statistical tools common in community ecology to examine
overall patterns in community composition in both biogeo-
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Fig. 5. Principal coordinate analysis (PCoA) of the normalized
OTU abundances based on Bray-Curtis dissimilarity. Each individ-
ual sample is identified by its respective biogeographic province
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pycnocline, and the dashed line separates photic zone samples into
surface and DCM samples.

graphic and biogeochemical contexts. First, a principal coor-
dinate analysis (PCoA) was used to reduce the OTU abun-
dance data into a small number of derived variables (coor-
dinates) which, when plotted in a graphical space, arranged
our samples along a gradient in overall community similarity.
Using this approach, we see a clear clustering of the bacte-
rial communities according to their location in the water col-
umn (Fig.5). The samples contained in the top triangle of the
graph, above the solid line (Deep), are from the aphotic zone,
with depths ranging from 100 to 4600 m. These samples were
all from beneath the pycnocline, whereas the samples below
the solid line were all above the pycnocline and within the
photic zone. The photic-zone samples were further differen-
tiated into two groups, separated by the dashed line: Surface
samples (2–20 m) and DCM samples (28–90 m). ANOSIM
confirmed these three groups were significantly different
(r = 0.65,p = 0.0001; all pairwise comparisonsp < 0.02),
and that classification by Longhurst province was not (r =

0.15,p = 0.14). The lack of a significant relationship be-
tween all samples and Longhurst province is not necessar-
ily unexpected as province designations are primarily re-
stricted to the epipelagic zone and do not consider deeper
water masses (Longhurst et al., 1995). The observation that
samples from similar habitats cluster together on the PCoA
allows one to conclude that the current environmental factors
influence the biogeographic patterns exhibited by the eastern
Atlantic Ocean bacterial assemblages.
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Correlation analysis was used to identify the OTUs con-
tributing to the separation of samples via PCoA. Only four
of the 25 most abundant OTUs (Table4) identified in Ta-
ble 2) are important contributors to separation of samples
in the PCoA; those four OTUs are affiliated to taxonomic
cladesPelagibacter, Proteobacteria, GpIIa, andActinobacter
(OTUs 24, 928, 286, and 496, respectively). Previous evi-
dence also find the same clades showing vertical stratification
(Giovannoni and Stingl, 2005; DeLong et al., 2006; Martiny
et al., 2006a; Aristegui et al., 2009b; Zinger et al., 2011).

As one would expect, we see high correlations with some
of the most abundant OTUs, but not exclusively. Of the less
abundant OTUs contributing to the separation of the samples
in the PCoA, some belong to taxonomic families showing
differential patterns of abundance across the samples (Fig.3),
including members of the Erythrobacteraceae, Hyphomon-
adaceae, Rhodobacteraceae, Chromatiaceae, Colwelliaceae,
Franscisellaceae and Vibrionaceae families (OTUs 1678,
380, 93, 2244, 2192, 509, and 1166, respectively). The first
axis of the PCoA distinguishes the surface samples from
the deeper ones, with DCM samples being intermediate be-
tween the two. The second axis demonstrates a separation of
the DCM samples, which appears to be driven primarily by
many non-abundant OTUs. Overall, it is clear that the driv-
ing force behind separation in ordination space is not neces-
sarily the most abundant community member, but rather the
less abundant OTUs presumably adapted to environmental
and biogeochemical conditions associated with geography,
depth, or both. We tested this hypothesis using the Multivari-
ate Cutoff Level Analysis (MultiColA) developed byGobet
et al.(2010) and found that even after removing 80 % of the
most abundant OTUs, a non-metric multidimensional scal-
ing (NMDS) ordination of the truncated data set resulted in a
Procrustes correlation of approximately 0.8 (data not shown).
However, because the Bray-Curtis distance metric used in
our ordination and embedded in MultiCoLA can be sensi-
tive to the influence of highly abundant community members,
we are cautious to discount the influence of less abundant
OTUs. In fact, this highlights an important distinction be-
tween traditional distance-based methods of ordination and
the Bayesian analysis presented here: we are able to recover
the major depth gradient using distance-based ordination, but
the tail of the distribution is what allows us to hone in the
biogeographic signal that is presumably lost when the OTU
abundances are reduced to a simple distance.

Given the broad geographic range of these samples, the
distinct bacterial communities found in each depth category
are likely not due to location in the water column per se, but a
response of the community to environmental factors that co-
vary with depth and define distinct habitats. For example, the
deep waters have colder temperatures, lower concentrations
of DOC, and higher amounts of nitrate; each of these pa-
rameters has been shown to influence the composition of the
ocean microbial community (Schattenhofer et al., 2009; Wi-
etz et al., 2010; Agogue et al., 2011). Similarly, phytoplank-

ton abundance and community structure can be an impor-
tant factor in determining bacterial community composition
(Kerkhof et al., 1999; Pinhassi et al., 2003, 2004), and Chla
values from our samples varied dramatically with depth; con-
centrations are below detection in the deeper samples and
significantly higher in the DCM. In the surface samples,
Chl a concentration was low (0.14–0.29 mgl−1) with the
exception of sample 5 (2.8 mgl−1). The anomalously high
Chl a value for sample 5 is most likely attributable to a phy-
toplankton bloom stimulated by Aeolian dust deposit deliv-
ered from northeast trades winds blowing across the Saharan
desert (Pohl et al., 2011; Taylor et al., 2011). It is notable that
pigment analyses suggest that diatoms dominate blooms in
these surface waters whereas the phytoplankton community
at depth consists of a different assemblage and appears com-
pletely disconnected from the surface bloom (Taylor et al.,
2011).

There has been some limited research prior to our own
demonstrating unique microbial assemblages associated with
depth. For example,Treusch et al.(2009) identified distinct
bacterial communities found in the low nutrient surface wa-
ters, the DCM, and the upper pelagic zone from vertical pro-
files at the Bermuda Atlantic Times series (BATS). Their
findings echo previous work noting disparate bacterial as-
semblages in the euphotic zone compared to the mesopelagic
(Giovannoni et al., 1996; Gordon and Giovannoni, 1996;
Fuhrman and Davis, 1997; Wright et al., 1997). A novel out-
come from the work at BATS was the resolution of a dis-
tinct microbial community in the surface, DCM, and deep
layers, which our data also illustrate (Fig.5). These com-
munity shifts may partially be a response to changes in the
physical state of the water column thereby inducing selec-
tive forces based on light availability, destructive potential of
UV radiation, pressure, and temperature. Further, community
differences may be a response to changes in resource avail-
ability that develop as a consequence of these physical con-
ditions. For example, we know that the distribution of het-
erotrophic bacteria may vary with depth due to (1) changes
in the amount of DOC (Eiler et al., 2003), (2) variations in the
molecular composition of DOC derived from different phyto-
plankton communities (Van Hannen et al., 1999), and (3) al-
terations in the diagenetic state of DOC reflected in its size,
molecular composition, and age (Covert and Moran, 2001).
It is worth noting that our observed differences in micro-
bial community composition with depth also correspond with
molecular changes in DOC composition and its associated
age, as observed byFlerus et al.(2012). Additionally, micro-
bial community diversity in the bathypelagic ocean has been
assumed to be low given such stable physical conditions.
However, our samples show higher diversity with depth, par-
tially dispelling this notion. One suggested mechanism for
enhanced diversity at depth is that the microorganisms re-
spond to episodic delivery of resources, such as particulate
organic matter from surface waters, which leads to higher
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community richness (Baltar et al., 2009; Bochdansky et al.,
2010; Agogue et al., 2011).

To explicitly examine the biogeochemical conditions in-
fluencing the separation of the bacterial communities, we
compared the environmental variables with each coordinate
from the PCoA (Table3). In addition to depth, the first co-
ordinate from the PCoA was significantly correlated with
temperature and the concentration of several dissolved or-
ganic and inorganic nutrients. In contrast, separation of the
community on the second coordinate primarily relates to dif-
ferences in the concentration of Chla and salinity. These
findings are consistent with the research summarized above,
which indicates that the community changes we observed
are the result of a complex coupling of multiple environ-
mental parameters and biotic variables that may co-vary
with location in the water column. In addition, we found
evidence that the distribution of OTUs in our dataset re-
flected distance decay in community similarity. Significant
results were obtained when a Mantel test was applied to
compare community similarity to geographic distance (km
separation calculated from sample latitude and longitude,
rM = 0.25,p = 0.04). When a partial Mantel test was con-
ducted to remove the influence of depth and local environ-
mental conditions, this spatial relationship becomes even
stronger (rM = 0.35,p = 0.01). Although heterogeneous en-
vironmental conditions and geographic separation have a
strong influence on the biogeographic distribution of species,
only recently have we begun to understand how these con-
ditions may define distinct microbial communities in ma-
rine habitats (Giovannoni and Stingl, 2005; Martiny et al.,
2006b; Pommier et al., 2006; DeLong, 2009; Fuhrman,
2009). For example, ocean water masses are frequently asso-
ciated with unique microbial communities (Yokokawa et al.,
2010; Varela et al., 2007; Galand et al., 2010; Hewson et al.,
2009; Agogue et al., 2011). However, it has been much
more challenging to assess differences in microbial commu-
nities across adjacent oceanographic biomes and, in partic-
ular, across those with complex physical hydrographic fea-
tures. Prior surveys have focused on the center regions of
ecologically discrete provinces (Pommier et al., 2006; Mar-
tiny et al., 2009; Schattenhofer et al., 2009; Wietz et al.,
2010), and there is little work, such as ours, that considers
the distribution pattern associated with the fluid boundaries
between provinces (Ducklow, 2003) or in transition zones.

3.3.2 Bayesian inference of bacterial assemblage rela-
tionships

We find a clear separation of communities based on depth
which reveals that samples from the same water layer are
more similar to each other than they are to geographically-
proximal samples obtained from different water layers. Com-
munities separated by thousands of kilometers (e.g., sam-
ples 2 and 14; Fig.5) in the deep ocean are more similar
in composition than communities separated by just a few
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is shown by color and depth is indicated by circles of increasing
darkness (2–4600 m). Only branch posterior probabilities<1.0 are
shown on the tree. The latitude of the sampling location is indicated
at the tip of the branches of the “All Samples” topology.

meters in depth but residing in different water layers (e.g.,
samples 9 and 10; Fig.5). These findings support a grow-
ing understanding that the major discontinuities in the ocean
are related to the physicochemical properties that form the
different water masses. These previous results were obtained
using PCoA and Mantel tests, which are both based on an ini-
tial calculation of a similarity (or distance) matrix that fun-
damentally reduces a dataset into a single numerical value
relating each pair of samples. In our study, the original OTU
data exist as a matrix of 16 samples with 2871 values per
sample. The first step for both the PCoA and the Mantel test
is to reduce this information to a mere 136 values (a single
number for each pair of samples). Though valuable in their
power to distill large and complex datasets, these approaches
simply cannot maintain the full information potential of the
original data, and ecologically valuable information may be
lost. The Spearman correlation analysis of the OTUs with
the PCoA ordination (Table4) revealed that both abundant

Biogeosciences, 9, 2177–2193, 2012 www.biogeosciences.net/9/2177/2012/



C. J. Friedline et al.: Bacterial assemblages of the eastern Atlantic Ocean 2189

and less abundant OTUs were associated with the ordination-
space separation of the bacterial communities; this suggested
to us that using the full information content of the data ma-
trix, instead of just the pairwise distance between the sam-
ples, might provide enhanced discriminating power and al-
low us to explore ecologically-relevant patterns nested within
our depth-defined habitats. With this goal in mind, we de-
signed an analysis strategy not previously used to our knowl-
edge in this type of study. By applying Bayesian inference of
tree topology to the full matrix of OTU abundance, we were
able to identify the optimal tree topology that best explains
the relationships based on overall patterns of OTU abundance
(Fig. 6). Although Bayesian inference is more computation-
ally expensive than distance-based clustering algorithms, it
uses the information contained at each column of the data
matrix to test not only if a tree structure is the best representa-
tion of the relationships of the samples under study but also to
determine which tree topology is best supported by the data.
The materials and methods section presents a more detail ex-
planation of the justifications and assumptions used to model
OTU abundance and bacterial assemblages relationships us-
ing a Bayesian inference approach; a formal proof and ex-
tensions will be discussed elsewhere (Friedline and Rivera,
2012).

The inferred tree topology resolves four interesting clades
or groups of samples, labelled by their common nodes
(Fig. 6, A–D). The three samples from the Southern Hemi-
sphere (6, 14, and 16) form a well-supported clade (Fig.6,
node D). This Southern Hemisphere clade includes DCM-
zone samples from the BENG and the SATL ecological
provinces separated by a surface distance of 868 km (6 and
16) and by a depth of over 4600 m (14 and 16). The sam-
ples within the Northern Hemisphere are arranged into three
major clades (Fig.6, nodes A, B, and C); showing a more
complex pattern of relationships that seems to be determined
by both common habitat and geographic separation. Sam-
ples from the Northern Hemisphere DCM-zone form a well-
defined group (Fig.6, node A), to the exclusion of sam-
ples from the same geographical region but different depths
profiles. Clade B is a well-supported group including three
aphotic zone samples (2, 8, and 11). This is an interesting
group as it includes samples separated by∼3000 km and
from two different provinces (NASE and WTRA), but with
the unifying characteristic of having been collected from
within the central water mass. Sample 2 was collected at a
depth of 1100 m and a temperature of 10.77◦C from within
the NACW with EMW influence west of the Iberian Penin-
sula; samples 8 and 11 were collected at depths of 100 and
200 m, respectively, from within the SACW mass. This clus-
ter shows that sample 2 has a community composition more
similar to samples 8 and 11 with temperatures of 15.3 and
12.8◦C, respectively, than to samples from similar depths,
like sample 12 (1300 m, 4.73◦C) but at a colder temperature.
Martin-Cuadrado and collaborators (2007) observed simi-
lar results when analyzing EMW bathypelagic samples. The

deep Mediterranean communities were similar to deep com-
munities from the Pacific, but they were more closely related
to Pacific mesopelagic communities than to other bathy-
pelagic communities, suggesting temperature as the major
driving factor.

Finally, clade C is composed of five samples from two dif-
ferent provinces, NATR and WTRA, all collected within a
maximum surface distance of 670 km from each other and at
depths ranging for 2–1300 m. In this cluster, samples from
the same depth (2 m) but different provinces (7 and 5) have
less similar community composition than samples from dif-
ferent depths but within the same province (7, 10, 12, and
13). This analysis may suggest the province signal is not re-
stricted to the surface communities, but can be conveyed to
the communities of the deep ocean, particularly in the case of
samples 12 and 14. Analysis of a larger number of samples
is necessary to further explore this possibility, although other
studies from the same cruise observed similar trend (Taylor
et al., 2011).

To further investigate the biogeography effect without
the confounding signal from the deep-water communities,
the same analysis was performed using only the samples
from the photic zone (Fig.6, bottom). This tree topology
clearly shows the photic zone communities separated into
two groups based on the water layer: DCM and surface.
Within those two habitats, the communities show a decay
in similarity with increasing geographic distance following a
north–south gradient; this pattern is better observed among
the communities from the DCM zone where a larger and
more diverse set of samples was obtained. The dendrogram
relating the photic zone samples allows one to clearly assess
the contribution of current environmental factors and histor-
ical events; suggesting that at the spatial scales of this study
the similarity of the bacterial assemblages is determined by
multiple habitats and multiple biotic provinces.

Collectively, our results suggests that eastern Atlantic
Ocean bacterial assemblages are vertically stratified by sim-
ilar water layers (habitat). Within the same water layer, the
separation of the communities appears to show a significant
geographical distance effect, and indication of provincialism
(Martiny et al., 2006a). In general, the Bayesian inference
approach provides the finer resolution power needed to infer
the influence of current environmental features and historical
contingencies on the bacterial assemblages.

4 Conclusions

Our study provides a comprehensive picture of the com-
position of bacterial assemblages along the eastern At-
lantic Ocean using high-throughput pyrosequencing of PCR-
amplified 16s rRNA. The application of community ecol-
ogy statistics to OTU data leads us to conclude that bacte-
rial assemblages are not spatially random, showing a bio-
geographic separation based on their position in the water
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column (surface, DCM, and deep). A novel Bayesian infer-
ence approach further extracted information from the com-
munity composition and suggested both contemporary habi-
tat and historical contingencies, as demonstrated by the
evidence of decreasing community composition similarity
with geographical distance (provincialism) influence bacte-
rial biogeography. The observed stratification patterns are
driven not only by the most abundant OTUs, but also by less
abundant OTUs, suggesting that rare taxa contribute to the
unique character of the community and are important bio-
geographic markers. In general, the distribution patterns of
the bacterial assemblages were congruent with the Longhurst
ecological provinces. However, a more extensive sampling
will be required in order to fully assess the impact of the
Longhurst ecological provinces on the distribution and di-
versity of bacterial communities. Extensive studies at differ-
ent spatial scales and employing novel analytical methodol-
ogy that takes full advantage of the wealth of information
provided by high-throughput sequencing technology will be
required to fully understand if the spatial scaling rules and
biogeographic patterns observed in plants and animals also
apply to bacterial assemblages.
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