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Abstract. High-resolution mapping of tropical forest carbon
stocks can assist forest management and improve implemen-
tation of large-scale carbon retention and enhancement pro-
grams. Previous high-resolution approaches have relied on
field plot and/or light detection and ranging (LiDAR) sam-
ples of aboveground carbon density, which are typically up-
scaled to larger geographic areas using stratification maps.
Such efforts often rely on detailed vegetation maps to strat-
ify the region for sampling, but existing tropical forest maps
are often too coarse and field plots too sparse for high-
resolution carbon assessments. We developed a top-down ap-
proach for high-resolution carbon mapping in a 16.5 million
ha region (> 40 %) of the Colombian Amazon – a remote
landscape seldom documented. We report on three advances
for large-scale carbon mapping: (i) employing a universal ap-
proach to airborne LiDAR-calibration with limited field data;
(ii) quantifying environmental controls over carbon densities;
and (iii) developing stratification- and regression-based ap-
proaches for scaling up to regions outside of LiDAR cover-
age. We found that carbon stocks are predicted by a combi-
nation of satellite-derived elevation, fractional canopy cover
and terrain ruggedness, allowing upscaling of the LiDAR
samples to the full 16.5 million ha region. LiDAR-derived
carbon maps have 14 % uncertainty at 1 ha resolution, and
the regional map based on stratification has 28 % uncer-
tainty in any given hectare. High-resolution approaches with

quantifiable pixel-scale uncertainties will provide the most
confidence for monitoring changes in tropical forest carbon
stocks. Improved confidence will allow resource managers
and decision makers to more rapidly and effectively imple-
ment actions that better conserve and utilize forests in tropi-
cal regions.

1 Introduction

Tropical forests store roughly 475 billion tons of carbon (Pan
et al., 2011), so retaining this carbon through conservation
and increasing its stock through management activities that
promote forest growth will play a major role in curbing a
principal driver of climate change (Angelsen, 2008). Ac-
knowledging this opportunity, the United Nations Frame-
work Convention on Climate Change agreed to encourage
reductions in greenhouse gas emissions from forests via the
program for Reducing Emissions from Deforestation and
Forest Degradation (REDD+) (UNFCCC, 2009). However,
a technical barrier to REDD+ rests in monitoring carbon
stocks and emissions. Although guidelines and discussion on
the topic abound, few studies have delivered synoptic scale,
high-resolution estimates of forest carbon stocks with spa-
tially explicit uncertainty.
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Sub-national or jurisdiction-scale mapping approaches,
often in the multi-million hectare range, are fast advanc-
ing in the REDD+ development process, and they are a key
steppingstone toward international REDD+ implementation
(Herold and Skutsch, 2011). A case-in-point is the Gover-
nors’ Climate and Forests Task Force (GCF;http://www.
gctaskforce.org), which links major jurisdictions in Brazil,
Indonesia, Ḿexico, Nigeria, Peru and the United States to ad-
vance the role of forests in climate change mitigation. GCF
could be the first international program to support compli-
ance regulations with carbon emission offsets and sequestra-
tion, and this will require high-resolution mapping of for-
est carbon stocks and emissions to achieve its goals (Asner,
2011). Other regional programs are underway, mostly in vol-
untary or pre-compliance contexts (Parker et al., 2008) and
most rely on general maps of forest cover and plot-based es-
timates of ACD extrapolated to large regional scales. These
approaches result in high uncertainty of carbon stock esti-
mates (Asner, 2009; Avitabile et al., 2011); hence, the cas-
cading uncertainty in estimated carbon emissions are then
very large (Pelletier et al., 2011).

Many approaches have been described for estimating
aboveground carbon density (ACD; units of Mg C ha−1) at
different scales in tropical forests. Plot-level inventories pro-
vide localized information on ACD, usually at a scale of
1 ha or less (e.g., Malhi et al., 2006). Developing large-scale,
high-resolution ACD maps requires estimation of forest car-
bon stocks as accurately as with field plots, but over large
gradients of climate, topography, hydrology, soils, and bi-
ological diversity (Goetz et al., 2009). The measurements
must also resolve highly variable effects of land use on car-
bon stocks. Both natural gradients and land use impart a pro-
found influence on ACD levels (Tian et al., 2000; Clark et al.,
2002; Saatchi et al., 2007; Mascaro et al., 2011a), which are
non-randomly distributed across the landscape (Loarie et al.,
2009). As a result, ACD must be resolved spatially to support
REDD+ emissions monitoring.

A major contributor to solving the carbon mapping chal-
lenge is airborne light detection and ranging (LiDAR), a
technology that images forest canopies in three-dimensions
using emitted laser light pulses (Lefsky et al., 2002b). LiDAR
can be used to examine forest architecture in fine detail (As-
ner et al., 2008; Garcı́a et al., 2010). When combined with
field plots, LiDAR provides high-resolution, spatially con-
tiguous estimates of ACD (e.g., Drake et al., 2002; Gonzalez
et al., 2010), which can be used to map thousands of hectares
of forest per day to quantify environmental controls over for-
est carbon storage (Asner et al., 2009a). Airborne LiDAR-
based estimates of tropical forest ACD are improving, with
per-hectare errors recently becoming indistinguishable from
those derived in field plots (Mascaro et al., 2011b).

To scale up to landscape level, LiDAR studies have of-
ten been closely tied to field calibration plots distributed
throughout the mapping coverage. However, the logistical
and cost burden of establishing an extensive plot network

may limit the utility of LiDAR for carbon mapping, par-
ticularly in forests that remain very remote, either by dis-
tance or by difficult terrain. To address this problem, As-
ner et al. (2012b) recently developed a “universal” equa-
tion to estimate tropical ACD from airborne LiDAR. Based
on data collected in Panamá, Hawaii, Peŕu and Madagas-
car, spanning a wide range of forest ages and floristic types,
the universal LiDAR equation was developed to predict
ACD with relatively high precision (r2

= 0.80) and accuracy
(RMSE = 27.6 Mg C ha−1). The equation provides estimates
of ACD that are comparable in predictive power to locally-
calibrated models, yet it relies only on limited basal area and
wood density information for a given region, rather than tra-
ditional plot inventories. This approach has the potential to
greatly reduce the time required to calibrate airborne LiDAR
data, however it requires testing in new regions.

Despite the accuracy and extensive mapping capability of
airborne LiDAR, it too reaches geographic limits due to cost
and logistics, so methods are required to extend LiDAR-
based ACD samples to even larger scales. Two general ap-
proaches have emerged. One is high-resolution stratification
of a region by vegetation type, topography and other environ-
mental datasets, along with high-resolution mapping of veg-
etation losses and gains from deforestation, degradation and
land abandonment (Asner, 2009; Helmer et al., 2009). Fol-
lowing stratification, the region is sampled to develop carbon
density statistics for each stratum. LiDAR-assisted mapping
of stratified regions can produce robust ACD statistics, which
has proven useful in a wide range of forest types (Asner et al.,
2010, 2011, 2012a), but highly stratified maps can be diffi-
cult to obtain for many tropical regions (Herold and Skutsch,
2009; Pelletier et al., 2011). An alternative or decision-tree
approach is to upscale field and LiDAR-based ACD esti-
mates with spatially contiguous, regional correlates derived
from satellite imagery (Baccini et al., 2008; Saatchi et al.,
2011). Such a regression-based approach is elegant, and may
allow for more rapid upscaling of field and LiDAR-based
ACD measurements. However, regression approaches may
also miss local or sub-regional controls over carbon stocks
that can be resolved using stratification.

These two issues – LiDAR applicability with few field
plots, and upscaling of LiDAR data to larger regions – remain
critically important challenges to making high-resolution
carbon stock and emissions monitoring possible. The Colom-
bian Amazon is enigmatic of these challenges, where low-
land to montane forests remain virtually unexplored in terms
of carbon stocks and their environmental controls. The re-
gion not only has potential for carbon offsets and climate
change mitigation work, but surveys indicate it is a major
part of the western Amazon biodiversity hotspot. However,
vegetation maps of the Colombian Amazon currently rely on
coarse biological information (Forero, 1988; Armenteras et
al., 2006), thereby lacking the definition needed for strati-
fication and subsequent LiDAR sampling. We therefore de-
veloped a new top-down, high-resolution analytical approach
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for determining forest carbon stocks in this region. In do-
ing so, we address three questions pertinent to carbon map-
ping efforts in remote, inaccessible tropical forests: (i) Using
available satellite imagery and airborne LiDAR sampling,
what are the principal determinants of aboveground carbon
density detectable throughout the region? (ii) Despite limits
to acquiring field inventory data on the ground, what are the
estimated uncertainties associated with applying the univer-
sal LiDAR approach to the Colombian Amazon? (iii) What
are the uncertainties associated with the stratification and re-
gression approaches, and what are their advantages and dis-
advantages?

2 Methods and materials

2.1 Study area

The study region covers 16 561 695 ha (> 40 %) of the
Colombian Amazon (Fig. 1), stretching from the Andean
foothills in the west to the Brazilian border in the east,
with unknown variation in natural forest carbon storage
and very limited documentation of deforestation and for-
est degradation. The region combines a vast, forested sed-
imentary plain of Tertiary and Quaternary age, with large
Paleozoic sandstone plateaus and remnant Precambrian sur-
faces derived from the Guiana Shield (Duivenvoorden and
Duque, 2010). Andean-derived sediments within the plain
are nutrient rich, while Guyana Shield soils are highly
leached and nutrient poor (Quesada et al., 2012). Low-
porosity basement rock within portions of the plain are as-
sociated with extensive swamps and inundation. Mean an-
nual temperature is∼ 25◦C, and mean annual precipitation
ranges from∼ 2000 mm yr−1 in the northwest to more than
3000 mm yr−1 in the southeast portions of the study region.
Tree species diversity is thought to be among the highest in
the Amazon (Duque et al., 2009).

The region is designated as a REDD+ pilot project area
of the Colombian Institute for Hydrological, Meteorologi-
cal, and Environmental Studies (IDEAM), stretching from
the northwestern departments of Meta and Caquetá to the re-
mote lowlands of Vauṕes and Amazonas. The area is largely
inaccessible due to a lack of roads and navigable rivers, and
ongoing security issues prevent the widespread use of forest
inventory plots.

2.2 Preliminary stratification

To guide LiDAR sampling, we performed pre-flight land-
cover stratification using a decision tree with input vari-
ables known to influence carbon stocks (Fig. 2a). With the
CLASlite forest monitoring system (Asner et al., 2009b), we
mapped forest cover for the year 2010 using 16 Landsat TM
and ETM+ images at 30 m resolution. With 46 additional
TM and ETM+ images from 1990, 2000, and 2005, we used
CLASlite to map regrowth following historic deforestation
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Fig. 1. A map showing the fractional cover of photosynthetic vege-
tation (PV; green), non-photosynthetic vegetation (NPV; blue) and
bare soil (pink-red) throughout the 16.5 million ha study region in
the Colombian Amazon (see inset). White polygons indicate 38 ar-
eas of airborne LiDAR samples, each up to 30 000 ha in size.

and degradation with the techniques described in Asner et
al. (2010). Finally, we segmented the region into elevation
bands of 50 m, derived from the NASA Shuttle Radar To-
pography Mission (SRTM) digital elevation model (DEM) at
90 m spatial resolution (Fig. 2b). The SRTM DEM and other
inputs are shown in the Supplement (Fig. S1).

2.3 LiDAR sampling

With the preliminary stratification map, we planned airborne
LiDAR sampling to achieve at least 1 % coverage of each
stratum, while targeting additional terrain variation within
the forested classes that could contribute to regional varia-
tion in ACD. The LiDAR data were collected in January 2011
using the Carnegie Airborne Observatory (CAO) Alpha sys-
tem (http://cao.ciw.edu). The CAO Alpha LiDAR (see As-
ner et al., 2007) was operated at 2000 m above ground level
with 1.12-m spot spacing, 30-degree field of view, beam di-
vergence customized to 0.56 mrad, and 50-kHz pulse repe-
tition frequency, for which the aircraft maintained a ground
speed≤ 95 knots. With these flying parameters, CAO col-
lected in continuous laser coverage without gaps between
laser spots on the ground. In addition, all flights were planned
with 100 % repeat coverage (50 % overlap of each swath to
each adjacent swath) and therefore LiDAR pulse density av-
eraged 2 points per 1.12-m spot.

LiDAR sampling totaled 465 622 ha (i.e., cloud-free, us-
able data), achieving coverage of 2.8 % of the region in
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Fig. 2. Decision trees used to stratify the study region with multi-temporal Landsat imagery analyzed with CLASlite, and a digital elevation
model (DEM) derived from the NASA Shuttle Radar Topography Mission (SRTM). Preliminary stratification (i.e., prior to LiDAR flights)
utilized (a) deforestation, degradation, and regrowth partitioning provided by CLASlite as well as(b) discrete SRTM DEM classes to further
partition intact forest. The final stratification further partitioned intact forest by(c) fractional photosynthetic vegetation (PV) cover, terrain
ruggedness index (TRI), and catchments. Components encircled in blue were later considered as inputs to the regression technique.

38 areas ranging in size from 9000 to 30 000 ha (Fig. 1). Due
to security concerns within the study region, all flight oper-
ations were conducted at night – an option afforded by air-
borne LiDAR.

Canopy three-dimensional structure, as detected by Li-
DAR, was analyzed by binning discrete LiDAR returns into
volumetric pixels (voxels) of 5 m spatial resolution and 1 m
vertical resolution, yielding histograms representing the ver-
tical distribution of vegetation in each 5× 5 m spatial cell.
These data were further reduced to mean canopy profile
height, or MCH, which is the volumetric vertical center of the
canopy (as opposed to top-of-canopy height). LiDAR MCH
has been used in a large number of studies to estimate ACD
with demonstrably high precision and accuracy (Lefsky et
al., 2002a; Asner et al., 2010, 2011; Mascaro et al., 2011a, b).

2.4 LiDAR-to-ACD conversion

This study is the first to apply a streamlined approach to con-
vert LiDAR MCH measurements to ACD in tropical forests,
which we summarize here. Asner et al. (2012b) calibrated a
single model based on 482 field plots spread across four dis-
tinct tropical regions (Hawaii, Madagascar, Panamá, Peŕu).
The architecture of the universal model follows basic tree

allometry studies (Chave et al., 2005; Niklas, 2006), demon-
strating that dry tree biomass (and thus carbon content, which
is ∼ 48 % of biomass by weight; Martin and Thomas, 2011),
can be estimated as a function of tree diameter, height, and
wood density. Thus, the universal model relied on plot-level,
rather than tree-level, inputs of field-measured diameters in
the form of basal area (BA), wood density (a weighted av-
erage based on each tree’s basal area), and LiDAR-derived
MCH to estimate ACD in units of Mg C ha−1. Upon calibra-
tion, the model was

ACD = 2.04MCH0.436BA0.946WD0.912 (1)

which explained 95 % of the variation in ACD across the four
tropical regions. Asner et al. (2012b) further demonstrated
that plot-level BA could be estimated from LiDAR accord-
ing to a linear MCH-to-BA conversion specific to each re-
gion, hereafter termed the “stocking coefficient” (SC), and
that regional WD could be substituted for plot-level WD.
When these regional substitutions were made – that is, two
numerical constants in place of exhaustive inventories of tree
diameters, heights and wood densities – the model explained
81 % of variation in ACD. In this way, the model could be
adjusted for a new study by simply inputting SC and WD for
any tropical region.
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Here, we used eleven 0.28-ha field plots to estimate the
two regional input constants needed for the calibration, and
subsequently validated this method using traditional inven-
tory techniques (described below). We derived a regional SC
of 1.52 (Fig. S2a), and thus we substituted 1.52· MCH for
the BA term in the LiDAR calibration equation (Eq. 1). We
determined that WD was not significantly related to MCH,
and therefore we applied the basal-area weighted mean of
0.61 (Fig. S2b). For comparison, the SC and WD values for
the southwestern Peruvian Amazon were 1.53 and 0.56, re-
spectively (Asner et al., 2012b). With these inputs, Eq. (1)
was simplified to a regionally calibrated LiDAR equation:

ACD = 1.9314MCH1.382. (2)

2.5 Model validation

We validated the universal LiDAR calibration equation using
traditional forest inventory techniques with allometric regres-
sion equations (Table S1). Although we used the same plots,
this validation was critical to determine whether two simple
regional constants (i.e., SC and WD) could substitute for tra-
ditional field inventory. For dead trees and palms, we utilized
growthform-specific equations. Lianas were considered, but
none were detected over the minimum size class (10 cm dbh).
For all other trees, we utilized a general moist forest model
of Chave et al. (2005). We corrected for local height varia-
tion by directly measuring the heights of the largest trees in
all plots (> 50 cm dbh) and additional trees spanning a range
of stem diameters using a laser hypsometer (Impulse-200,
LaserTech Inc., USA). For the remaining trees, we produced
a model relating height and diameter using maximum like-
lihood analysis (Fig. S3; R Development Core Team, 2011).
Wood density values were assigned based on genus- (33 %)
or family-level (42 %) identifications according to Chave et
al. (2009), and are detailed in Table S2. These values were
determined by averaging all listings at the genus- and family-
level within the database. In the absence of such an identifi-
cation (25 %), a regional estimate of 0.58 was applied (ter
Steege et al., 2006). Plot centers were determined using a
global positioning system (GPS) with differential correction
(Leica GS-50, Leica Geosystems Inc., Switzerland), which
provided< 1 m positional uncertainty in most cases.

2.6 Regional upscaling based on stratification

To upscale LiDAR-derived ACD, we relied on the notion that
nested sources of variation in carbon stocks exist throughout
most tropical regions. These may occur, for example, due to
localized gradients in riparian vegetation, mesoscale varia-
tion in canopy cover, and large-scale controls such as eleva-
tion, with overlapping human influences at all scales. Strat-
ification allows for parsing a region based on these factors,
and the finer the strata are delineated; the greater the possi-
bility of detecting ACD differences among those strata with
airborne LiDAR. First, however, to improve our coverage

of the study region, and to minimize error resulting from
atmospheric contamination of satellite imagery, we supple-
mented the original satellite data used for pre-flight stratifi-
cation with an additional 85 Landsat TM and ETM+ images
to derive maps of fractional photosynthetic vegetation (PV),
non-photosynthetic vegetation (NPV) and bare soil cover us-
ing CLASlite (Supplement). These results were combined
with our original historical forest change maps (deforesta-
tion, disturbance, regrowth) and variables from SRTM in-
cluding elevation, slope, aspect and a terrain ruggedness in-
dex (TRI). The TRI was computed as the square root of the
sum of the squared differences between each pixel and its
surrounding 11× 11 pixel kernel (modified from Riley et al.,
1999), and thus it is an index of topographic variability at
local scales.

With these input satellite and airborne LiDAR data, we
sought to maximize parsimony and minimize ACD varia-
tion within each stratum. In areas of airborne LiDAR cover-
age, we assessed relationships between environmental vari-
ables from satellite, both individually and in combination,
and forest ACD from LiDAR using correlation and regres-
sion analyses, respectively. Based on these findings, the fi-
nal stratification approach followed an extension of the deci-
sion tree used for preliminary stratification (Fig. 2c) in 136
final classes (Supplement). We then calculated ACD statis-
tics from the LiDAR coverage of each class. Following As-
ner et al. (2010), we determined that the median value best
represented the ACD distribution within each class, and then
populated all classes in the map with its corresponding me-
dian ACD value.

2.7 Regional upscaling based on regression

We also upscaled the LiDAR-based ACD estimates using an
alternative regression-based approach (Saatchi et al., 2011).
However, to take advantage of the historical forest cover
change information (deforestation, degradation, regrowth)
afforded by the CLASlite analyses described earlier, we ap-
plied the regression approach only to the forested classes,
and then embedded the non-forest results derived earlier into
the regression-based map. Thus, the regression technique uti-
lized here was a hybrid of regression and stratification, al-
though forested pixels accounted for the vast majority of the
study area. The regression employed the same potential envi-
ronmental parameters considered for the stratified approach.
A combination of the parameters that explained significant
variation in LiDAR-based ACD results was ultimately used
for regional mapping.

www.biogeosciences.net/9/2683/2012/ Biogeosciences, 9, 2683–2696, 2012
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2.8 Uncertainty analyses

We estimated uncertainties in each step of the project, in-
cluding measurement errors in LiDAR (type 1) and field al-
lometric equations underlying the universal LiDAR model
(type 2), as well as prediction errors in application of the
universal model (type 3) and upscaling to the regional level
(type 4). Errors of types 1–3 were quantified empirically by
previous studies, and we summarize each of these in the re-
sults. For errors of type 4 (upscaling), we subset our LiDAR
coverage to 75 % of its full extent and evaluated the perfor-
mance of each upscaling technique on the remaining 25 %.
To subset the data, we restricted each flight polygon to a
width of 2600 m, simulating a more limited flight campaign.
With the 75 % subset, we completed each step of the analysis
using the same methodology. We then compared predicted
ACD to LiDAR-derived ACD at the pixel level in the re-
maining 25 % of the original LiDAR extent. Using this 75 %
training/25 % validation split, we calculated average pixel-
level uncertainty as the root mean square error between pre-
dicted and observed ACD. Because spatial resolution needs
vary across data applications (e.g., research versus carbon ac-
counting), we examined pixel level uncertainty at both 30-m
and 1-ha resolution.

We also considered the possibility of spatial dependence
in the errors produced by both upscaling approaches. We
used Moran’s I, an index of spatial autocorrelation, to deter-
mine whether the stratification and regression-based upscal-
ing produced clustering of errors, which would indicate con-
trols over ACD not captured by the models (Moran, 1950).
Moran’s I ranges from−1 to 1, where positive values indi-
cate clustering and negative values indicate values arranged
in opposition (e.g., a checkerboard type pattern). Due to com-
putational limitations, we assessed Moran’s I on randomly
selected continuous subsamples of the upscaling residuals,
accounting for 0.3 % and 2 % of the study area at 30-m and
1-ha resolution, respectively (R Development Core Team,
2011).

3 Results and discussion

3.1 Validation of the universal LiDAR approach

Traditional field inventory produced a LiDAR-to-ACD re-
gression that was in close agreement with the universal Li-
DAR equation (compare Eqs. 2 and 3):

ACD = 2.1043MCH1.363. (3)

Specifically, the universal and traditional approaches were
nearly identical in terms of both slope (r2 values were
the same) and predictive power (RMSE differed by only
0.3 Mg C ha−1) (Fig. 3). Thus, the universal model (Eq. 2)
was deemed sufficient for application to the 38 LiDAR sam-
pling polygons used for mapping ACD.
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Figure 3.  Regressions comparing the universal LiDAR equation of Asner et al. (2012b) with 728 
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Fig. 3.Regressions comparing the universal LiDAR equation of As-
ner et al. (2012b) with traditional validation field plots measured
within the study region.

Validation of the universal LiDAR approach demonstrates
for the first time that plot-scale calibration of airborne Li-
DAR can be accomplished from a very small number of field
plots for a new region. Furthermore, it demonstrates that
LiDAR data can be calibrated using simpler field measure-
ments of basal area (for determination of the stocking coef-
ficient; Fig. S2a), and genus-level taxonomic sampling (for
determination of regional WD; Fig. S2b). These very limited
inputs required to calibrate the universal LiDAR model (as in
Eq. 2) can lead to a major reduction in cost and effort needed
to effectively characterize the LiDAR-to-ACD relationship
for a region.

3.2 LiDAR-scale carbon patterns

Airborne LiDAR-based estimates of ACD revealed pro-
nounced variation within and among sampling areas totaling
465 622 ha (Fig. 4). Landscapes impacted by human activ-
ity exhibited abrupt changes in ACD at forest edges and in
degraded zones, particularly in the northwest region along
the base and foothills of the Andes. In forested areas of the
remote lowlands, ACD fluctuations aligned spatially with a
range of natural environmental controls, mainly terrain fea-
tures associated with mesas and local highlands, depressions
in swamps and inundated areas, and riparian zones. Mapping
and quantifying this local and sub-regional ACD variation
throughout the region was requisite to the analysis of envi-
ronmental controls over carbon density.

3.3 Environmental controls over ACD

Using environmental variables derived from the SRTM and
CLASlite datasets against the LiDAR-based ACD maps,
we found that elevation explained 19 % – the largest de-
tected proportion – of the spatial variation in carbon stocks
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Figure 4.  Example LiDAR‐based maps of aboveground carbon density (ACD; left side) and 733 

ground elevation (right side) for (a) heavily deforested lands in the northwest region; (b) alluvial 734 

and riparian forests in the central region; and (c) terra firme forests in the southeast region of 735 

the study.  Units are Mg C ha‐1 for ACD and meters for elevation, and both are shown at 30 m 736 

spatial resolution.  ACD values are shown in actual units; elevation data are stretched for 737 

maximum contrast, but generally varies by 200 m or less in each image.  738 

 739 

Fig. 4.Example LiDAR-based maps of aboveground carbon density
(ACD; left side) and ground elevation (right side) for(a) heavily
deforested lands in the northwest region;(b) alluvial and riparian
forests in the central region; and(c) terra firme forests in the south-
east region of the study. Units are Mg C ha−1 for ACD and meters
for elevation, and both are shown at 30 m spatial resolution. ACD
values are shown in actual units; elevation data are stretched for
maximum contrast, but generally varies by 200 m or less in each
image.

throughout the study region (Fig. 5). Correlations between
elevation and biomass are not new (e.g., Aplet et al., 1998),
but it was surprising here because the study area is relatively
flat, with over 85 % of the forested area within a narrow band
of elevation (100–300 m). PV fractional cover accounted for
9 % of the regional variation in ACD, and bare soil fraction
just 3 %. Slope, aspect and the TRI each explained less than
2 % of the ACD variation at the whole-region scale.

Within the forested classes, we observed higher ACD with
increasing PV, peaking with a PV fraction of 84–96 %, above
which we observed a significant decline in ACD (Fig. 5).
Further review revealed that the high-PV/low-ACD condi-
tion corresponded to swampland, agriculture, or other sec-
ondary vegetation. Through iterative evaluation of ACD dis-
tributions within PV sub-strata, we established thresholds
for further segmentation by PV fraction into three discrete
classes: 80–83 %, 84–96 %, and 97–100 % (Fig. 2c). Within
each of these PV fraction classes, the distribution of carbon
stocks was also found to change with elevation (Fig. 6). ACD

was most sensitive to elevation in the PV class represent-
ing the lowest overall canopy cover (80–83 %), with a pro-
nounced leftward skew of the ACD distributions as elevation
increased from less than 100 m to more than 500 m.

The mid-PV class (84–96 %) accounted for more than
70 % of forested area across all elevations and a majority
of aboveground carbon storage within the LiDAR coverage.
Within this class, we observed that variation in the TRI was
locally associated with ACD (Fig. S4), a pattern not apparent
at the full regional scale (Fig. 5). To minimize ACD variation
within each mapping class for subsequent regional extrapola-
tion, we iteratively identified a TRI threshold to bisect each
class at mid-PV values (Fig. 2c). Pixels with low TRI (0–
5) generally corresponded to flatter riparian corridors, often
with lower-ACD forests than their higher TRI (5+) counter-
parts (Fig. S4). We found no other sub-regional or local-scale
patterns relating ACD to other potential factors (e.g., aspect,
soil fraction).

We emphasize that other explanatory factors – such as soil
type or distance from infrastructure – were considered for use
in these models, but the available data were found to lack the
detail needed to assign additional spatial variance in ACD to
them. This is a common problem when scaling up field or air-
borne data in many tropical regions, and here we limited our
analysis to variables readily derived from globally-available
satellite imagery. Nonetheless, we also recognize that some
regions do have much more detailed data available, which
has been used for analyses of environmental controls over
carbon stocks (Asner et al., 2011).

3.4 Regional carbon stocks – comparing approaches

Results of the environmental analysis guided the upscaling
of LiDAR ACD estimates to the regional level, first with
the stratification-based approach. Here, we iteratively de-
rived segmentation thresholds for each variable to minimize
ACD variation within each stratum (Maniatis and Mollicone,
2010). Fractional PV cover, elevation and the TRI explained
the largest proportion of the ACD variation, with PV and el-
evation operating at the regional level and TRI at the local
scale as described earlier. While these factors emerged as im-
portant controls over ACD, we also incorporated catchment
boundaries to account for additional variation observed in the
LiDAR data that was expressed irrespective of terrain or frac-
tional cover (Fig. 2c) (see Supplement).

The final stratification-based ACD map contains classes,
each with a median ACD value computed from distributions
developed with airborne LiDAR sampling, and thus repre-
senting the highest probability carbon value in each class (see
Table S3). The stratification-based map indicated lower ACD
levels in the northwest where elevation is higher (Fig. 7a).
However, within this area, heavy deforestation and degrada-
tion have also driven ACD as low as 0–6 Mg C ha−1 in many
areas. Near the center of the study region, sandstone plateaus
are capped by short-statured vegetation with low ACD.

www.biogeosciences.net/9/2683/2012/ Biogeosciences, 9, 2683–2696, 2012



2690 G. P. Asner: High-resolution mapping of forest carbon stocks in the Colombian Amazon

27 
 

 740 

 741 

Figure 5.  Correlation matrices relating site factors to aboveground carbon density (ACD), 742 

including elevation a.s.l. (m), fractional cover of photosynthetic vegetation (PV)and bare soil as 743 

determined by CLASlite, TRI (terrain ruggedness index), and topographic slope and aspect.  Blue 744 

points indicate individual pixel values; open circles represent the median value within each of 745 

ten bins evenly spaced along the horizontal axis (these are intended to assist in visualization 746 

and do not impact model fit); lines are the best fit polynomials for the data being compared. 747 

The lower left portion of the matrix shows the r2 values for the best‐fit polynomials; *** 748 

indicates statistical significance of P < 0.001.  749 

   750 

Fig. 5. Correlation matrices relating site factors to aboveground carbon density (ACD), including elevation a.s.l. (m), fractional cover of
photosynthetic vegetation (PV) and bare soil as determined by CLASlite, TRI (terrain ruggedness index), and topographic slope and aspect.
Blue points indicate individual pixel values; open circles represent the median value within each of ten bins evenly spaced along the horizontal
axis (these are intended to assist in visualization and do not impact model fit); lines are the best fit polynomials for the data being compared.
The lower left portion of the matrix shows ther2 values for the best-fit polynomials;∗∗∗ indicates statistical significance ofP < 0.001.

Carbon stocks increase to the southeast, where elevations
are lowest and annual rainfall reaches 3000 mm yr−1 (Tian
et al., 2000). Median ACD in these wetter forests reaches
130 Mg C ha−1, and over many stretches, forest cover is un-
interrupted, suggesting low to no human use. Naturally low
ACD features also exist in the far south, such as in topo-
graphic depressions that are often inundated by water (Duiv-
envoorden and Duque, 2010). Finally, the map highlights the
mediating role of catchment and localized terrain controls on
carbon stocks, including the suppression of biomass in active
floodplains and riparian corridors to the southeast.

The regression method required relatively little process-
ing, and it yielded an regional ACD pattern similar to that
derived with the stratification approach (Fig. 7b). We deter-
mined that only PV and elevation influenced the fit of the
regression model at the scale of the entire study area (Sup-

plement). It is important to note that the TRI did not add to
the strength of the model. In this region, the TRI operates
at a localized scale, and these controls are difficult to incor-
porate into regional regression models. In addition to being
unable to capture localized terrain effects, the regional re-
gression approach, by definition, does not incorporate sub-
regional features such as the active floodplain areas contain-
ing early successional vegetation with low carbon stocks.

Total regional aboveground carbon storage was estimated
at 1.468 Pg and 1.454 Pg using the stratification and regres-
sion approaches, respectively. Similarly, mean ACD among
forested classes was 103.8 and 102.8 Mg C ha−1. Notwith-
standing an overall systematic bias, we would expect the two
maps shown in Fig. 7 to produce similar regional-scale car-
bon stock values, especially here because each map incorpo-
rates the same non-forest results derived through CLASlite
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Figure 6.  Example frequency distributions of LiDAR‐derived aboveground carbon density by 753 

elevation and fractional cover of photosynthetic vegetation (PV).  754 

   755 

Fig. 6. Example frequency distributions of LiDAR-derived aboveground carbon density (Mg C ha−1) by elevation and fractional cover of
photosynthetic vegetation (PV).

29 
 

 756 

 757 

 758 

Figure 7.  Aboveground carbon density (ACD) across the study region calculated using (a) 759 

regional stratification with elevation, fractional cover of photosynthetic vegetation and terrain 760 

ruggedness; and (b) regression analysis with elevation and fractional cover of photosynthetic 761 

vegetation.    762 

Fig. 7. Aboveground carbon density (ACD) across the study region calculated using(a) regional stratification with elevation, fractional
cover of photosynthetic vegetation and terrain ruggedness; and(b) regression analysis with elevation and fractional cover of photosynthetic
vegetation.

analysis. In general, spatially explicit carbon mapping meth-
ods will yield similar regionally-integrated results as long
as there are no large systematic biases, such as those ob-
served when generic ACD values are applied to low reso-
lution forest cover maps (Gibbs et al., 2007; Goetz et al.,
2009; Avitabile et al., 2011). We have found this to be a ma-
jor drawback of using Tier-I mapping guidelines provided by
the IPCC (IPCC, 2006), which can have large systematic bi-
ases in comparison to high-resolution results (Asner et al.,
2010, 2011).

Despite the regionally-integrated similarities between up-
scaling approaches, there were systematic differences – some
exceeding 15 Mg C ha−1 – at the sub-regional level (Fig. 8).
Stratification-based mapping resulted in lower ACD in two
catchments and in the active floodplains (red in Fig. 8), again
because stratification and LiDAR sampling suggested that
sub-regional scale variation was important. Conversely, the
stratification approach yielded higher ACD values through-
out the majority of upland forests, owing to the availabil-
ity of the TRI to resolve local topographic variability. We
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Figure 8.  Difference in aboveground carbon density calculated using regional stratification and 765 

regression analysis (from Figure 7).  766 

 767 

 768 

Fig. 8. Difference in aboveground carbon density calculated using
regional stratification and regression analysis (from Fig. 7).

believe this may be associated with either higher soil fertility
or increased drainage (see also Asner et al., 2010). Another
difference arises in the central portion of the study region,
where small residual artifacts within and along the edges of
the satellite imagery are expressed in the regression map. An
advantage of the stratification approach is its ability to dimin-
ish such effects because mapped carbon values are associated
with each stratum, not with each satellite image. Overall, an
advantage of quantitatively comparing both upscaling meth-
ods is that the areas of maximum disagreement can be tar-
geted for additional airborne LiDAR sampling. Finally, the
regional comparisons provided here serve as a starting point
for additional comparisons using other methods, including
the global approaches (Saatchi et al., 2011; Baccini et al.,
2012).

3.5 Sources of uncertainty in carbon mapping

We identified and propagated four sources of error through-
out the study (Table 1). Measurement errors included LiDAR
height errors and allometric errors in field-estimated ACD.
LiDAR height errors are influenced by uncertainty in sensor
position and orientation as well as laser ranging. These errors
are low at the top of the canopy (∼ 0.15 m by Asner et al.,
2007), but may reach 1 m at the ground in Amazon forests
with relatively poor GPS networks. Thus we estimated Li-
DAR height errors to be 5 %, assuming a mean forest canopy
height of 20 m.

Allometric errors might influence the application of the
universal LiDAR calibration equation to a new region (below
we separately consider errors in its predictions at the pixel
level). The universal model was calibrated using field-based
ACD estimates determined by the application of allometric
regression equations; for most large trees and for most re-

gions, a pan-tropical model by Chave et al. (2005) was used.
Thus, the extent to which this pan-tropical model is not rep-
resentative of the Colombian Amazon may introduce a bias
in our LiDAR-based estimates. Chave et al. (2005) consid-
ered errors in model application of the pan-tropical model at
the regional scale (e.g., its accuracy for a “new” region); for
all sites, their average reported error is 9.4 %. Note that each
measurement error considered is a source of potential bias;
these errors are directional and do not differ across spatial
resolutions.

We identified two sources of prediction error, including
the application of the universal LiDAR equation to airborne
data, and the extrapolation of LiDAR-scale ACD estimates
to the regional level. The universal LiDAR equation pre-
dicted the ACD of field validation plots with an uncertainty
of 18.1 Mg C ha−1 (Fig. 3), or about 20 % at the 0.28 ha reso-
lution of the field plots. While we relied on a limited number
of plots, 20 % error at 0.28 ha spatial resolution is well within
the range of values previously reported for tropical LiDAR
studies. Furthermore, as we detail in the Supplement, LiDAR
calibration errors can be modeled predictably with spatial
resolution. Briefly, Mascaro et al. (2011b) used a large in-
ventory plot with mapped trees to demonstrate that CAO Li-
DAR calibration errors scaled according to the inverse square
root of the plot area between 30 m and 1 ha spatial resolution
(i.e., from∼ 35 to 10 %, respectively). Mascaro et al. further
showed that at resolutions below 1 ha, nearly half of the error
is caused by disagreement between LiDAR and field mea-
surements concerning which trees (or portions of trees) are
considered inside or outside of a calibration plot. This por-
tion of the error is essentially “sub-tree” – existing at a spatial
resolution smaller than tree crowns – and thus can be safely
omitted for carbon mapping purposes. Following this empir-
ical analysis, we estimate calibration errors of 21.5 % and
10.0 % at 30 m and 1 ha resolution, respectively (Table 1).

Finally, we evaluated pixel-level uncertainty associated
with extending LiDAR results to the regional level. To do so,
we produced regional ACD maps based on a 75 % of the Li-
DAR coverage (following the same methodology), and eval-
uated their performance in the remaining 25 % extent. Pixel-
level errors were 29.0 Mg C ha−1 (32.9 % of the mean carbon
stock) using the stratification approach, and 32.6 Mg C ha−1

(37.0 %) using the regression approach. At 1-ha spatial reso-
lution, these errors declined to 24.3 % and 28.7 % for strati-
fication and regression approaches, respectively.

We assumed that all four sources of error were inde-
pendent, and therefore propagated the errors as the square
root of the sum of all squared errors (Table 1). Overall,
we estimated a 28.3 % pixel-level error for ACD deter-
minations across the study corridor at 1 ha resolution us-
ing the stratification method, and 32.2 % using the regres-
sion approach. A side-by-side comparison of LiDAR-derived
ACD and regional ACD derived from land-cover stratifica-
tion indicates good agreement between LiDAR-observed and
regionally-predicted ACD using the stratification approach
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Table 1. Sources of error in high-resolution mapping of aboveground carbon density in the Colombian Amazon. Errors are provided at
resolutions of 30 m and 1 ha using the stratification- and regression-based upscaling approaches.

Source of Error Relative Error (%)

Stratification Regression
30-m 1-ha 30-m 1-ha

Measurements
LiDAR height detection 5.0 5.0 5.0 5.0
Uncertainty in field allometry 9.4 9.4 9.4 9.4

Predictions
LiDAR calibration (universal model) 21.5 10.0 21.5 10.0
Scaling LiDAR carbon to habitat level 32.9 24.3 37.0 28.7

Totals
Pixel-scale mean errors (in LiDAR) 24.0 14.6 24.0 14.6
Pixel-scale mean errors (region-wide) 40.828.3 44.1 32.2

(Fig. S5). Finally, we contrasted mean LiDAR-observed and
regionally-predicted ACD in the large sections of each flight
polygon set aside for determination of pixel-level errors. We
found that both approaches predicted ACD well, although
a limited bias was observed using the regression approach
(Fig. S6); this is consistent with its slightly weaker perfor-
mance overall. Collectively, we contend that the environmen-
tal controls identified through iterative statistical analysis and
incorporated into regional stratification effectively represent
the ACD variation found throughout the region.

Residuals for the stratification-based approach indicated
very low spatial autocorrelation of errors: Moran’s I ranged
from 0.05 to 0.08 depending on spatial resolution (Table 2).
By contrast, regression-based upscaling yielded higher spa-
tial autocorrelation; this clustering of errors suggests that
modest variation in ACD was not explained by the regression
model. These results, along with higher pixel-level errors for
the regression approach, suggest that stratification better cap-
tured landscape-scale controls on ACD due to a combination
of (Eq. 1) ingesting additional possible controls over ACD
(i.e., the inclusion of localized TRI variation in the strati-
fication approach which was not retained in the regression
analysis), and (Eq. 2) the degree to which unknown localized
controls on ACD are captured by stratification but remain ab-
sent from the regression inputs.

4 Conclusions

We demonstrate that high-resolution mapping of tropical for-
est carbon stocks assisted by airborne LiDAR can be accom-
plished with limited field calibration data and limited preex-
isting knowledge of the study region. In place of previous
calibration models that relied on exhaustive inventories of
tree diameters, heights, and wood densities, we used a new
universal LiDAR model – adjusted by rapid field-based as-
sessment of basal area and a regional wood density constant –

Table 2. Moran’s I values for residuals produced by stratification-
and regression-based upscaling approaches. At 30-m resolution, the
analysis was conducted on a subset of points representing 0.3 %
of the total data set (n = 15664), and 2 % at 1-ha resolution (n =

8611). All values are significant atP < 0.001.

Stratification Regression

30 m 1 ha 30 m 1 ha
Moran’s I 0.047 0.083 0.125 0.186

to produce a calibration for which we have equal confidence
with the traditional approach. The universal approach pro-
vides cost-effective calibration and use of LiDAR in remote
and difficult-to-access areas such as the Colombian Amazon.

We also found that, even with limited foreknowledge of
carbon stock variation in a region, a systematic analysis of
environmental controls on LiDAR-scale ACD can provide an
effective means to upscale LiDAR measurements throughout
a region. Through this process, we gained new insight into
ecological drivers of ACD variation across the Colombian
Amazon, revealing previously unknown variation mediated
by elevation, terrain ruggedness, and canopy fractional cover.
We found strengths and weaknesses in both stratification
and regression-based approaches to upscaling. Stratification-
based mapping provides a means to dissect a region by poten-
tial environmental controls, sample the resulting strata with
airborne LiDAR, and apply the results to minimize ACD
variance per mapping class. On the other hand, regression
approaches are less laborious and capture the general trends,
but will miss the landscape features that are not expressed
consistently throughout a region. Clearly, applying both ap-
proaches provides analytical leverage to identify areas of
uncertainty for additional investigation. High-resolution ap-
proaches that report pixel-scale uncertainties will provide the
most confidence in the effort to monitor changes in tropical
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forest carbon stocks. This improved confidence will allow
resource managers and decision-makers to more rapidly and
effectively implement actions that better utilize and conserve
forests in remote tropical regions.

Supplementary material related to this article is
available online at:http://www.biogeosciences.net/9/
2683/2012/bg-9-2683-2012-supplement.pdf.
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