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Abstract. We present a method to calibrate and validate ob-
servational models that interrelate remotely sensed energy
fluxes to geophysical variables of land and water surfaces.
Coincident sets of remote sensing observation of visible and
microwave radiations and geophysical data are assembled
and subdivided into calibration (Cal) and validation (Val)
data sets. Each Cal/Val pair is used to derive the coefficients
(from the Cal set) and the accuracy (from the Val set) of the
observation model. Combining the results from all Cal/Val
pairs provides probability distributions of the model coeffi-
cients and model errors. The method is generic and demon-
strated using comprehensive matchup sets from two very dif-
ferent disciplines: soil moisture and water quality. The re-
sults demonstrate that the method provides robust model co-
efficients and quantitative measure of the model uncertainty.
This approach can be adopted for the calibration/validation
of satellite products of land and water surfaces, and the re-
sulting uncertainty can be used as input to data assimilation
schemes.

1 Introduction

Observation models are widely used for estimating geophys-
ical variables of land and water surfaces from remote sens-
ing data. The simplest form is the empirical linear model,
whereby coefficients are derived from regressing measured
geophysical variables with observed radiation. In most cases,
these empirical models have some physical meaning and are
often used because of their simplicity. Examples of land re-
mote sensing applications are available from active/passive
microwave remote sensing of soil moisture (e.g.Njoku et al.,
2002). Similarly, water quality applications make use of
the Lambert-Beer law to model the spectral absorption of
light by suspended and dissolved materials as a linear func-
tion of their concentrations (D’Sa and Miller, 2005; Robin-
son, 2004; Salama et al., 2004). Currently, such strate-
gies are proposed for NASA’s Soil Moisture Active Pas-
sive (SMAP) mission combined radar/radiometer soil mois-
ture product (Entekhabi et al., 2010), the Netherlands’ au-
tomated monitoring network (IN PLACE: Integrated Net-
work for Production and Loss Assessment in the Coastal
Environment), and the NASA Moderate Resolution Imag-
ing Spectroradiometer (MODIS) mission ocean colour prod-
ucts (McClain et al., 2004). This type of model is developed
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from comprehensive sets of concurrent remote sensing ob-
servations and field measurements, hereafter referred to as
matchups. Ideally, the validity of any model is tested against
an independent data set. Therefore, the available matchups
are often subdivided into independent sets used for deriva-
tion of the model coefficients (calibration) and for accuracy
assessment (validation). Most studies subdivide matchups
into so-called calibration/validation (Cal/Val) sets based on
a statistical or regional resemblance (Devlin et al., 2008),
but without a clear directive on its effect for model accu-
racy. This is most likely the case because there has been un-
til now no objective approach for subdividing Cal/Val sets.
Many combinations of matchups can be used, specifically
when using a large number of points. Each Cal/Val pair has
the same probability of occurrence, but provides different re-
sults. As such, the selection procedure not only impacts the
model’s accuracy, but also the accuracy assessment. On the
other hand, the selection of Cal/Val pairs can also be thought
of as a stochastic sampling from a known probability distri-
bution (e.g.Wang et al., 2005; Salama and Stein, 2009). Such
stochastic treatment of matchups within the Cal/Val context
has not yet been investigated in the field of Earth observa-
tion, but has the advantage of providing a quantitative uncer-
tainty measure for both the model coefficients and derived
geophysical variables.

In this paper we follow a stochastic approach for selecting
Cal/Val sets and demonstrate its use for quantifying uncer-
tainty. The proposed approach combines the bootstrapping
method ofEfron and Tibshirani(1993) with the Jackknife
technique (which leaves out one, or more, observation) and
adapts the sample size at each iteration. Bootstrapping and
Jackknife methods are usually used to provide the standard
error of the derived “plug in” estimates (Efron and Tibshi-
rani, 1993) and have been employed for validating observa-
tion models (e.g.Petus et al., 2010; Melin, 2010; Salama and
Su, 2010). However, the combination of bootstrapping with-
out replacement with Jackknife sampling and changing the
sample size at each iteration is novel and provides not only
the accuracy of regressed estimates, but also the underlying
probability distribution of regressed estimates and their er-
rors.

The developed method samples from a complete matchup
set to populate many sets of Cal/Val pairs. Each pair is
used to derive the model coefficients and their associated
errors, from which the probability distributions of the cal-
ibration and validation result is determined. In this paper
the method is demonstrated for two data sets: (i) L-band
(1.6 GHz) backscatter (σ ◦) – soil moisture matchups col-
lected during the 2002 OPE3 (Optimizing Production Inputs
for Economic and Environmental Enhancement) campaign
(Joseph et al., 2010a,b), and (ii) matchups of chlorophylla
concentrations and derived absorption coefficients obtained
from the NASA bio-Optical Marine Algorithm Data (NO-
MAD, version 2a.) (Werdell and Bailey, 2005).

2 Data sets

2.1 Land application – soil moisture

The 2002 OPE3 campaign focused on the active and pas-
sive microwave remote sensing of soil moisture throughout
the corn growth cycle. Part of the field activities consisted
of weekly C- (4.75 GHz) and L- (1.6 GHz) bandσ ◦ mea-
surements with the NASA/George Washington University
(GWU) truck-mounted scatterometer. Further in support of
these remote sensing observations, an extensive ground sam-
pling was conducted that included soil moisture. Full details
on the data sets collected during the field campaign can be
found in Joseph et al.(2010a,b). Here, we only make use
of the 75 matchups between the L-band HH polarizedσ ◦ ob-
served from a 35◦ view angle and the measured soil moisture,
hereafter referred to as the OPE3 matchups. Theσ ◦ observa-
tions are corrected for vegetation effects through application
of method described inJoseph et al.(2008), which results in
the σ ◦ representative for a bare soil surface. Many studies
(e.g.Ulaby et al., 1984; Champaign and Faivre, 1997; Njoku
et al., 2002) have demonstrated the following linear relation-
ship between soil moisture andσ ◦ observed under the same
land cover conditions:

sm= aσ ◦
+ b, (1)

where sm is the soil moisture content (m3 m−3), a is the slope
(m3 m−3 dB−1) representing theσ ◦ sensitivity to soil mois-
ture, andb is the offset (m3 m−3) accounting for the base-
line effects, such as surface roughness, topography, and land
cover. Both theσ ◦ sensitivity to soil moisture and the base-
line effects depend on the sensing configuration (e.g. wave-
length, polarization, view angle) as well as the land surface
(e.g. surface roughness, land cover, topography).

2.2 Water application – chlorophyll a absorption

The NASA bio-Optical Marine Algorithm Data (NO-
MAD, version 2a.) set includes measurements of spectral
remote-sensing reflectances, spectral marine absorption and
backscattering coefficients, and concentrations of water con-
stituents (Werdell and Bailey, 2005). Here, we use only
chlorophyll a (chl a) measurements derived from high per-
formance liquid chromatography (HPLC). The observed ra-
diance spectra and matching HPLC-derived chla concen-
tration consist of 424 matches, hereafter referred to as the
NOMAD matchups. The general practice is to derive the ab-
sorption coefficients from the observed radiance spectra us-
ing semi-analytical inversion models (e.g.Van Der Woerd
and Pasterkamp, 2008; Maritorena et al., 2002). Lambert-
Beer law is then employed to estimate the absorption per unit
mass from derived absorption coefficients and measured con-
centrations.

The chla absorption coefficients at the blue band (λ0 =

440 nm) are derived from the observed radiances using the
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Fig. 1. Determination coefficient, R2, between measured and observed values of(a) soil moisture and(b) chl a absorption coefficient. The
solid line is the 1: 1 reference line. Light-grey coloured points represent the optimal Cal/Val pairs.

cross entropy method as reported inSalama and Shen(2010).
Following the Lambert-Beer law, the absorption coefficient
of chl a is described as a linear function of the concentra-
tion (D’Sa and Miller, 2005, Eq. 10):

achl a(λ0) = a∗
chla(λ0)Cchl a + δ(λ0) (2)

whereachla(λ0) is the absorption coefficient of chla (m−1)
at the wavelengthλ0 (nm); a∗

chla(λ0) is the specific absorp-
tion coefficient that describes the absorption per unit weight
(m2 mg−1); Cchla is the concentration (mg m−3); δ(λ0) is
an offset related to sensor noise, retrieval error ofachla(λ0),
(m−1) and the ratio of accessory pigments that are produced
in different conditions of growth (nutrients and irradiance),
e.g. “xanthine” that acts as sun protection.

The two unknowns in Eq. (2), a∗
chla(λ0) andδ(λ0), are es-

timated from regressingachla(λ0) versusCchla using linear-
regression model. In practice, Eq. (2) could deviate from lin-
earity depending on the packaging effect, cell sizes, physiol-
ogy and species composition of the phytoplankton commu-
nity (Bricaud et al., 1995). For example, the effect of pack-
aging on the variability ofa∗

chla(λ0) is smaller in open olig-
otrophic oceans than in upwelling regions or coastal areas
where larger phytoplankton cells are abundant. Hence, the
deviation of Eq. (2) from linearity can then be understood
based on the water body investigated. The linearity of Eq. (2)
for the used data sets is justified in Sect.4, Fig. 1b.

3 Method

The method randomly subdivides the data into many sets (or
Jackknife samples) of Cal/Val pairs. The Cal set is used to
derive the coefficients of the observation model, whereas the
Val set is employed to check the accuracy of the model. The
results are probability distributions of model coefficients and
their prediction uncertainties.

The Cal/Val sets are derived from then available matchups
following two rules: (i) both Cal and Val sets must contain at
least 7 samples (kmin = 7), and (ii) each sample is used once,
either for calibration or for validation (i.e. sampling with-
out replacement). The minimum sample size, (kmin = 7), is
selected according to the method ofCohen et al.(2003), to
achieve about 35 % error in the derived slope at 95 % of con-
fidence. This value, 35 %, corresponds to the desired level of
accuracy for satellite-derived Chla products (McClain et al.,
2006; Bailey and Werdell, 2006).

The number of Cal/Val pairs is computed asnr = n −

2kmin + 1. Now, for eachi = [kmin,n − kmin], the method
forms a Cal/Val pair by increasing/decreasing the number of
data points in the sets (forming the Jackknife sample). The
number of possible combinations, npci , for the i-th Cal/Val
pair is

npci =

(
n

ki

)
=

n!

ki !(n − ki)!
(3)

wheren is the total number of data points,ki is the number
of samples in the Cal or Val set during thei-th iteration. For
data sets withn > 20 (holds for both the OPE3 and NOMAD
matchups), the number of possible combinations (npci) is
large (e.g. 1.9848 E9 for 75 over 7 in OPE3), and there-
fore npci is reduced to the number of used combinations,
nuci , by bootstrapping nuci = 10lognpci combinations from
npci . In principle, each combination nuci has the same prob-
ability of occurrence; therefore, the uniform distribution is
used to select nuci unique combinations from npci (bootstrap
method ofEfron and Tibshirani, 1993). Each formed Cal/Val
set is used for the calibration and the subsequent validation
of the empirical model. The validation is always performed
using type-II model (Bevington and Robinson, 2003), while
the calibration depends on the model, e.g. for linear model
we use the type-I regression. The accuracy of the empiri-
cal model is assessed using two statistical measures: (i) the
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mean absolute error between derived and measured values
(MAE) and (ii) the determination coefficient (R2). The al-
gorithm produces three probability distributions (PDs): two
for the calibration coefficients, PDc, and one for the accu-
racy measure, PDv. The above method is implemented in the
following model, called GeoCalVal:

1. Takeki samples for the Cal set andn−ki for the Val set;

2. Compute npci from Eq.3 and nuci = 10lognpci ;

3. Use the uniform distribution to generate nuci unique
combinations of Cal sets and their complements for Val
sets;

4. Compute model coefficients from the calibration set and
store them in PDc;

5. Use the new model coefficient to estimate the geophys-
ical variables from the Val set;

6. Compute the uncertainty of step 5 and store them in
PDv;

7. Increaseki by one and repeat steps 1 to 7.

4 Results and discussions

4.1 Optimal Cal/Val pairs

The determination coefficients,R2, of the Cal set are plotted
against those of the Val set in Fig. 1 for all possible combina-
tions. The data point position with respect to the x-axis is an
indication for the ability of the model to fit the matchups of
the Cal set, whereas its position with respect to the y-axis rep-
resents the model’s performance in deriving the geophysical
variables, here soil moisture and Chla absorption coefficient
(achla(λ0)). Obviously, both the Cal and ValR2 depend on
the number of data points, reaching their maxima when all
data points are included, which suggests for the Cal sets that
the used observation models in Eqs. (1) and (2) are indeed
linear.

Both OPE3 and NOMAD matchups produce a narrow re-
gion of Cal/Val pairs, for which the calibrationR2 is similar
to validationR2, about 0.75–0.85 (light-grey coloured data
points in Fig. 1). In other words, within these Cal/Val sub-
divisions the model validity and the accuracy assessment are
balanced. This region defines the optimal setups for subdivid-
ing matchups into Cal/Val sets. The underlying mechanisms
of the data points in this region are investigated further. We
found that the optimal Cal/Val sets are obtained when the
arithmetic mean,µ, and dispersion,σ , of each set are equal
to those of the original data set. As such, the optimal Cal/Val
pair satisfies the following condition:

µcal = µval = µdata,

AND
σcal = σval = σdata,

(4)

Table 1.Estimated parameters of the best fitt-location-scale distri-
bution to model coefficients and MAE uncertainties. The degree of
fit is expressed in standard error.

OPE3 matchups

µ σ ν

slope [m3 m−3 dB−1] 34.0870 1.3729 2.7342
standard error 0.0160 0.0186 0.0882
intercept [m3 m−3] −26.5426 0.2137 2.7668
standard error 0.0025 0.0029 0.0887
MAE [m3 m−3] 0.0244 0.0025 3.3380
standard error 3E−05 3E−05 0.1128

NOMAD matchups

µ σ ν

slope [m2 mg−1] 0.0304 0.0013 1.9722
standard error 2.6E−6 3E−6 0.0085
intercept [m−1] 0.0195642 0.00128274 2.3505
standard error 2.6E−06 3E−06 0.0114
MAE [mg m−3] 0.6043 0.0534 3.4957
standard error 0.0001 0.0001 0.02012

where the subscripts “cal”, “val” and “data” are for the cali-
bration, validation and original data sets, respectively.

Equation (4) and the equalR2 for both Cal and Val sets
(light-grey coloured points in Fig. 1) are the criteria that
should be used to determine the sample size of the optimal
Cal/Val set.

4.2 The underlying distribution

Figure 2 shows the derived probability distributions (PDs)
of model coefficients, PDc, and the associated uncertainties,
PDv, for the two matchup sets, OPE3 and NOMAD. The re-
sulting PDs of model coefficients have high kurtosis (acute
peak around the mean) values and flat tails, i.e. more prone
to outliers. Different values ofkmin were tested (not shown),
and the results show that all derived PDs from both data
sets (OPE3 and NOMAD matchups) can be described by
the t-location-scale probability distribution (the black lines
in Fig. 2) of the form (Evans et al., 1993)

f =
0(0.5ν + 0.5)

σ
√

νπ0 (0.5ν)

[
1+ ν−1

(
x − µ

σ

)2
]−(0.5ν+0.5)

(5)

whereµ, σ andν are the mean, standard deviation and shape
factor (or the degree of freedom), respectively. The gamma
function0 is equivalent to the factorial functionn! extended
to non-integral arguments. The distribution in Eq. (5) means
that the standard variates of the data points follow the Student
t distribution. The function in Eq. (5) is fitted to the distribu-
tions of derived model coefficients and MAEs by varying the
parametersµ, σ andν, which are listed in Table 1 with their
standard errors.

Biogeosciences, 9, 2195–2201, 2012 www.biogeosciences.net/9/2195/2012/



M. S. Salama et al.: CalVal of geophysical observation models 2199

26 34 42
0

200

400

600

Slope for SM, [m3.m−3.dB−1]

F
re

qu
en

cy

(a)

 

 

−28 −26.5 −25
0

200

400

600

800

Intercept for SM, [m3.m−3]

(b)

0.01 0.025 0.04
0

200

400

600

800

MAE of derived SM, [m3.m−3]

(c)

0.02 0.03 0.04
0

1

2

3
x 10

4

Slope for Chla, [m2.mg−1]

F
re

qu
en

cy

(d)

0.01 0.02 0.03
0

1

2

3
x 10

4

Intercept for Chla, [m−1]

(e)

0.3 0.6 1
0

1

2

3

4
x 10

4

MAE of derived Chla, [mg.m−3]

(f)

data
fit

Fig. 2.Derived probability distributions of model coefficients(a, b, d, e)and associated uncertainties(c, f) for the OPE3 data (upper panels)
and NOMAD matchups (lower panels). The solid lines are the fits by Eq. (5) with coefficients given in Table 1.

The reason for having flat tails in the PDs of Fig. 2 is due
to the fact that the accuracy of model coefficients depends on
the size of the Cal set. In other words, for a large Cal set we
expect to have higher accuracy as most data points are used;
however, this makes them also sensitive to outliers in the Val
set, because most of the data points have been used to create
the Cal set. For a linear observation model, thet-probability
density function should, thus, be employed to describe the
distributions PDc and PDv, regardless of the original distri-
bution of geophysical measurements or remote sensing ob-
servations. For example, the NOMAD matchups set has a
log-normal distribution, while OPE3 is close to uniform dis-
tribution (not shown here) for measurements, residuals and
observations. Yet, the distribution of derived coefficients fol-
lows, for both data sets, Eq. (5). This is basically a con-
firmation of previous statistical studies, for exampleSingh
(1988) showed that the normality distribution is not always a
valid assumption for linear models, and thet-distribution is
broader and therefore better suited. In this regard, having the
result of our sampling scheme reproducing thet-distribution
is another validation of the correctness of the GeoCalVal. The
proposed method reveals the shape of the underlying prob-
ability distribution without any a priori assumption on its
parameters (e.g. degree of freedom). For non-linear models
there is no straightforward theoretical approximation of the
expected probability distribution. If we would follow the the-
ory, we would have no means to justify our assumption on the
underlying probability distribution and its parameters. The
only objective approach is by evaluating all possible combi-
nation sets as is proposed through the GeoCalVal method.

4.3 Effect of sample size

Fixing the number of sampling points will result in PD with
lower kurtosis, i.e. the PD will be less peaked. That means
adapting the sample size will increase the accuracy of the
derived parameters (slope and intercept in this case), as the
dispersion will also be reduced. The importance of adapt-
ing the size of the sample is related to the common practice
in calibration and validation of Earth observation products.
Here, we search for the optimal division (thus, sample size)
of the Cal/Val sets, such that the Cal set produces EO-model
coefficients that enable generating EO products (estimated
from the Val set) with an accuracy satisfying the mission re-
quirements. Hence, one of the statistical questions addressed
within our manuscript is what are the criteria to define the op-
timal sample size needed for calibrating observation models
so that it produces EO products within the designed mission
accuracy and within the accuracy of the calibration itself?
For example, we can condition the iterative scheme in Geo-
CalVal to stop when the criteria defined in Sect.4.1 are met
(these are, Eq.4 and coloured points in Fig. 1). This will
however be at the cost of losing information on the proba-
bility distributions of regression coefficients, their errors and
the shape of the underlying distributions. This information
can only be derived if we change the sample size and study its
effect on the accuracy of calibration and validation (as shown
in Fig. 1). Thus, GeoCalVal makes use of the proposed sam-
pling scheme, because only through this approach we can,
in an objective manner, identify the probability distributions
of coefficients and associated uncertainties of observation
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models through optimal divisions of the data set into Cal and
Val pairs.

4.4 Application of the GeoCalVal model

The detailed knowledge on the PDs of uncertainties and un-
certainty sources embedded within the remote sensed geo-
physical variable (shown in Fig. 2) can be used as input
for data assimilation schemes (Reichle, 2008). On the other
hand, these PDs can also be employed to derive the proba-
bility distribution of uncertainty within the remote sensing
observations itself, i.e. one PD per observation. The relation-
ship between measurements and observations is described by
a model of the form,Y = f (8,X), in which 8 is the set
of n model coefficients,8 = [φ1,φ2...φn], X is the set ofm
geophysical measurements (withm > n) and Y is the cor-
responding remote sensing observations. Assuming that the
fluctuations in the measured quantity,X, and derived model
coefficients,8, are uncorrelated, we approximate the second
moment using the truncated Taylor series expansion:

σ 2
y = w2

xσ
2
x +

n∑
i=1

w2
φi

σ 2
φi

(6)

wherew is the partial derivative ofY with respect to the mea-
surementsX and each model coefficient,φi . The terms,σ 2,
are the corresponding variances. For the linear modelY =

a × X + b, the uncertainty in Eq. (6) becomesσ 2
y = a2σ 2

x +

x2σ 2
a + σ 2

b . The coefficienta and the uncertainties termsσ 2
a

andσ 2
b are quantified from the derived probability distribu-

tions of model coefficients, PDc. Measurement uncertainty,
σ 2

x , is either assumed (e.g. NOMAD matchups) or estimated
from available measurements (e.g. OPE3). In the NOMAD
data set, the concentrations of Chla were estimated using
high-performance liquid chromatography (HPLC) method.
Many studies (Claustre et al., 2004; Hooker et al., 2005)
found that the error in HPLC estimation of Chla, on aver-
age, varies between 7 % and 25 %. On the other hand, each
observation site in the OPE3 data set contains 21 soil mois-
ture measurements. The standard deviation of these measure-
ments, per observation, can be used as a proxy forσx. Esti-
mated values ofσx, a, σa andσb form the inputs to Eq. (6) to
produce the PD, quantifying the uncertainty of each remote
sensing observation. This results in a PD of uncertainty per
data point that has

∑nr
i nuci number of samples, i.e. num-

ber of all used combinations. It should, however, be noted
that this uncertainty should not be confused with observa-
tion errors associated with remote sensing retrievals, which
included also other components (e.g. model goodness-of-fit
and inversion uncertainty).

5 Conclusions

In this paper we present the GeoCalVal model for an objec-
tive selection of calibration/validation data sets to assess the

performance of observation model for geophysical variables.
GeoCalVal combines two traditional re-sampling methods
(bootstrapping and Jackknife) and adapts the sample size at
each iteration. This combination of bootstrapping with Jack-
knife sampling and changing the sample size at each test iter-
ation is novel and provides not only the accuracy of regressed
estimates and associated errors but also their underlaying dis-
tributions. The GeoCalVal tests all probable combinations of
Cal/Val setup and considers the effect of changing the sample
size on the accuracy of regressed estimates. The end results
are probability distributions of model coefficients (calibra-
tion) and uncertainties in the estimates (validation).

GeoCalVal is applied to two matchups sets, which shows
that

– GeoCalVal provides an optimal setup for subdividing
matchups into Cal/Val sets;

– the coefficients and associated uncertainties of linear
observation models follow thet-location scale distribu-
tion, i.e. the distribution of their standard variate follows
the Studentt distribution;

– the derived PDs provide complete information on the
variations of model coefficients, their uncertainties and
the accuracy of observations, which can be employed in
time series analyses and data assimilation schemes;

– the optimal Cal/Val sets are obtained when the arith-
metic mean and dispersion of the Cal/Val sets are equal
to those of the original data set;

– the presented method is applicable to any data set and
can be adjusted to any observation model regardless of
the application area, e.g. water quality or surface hy-
drology.
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Trees, C., V., S., Head, E., Clementson, L., Fishwick, J.,
Llewellyn, C., and Aiken, J.: The second SeaWiFS HPLC
analysis Round-Robin experiment (SeaHARRE-2), Tech. Rep.
212787, Goddard Space Flight Center, NASA, Greenbelt, Mary-
land 20771, 2005.

Joseph, A. T., Van der Velde, R., O’Neill, P. E., Lang, R. H., and
Gish, T.: Soil moisture retrieval during a corn growth cycle using
L-band (1.6 GHz) radar observations, IEEE T. Geosci. Remote,
46, 2365–237, 2008.

Joseph, A., van der Velde, R., O’Neill, P. E., Choudhury, B. J.,
Lang, R. H., Kim, E. J., and Gish, T.: L-band brightness temper-
ature observations over a corn canopy during the entire growth
cycle, Sensors, 10, 6980–7001, 2010a.

Joseph, A., van der Velde, R., O’Neill, P. E., and Lang, R. H.: Ef-
fects of corn on C- and L-band radar backscatter: a correction
method for soil moisture retrieval, Remote Sens. Environ., 114,
2417–2430, 2010b.

Maritorena, S., Siegel, D., and Peterson, A.: Optimization of a semi-
analytical ocean color model for global-scale applications, Appl.
Optics, 41, 2705–2714, 2002.

McClain, C., Feldman, G., and Hooker, S. B.: An overview of the
SeaWiFS project and strategies for producing a climate research
quality global ocean bio-optical time-series, Deep-Sea Res. Pt.
II, 51, 5–42, 2004.

McClain, C. R., Feldman, G. C., Hooker, S. B., and Bontempi, P.:
Satellite data for ocean biology, biogeochemistry, and climate re-
search, EOS Transactions, 87, 337–343, 2006.
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