Biogeosciences, 9, 2247–2258, 2012 www.biogeosciences.net/9/2247/2012/ doi:10.5194/bg-9-2247-2012 © Author(s) 2012. CC Attribution 3.0 License.

Effects of elevated CO₂ and N fertilization on plant and soil carbon pools of managed grasslands: a meta-analysis

W. M. A. Sillen^{1,2} and W. I. J. Dieleman^{1,3}

¹Research Group of Plant and Vegetation Ecology, University of Antwerp, 2610 Wilrijk, Belgium
²Centre for Environmental Sciences, Environmental Biology, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium

³School of Earth and Environmental Sciences, James Cook University, McGregor Rd, 4878 Smithfield, Australia

Correspondence to: W. I. J. Dieleman (wouter.dieleman@ua.ac.be)

Received: 3 November 2011 – Published in Biogeosciences Discuss.: 11 January 2012 Revised: 30 April 2012 – Accepted: 2 May 2012 – Published: 22 June 2012

Abstract. Elevated atmospheric CO₂ levels and increasing nitrogen deposition both stimulate plant production in terrestrial ecosystems. Moreover, nitrogen deposition could alleviate an increasing nitrogen limitation experienced by plants exposed to elevated CO₂ concentrations. However, an increased rate of C flux through the soil compartment as a consequence of elevated CO₂ concentrations has been suggested to limit C sequestration in terrestrial ecosystems, questioning the potential for terrestrial C uptake to mitigate increasing atmospheric CO₂ concentrations. Our study used data from 77 published studies applying elevated CO₂ and/or N fertilization treatment to monitor carbon storage potential in grasslands, and considered the influence of management practices involving biomass removal or irrigation on the elevated CO₂ effects. Our results confirmed a positive effect of elevated CO₂ levels and nitrogen fertilization on plant growth, but revealed that N availability is essential for the increased C influx under elevated CO₂ to propagate into belowground C pools. However, moderate nutrient additions also promoted decomposition processes in elevated CO2, reducing the potential for increased soil C storage. An important role was attributed to the CO₂ response of root biomass in soil carbon responses to elevated CO₂, since there was a lower potential for increases in soil C content when root biomass increased. Future elevated CO2 concentrations and increasing N deposition might thus increase C storage in plant biomass, but the potential for increased soil C storage is limited.

1 Introduction

Atmospheric CO₂ concentrations have strongly increased since the pre-industrial era (IPCC, 2007), resulting in the contemporary CO₂ concentration of about 393 ppm that exceeds all earlier concentrations since the late Tertiary era, when most of the modern plants evolved into their present shapes (Pearson and Palmer, 2000; Crowley and Berner, 2001). Because of the stimulating effect of these elevated CO₂ concentrations on photosynthesis and plant productivity (Nowak et al., 2004; Ainsworth and Long, 2005; Soussana and Luscher, 2007), it has been hypothesized that plants can partly buffer human induced CO₂ emission by sequestering C (Gifford, 1994). Grasslands are estimated to embody more than 10% of the carbon (C) reservoir of the biosphere (Eswaran et al., 1993; Nosberger et al., 2000), with most C (up to 98% of the total C) located in their belowground compartment (Hungate et al., 1997). The 3.7 billion ha of the Earth's surface with permanent grasslands have an estimated potential annual C sequestration capacity of 0.01-0.3 GtC (Lal, 2004), which implies that 4 % of total global emissions of greenhouse gasses could be buffered by grasslands (Soussana and Luscher, 2007).

Elevated CO_2 tends to increase C allocation to root compartments (Rogers et al., 1994; Luo et al., 2006) as plants need more resources to sustain the enhanced growth (Bryant et al., 1983). In addition, plants also tend to increase root exudation in elevated CO_2 (Fitter et al., 1997; Drigo et al., 2008; Lukac et al., 2009). As soil organisms tend to be Climited (Zak et al., 1993; Hu et al., 2006), these C inputs could fuel the microbial community (Zak et al., 2000; Heath et al., 2005), leading to increased microbial biomass and respiration. However, when the N necessary to convert these C inputs into microbial biomass is lacking (Zak et al., 2000; Heath et al., 2005), these C inputs are mainly respired. Therefore, microbial respiration (Rh) can increase despite the lack of change in microbial biomass. As a consequence, effects of elevated CO_2 on soil C content are unclear because both C inputs and decomposition processes are stimulated, and because the effect on microbial growth and functioning seems to be modulated by N availability.

Because many grasslands are managed for feeding domestic herbivores, either directly through grazing or through forage production, grassland C and N cycles might be affected because a large part of primary production is removed (Soussana et al., 2007). As a consequence, grasslands are often fertilized with nutrients to sustain productivity. In addition, the increased reactive nitrogen (N) deposition caused by the burning of fossil fuels and the use of artificial fertilizers (Davidson, 2009) may affect large areas of the world in the future (Galloway, 2008). Excessive N deposition can negatively influence ecosystem health and species diversity (Aber et al., 1998), but lower concentrations can alleviate the N limitation that plants generally experience in grasslands, thereby stimulating plant production (Lu et al., 2011). In their review, de Graaff et al. (2006) hypothesized that increased plant production in elevated CO2 could overcome increased soil organic matter (SOM) decomposition processes when ecosystems are supplemented with additional N.

In this study, we used meta-analysis to investigate whether CO₂ elevation and/or nitrogen fertilization is likely to change carbon storage in managed grasslands. More precisely, we analysed effects of elevated CO2 concentrations and N fertilization (i.e., combined and individually) on above and belowground biomass, microbial biomass and soil C content by quantitatively synthesizing data from 77 studies. More specifically, we used following hypotheses: (1) the single factor elevated CO₂ treatment will stimulate plant production and will increase allocation of C to root compartments, (2) the single factor N fertilization treatment will stimulate plant productivity, but will leave microbial biomass unaffected due to C limitation, (3) the combined CO₂ and N treatment will strongly stimulate above and belowground biomass production, which in turn stimulates soil C storage, and (4) management practices (i.e., aboveground biomass removal, irrigation) will shift C allocation towards aboveground plant compartments and will reduce C inputs to soil compartments.

2 Methods

2.1 Data acquisition

We constructed a database consisting of results from 77 manipulation experiments in grassland systems exposed to elevated CO₂ concentrations with/without nutrient additions. Here, we focus on aboveground (AB), root (RB) and microbial biomass (MB), root to shoot ratio (RS, calculated where AB and RB were available) and soil C content. Figures and tables within articles were used as a source for data. Aboveground and root biomass were expressed on a dry weight per area basis. Microbial biomass was expressed on a dry weight per unit of soil weight basis, and soil C content was expressed on a dry weight per area, or dry weight per unit of soil weight basis. For soil C content data expressed on an area basis, we assumed that soil density was not affected by elevated CO₂ treatments. This resulted in 192 entries that were used in the meta-analysis. A full description of the experiments and data sources is given in the supplementary Tables A1–A5.

Only studies that reported standard errors and the number of replicates were included in our analysis. We selected studies on grassland systems that were exposed to elevated CO_2 concentrations. Results for different treatments, species, or different locations within one and the same experiment were considered as independent measurements and were included separately in the database. Weighted means were calculated for experiments with data from different years, using the measurement uncertainties of individual years as weighting factor.

We extracted mean annual precipitation (MAP) and mean annual temperature (MAT) data, a description of the amount and type of fertilizer added (independent from the intention of creating a different treatment) and the execution of other management practices (biomass removal or irrigation) from the articles. Whenever this information was lacking, the study was considered as not including fertilization or other management. The extracted information is synthesized in Table 1.

2.2 Meta-analysis

MetaWin 2.1 software (Rosenberg et al., 2000) was used to analyse our data. The natural logarithm of the response ratio (r = (response to elevated CO₂ or N fertilization)/(response to reference conditions)) was used to define the effect value. By using this metric, the calculation of an effect by percentage was made possible, while this would not have been the case if we were to use Hedges' d-index. In addition, the response ratio is less sensitive to changes in small control groups (Hedges et al., 1999). Confidence intervals (CI) were calculated by using bootstrapping techniques. This method is advantageous when less than 20 studies are used to calculate a CI, since the traditional 95 % CI then tends to underestimate the width of the interval at low **Table 1.** Information about irrigation, fertilization, management practices and climatic conditions at the sites that were used in the experiments in our analysis. Different letters (a and b) within the fertilizer specifications are used to separate different experiments that were executed on the same site.

Site Name	Irrigation	Fertilization	Fertilizer Type	Fertilizer Amount	zer Amount Biomass MAP MAT Reference removal (mm) (°C)		Reference	
Aberdeen	Yes	Yes & No	NaH ₂ PO ₄ , KNO ₃ and NaNO ₃	-	Clipping	-	-	Paterson et al. (2008)
Amsterdam	Yes	Yes	NH ₄ NO ₃	$47 \mathrm{kg} \mathrm{ha}^{-1} \mathrm{yr}^{-1}$	_	-	-	Hoorens et al. (2003)
Cedar Creek grassland	No	Yes & No	NH ₄ NO ₃	(a) $40 \text{ kg ha}^{-1} \text{ yr}^{-1}$ (b) $100 \text{ kg ha}^{-1} \text{ yr}^{-1}$	Burning	679	5.6	Dijkstra et al. (2006); Keeler et al. (2009)
Canberra Phytotron	Yes	Yes	Not specified	22, 67 and 198 kg ha ^{-1} yr ^{-1} in different treatments	-	-	-	Lutze et al. (2000)
Duolun	No	Yes	NH ₄ NO ₃	$100 \mathrm{kg} \mathrm{ha}^{-1} \mathrm{yr}^{-1}$	_	386	2.1	Xia et al. (2009)
French Massif Central	No	No	-	-	-	780	8.7	Bloor et al. (2010)
Gainesville grassland	Yes	Yes	NPK (and Mg and S)	70–80 kg ha ⁻¹ depending on year	-	808	-	Allen et al. (2006)
Ginninderra	Yes	Yes	slow release fertilizer	$100 \mathrm{kg} \mathrm{ha}^{-1} \mathrm{yr}^{-1}$	_	_	-	Volder et al. (2007)
Jasper Ridge (FACE)	Yes & No	Yes & No	Ca(NO ₃) ₂	$70 {\rm kg} {\rm ha}^{-1} {\rm yr}^{-1}$	_	677	19.3	Dukes et al. (2005)
Jasper Ridge (OTC)	No	Yes & No	(a) Urea + Osmocote 120 days slow release fertilizer (b) NPK (120 day release fertilizer)	(a) 200 kg ha^{-1} (b) low: 30 kg ha^{-1} ; high: 200 kg ha^{-1}	_	677	19.3	Hungate et al. (1997); Cardon et al. (2001)
Jokioinen	Yes	No	_	-	Mowing	-	-	Kanerva et al. (2008)
Linden-Leihgestern (FACE)	No	Yes	Thomas kali fertilizer and N	$4 \mathrm{kg}\mathrm{ha}^{-1}\mathrm{yr}^{-1}$	Cutting	644	9.9	Sonnemann and Wolters (2005)
Manawatu	No	Yes	superphosphate, K ₂ SO ₄ , MgSO ₄ , Cu and Zn	-	-	870	12.9	Ross et al. (2004)
Moor House	No	No	-	-	-	-	-	Fitter et al. (1997)
Nåntuna	No	No	_	_	Cutting	527	5.5	Marissink et al. (2002)
NERC	Yes	No	-	-	Herbivory	-	-	Kandeler et al. (1998)
New Zealand (FACE)	No	Yes	superphosphate, KSO ₄	-	Grazing	875	-	Allard et al. (2005)
Niwot Ridge	No	Yes	(a) urea-N as osmocote pellets(b) osmocote pellets(urea-N and P₂O₅-P)	$250 \text{ kg ha}^{-1} \text{ yr}^{-1}$ for the first two years, $100 \text{ kg ha}^{-1} \text{ yr}^{-1}$ thereafter	_			Bowman et al. (1993); Neff et al. (2002)
OCCAM	No	No	-	1322		14.3	Kardol et al. (2010)	
PHACE	No	No	-	-	_	384	_	Dijkstra et al. (2010)
Swiss Central Alps	No	Yes & No	NPK (3:2:3)	$45 \text{ kg ha}^{-1} \text{ yr}^{-1}$	_	168	8.4	Niklaus and Korner (1996); Schappi and Korner (1996)
Swiss Jura	No	No	low dose P fertilization (superphosphate)	_	Mowing/ Clipping	1063	_	Leadley et al. (1999); Stocker et al. (1999); Niklaus et al. (2003); Niklaus and Korner (2004)
SwissFACE (Bromus/Carex)	No	No	-	-	-	-	-	van Kleunen et al. (2006)
SwissFACE (Lolium)	No	Yes	NH ₄ NO ₃	low: $140 \text{ kg ha}^{-1} \text{ yr}^{-1}$; high: $420 \text{ kg ha}^{-1} \text{ yr}^{-1}$ in 1993 and 560 kg ha $^{-1} \text{ yr}^{-1}$ after 1993	⁻¹ ; Cutting – – Sowe ⁻¹ in 1993 de Gr ¹ after Bazon		Sowerby et al. (2000); de Graaff et al. (2004); Bazot et al. (2006)	
SwissFACE (Trifolium)	No	Yes	NPK, N as NH ₄ NO ₃ solution	low: 140 kg ha ⁻¹ yr ⁻¹ ; Cutting – – de Grhigh: 420 kg ha ⁻¹ yr ⁻¹ in 1993 and 560 kg ha ⁻¹ yr ⁻¹ after 1993		de Graaff et al. (2004)		
TasFACE	No	No	-	-	_	560	11.6	Pendall et al. (2011)
University of Antwerp	No	No	_	_	-	-	-	unpublished
University of Guelph	Yes	Yes	Hoagland's solution	$47 \mathrm{kg} \mathrm{ha}^{-1} \mathrm{yr}^{-1}$	-	-	-	Klironomos et al. (1998)
Univerisity of Michigan Biological Station	Yes	No	-	-	_	-	-	Treonis and Lussenhop (1997)
USDA ARS	Yes	No	-	-	-	-	-	Blank and Derner (2004)
USDA Central Plains	No	No	_	_	_	320	-	Morgan et al. (2004b); Pendall and King (2007)

sample size (Hedges et al., 1999). For bootstrapping, 2500 repetitions were used.

In categorical analyses, we examined the effect of elevated CO_2 concentrations and fertilization separately (in experiments where single factor CO_2 and combined CO_2 and fer-

tilization treatment effects were reported, we extracted a single factor fertilization treatment response using the control values of both CO_2 treatments), the effect of elevated CO_2 concentration in combination with fertilization, the effects of the type and the amount of N fertilizer added (classification

Treatment code	Description
С	Elevated CO ₂ treatment without any nutrient addition
CF	Elevated CO ₂ treatment with nutrient addition (amount of N addition not specified)
F	N fertilization treatment (amount of N addition not specified)
CF-L	Elevated CO ₂ treatment with N fertilization $<50 \text{ kgN ha}^{-2} \text{ yr}^{-1}$ (low N)
CF-H	Elevated CO ₂ treatment with N fertilization $>$ 50 kgN ha ⁻² yr ⁻¹ (high N)
CF-N	Elevated CO ₂ treatment with pure N fertilization
CF-NPK	Elevated CO ₂ treatment with NPK fertilization
C-M	Elevated CO ₂ treatment with biomass removal component
C-m	Elevated CO ₂ treatment without biomass removal component
C-I	Elevated CO ₂ treatment with irrigation treatment
C-i	Elevated CO ₂ treatment without irrigation treatment
F-L	N fertilization treatment with N fertilization $< 50 \text{ kgN ha}^{-2} \text{ yr}^{-1}$ (low N)
F-H	N fertilization treatment with N fertilization >50 kgN ha ⁻² yr ⁻¹ (high N)
F-N	N fertilization treatment with pure N fertilization
F-NPK	N fertilization treatment with NPK fertilization

Table 2. Treatment codes used in the manuscript to describe different CO2 or N treatment combinations.

Fig. 1. Responses of grassland C pools to three different treatments: CO₂ elevation (C), N fertilization (F) and the combination of CO₂ elevation and N fertilization (CF). Responses are shown as percentage increase of aboveground biomass (AB), root biomass (RB), microbial biomass (MB), and soil C content (Soil C), and 95% confidence intervals (CI). Treatment responses were considered statistically significant when zero was not included in the 95% CI. Statistically significant differences compared to the single factor CO₂ treatment are indicated by: * P < 0.05; ** P < 0.01; *** P < 0.001.

in low and high amounts was based on a background value of 50 kg N ha⁻¹ yr⁻¹, based on projected N deposition values in 2050, Galloway, 2008), and the effects of biomass removal or irrigation on the elevated CO₂ effect (see Table 2 for treatment codes used in figures and tables). The relationship of elevated CO₂ effects with MAP, MAT, treatment duration and intensity were analysed with weighted regression analysis.

The effect of elevated CO_2 concentrations or fertilization were considered statistically significant when zero was not included in the 95% CI. Differences between categorical variables and linear regression analyses were considered statistically significant when *P*-values were lower than 0.05.

3 Results

3.1 Single factor and combined treatment effects of elevated CO₂ and N addition

Aboveground biomass increased under all three treatments (i.e., elevated CO₂ (+20%), N fertilization (+37%) and their combination (+36%)) (Fig. 1). Root biomass decreased when only CO₂ levels were elevated (-17%), but increased when nutrients were added, either with (+29%) or without CO₂ elevation (+15%) as a co-treatment (Fig. 1, Table 3). Microbial biomass increased in elevated CO₂ concentrations, both with (+24%) and without fertilization (+12%), and showed an opposing trend in response to the single factor fertilization treatment (-17%) (Fig. 1, Table 3). Soil C content increased in the single factor CO₂ treatment (+3%) and was unaltered under the other treatments (Fig. 1).

In the combined elevated CO_2 and fertilization treatment, aboveground biomass responded similarly to different fertilizer types, but was stimulated significantly more when lower

Table 3. Summary of the meta-analytical comparison between the responses of grassland C pools to different treatments. Results shown for: (1) CO₂ elevation and N fertilization treatments, (2) different N fertilization specifications with or without CO₂ elevation (type or amount of fertilizer) and (3) other management procedures when CO₂ is elevated (biomass removal and irrigation). The parameters considered are: aboveground biomass (AB), root biomass (RB), root-to-shoot ratio (RS), microbial biomass (MB) and soil C content (Soil C). Differences between responses for a parameter were considered statistically significant when P < 0.05 (**bold**).

	AB	RB	RS	MBC	Soil C
(1) C vs. F	0.2115	0.0060	0.4042	0.0128	0.086
C vs. CF	0.2511	0.0028	0.2827	0.4346	0.7017
F vs. CF	0.9628	0.4974	0.1759	0.0716	0.5274
(2) CF-N vs. CF-NPK	0.9736	0.0036	0.0012	0.4262	0.6809
CF-L vs. CF-H	0.0168	0.2431	0.1811	0.0336	0.2019
F-N vs. F-NPK	0.1076	0.6006	0.0344	_	0.8477
F-L vs. F-H	0.5674	0.4702	0.1795	0.3419	—
(3) C-M vs. C-m	0.4958	0.0672	_	0.7093	_
C-I vs. C-i	0.3227	0.0696	0.3663	0.926	0.3503

Fig. 2. CO₂ and N fertilization responses of grassland C pools to different N fertilizer types (CF-N and CF-NPK) and intensities (CF-L and CF-H). Responses are shown as percentage increase of aboveground biomass (AB), root biomass (RB), microbial biomass (MB) and soil C content (Soil C), and 95% confidence intervals (CI). Treatment responses were considered statistically significant when zero was not included in the 95% CI. Statistically significant differences between fertilizer type or intensity are indicated by: * P < 0.05; ** P < 0.01.

doses of N fertilizer were added (Fig. 2, Table 3). In contrast to the aboveground biomass response, root biomass responded strongly positively to CO_2 elevation with NPK fertilizer addition, while pure N addition did not affect root biomass (Fig. 2, Table 3). The microbial biomass response

Fig. 3. The CO_2 effect in experiments with (C-M) or without (C-m) aboveground biomass removal, and in irrigated (C-I) and non-irrigated (C-i) experiments, compared to the full CO_2 dataset (C). Responses are shown as percentage increase of aboveground biomass (AB), root biomass (RB), microbial biomass (MB) and soil C content (Soil C). Responses were considered statistically significant when zero was not included in the 95 % CI.

to elevated CO_2 was significantly higher under high N fertilization rates, compared to low fertilization rates (Fig. 2, Table 3). Weighted linear regression analysis also suggested an increase in microbial biomass in elevated CO_2 with higher N fertilization doses (Table 4). Soil C responses to elevated

Table 4. Summary of the meta-analytical regression analysis between the responses of grassland C pools to increasing amounts of N fertilization as a single factor (F) or in combination with elevated CO₂ (CF). The parameters considered are: aboveground biomass (AB), root biomass (RB), root-to-shoot ratio (RS), microbial biomass (MB) and soil C content (Soil C). *P*-values, sign of the regression slopes, and number of data points used are given. Linear regressions were considered statistically significant when P < 0.05(**bold**).

Treatment	Response variable	P-value	slope	п
CF	AB	0.5196	_	16
	RB	0.9891	_	15
	RS	0.9083	_	14
	MB	0.0314	+	7
	Soil C	0.8884	+	11
F	AB	0.0417	+	11
	RB	0.833	+	13
	RS	0.3142	_	13
	MB	0.0183	_	4
	Soil C	0.1117	+	8

CO₂ were not affected differently by different fertilizer types or doses (Fig. 2, Table 3).

For the majority of the C pools, the single factor N fertilization treatment effects were not significantly different between fertilizer type or dosage (Fig. 2, Table 3), although a trend towards stronger aboveground biomass responses was apparent under NPK fertilization (Fig. 2, Table 3). Biomass removal or irrigation did not significantly affect CO_2 responses, although root biomass showed a stronger trend towards a decrease in systems where aboveground biomass was removed or systems that were irrigated (Fig. 3, Table 3).

3.2 Carbon allocation shifts

The root-to-shoot ratio (RS) of grasslands tended to decrease in the single factor CO₂ treatment (-13%), and significantly decreased in the single factor N fertilization treatment (-21%), indicating an preferential allocation of C towards aboveground biomass (Fig. 4). The combined CO₂ and N treatment did not change allocation patterns in grasslands (Fig. 4). There was a strong contrast between RS-responses to elevated CO₂ depending on the type of fertilizer added: pure N addition decreased RS (-30%), while NPK fertilizers increased RS in elevated CO₂ (+112%) (Fig. 4, Table 3). Biomass removal and irrigation did not affect the overall RS response to elevated CO₂ (Fig. 4).

3.3 Relation to climatic variables and treatment duration and intensity

The aboveground biomass response to elevated CO_2 concentrations was not related to treatment intensity or duration,

Fig. 4. CO_2 and N fertilization responses of the root-to-shoot ratio (RS) to different N fertilizer types (CF-N and CF-NPK) and intensities (CF-L and CF-H), and in experiments with (C-M) or without (C-m) biomass removal, and in irrigated (C-I) and non-irrigated (C-i) experiments. Responses are shown as percentage increase and were considered statistically significant when zero was not included in the 95 % CI. Statistically significant differences between fertilizer types are indicated by: ** P < 0.01.

and did not show any dependence on air temperature (Table 5). In contrast, aboveground biomass responses tended to be smaller on sites with larger annual precipitation amounts, especially where no fertilizer was added to the experiments (Table 5).

Root biomass responses were greater at higher CO_2 elevation (Table 5), and tended to be larger in studies with longer duration of the CO_2 treatments, although the latter effect completely disappeared when N fertilizer was added to the experiments (Table 5). Root responses were not related to precipitation amounts, but showed a stronger CO_2 response in warmer sites that received N fertilizer (Table 5).

Responses of the root-to-shoot ratio to elevated CO_2 were generally not affected by different climatic conditions (Table 5). RS responses did become smaller with longer treatment duration, indicating a gradual increase in C allocation to shoots (Table 5). In contrast, increasing treatment intensity elicited gradually larger RS responses, indicating more C allocation to roots (Table 5). Whereas the relation to treatment duration holds for both fertilized and unfertilized CO_2 experiments, the relation to treatment intensity is only statistically significant for N fertilized CO_2 experiments (Table 5).

Microbial biomass and soil C responses were generally not affected by either climatic differences or increasing treatment intensity or duration (Table 5). However, we did find a statistically significant increase in soil C responses to elevated CO_2 with increasing treatment duration for N fertilized experiments (Table 5).

Table 5. Summary of the meta-analytical regression analysis between the responses of grassland C pools to CO ₂ elevation with (CF) or
without (C) fertilization treatments, and mean annual temperature (MAT), mean annual precipitation (MAP), and duration and intensity of the
CO2 treatment. The parameters considered are: aboveground biomass (AB), root biomass (RB), root-to-shoot ratio (RS), microbial biomass
(MB) and soil C content (Soil C). P-values, sign of the regression slopes, and number of data points used are given. Linear regressions were
considered statistically significant when $P < 0.05$ (bold).

Response variable	Treatment	Tested factor	P-value	Slope sign	п	Response variable	Treatment	Tested factor	P-value	Slope sign	n
AB	CF	MAT	0.846	+	25	MB	CF	MAT	0.453	+	7
		MAP	0.114	_	30			MAP	0.935	_	9
		CO ₂ Duration	0.328	_	44			CO ₂ Duration	0.695	_	18
		CO ₂ Intensity	0.898	+	44			CO ₂ Intensity	0.403	+	18
	С	MAT	0.193	_	20		С	MAT	0.721	+	5
		MAP	0.027	_	16			MAP	0.562	+	5
		CO ₂ Duration	0.153	_	25			CO ₂ Duration	0.823	_	8
		CO ₂ Intensity	0.852	-	25			CO ₂ Intensity	0.128	+	8
RB	CF	MAT	0.044	+	19	Soil C	CF	MAT	0.805	_	15
		MAP	0.811	+	23			MAP	0.849	+	11
		CO ₂ Duration	0.825	-	34			CO ₂ Duration	0.027	+	21
		CO ₂ Intensity	<0.001	+	34			CO ₂ Intensity	0.058	+	21
	С	MAT	0.816	+	10		С	MAT	0.864	+	6
		MAP	0.751	_	12			MAP	0.962	+	5
		CO ₂ Duration	0.061	+	17			CO ₂ Duration	0.358	+	8
		CO ₂ Intensity	0.004	+	17			CO ₂ Intensity	0.681	+	8
RS	CF	MAT	0.803	+	20						
		MAP	0.247	-	24						
		CO ₂ Duration	<0.001	-	30						
		CO ₂ Intensity	<0.001	+	30						
	С	MAT	0.558	+	10						
		MAP	0.232	-	12						
		CO ₂ Duration	0.024	-	13						
		CO ₂ Intensity	0.298	+	13						

4 Discussion

Elevated CO_2 effects were generally in accordance with previous studies, indicating increased biomass production, an increased microbial biomass and a tendency for small increases or no changes in soil C content (Fig. 1) (de Graaff et al., 2006; Luo et al., 2006; Hungate et al., 2009). However, considering the CO_2 treatment as a single factor we found a decrease in root biomass as a consequence of elevated CO_2 concentrations, which is in sharp contrast to most other studies (Rogers et al., 1994; Curtis and Wang, 1998; Pendall et al., 2004; de Graaff et al., 2006) and refutes our first hypothesis of an increased C allocation to root compartments.

Interestingly, when excluding experiments that were irrigated or where aboveground biomass was removed, root biomass was no longer significantly decreased by elevated CO_2 (data not shown). This can be explained by the functional equilibrium hypothesis, suggesting optimal distribution of plant resources for plant growth (Bloom et al., 1985), and offers support to our hypothesis that plants deprived of their shoots by harvest, burning or grazing, allocate proportionally more energy to aboveground biomass for repair and regrowth. In turn, this would impair root growth by lowering the amount of C available for belowground biomass. Other findings further demonstrated the regulating role of water availability in plant responses to elevated CO_2 : root biomass tended to decrease with irrigation compared to non-irrigated systems (Fig. 3, Table 3), root biomass responses to elevated CO_2 increased in warmer sites (Table 5), and above-ground biomass responses reduced at sites with higher precipitation rates (Table 5). This is in accordance with Volk et al. (2000), Bunce (2004) and Morgan et al. (2004a), all indicating that an increased water use efficiency (WUE) as a consequence of reduced stomatal conductance in elevated CO_2 is the major reason for increased plant biomass in higher atmospheric CO_2 concentrations. Our data here indeed suggest that, as a result of increased WUE plants do not necessarily need an extensive root network.

Because water availability is such an important factor in the elevated CO_2 effect, a more detailed study of effectively available soil water to the plant would be informative. In this respect, an analysis accounting for different soil textures in the studies included in this analysis (e.g., CO_2 effect along the sandy-clayey soil continuum) could test whether the magnitude of the CO_2 effect would be larger in drought-prone soils (i.e., sandy soils) compared to soils that easily retain water. Future studies would, therefore, need to report soil textures in their site description, which at this point was only available for a limited amount of study sites.

4.1 Non-nitrogen nutrients regulate root responses to elevated CO₂

In contrast with unfertilized systems, fertilized systems displayed an increase in root biomass in response to elevated CO₂ (see also de Graaff et al., 2006), indicating a clear dependence on nutrient additions (see also van Groenigen et al., 2006). Our results showed that the root biomass response in elevated CO₂ was unaffected when pure N fertilizers were added, but increased strongly when NPK fertilizers were added (Fig. 2) and that RS decreased in elevated CO₂ with addition of pure N fertilizer, while it increased under NPK fertilization in elevated CO2 (Fig. 4). In addition, in the single factor fertilization treatment, aboveground biomass tended to respond more strongly to NPK fertilizers (Fig. 2, Table 3). These findings all suggest a progressive limitation by nutrients other than N. As it has been shown before that N-fixing plant species in particular can become limited by non-nitrogen nutrients in elevated CO2 (van Groenigen et al., 2006), it seems likely that non-nitrogen nutrients might play an important role in regulating the C allocation patterns in the elevated CO₂ experiments in these grasslands.

4.2 Constructive use of C in microbial biomass

The increase in the single factor CO_2 and the combined CO_2 and fertilization treatment for microbial biomass (Fig. 1), confirms the general C limitation of microbial communities. Microbes use C compounds as their main source for energy and are, therefore, often C-limited (Zak et al., 1993; Demoling et al., 2007). However, microbes need N to be able to accumulate C into their biomass (Niklaus and Korner, 1996), so in absence of N, microbes use the energy they obtain from decomposing easily degradable C-compounds to decompose N-richer compounds, which can result in higher respiration rates while microbial biomass remains constant. Therefore, as expected, we found a slightly higher increase in microbial biomass in the combined CO_2 and N fertilization treatment compared to the single factor elevated CO_2 treatment (Fig. 1).

Further, we found that microbial biomass positively correlated to increasing amounts of N fertilization in elevated CO₂, while it was negatively correlated to increasing amounts of N fertilization without CO₂ (Table 4). The negative effect of the single factor N fertilization treatment on microbial biomass is also in accordance with previous work (Treseder, 2008; Janssens et al., 2010), and our 2nd hypothesis, suggesting microbes either became more C limited under N fertilization, or deteriorating soil conditions and chemical stabilization of SOM inhibited microbial growth (DeForest et al., 2004; Treseder, 2008; Janssens et al., 2010). Because root biomass increased in N fertilized experiments (Fig. 1) – suggesting more labile C inputs – and microbial biomass was found to further decrease at higher N fertilization rates (Fig. 2, Table 4), it seems more likely **Table 6.** Summary of the meta-analytical regression analysis between the responses of aboveground (AB), root (RB) and microbial biomass (MB) to elevated CO₂ and the soil C response to elevated CO₂. *P*-values, sign of the regression slopes, and number of data points used are given. Linear regressions were considered statistically significant when P < 0.05 (**bold**).

Treatment	Response variable	P-value	slope	n
С	AB	0.9004	_	8
	RB	0.8183	+	6
	MB	0.9751	_	4
CF (Fertilization $<50 \text{ kgN ha}^{-2} \text{ yr}^{-1}$)	AB	0.6008	-	11
	RB	0.0411	_	9
	MB	0.9269	_	5
CF (all fertilization dosages)	AB	0.4392	-	15
-	RB	0.1205	_	13
	MB	0.9853	_	7

that the inhibiting effects of N fertilization dominated in the microbial biomass response.

4.3 Soil C storage in grasslands under elevated CO₂

While microbial biomass increased in elevated CO2, its lifespan is relatively short (Zak et al., 2000; Heath et al., 2005). Moreover, while root biomass production generally increases under elevated CO₂, an increased root turnover (Lukac et al., 2009) can also result in an unchanged standing root biomass under elevated CO_2 (as found in this study) with much of the root production being converted to necromass. This increased microbial and root biomass turnover would produce a considerable amount of C inputs into the soil that could stimulate microbial activity (Dieleman et al., 2010), and possibly prime older soil C pools (for a definition of priming, see Cheng and Jonhson, 1998; Fontaine et al., 2007; Kuzyakov, 2002). At the same time, elevated CO_2 also stimulates root respiration (Lukac et al., 2009). As such, a multitude of effects can stimulate CO₂ release from the soil, and can explain why an increased root and microbial biomass can result in an unchanged soil C pool under elevated CO₂.

Based on the findings in this study, we suggest root dynamics and their response to nutrients under elevated CO_2 play an important role in the effect of elevated CO_2 on soil C storage in these grasslands (see Figs. 1–2). We did not find a correlation between root biomass responses and soil C sequestration in unfertilized elevated CO_2 experiments, but found a significant correlation between the root biomass response and the soil C response in elevated CO_2 when realistic amounts of N fertilizer (i.e., max. of 50 kg N ha⁻¹ yr⁻¹) were added (Table 6), suggesting lower potential for increases in soil C content when root biomass becomes more responsive to elevated CO_2 . In this case, the C inserted in the soil matrix by root exudation or root turnover might promote more rapid cycling of C inputs into the soil. In support of our findings, Cardon et al. (2001) showed that microbes in nutrientpoor environments are forced to decompose older soil organic matter for N supply, but when excess C is available in nutrient-rich situations, the newly sequestered C inputs into the soil become preferential C substrates for microbial decomposition in elevated CO_2 .

N additions mainly stimulate C sequestration in long-lived biomass compartments (Pregitzer et al., 2008) and, hence, the amount of C being incorporated into the soil matrix might have been limited (Lu et al., 2011), thereby limiting the stimulation of microbial respiration. The larger amount of C being stored in longer-lived biomass might also explain why soil C content was not significantly affected, because C was retained in biomass and not added to the soil matrix. To support this, we found an increasingly positive effect on soil C content with CO₂ treatment duration when fertilized with N (Table 5), and for experiments with higher rates of N fertilization, soil C did tend to increase regardless of root responses (Fig. 2). These results are in accordance with Van Groenigen et al. (2006), who reported that soil C only increased at high rates of N fertilization (>30 kg N ha⁻¹ yr⁻¹). Moreover, respiration rates can be reduced when terrestrial systems are fertilized with large amounts of N through reduced microbial biomass and/or negative effects on decomposing enzyme functioning (Fog, 1988; Janssens et al., 2010). So at high fertilization rates, the inhibiting effects of N fertilizer on decomposition might have overpowered the CO_2 effects on roots (Table 6), promoting an increasing soil C response in elevated CO2. We thus cannot confirm, nor refute our 3rd hypothesis, as soil C did not increase in combined CO₂ and fertilization manipulation. Instead, we propose that the soil C response will be determined by the nutrient-dependant root biomass response and the associated feedbacks to soil C decomposition in elevated CO₂.

4.4 Implications

When no N fertilizer was added, elevated CO_2 stimulated aboveground biomass, but reduced root biomass in grasslands. An increased root death as a consequence might have served as substrate for microbes and a C input for soil C pools (Fig. 5). When only N fertilizer was added, both aboveground and root biomass were stimulated, but microbial biomass decreased, suggesting C limitation or chemical inhibition of microbial communities. In addition, C storage in plant biomass limited the C inputs into soil C pools (Fig. 5). When grasslands in elevated CO_2 were fertilized with N, C storage was largest and both root biomass and microbial biomass were stimulated. However, increased cycling of C left soil C pools unaffected (Fig. 5).

Fig. 5. Synthesis of elevated CO_2 effect in grasslands. When no N fertilizer was added, elevated CO_2 stimulated aboveground biomass, but reduced root biomass. An increased root death as a consequence might have served as substrate for microbes and a C input for soil C pools. When only N fertilizer was added, both aboveground and root biomass were stimulated, but microbial biomass was decreased, suggesting C limitation or chemical inhibition of microbial communities. When grasslands in elevated CO_2 were fertilized with N (CO_2xN), C storage was largest and both root biomass and microbial biomass were stimulated. Increased cycling of C left soil C pools unaffected.

Both CO_2 elevation and N addition thus appeared to be limited in their effect by the presence of the other resource: N respectively C. Elevated CO_2 concentrations stimulated plant productivity, but in a less powerful way compared to when N was added. The excess C that plants thus acquired was transferred to the soil microbial community, where an increased rhizodeposition might have alleviated the C limitation of soil microorganisms.

Addition of nitrogen only, on the other hand, created a strong plant growth response. However, the excess C that is provided by CO_2 elevation is lacking for the stimulus to propagate into the soil community. Consequently, as indicated by our results, it is the combination of CO_2 elevation and N addition that increased the C pool of plant biomass and that stimulated the soil community.

5 Conclusions

In grasslands, different management strategies did not affect the overall stimulating effect of elevated CO_2 on aboveground biomass production. However, CO_2 elevation only increased root biomass significantly when aboveground biomass production was optimized (i.e., when N fertilization was applied). We have shown here that, while other nutrients might become important in the future, N availability is essential for the increased C influx under elevated CO_2 to propagate into belowground C pools. However, moderate nutrient additions also promoted decomposition processes in elevated CO₂, reducing the potential for increased soil C storage. The close relationship between root dynamics and soil C storage is a crucial link in plant-soil interactions in terrestrial ecosystems, and determines the potential for increased soil C storage in elevated CO₂. In conclusion, while future elevated CO₂ concentrations and increasing N deposition might increase C storage in plant biomass, increases in soil C storage are small. Because most of the biomass in non-forest ecosystems is short-lived, we suggest the capacity of grasslands to buffer human CO₂ emissions is limited.

Supplementary material related to this article is available online at: http://www.biogeosciences.net/9/ 2247/2012/bg-9-2247-2012-supplement.zip.

Acknowledgements. The authors acknowledge the support of the ESF-network CLIMMANI (Climate Change – Manipulation Experiments in Terrestrial Ecosystems). This research was partly funded by the UA-Research Centre of Excellence ECO. WIJD held a James Cook University International Research Scholarship at the time of writing. Further funding was provided by the Flemish Methusalem Programme.

Edited by: M. Bahn

References

- Aber, J., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G., Kamakea, M., McNulty, S., Currie, W., Rustad, L., and Fernandez, I.: Nitrogen saturation in temperate forest ecosystems – hypotheses revisited, Bioscience, 48, 921–934, 1998.
- Ainsworth, E. A. and Long, S. P.: What have we learned from 15 yr of free-air CO_2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy, New Phytol., 165, 351–371, 2005.
- Allard, V., Newton, P. C. D., Lieffering, M., Soussana, J. F., Carran, R. A., and Matthew, C.: Increased quantity and quality of coarse soil organic matter fraction at elevated CO₂ in a grazed grassland are a consequence of enhanced root growth rate and turnover, Plant Soil, 276, 49–60, 2005.
- Allen, L. H., Albrecht, S. L., Boote, K. J., Thomas, J. M. G., Newman, Y. C., and Skirvin, K. W.: Soil organic carbon and nitrogen accumulation in plots of rhizoma perennial peanut and bahiagrass grown in elevated carbon dioxide and temperature, J. Environ. Qual., 35, 1405–1412, 2006.
- Bazot, S., Ulff, L., Blum, H., Nguyen, C., and Robin, C.: Effects of elevated CO₂ concentration on rhizodeposition from *Lolium perenne* grown on soil exposed to 9 yr of CO₂ enrichment, Soil Biol. Biochem., 38, 729–736, 2006.
- Blank, R. R. and Derner, J. D.: Effects of CO₂ enrichment on plantsoil relationships of *Lepidium latifolium*, Plant Soil, 262, 159– 167, 2004.
- Bloom, A. J., Chapin, F. S. I., and Mooney, H. A.: Resource limitation in plants – an economic analogy, Annu. Rev. Ecol. Evol. S., 6, 363–392, 1985.

- Bloor, J. M. G., Pichon, P., Falcimagne, R., Leadley, P., and Soussana, J.-F.: Effects of Warming, Summer Drought, and CO(2) Enrichment on Aboveground Biomass Production, Flowering Phenology, and Community Structure in an Upland Grassland Ecosystem, Ecosystems, 13, 888–900, 2010.
- Bowman, W. D., Theodose, T. A., Schardt, J. C., and Conant, R. T.: Constraints of nutrient availability on primary production in 2 alpine tundra communities, Ecology, 74, 2085–2097, 1993.
- Bryant, J. P., Chapin, F. S. I., and Klein, D. R.: Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory, Oikos 40, 357–368, 1983.
- Bunce, J. A.: Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions, Oecologia, 140, 1–10, 2004.
- Cardon, Z. G., Hungate, B. A., Cambardella, C. A., Chapin, F. S., Field, C. B., Holland, E. A., and Mooney, H. A.: Contrasting effects of elevated CO₂ on old and new soil carbon pools, Soil Biol. Biochem., 33, 365–373, 2001.
- Cheng, W. and Johnson, D. W.: Elevated CO₂, rhizosphere processes, and soil organic matter decomposition, Plant and Soil, 202, 167–174, 1998.
- Crowley, T. J. and Berner, R. A.: Paleoclimate CO₂ and climate change, Science, 292, 870–872, 2001.
- Curtis, P. S. and Wang, X. Z.: A meta-analysis of elevated CO₂ effects on woody plant mass, form, and physiology, Oecologia, 113, 299–313, 1998.
- Davidson, E. A.: The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860, Nat. Geosci., 2, 659– 662, 2009.
- de Graaff, M. A., Six, J., Harris, D., Blum, H., and van Kessel, C.: Decomposition of soil and plant carbon from pasture systems after 9 yr of exposure to elevated CO₂: impact on C cycling and modeling, Global Change Biol., 10, 1922–1935, 2004.
- de Graaff, M. A., van Groenigen, K. J., Six, J., Hungate, B., and van Kessel, C.: Interactions between plant growth and soil nutrient cycling under elevated CO₂: a meta-analysis, Global Change Biol., 12, 2077–2091, 2006.
- DeForest, J. L., Zak, D. R., Pregitzer, K. S., and Burton, A. J.: Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest, Soil Biol. Biochem., 36, 965–971, 2004.
- Demoling, F., Figueroa, D., and Baath, E.: Comparison of factors limiting bacterial growth in different soils, Soil Biol. Biochem., 39, 2485–2495, 2007.
- Dijkstra, F. A., Blumenthal, D. M., Morgan, J. A., Pendall, E., Carrillo, Y., and Follett, R. F.: Contrasting effects of elevated CO₂ and warming on nitrogen cycling in a semiarid grassland, New Phytologist, 187, 426–437, 2010.
- Dijkstra, F. A., Hobbie, S. E., and Reich, P. B.: Soil processes affected by sixteen grassland species grown under different environmental conditions, Soil Sci. Soc. Am. J., 70, 770–777, 2006.
- Drigo, B., Kowalchuk, G. A., and van Veen, J. A.: Climate change goes underground: effects of elevated atmospheric CO₂ on microbial community structure and activities in the rhizosphere, Biol. Fertility Soils, 44, 667–679, 2008.
- Dukes, J. S., Chiariello, N. R., Cleland, E. E., Moore, L. A., Shaw, M. R., Thayer, S., Tobeck, T., Mooney, H. A., and Field, C. B.: Responses of grassland production to single and multiple global environmental changes, Plos Biol., 3, 1829–

1837, 2005.

- Eswaran, H., Vandenberg, E., and Reich, P.: Organic-carbon in soils of the world, Soil Sci. Soc. Am. J., 57, 192–194, 1993.
- Fitter, A. H., Graves, J. D., Wolfenden, J., Self, G. K., Brown, T. K., Bogie, D., and Mansfield, T. A.: Root production and turnover and carbon budgets of two contrasting grasslands under ambient and elevated atmospheric carbon dioxide concentrations, New Phytol., 137, 247–255, 1997.
- Fog, K.: The effect of added nitrogen on the rate of decomposition of organic-matter, Biol. Rev. Camb. Philos., 63, 433–462, 1988.
- Galloway, J. N.: Transformations of the nitrogen cycle: recent trends, questions, and potential solutions, Science, 320, 889–892, 2008.
- Gifford, R. M.: The global carbon-cycle a viewpoint on the missing sink, Aust. J. Plant Physiol., 21, 1–15, 1994.
- Heath, J., Ayres, E., Possell, M., Bardgett, R. D., Black, H. I. J., Grant, H., Ineson, P., and Kerstiens, G.: Rising atmospheric CO₂ reduces sequestration of root-derived soil carbon, Science, 309, 1711–1713, 2005.
- Hedges, L. V., Gurevitch, J., and Curtis, P. S.: The meta-analysis of response ratios in experimental ecology, Ecology, 80, 1150– 1156, 1999.
- Hoorens, B., Aerts, R., and Stroetenga, M.: Is there a trade-off between the plant's growth response to elevated CO₂ and subsequent litter decomposability?, Oikos, 103, 17–30, 2003.
- Hu, S. J., Tu, C., Chen, X., and Gruver, J. B.: Progressive N limitation of plant response to elevated CO₂: a microbiological perspective, Plant Soil 289, 47–58, 2006.
- Hungate, B. A., Holland, E. A., Jackson, R. B., Chapin, F. S., Mooney, H. A., and Field, C. B.: The fate of carbon in grasslands under carbon dioxide enrichment, Nature, 388, 576–579, 1997.
- Hungate, B. A., van Groenigen, K. J., Six, J., Jastrow, J. D., Lue, Y. Q., de Graaff, M. A., van Kessel, C., and Osenberg, C. W.: Assessing the effect of elevated carbon dioxide on soil carbon: a comparison of four meta-analyses, Global Change Biol., 15, 2020–2034, 2009.
- IPCC: Climate Change 2007: Synthesis report, Contribution of Working Groups I, II and III to the Fourth Assessment Report of the International Panel on Climate Change, edited by: Core Writing Team, Pachauri, R. K. and Reisinger, A., IPCC, Geneva, 2007.
- Janssens, I. A., Dieleman, W., Luyssaert, S., Subke, J. A., Reichstein, M., Ceulemans, R., Ciais, P., Dolman, A. J., Grace, J., Matteucci, G., Papale, D., Piao, S. L., Schulze, E. D., Tang, J., and Law, B. E.: Reduction of forest soil respiration in response to nitrogen deposition, Nat. Geosci., 3, 315–322, 2010.
- Kandeler, E., Tscherko, D., Bardgett, R. D., Hobbs, P. J., Kampichler, C., and Jones, T. H.: The response of soil microorganisms and roots to elevated CO₂ and temperature in a terrestrial model ecosystem, Plant Soil, 202, 251–262, 1998.
- Kanerva, T., Palojarvi, A., Ramo, K., and Manninen, S.: Changes in soil microbial community structure under elevated tropospheric O-3 and CO₂, Soil Biol. Biochem., 40, 2502–2510, 2008.
- Kardol, P., Campany, C. E., Souza, L., Norby, R. J., Weltzin, J. F., and Classen, A. T.: Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old-field ecosystem, Global Change Biology 16, 2676–2687, 2010.

- Keeler, B. L., Hobbie, S. E., and Kellogg, L. E.: Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition, Ecosystems, 12, 1–15, 2009.
- Klironomos, J. N., Ursic, M., Rillig, M., and Allen, M. F.: Interspecific differences in the response of arbuscular mycorrhizal fungi to *Artemisia tridentata* grown under elevated atmospheric CO₂, New Phytol., 138, 599–605, 1998.
- Lal, R.: Soil carbon sequestration impacts on global climate change and food security, Science, 304, 1623–1627, 2004.
- Leadley, P. W., Niklaus, P. A., Stocker, R., and Korner, C.: A field study of the effects of elevated CO₂ on plant biomass and community structure in a calcareous grassland, Oecologia, 118, 39– 49, 1999.
- Lu, M., Zhou, X., Luo, Y., Yang, Y., Fang, C., Chen, J., and Li, B.: Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis, Agr. Ecosyst. Environ., 140, 234–244, 2011.
- Lukac, M., Lagomarsino, A., Moscatelli, M. C., De Angelis, P., Cotrufo, M. F., and Godbold, D. L.: Forest soil carbon cycle under elevated CO₂ – a case of increased throughput?, Forestry, 82, 75–86, 2009.
- Luo, Y. Q., Hui, D. F., and Zhang, D. Q.: Elevated CO₂ stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis, Ecology, 87, 53–63, 2006.
- Lutze, J. L., Gifford, R. M., and Adams, H. N.: Litter quality and decomposition in Danthonia richardsonii swards in response to CO₂ and nitrogen supply over four years of growth, Global Change Biol., 6, 13–24, 2000.
- Marissink, M., Pettersson, R., and Sindhoj, E.: Above-ground plant production under elevated carbon dioxide in a Swedish seminatural grassland, Agr. Ecosyst. Environ., 93, 107–120, 2002.
- Morgan, J. A., Pataki, D. E., Korner, C., Clark, H., Del Grosso, S. J., Grunzweig, J. M., Knapp, A. K., Mosier, A. R., Newton, P. C. D., Niklaus, P. A., Nippert, J. B., Nowak, R. S., Parton, W. J., Polley, H. W., and Shaw, M. R.: Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO₂, Oecologia, 140, 11–25, 2004b.
- Morgan, J. A., Mosier, A. R., Milchunas, D. G., LeCain, D.R., Nelson, J. A., and Parton, W. J.: CO₂ enhances productivity, alters species composition, and reduces digestibility of shortgrass steppe vegetation. Ecological Applications 14, 208–219, 2004b.
- Neff, J. C., Townsend, A. R., Gleixner, G., Lehman, S. J., Turnbull, J., and Bowman, W. D.: Variable effects of nitrogen additions on the stability and turnover of soil carbon, Nature, 419, 915–917, 2002.
- Niklaus, P. A., Alphei, D., Ebersberger, D., Kampichler, C., Kandeler, E., and Tscherko, D.: Six years of in situ CO₂ enrichment evoke changes in soil structure and soil biota of nutrient-poor grassland, Global Change Biol., 9, 585–600, 2003.
- Niklaus, P. A. and Korner, C.: Responses of soil microbiota of a late successional alpine grassland to long term CO₂ enrichment, Plant Soil, 184, 219–229, 1996.
- Niklaus, P. A. and Korner, C.: Synthesis of a six-year study of calcareous grassland responses to in situ CO₂ enrichment, Ecol. Monogr., 74, 491–511, 2004.
- Nosberger, J., Blum, H., and Fuhrer, J.: Crop ecosystem responses to climatic change: productive grasslands, Clim. Change Global Crop Prod., 271–291, doi:10.1079/9780851994390.0271, 2000.

- Nowak, R. S., Ellsworth, D. S., and Smith, S. D.: Functional responses of plants to elevated atmospheric CO_2 do photosynthetic and productivity data from FACE experiments support early predictions?, New Phytol., 162, 253–280, 2004.
- Paterson, E., Thornton, B., Midwood, A. J., Osborne, S. M., Sim, A., and Millard, P.: Atmospheric CO₂ enrichment and nutrient additions to planted soil increase mineralisation of soil organic matter, but do not alter microbial utilisation of plant- and soil C-sources, Soil Biol. Biochem., 40, 2434–2440, 2008.
- Pearson, P. N. and Palmer, M. R.: Atmospheric carbon dioxide concentrations over the past 60 million yr, Nature, 406, 695–699, 2000.
- Pendall, E., Bridgham, S., Hanson, P. J., Hungate, B., Kicklighter, D. W., Johnson, D. W., Law, B. E., Luo, Y. Q., Megonigal, J. P., Olsrud, M., Ryan, M. G., and Wan, S. Q.: Below-ground process responses to elevated CO₂ and temperature: a discussion of observations, measurement methods, and models, New Phytol., 162, 311–322, 2004.
- Pendall, E. and King, J. Y.: Soil organic matter dynamics in grassland soils under elevated CO₂: insights from long-term incubations and stable isotopes, Soil Biol. Biochem., 39, 2628–2639, 2007.
- Pendall, E., Osanai, Y., Williams, A. L., and Hovenden, M. J.: Soil carbon storage under simulated climate change is mediated by plant functional type, Global Change Biol., 17, 505–514, 2011.
- Pregitzer, K. S., Burton, A. J., Zak, D. R., and Talhelm, A. F.: Simulated chronic nitrogen deposition increases carbon storage in northern temperate forests, Global Change Biol., 14, 142–153, 2008.
- Rogers, H. H., Runion, G. B., and Krupa, S. V.: Plant-responses to atmospheric CO₂ enrichment with emphasis on roots and the rhizosphere, Environ. Pollut., 83, 155–189, 1994.
- Rosenberg, M. S., Adams, D. C., and Gurevitch, J.: Metawin: Statistical Software for Meta-Analysis. Sinauer Associates, Inc., Sunderland, Massachusetts, 2000.
- Ross, D. J., Newton, P. C. D., and Tate, K. R.: Elevated [CO₂] effects on herbage production and soil carbon and nitrogen pools and mineralization in a species-rich, grazed pasture on a seasonally dry sand, Plant Soil, 260, 183–196, 2004.
- Schappi, B. and Korner, C.: Growth responses of an alpine grassland to elevated CO₂, Oecologia, 105, 43–52, 1996.
- Sonnemann, I. and Wolters, V.: The microfood web of grassland soils responds to a moderate increase in atmospheric CO₂, Global Change Biol., 11, 1148–1155, 2005.
- Soussana, J. F. and Luscher, A.: Temperate grasslands and global atmospheric change: a review, Grass Forage Sci., 62, 127–134, 2007.

- Soussana, J. F., Allard, V., Pilegaard, K., Ambus, P., Amman, C., Campbell, C., Ceschia, E., Clifton-Brown, J., Czobel, S., Domingues, R., Flechard, C., Fuhrer, J., Hensen, A., Horvath, L., Jones, M., Kasper, G., Martin, C., Nagy, Z., Neftel, A., Raschi, A., Baronti, S., Rees, R. M., Skiba, U., Stefani, P., Manca, G., Sutton, M., Tubaf, Z., and Valentini, R.: Full accounting of the greenhouse gas (CO₂, N₂O, CH₄) budget of nine European grassland sites, Agr. Ecosyst. Environ., 121, 121–134, 2007.
- Sowerby, A., Blum, H., Gray, T. R. G., and Ball, A. S.: The decomposition of Lolium perenne in soils exposed to elevated CO₂: comparisons of mass loss of litter with soil respiration and soil microbial biomass, Soil Biol. Biochem., 32, 1359–1366, 2000.
- Stocker, R., Korner, C., Schmid, B., Niklaus, P. A., and Leadley, P. W.: A field study of the effects of elevated CO₂ and plant species diversity on ecosystem-level gas exchange in a planted calcareous grassland, Global Change Biol., 5, 95–105, 1999.
- Treonis, A. M. and Lussenhop, J. F.: Rapid response of soil protozoa to elevated CO₂, Biol. Fert. Soils, 25, 60–62, 1997.
- Treseder, K. K.: Nitrogen additions and microbial biomass: a metaanalysis of ecosystem studies, Ecol. Lett., 11, 1111–1120, 2008.
- van Groenigen, K. J., Six, J., Hungate, B. A., de Graaff, M. A., van Breemen, N., and van Kessel, C.: Element interactions limit soil carbon storage, P. Natl. Acad. Sci. USA, 103, 6571–6574, 2006.
- van Kleunen, M., Stephan, M. A., and Schmid, B.: [CO₂] and density-dependent competition between grassland species, Global Change Biol., 12, 2175–2186, 2006.
- Volder, A., Gifford, R. M., and Evans, J. R.: Effects of elevated atmospheric CO₂, cutting frequency, and differential day/night atmospheric warming on root growth and turnover of Phalaris swards, Global Change Biol., 13, 1040–1052, 2007.
- Volk, M., Niklaus, P. A., and Korner, C.: Soil moisture effects determine CO₂ responses of grassland species, Oecologia, 125, 380– 388, 2000.
- Xia, J. Y., Niu, S. L., and Wan, S. Q.: Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe, Global Change Biol., 15, 1544–1556, 2009.
- Zak, D. R., Pregitzer, K. S., Curtis, P. S., Teeri, J. A., Fogel, R., and Randlett, D. L.: Elevated atmospheric CO_2 and feedback between carbon and nitrogen cycles, Plant Soil, 151, 105–117, 1993.
- Zak, D. R., Pregitzer, K. S., King, J. S., and Holmes, W. E.: Elevated atmospheric CO₂, fine roots and the response of soil microorganisms: a review and hypothesis, New Phytol., 147, 201–222, 2000.