1 High-resolution Mapping of Forest Carbon Stocks in the Colombian Amazon

- 2 Supplementary Material
- 3

4 (I) Field validation

A summary of the allometric equations used, and species encountered is provided in Tables S1
and S2, respectively.

7 (II) Model fitting techniques

8 The ACD validation model (eq. 3) and H-D model (Table S1) were each fit using non-linear

9 Maximum Likelihood Analysis in R, and by incorporating a third equation parameter in the form

10 of a non-arithmetic error term (i.e., $y = ax^b + x^k * \varepsilon$) to account for heteroscedasticity common

11 to previously published ACD-MCH and H-D relationships. This fitting technique is analogous to

12 fitting a linear model to log-transformed x and y data, thereby avoiding the need for log-

13 transformation and back-transformation (Baskerville, 1972; Mascaro et al., 2011b).

14 (III) Additional information about the regional stratification approach

15 For the final regional stratification, a total of 147 Landsat Thematic Mapper (TM) and Enhanced

16 Thematic Mapper Plus (ETM+) images were processed through CLASIite. This dataset included

17 72 images for 2010, 31 for 1990, 20 for 2000, and 24 for 2005. Employing a semi-automated

18 approach to masking clouds, smoke, haze and shadows, we constructed cloud-free regional

- 19 maps at 30 m resolution.
- 20 Median ACD values determined from LiDAR-scale ACD for each land-cover class are listed in
- Table S3. If a class in the final stratification map did not contain sufficient LiDAR coverage (e.g.,
- less than the targeted 1% or less than 100 ha), we assigned the median ACD value of a broader
- class on the preceding node of the stratification decision tree (Figure 2c of main text). For
- 24 example, if the high TRI stratum for a particular catchment did not have sufficient coverage, we
- assigned the median ACD value of the same TRI stratum for all catchments.
- 26 For the stratification approach, catchment boundaries were derived from SRTM data
- 27 (Hydrology Toolbox, ArcGIS 10, ESRI Inc., USA), which resulted in additional ACD sub-
- stratification by more than 60 Mg C ha⁻¹ in some cases. This addition supported by a
- 29 stratification approach allowed for capturing discrete geographic changes in carbon stocks
- 30 that may otherwise have been missed in the regional analyses, similar to the localized effects of
- 31 terrain variation as expressed in the TRI.

32 (IV) Regression equation used for continuous fields map of ACD

Following the results of the correlation analyses (see Methods of main text), we conducted 33 34 multiple least squares regression analyses using elevation (ELEV), slope, aspect and a terrain ruggedness index (TRI) derived from NASA Shuttle Radar Topography Mission (SRTM) data, and 35 36 photosynthetic vegetation coverage fraction (PV) and soil cover fraction derived from CLASlite. Through iterations of regression analyses using all of these variables, as well as their interaction 37 terms, we determined that only PV and ELEV influenced the fit of the model at the scale of the 38 entire study region. The final least squares regression of these variables yielded the following 39 40 model:

$$ACD = -3553.5097 - 0.1691 \times ELEV + 79.9664 \times PV - 0.4323 \times PV^{2}$$

41 with an adjusted r^2 of 0.20 and a residual standard error of 33.85 Mg C ha⁻¹. All terms were

42 significant at P < 0.0001. This equation, which ingested all available LiDAR data was used

43 estimate ACD at the regional level.

44 While the above model was used for final mapping (i.e., in conjunction with non-forest carbon

- 45 stock estimations from CLASIIte), we also created a second model using a 75% subset of the
- LiDAR data for the purposes of estimating errors in the remaining 25% of the data. This modelwas:

$$ACD = -3669.4719 - 0.1672 \times ELEV + 82.5010 \times PV - 0.4462 \times PV^{2}$$

48 with an adjusted r^2 of 0.19 and a residual standard error of 34.19 Mg C ha⁻¹. All terms were 49 significant at P < 0.0001.

50 (V) Sources of error in linking LiDAR-based and plot-based estimates of ACD

51 Standard plot protocol in the field (e.g., Condit, 1998) dictates that trees are considered to be inside a plot if more than 50% of their main stem is contained within the plot boundary. 52 53 However, LiDAR energy is returned by the 3-D components of forest canopies, including tree crowns and branches. Thus, a plot within the LiDAR coverage includes portions of crowns that 54 55 overhang the edge of the plot, and excludes portions that extent beyond the plot edge. In effect, this disagreement between LiDAR and field estimated ACD produces a false error in 56 typical LiDAR calibrations, including those of the type underlying the universal LiDAR model. 57 58 Plot size also has a considerable effect, with errors decreasing as plot size increases according to the inverse square root of the plot area. 59

- 60 Mascaro et al. (2011a) demonstrated the propagation of each of these errors using a 50-ha plot
- with mapped trees. Empirically, relative errors were 23 Mg C ha⁻¹ at 0.09 ha resolution (i.e., a
- 62 median value based on measurements at 0.08 and 0.1 ha resolution), or 21.5% of the mean

- carbon stock of the entire 50-ha area (107 Mg C ha⁻¹). Likewise, errors were 10.7 Mg C ha⁻¹ at 1
- 64 ha resolution (10.0%).

66 Supplemental References

- Asner, G. P., Powell, G. V. N., Mascaro, J., Knapp, D. E., Clark, J. K., Jacobson, J., Kennedy Bowdoin, T., Balaji, A., Paez-Acosta, G., Victoria, E., Secada, L., Valqui, M., and Hughes,
 R.F.: High-resolution forest carbon stocks and emissions in the Amazon, P. Natl. A. Sci.,
 107, 16738-16742, 2010.
- Baskerville, G.: Use of logarithmic regression in the estimation of plant biomass, Canadian
 Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 2, 49-53, 1972.
- Chao, K.-J., Phillips, O. L., Baker, T. R., Peacock, J., Lopez-Gonzalez, G., Vásquez Martínez, R.,
 Monteagudo, A., and Torres-Lezama, A.: After trees die: Quantities and determinants of
 necromass across amazonia, Biogeosciences, 6, 1615-1626, 2009.
- Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard,
 F., Higuchi, N., Puig, H., Riéra, B., and Yamakura, T.: Tree allometry and improved
 estimation of carbon stocks and balance in tropical forests, Oecologia, 145, 87-99, DOI
 10.1007/s00442-005-0100-x, 2005.
- Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., and Zanne, A. E.: Towards a
 worldwide wood economics spectrum, Ecology Letters, 12, 351-366, 2009.
- Condit, R.: Tropical forest census plots, Springer-Verlag and R. G. Landes Company, Berlin,
 Germany and Georgetown, Texas, USA, 1998.
- Mascaro, J., Detto, M., Asner, G. P., and Muller-Landau, H. C.: Evaluating uncertainty in
 mapping forest carbon with airborne LiDAR, Remote Sens. Environ., 115, 3770-3774,
 2011a.
- Mascaro, J., Litton, C. M., Hughes, F. R., Uowolo, A., and Schnitzer, S. A.: Minimizing bias in
 biomass allometry: Model selection and log-transformation of data, Biotropica, 43, 649 653, 2011b.
- Riley, S. J., DeGloria, S. D., and Elliot, R.: A terrain ruggedness index that quantifies topographic
 heterogeneity, Intermountain Journal of Science, 5, 23-27, 1999.
- ter Steege, H., Pitman, N. C. A., Phillips, O. L., Chave, J., Sabatier, D., Duque, A., Molino, J. F.,
 Prevost, M. F., Spichiger, R., Castellanos, H., von Hildebrand, P., and Vasquez, R.:
- 94 Continental-scale patterns of canopy tree composition and function across amazonia,
- 95 Nature, 443, 444-447, 10.1038/nature05134, 2006.

97 Supplemental Figures

- 98
- 99
- 100 **Figure S1.** Selected variables used to stratify the study area: (a) digital elevation model (DEM)
- 101 derived from the NASA Shuttle Radar Topography Mission (STRM), (b) terrain ruggedness index
- 102 (TRI), (c) fractional cover of photosynthetic vegetation (PV) derived from CLASlite, and (d)
- 103 drainage catchments. Elevation and PV were also used as inputs to the regression approach.

Figure S2. (a) Relationship between field-estimated basal area and LiDAR-derived mean canopy
 profile height (termed the Stocking Coefficient). (b) Relationship between basal-area-weighted
 wood density and LiDAR derived mean canopy profile height.

118 trees > 50 cm dbh were measured for height, as well as several trees of smaller diameters. For

119 field ACD validation, heights of the remaining smaller trees were estimated using the model as

120 shown (model parameters in Table S1).

125 Figure S4. Differences in the distribution of forest aboveground carbon density (ACD) at

different elevations for landscapes with low (0-5) and high (5+) values of the terrain ruggedness

127 index (TRI; Riley et al., 1999). Median ACD values for each distribution are shown in the lower

128 right of each panel.

129

132 Figure S5. Side-by-side comparison of LiDAR-based ACD (left) and regionally-mapped ACD

133 (right) according to the stratification approach.

Stratification Approach

- 136 **Figure S6.** Mean aboveground carbon density (ACD; Mg/ha) as predicted by the stratification and
- 137 regression approaches to upscaling, compared to the observed estimate derived from airborne LiDAR.
- 138 Each point represents the validation region of one of 38 flight polygons. These areas comprise the 25%
- 139 of the LiDAR coverage remaining after excluding a 2600 m strip down the center of each polygon that
- 140 was used to train the upscaling models. The line depicts a 1:1 relationship.

- 141 **Table S1.** Allometric models used to estimate aboveground biomass (AGB; kg) or height (H; m).
- 142 Diameters (D, cm) were measured at breast height (1.3 m from the base) or above buttress.
- 143 Wood densities (ρ ; g cm⁻³) were taken from a global wood density database (Chave et al., 2009)
- 144 based on species-, genus-, or family-level identification (see Table S2).

Parameter	Equation	r²	Reference
AGB	0.0776*(D ² *H* <i>p</i>) ^{0.94}	0.96 ¹	Chave et al. (2005)
Н	5.2497*D ^{0.4258}	0.68	This study
AGB	π*(0.5*D) ² * <i>ρ</i> *H/10	n/a²	Asner et al. (2010)
AGB	π*(0.5*D) ² *(1.17* <i>ρ</i> -0.21)*H/10*0.5	n/a²	Asner et al. (2010)

¹ coefficient of determination for ln(y)

² Palm and dead tree biomass was estimated using the formula for volume of a cylinder, corrected for wood density, and in the case of dead trees for trunk taper and decay typical of standing dead Amazonian trees (Chao et al., 2009).

145

147 **Table S2.** Summary of all stems encountered in the field validation plots. Wood densities were

taken from Chave et al. (2009) according to either family or genus-level identification. When a

value was not available from Chave et al. (2009), a default regional value of 0.58 was applied

150 (ter Steege et al., 2006).

Family	Genus	Species	Number of Stems	Wood Density (g cm⁻³)	WD Determination	Reference
ANACARDIACEAE			2	0.56	Family	Chave
ANACARDIACEAE	Tapirira	spp.	6	0.37	Genus	Chave
ANNONACEAE			37	0.56	Family	Chave
ANNONACEAE	Duguetia	spp.	1	0.73	Genus	Chave
ANNONACEAE	Xylopia	spp.	36	0.59	Genus	Chave
APOCYNACEAE			33	0.57	Family	Chave
APOCYNACEAE	Aspidosperma	spp.	15	0.75	Genus	Chave
APOCYNACEAE	Couma	macrocarpa	1	0.53	Genus	Chave
APOCYNACEAE	Couma	spp.	3	0.53	Genus	Chave
APOCYNACEAE	Hymatanthus	spp.	1	0.55	Genus	Chave
ARALIACEAE	Schefflera	spp.	2	0.39	Genus	Chave
ARECACEAE			1	0.56	Family	Chave
ARECACEAE	Astrocaryum	spp.	1	0.51	Genus	Chave
ARECACEAE	Euterpe	precatoria	9	0.39	Genus	Chave
ARECACEAE	Iriartea	spp.	1	0.27	Genus	Chave
ARECACEAE	Mauritiella	spp.	8	0.58	Region	Default
ARECACEAE	Oenocarpus	bacaba	1	0.68	Genus	Chave
ARECACEAE	Oenocarpus	bataua	45	0.68	Genus	Chave
ARECACEAE	Oenocarpus	spp.	10	0.68	Genus	Chave
ARECACEAE	Socratea	exhorriza	2	0.23	Genus	Chave
BIGNONIACEAE	Callychlamys	spp.	1	0.58	Region	Default
BIXACEAE	Bixa	spp.	2	0.35	Genus	Chave
BOMBACACEAE			9	0.48	Family	Chave
BOMBACACEAE	Pachira	spp.	2	0.48	Genus	Chave
BOMBACACEAE	Scleronema	spp.	9	0.61	Genus	Chave
BURSERACEAE			21	0.52	Family	Chave
BURSERACEAE	Dacryodes	spp.	1	0.57	Genus	Chave
BURSERACEAE	Protium	spp.	8	0.57	Genus	Chave
CAESALPINIACEAE			36	0.68	Family	Chave
CAESALPINIACEAE	Hymenaea	spp.	1	0.80	Genus	Chave
CAESALPINIACEAE	Macrolobium	spp.	19	0.62	Genus	Chave
CAESALPINIACEAE	Tachigali	spp.	16	0.58	Genus	Chave
CARYOCARIACEAE			1	0.70	Family	Chave
CARYOCARIACEAE	Caryocar	spp.	4	0.69	Genus	Chave
CECROPIACEAE			4	0.34	Family	Chave

Family	Genus	Species	Number of Stems	Wood Density (g cm ⁻³)	WD Determination	Reference
CECROPIACEAE	Cecropia	spp.	2	0.34	Genus	Chave
CECROPIACEAE	Pourouma	spp.	13	0.39	Genus	Chave
CELASTRACEAE			5	0.66	Family	Chave
CELASTRACEAE	Goupia	glabra	2	0.73	Genus	Chave
CELASTRACEAE	Goupia	spp.	1	0.73	Genus	Chave
CELASTRACEAE	Lagupia	spp.	1	0.58	Region	Default
CHRYSOBALANACEAE			67	0.78	Family	Chave
CHRYSOBALANACEAE	Licania	spp.	4	0.82	Genus	Chave
CLUSIACEAE			8	0.65	Family	Chave
CLUSIACEAE	Caraipa	spp.	4	0.66	Genus	Chave
CLUSIACEAE	Clusia	spp.	3	0.68	Genus	Chave
CLUSIACEAE	Tovomita	spp.	7	0.70	Genus	Chave
CLUSIACEAE	Vismia	spp.	3	0.49	Genus	Chave
COMBRETACEAE			1	0.60	Family	Chave
COMBRETACEAE	Buchenavia	spp.	4	0.75	Genus	Chave
COMBRETACEAE	Conceveiba	spp.	1	0.41	Genus	Chave
EBENACEAE	Dyospiros	spp.	1	0.68	Genus	Chave
ELAEOCARPACEAE			5	0.55	Family	Chave
ELAEOCARPACEAE	Sloanea	spp.	3	0.61	Genus	Chave
EUPHORBIACEAE			10	0.51	Family	Chave
EUPHORBIACEAE	Conceveiba	spp.	7	0.41	Genus	Chave
EUPHORBIACEAE	Hevea	spp.	73	0.48	Genus	Chave
EUPHORBIACEAE	Mabea	spp.	14	0.61	Genus	Chave
EUPHORBIACEAE	Senefeldera	spp.	9	0.78	Genus	Chave
FABACEAE			45	0.68	Family	Chave
FABACEAE	Clatrotropis	macrocarpa	1	0.79	Genus	Chave
FABACEAE	Clatrotropis	spp.	75	0.79	Genus	Chave
FABACEAE	Ormosia	spp.	2	0.58	Genus	Chave
FABACEAE	Swartzia	spp.	1	0.85	Genus	Chave
HUMIRIACEAE			8	0.77	Family	Chave
ICACINACEAE			12	0.58	Family	Chave
LAURACEAE			50	0.56	Family	Chave
LAURACEAE	Ocotea	spp.	5	0.54	Genus	Chave
LECYTHIDACEAE			113	0.70	Family	Chave
LECYTHIDACEAE	Eschweilera	spp.	12	0.83	Genus	Chave
MELASTOMATACEAE			3	0.67	Family	Chave
MELASTOMATACEAE	Miconia	spp.	1	0.63	Genus	Chave
MIMOSACEAE			5	0.68	Family	Chave
MIMOSACEAE	Inga	spp.	13	0.58	Genus	Chave
MIMOSACEAE	Parkia	spp.	17	0.46	Genus	Chave

Family	Genus	Species	Number Wood Dens of Stems (g cm ⁻³)		WD Determination	Reference
MIMOSACEAE	Zygia	spp.	16	0.82	Genus	Chave
MORACEAE			65	0.54	Family	Chave
MORACEAE	Ficus	spp.	1	0.41	Genus	Chave
MORACEAE	Pseudolmedia	spp.	2	0.67	Genus	Chave
MYRISTICACEAE			33	0.51	Family	Chave
MYRISTICACEAE	Iryanthera	spp.	30	0.59	Genus	Chave
MYRISTICACEAE	Virola	spp.	34	0.48	Genus	Chave
MYRTACEAE			33	0.77	Family	Chave
NYCTAGINACEAE			2	0.52	Family	Chave
OLACACEAE			3	0.76	Family	Chave
OLACACEAE	Minquartia	spp.	4	0.79	Genus	Chave
POLYGONACEAE	Coccoloba	spp.	2	0.69	Genus	Chave
RUBIACEAE			56	0.64	Family	Chave
SAPINDACEAE			6	0.69	Family	Chave
SAPINDACEAE	Allophyllus	spp.	4	0.52	Genus	Chave
SAPINDACEAE	Cupania	spp.	2	0.61	Genus	Chave
SAPOTACEAE			151	0.70	Family	Chave
SAPOTACEAE	Manilkara	spp.	3	0.89	Genus	Chave
SAPOTACEAE	Micropholis	spp.	20	0.66	Genus	Chave
SAPOTACEAE	Pouteria	spp.	6	0.69	Genus	Chave
STERCULIACEAE			5	0.48	Family	Chave
STERCULIACEAE	Sterculia	spp.	5	0.40	Genus	Chave
STERCULIACEAE	Theobroma	spp.	4	0.53	Genus	Chave
TILIACEAE			14	0.48	Family	Chave
TILIACEAE	Apeiba	spp.	24	0.25	Genus	Chave
TILIACEAE	Mollia	spp.	12	0.49	Genus	Chave
VERBENACEAE	Vitex	spp.	1	0.57	Genus	Chave
VIOLACEAE			4	0.65	Family	Chave
VIOLACEAE	Rinorea	spp.	1	0.68	Genus	Chave
VOCHYSIACEAE			19	0.55	Family	Chave
VOCHYSIACEAE	Erisma	spp.	42	0.57	Genus	Chave
VOCHYSIACEAE	Qualea	spp.	3	0.65	Genus	Chave
VOCHYSIACEAE	Vochysia	spp.	2	0.49	Genus	Chave
Unknown			499	0.58	Region	Default
Total stems			2068			
Unweighted mean WD)			0.59		
% Family determination	'n				41.92	
% Genus determinatio				33.46		
% Region determination	on				24.61	

151 **Table S3.** Summary of vegetation classes used in final regional stratification. Elevation (m) a.s.l.

152 (ELEV), fractional cover (%) of photosynthetic vegetation (PV), terrain ruggedness index (TRI),

- and catchment (CM) are shown. Mean, median, and standard deviation of LiDAR-based
- aboveground carbon density (ACD) are given in Mg C ha⁻¹. Total extent of LiDAR coverage (ha)
- and total extent of each class in the regional ACD map (ha) are provided, as well as the relative
- 156 coverage of LiDAR (%) within each class. An asterisk (*) indicates that ACD statistics were
- 157 calculated from a broader class due to < 100 ha of LiDAR coverage.

CLASS NUMBER		ELEV	PV	TRI	СМ	Mean ACD	Median ACD	St. Dev. ACD	LiDAR (ha)	Map (ha)	Cover (%)
Non-forest											
1			(0,20]			3.1	0.2	8.7	944	42429	2.22
2			(20,40]			4.0	0.4	10.8	6152	226653	2.71
3			(40,60]			4.3	0.6	10.8	22661	735553	3.08
4			(60,80]			12.9	5.4	22.7	35437	1062902	3.33
5			(80,100]			40.5	32.9	35.4	6296	216462	2.91
Deforestati	on regrowth										
6	5 Years					29.8	21.8	28.9	582	21356	2.73
7	10 Years					30.4	23.1	26.5	2230	57978	3.85
Disturbance	e regrowth										
8	All ages					53.0	46.6	38.5	1022	31506	3.24
Forest											
9*		< 100	[80,84)			98.6	100.3	26.6	15	4314	0.35
10		< 100	≥ 97			98.4	100.7	28.5	105	5339	1.96
11		[100,125)	[80,84)			74.0	73.3	37.5	113	4254	2.67
12		[100,125)	≥ 97			67.2	67.3	34.1	178	4896	3.64
13		[125,150)	[80,84)			85.7	86.2	36.1	914	9442	9.68
14		[125,150)	≥ 97			107.7	111.5	38.6	277	4864	5.69
15		[150,175)	[80,84)			87.0	91.1	43.9	487	11998	4.06
16		[150,175)	≥ 97			108.4	107.0	39.3	142	4291	3.31
17		[175,200)	[80,84)			48.8	39.6	39.0	1100	22577	4.87
18		[175,200)	≥ 97			90.7	88.1	42.7	664	17021	3.90
19		[200,225)	[80,84)			37.0	25.0	35.0	1683	43820	3.84
20*		[200,225)	≥ 97			104.7	105.1	49.3	671	36875	1.82
21		[225,250)	[80,84)			41.4	32.6	35.4	1518	44846	3.38
22		[225,250)	≥ 97			90.2	86.7	30.9	1322	62927	2.10
23		[250,275)	[80,84)			41.7	31.9	35.6	849	40519	2.10
24		[250,275)	≥ 97			92.0	89.8	29.4	651	56393	1.15
25		[275,300)	[80,84)			41.1	29.9	35.8	587	25592	2.29
26		[275,300)	≥ 97			88.2	86.8	22.5	1499	31768	4.72
27		[300,325)	[80,84)			33.1	20.0	36.5	415	14345	2.90
28		[300,325)	≥ 97			89.0	86.9	25.9	1384	27924	4.96

29	[325,350)	[80,84)			25.8	15.1	30.7	418	9174	4.55
30	[325,350)	≥ 97			91.9	92.6	35.2	535	24660	2.17
31	[350,375)	[80,84)			31.3	19.8	32.3	268	6112	4.39
32	[350,375)	≥ 97			82.7	81.9	37.9	349	19915	1.75
33	[375,400)	[80,84)			36.6	24.2	34.4	244	4576	5.33
34	[375,400)	≥ 97			81.9	83.3	29.3	464	13962	3.32
35	[400,500)	[80,84)			35.7	17.9	39.1	673	9498	7.09
36	[400,500)	≥ 97			69.4	65.7	31.3	664	27491	2.42
37	≥ 500	[80,84)			33.1	16.4	35.0	600	8175	7.34
38	≥ 500	≥ 97			72.4	74.6	34.5	142	15284	0.93
39	< 100	[84,97)	[0,5)		92.5	89.2	30.6	451	17746	2.54
40*	< 100	[84,97)	≥ 5	F	98.8	100.4	26.3	0	53342	0.00
41	< 100	[84,97)	≥ 5	н	98.8	100.4	26.3	2129	99273	2.14
42	[100, 125)	[84,97)	[0,5)		40.3	19.9	39.9	738	27057	2.73
43	[100, 125)	[84 <i>,</i> 97)	≥ 5	F	118.7	119.9	25.9	1051	295063	0.36
44	[100, 125)	[84,97)	≥ 5	н	112.7	118.4	39.3	8159	480575	1.70
45	[125, 150)	[84,97)	[0,5)		89.5	96.1	33.9	2521	22465	11.22
46	[125, 150)	[84,97)	≥ 5	F	134.7	137.4	30.7	12033	487044	2.47
47	[125, 150)	[84,97)	≥ 5	н	125.3	126.6	28.7	35978	894347	4.02
48*	[125, 150)	[84,97)	≥ 5	Т	127.7	129.0	29.5	0	1075	0.00
49	[150, 175)	[84,97)	[0,5)		89.1	92.6	25.5	3120	64763	4.82
50*	[150, 175)	[84,97)	≥5	С	124.4	124.5	29.2	0	288	0.00
51	[150, 175)	[84,97)	≥5	D	67.5	70.0	19.7	308	854	35.99
52	[150, 175)	[84,97)	≥5	F	118.7	118.1	34.1	8334	498378	1.67
53*	[150, 175)	[84,97)	≥5	G	124.4	124.5	29.2	0	59239	0.00
54	[150, 175)	[84,97)	≥5	н	127.3	126.5	26.0	22558	570354	3.96
55*	[150, 175)	[84,97)	≥ 5	Т	124.4	124.5	29.2	0	3685	0.00
56	[175, 200)	[84,97)	[0 <i>,</i> 5)		70.4	72.5	32.0	1519	28143	5.40
57	[175, 200)	[84,97)	≥ 5	С	54.8	55.1	26.9	6022	51134	11.78
58	[175, 200)	[84,97)	≥ 5	D	84.8	84.7	26.7	6124	64085	9.56
59	[175, 200)	[84,97)	≥ 5	F	111.8	112.9	29.6	20528	789486	2.60
60	[175, 200)	[84,97)	≥ 5	G	85.2	87.6	33.9	1151	333779	0.34
61	[175, 200)	[84,97)	≥ 5	н	119.5	120.3	25.3	15989	762784	2.10
62*	[175, 200)	[84,97)	≥ 5	Т	103.4	107.4	34.9	0	2491	0.00
63	[200, 225)	[84,97)	[0 <i>,</i> 5)		47.9	46.5	35.9	2085	108875	1.91
64	[200, 225)	[84,97)	≥ 5	С	46.5	44.5	28.5	4262	120186	3.55
65	[200, 225)	[84,97)	≥ 5	D	71.6	70.2	30.3	4185	201630	2.08
66	[200, 225)	[84,97)	≥ 5	Е	73.0	71.9	28.1	1920	42735	4.49
67	[200, 225)	[84,97)	≥ 5	F	114.7	116.4	29.5	23211	759033	3.06
68	[200, 225)	[84,97)	≥ 5	G	102.8	107.2	29.7	3240	395970	0.82
69	[200, 225)	[84,97)	≥ 5	Н	114.2	116.6	25.6	18553	794812	2.33
70*	[200, 225)	[84,97)	≥ 5	Т	103.9	109.6	35.3	0	898	0.00
71	[225, 250)	[84,97)	[0,5)		73.1	70.4	36.2	747	30607	2.44

72	[225, 250)	[84,97)	≥5	С	54.5	54.8	23.6	6861	293979	2.33
73	[225, 250)	[84,97)	≥5	D	56.7	55.5	28.7	1159	101518	1.14
74	[225, 250)	[84,97)	≥ 5	Е	106.4	107.7	25.7	15949	261248	6.10
75	[225, 250)	[84,97)	≥ 5	F	110.3	113.0	28.0	20096	667876	3.01
76	[225 <i>,</i> 250)	[84,97)	≥ 5	G	105.2	109.6	31.4	2400	204874	1.17
77	[225, 250)	[84,97)	≥ 5	Н	109.6	112.7	27.8	21715	921188	2.36
78*	[225, 250)	[84,97)	≥5	Т	102.5	107.4	32.3	0	<1	0.00
79	[250, 275)	[84,97)	[0,5)		80.6	82.3	25.5	1807	61716	2.93
80	[250, 275)	[84,97)	≥5	С	63.2	63.6	25.2	5899	288751	2.04
81	[250, 275)	[84,97)	≥5	D	75.1	75.1	49.8	173	22553	0.77
82	[250, 275)	[84,97)	≥5	Е	102.2	102.1	23.4	2978	129279	2.30
83	[250, 275)	[84,97)	≥5	F	98.8	99.5	27.0	13517	475777	2.84
84*	[250, 275)	[84,97)	≥ 5	G	92.6	94.9	31.8	29	114640	0.02
85	[250, 275)	[84,97)	≥5	н	101.7	106.7	33.0	6906	338265	2.04
86	[275, 300)	[84,97)	[0,5)		79.3	79.1	17.5	699	6985	10.01
87	[275, 300)	[84,97)	≥5	С	74.7	76.6	24.4	5307	147247	3.60
88*	[275, 300)	[84,97)	≥5	D	86.3	88.1	28.0	62	6110	1.02
89	[275, 300)	[84,97)	≥5	Е	100.4	98.9	19.4	1083	17128	6.32
90	[275, 300)	[84,97)	≥5	F	90.1	91.8	26.4	12727	340886	3.73
91*	[275, 300)	[84,97)	≥5	G	86.3	88.1	28.0	0	42191	0.00
92	[275, 300)	[84,97)	≥ 5	Н	85.8	91.3	39.5	1650	69960	2.36
93*	[300, 325)	[84,97)	[0,5)		86.1	90.2	34.3	82	2228	3.68
94	[300, 325)	[84,97)	≥5	С	77.9	79.1	25.7	2389	87873	2.72
95	[300, 325)	[84,97)	≥5	D	66.8	40.7	74.2	102	2073	4.92
96	[300, 325)	[84,97)	≥ 5	Е	104.3	104.2	19.5	2678	21621	12.39
97	[300, 325)	[84,97)	≥5	F	84.6	89.6	37.6	5607	123349	4.55
98*	[300, 325)	[84,97)	≥5	G	86.1	90.2	34.3	0	11702	0.00
99	[300, 325)	[84,97)	≥5	Н	66.4	65.8	36.3	931	26436	3.52
100*	[325, 350)	[84,97)	[0,5)		76.0	77.9	40.6	28	825	3.42
101	[325, 350)	[84,97)	≥5	С	58.6	56.0	37.2	534	56166	0.95
102	[325, 350)	[84,97)	≥5	D	50.4	38.7	50.5	135	909	14.85
103	[325, 350)	[84,97)	≥5	Е	100.7	100.9	18.6	749	14654	5.11
104	[325, 350)	[84,97)	≥5	F	75.7	75.3	41.3	3886	39293	9.89
105*	[325, 350)	[84,97)	≥5	G	76.1	78.0	40.6	0	6128	0.00
106	[325, 350)	[84,97)	≥5	н	69.3	63.5	41.4	582	17649	3.30
107*	[350, 375)	[84,97)	[0,5)		68.7	65.5	36.4	43	294	14.62
108	[350, 375)	[84,97)	≥ 5	С	66.2	67.0	30.4	1500	40794	3.68
109	[350, 375)	[84,97)	≥ 5	D	48.2	41.4	32.9	184	733	25.12
110*	[350, 375)	[84,97)	≥ 5	Е	68.9	65.8	36.4	0	6451	0.00
111	[350, 375)	[84,97)	≥ 5	F	72.9	68.1	39.6	1902	19698	9.65
112*	[350, 375)	[84,97)	≥ 5	G	68.9	65.8	36.4	0	3259	0.00
113	[350, 375)	[84,97)	≥ 5	Н	69.3	65.1	38.4	555	16925	3.28
114*	[375, 400)	[84,97)	[0,5)		71.9	70.0	35.6	7	179	4.01

115	[375, 400)	[84,97)	≥ 5	С	66.1	66.7	29.7	1988	28200	7.05
116	[375, 400)	[84,97)	≥ 5	D	47.9	45.8	22.5	165	617	26.74
117*	[375, 400)	[84,97)	≥5	Е	71.9	69.9	35.6	0	96	0.00
118	[375, 400)	[84,97)	≥ 5	F	81.4	80.3	39.4	1018	11487	8.86
119*	[375, 400)	[84,97)	≥ 5	G	71.9	69.9	35.6	0	1420	0.00
120	[375, 400)	[84,97)	≥ 5	Н	80.6	79.6	41.6	661	17462	3.79
121*	[400, 500)	[84,97)	[0,5)		70.5	66.9	38.3	2	1726	0.14
122	[400, 500)	[84,97)	≥ 5	С	61.3	60.4	29.6	1779	73418	2.42
123	[400, 500)	[84,97)	≥ 5	D	50.6	50.6	21.8	598	1350	44.25
124*	[400, 500)	[84,97)	≥ 5	Е	70.5	66.9	38.3	0	40	0.00
125	[400, 500)	[84,97)	≥ 5	F	73.0	71.5	39.5	3691	23530	15.69
126*	[400, 500)	[84,97)	≥ 5	G	70.5	66.9	38.3	0	4129	0.00
127	[400, 500)	[84,97)	≥ 5	Н	79.1	82.0	42.5	2225	33796	6.58
128*	≥ 500	[84,97)	[0,5)		57.2	49.4	37.0	1	107	1.34
129*	≥ 500	[84,97)	≥ 5	А	57.2	49.4	37.0	0	<1	0.00
130*	≥ 500	[84,97)	≥ 5	В	57.2	49.4	37.0	0	<1	0.00
131*	≥ 500	[84,97)	≥ 5	С	57.2	49.4	37.0	0	56747	0.00
132*	≥ 500	[84,97)	≥ 5	D	57.2	49.4	37.0	0	9	0.00
133*	≥ 500	[84,97)	≥ 5	Е	57.2	49.4	37.0	0	48	0.00
134	≥ 500	[84,97)	≥ 5	F	45.0	33.8	34.5	1827	26001	7.03
135*	≥ 500	[84,97)	≥ 5	G	57.2	49.4	37.0	0	6834	0.00
136	≥ 500	[84,97)	≥ 5	Н	70.0	74.1	35.2	1745	7913	22.06