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Abstract. High-resolution mapping of tropical forest carbon quantifiable pixel-scale uncertainties will provide the most
stocks can assist forest management and improve implemerconfidence for monitoring changes in tropical forest carbon
tation of large-scale carbon retention and enhancement prcstocks. Improved confidence will allow resource managers
grams. Previous high-resolution approaches have relied oand decision makers to more rapidly and effectively imple-
field plot and/or light detection and ranging (LIDAR) sam- ment actions that better conserve and utilize forests in tropi-
ples of aboveground carbon density, which are typically up-cal regions.

scaled to larger geographic areas using stratification maps
Such efforts often rely on detailed vegetation maps to strat-

ify the region for sampling, but existing tropical forest maps 1  |ntroduction

are often too coarse and field plots too sparse for high-

resolution carbon assessments. We developed a top-down apropical forests store roughly 475 billion tons of carbon (Pan
proach for high-resolution carbon mapping in a 16.5million et al., 2011), so retaining this carbon through conservation
ha region ¢ 40 %) of the Colombian Amazon — a remote and increasing its stock through management activities that
landscape seldom documented. We report on three advanc@gomote forest growth will play a major role in curbing a
for large-scale carbon mapping: (i) employing a universal ap-principal driver of climate change (Angelsen, 2008). Ac-
proach to airborne LiDAR-calibration with limited field data; knowledging this opportunity, the United Nations Frame-
(ii) quantifying environmental controls over carbon densities; work Convention on Climate Change agreed to encourage
and (i) developing stratification- and regression-based apreductions in greenhouse gas emissions from forests via the
proaches for scaling up to regions outside of LIDAR cover- program for Reducing Emissions from Deforestation and
age. We found that carbon stocks are predicted by a combiForest Degradation (REDD+) (UNFCCC, 2009). However,
nation of satellite-derived elevation, fractional canopy covera technical barrier to REDD+ rests in monitoring carbon
and terrain ruggedness, allowing upscaling of the LIDAR stocks and emissions. Although guidelines and discussion on
samples to the full 16.5million ha region. LiDAR-derived the topic abound, few studies have delivered synoptic scale,
carbon maps have 14 9% uncertainty at 1 ha resolution, an¢igh-resolution estimates of forest carbon stocks with spa-
the regional map based on stratification has 28 % uncertially explicit uncertainty.

tainty in any given hectare. High-resolution approaches with
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Sub-national or jurisdiction-scale mapping approachesmay limit the utility of LIDAR for carbon mapping, par-
often in the multi-million hectare range, are fast advanc-ticularly in forests that remain very remote, either by dis-
ing in the REDD+ development process, and they are a keyance or by difficult terrain. To address this problem, As-
steppingstone toward international REDD+ implementationner et al. (2012b) recently developed a “universal” equa-
(Herold and Skutsch, 2011). A case-in-point is the Gover-tion to estimate tropical ACD from airborne LIiDAR. Based
nors’ Climate and Forests Task Force (GCHp://www. on data collected in Pana@nHawaii, Pell and Madagas-
gctaskforce.org which links major jurisdictions in Brazil, car, spanning a wide range of forest ages and floristic types,
Indonesia, Mxico, Nigeria, Peru and the United States to ad-the universal LIDAR equation was developed to predict
vance the role of forests in climate change mitigation. GCFACD with relatively high precision/Z = 0.80) and accuracy
could be the first international program to support compli- (RMSE =27.6 Mg C hal). The equation provides estimates
ance regulations with carbon emission offsets and sequestraf ACD that are comparable in predictive power to locally-
tion, and this will require high-resolution mapping of for- calibrated models, yet it relies only on limited basal area and
est carbon stocks and emissions to achieve its goals (Asnewood density information for a given region, rather than tra-
2011). Other regional programs are underway, mostly in vol-ditional plot inventories. This approach has the potential to
untary or pre-compliance contexts (Parker et al., 2008) andyreatly reduce the time required to calibrate airborne LiDAR
most rely on general maps of forest cover and plot-based esdata, however it requires testing in new regions.
timates of ACD extrapolated to large regional scales. These Despite the accuracy and extensive mapping capability of
approaches result in high uncertainty of carbon stock estiairborne LiDAR, it too reaches geographic limits due to cost
mates (Asner, 2009; Avitabile et al., 2011); hence, the casand logistics, so methods are required to extend LIiDAR-
cading uncertainty in estimated carbon emissions are thebased ACD samples to even larger scales. Two general ap-
very large (Pelletier et al., 2011). proaches have emerged. One is high-resolution stratification

Many approaches have been described for estimatingf a region by vegetation type, topography and other environ-
aboveground carbon density (ACD; units of Mg Chpat mental datasets, along with high-resolution mapping of veg-
different scales in tropical forests. Plot-level inventories pro-etation losses and gains from deforestation, degradation and
vide localized information on ACD, usually at a scale of land abandonment (Asner, 2009; Helmer et al., 2009). Fol-
1haorless (e.g., Malhi et al., 2006). Developing large-scaleJowing stratification, the region is sampled to develop carbon
high-resolution ACD maps requires estimation of forest car-density statistics for each stratum. LiDAR-assisted mapping
bon stocks as accurately as with field plots, but over largeof stratified regions can produce robust ACD statistics, which
gradients of climate, topography, hydrology, soils, and bi- has proven useful in a wide range of forest types (Asner et al.,
ological diversity (Goetz et al., 2009). The measurements2010, 2011, 2012a), but highly stratified maps can be diffi-
must also resolve highly variable effects of land use on car-cult to obtain for many tropical regions (Herold and Skutsch,
bon stocks. Both natural gradients and land use impart a pro2009; Pelletier et al., 2011). An alternative or decision-tree
found influence on ACD levels (Tian et al., 2000; Clark et al., approach is to upscale field and LiDAR-based ACD esti-
2002; Saatchi et al., 2007; Mascaro et al., 2011a), which arenates with spatially contiguous, regional correlates derived
non-randomly distributed across the landscape (Loarie et alfrom satellite imagery (Baccini et al., 2008; Saatchi et al.,
2009). As aresult, ACD must be resolved spatially to support2011). Such a regression-based approach is elegant, and may
REDD+ emissions monitoring. allow for more rapid upscaling of field and LiDAR-based

A major contributor to solving the carbon mapping chal- ACD measurements. However, regression approaches may
lenge is airborne light detection and ranging (LiDAR), a also miss local or sub-regional controls over carbon stocks
technology that images forest canopies in three-dimensionthat can be resolved using stratification.
using emitted laser light pulses (Lefsky et al., 2002b). LIDAR  These two issues — LIiDAR applicability with few field
can be used to examine forest architecture in fine detail (Asplots, and upscaling of LIDAR data to larger regions — remain
ner et al., 2008; Gara et al., 2010). When combined with critically important challenges to making high-resolution
field plots, LIiDAR provides high-resolution, spatially con- carbon stock and emissions monitoring possible. The Colom-
tiguous estimates of ACD (e.g., Drake et al., 2002; Gonzaledian Amazon is enigmatic of these challenges, where low-
etal., 2010), which can be used to map thousands of hectardand to montane forests remain virtually unexplored in terms
of forest per day to quantify environmental controls over for- of carbon stocks and their environmental controls. The re-
est carbon storage (Asner et al., 2009a). Airborne LiDAR-gion not only has potential for carbon offsets and climate
based estimates of tropical forest ACD are improving, with change mitigation work, but surveys indicate it is a major
per-hectare errors recently becoming indistinguishable fronpart of the western Amazon biodiversity hotspot. However,
those derived in field plots (Mascaro et al., 2011b). vegetation maps of the Colombian Amazon currently rely on

To scale up to landscape level, LIDAR studies have of-coarse biological information (Forero, 1988; Armenteras et
ten been closely tied to field calibration plots distributed al., 2006), thereby lacking the definition needed for strati-
throughout the mapping coverage. However, the logisticalfication and subsequent LIiDAR sampling. We therefore de-
and cost burden of establishing an extensive plot networkveloped a new top-down, high-resolution analytical approach
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for determining forest carbon stocks in this region. In do-
ing so, we address three questions pertinent to carbon map
ping efforts in remote, inaccessible tropical forests: (i) Using
available satellite imagery and airborne LiDAR sampling,

what are the principal determinants of aboveground carbon
density detectable throughout the region? (ii) Despite limits
to acquiring field inventory data on the ground, what are the
estimated uncertainties associated with applying the univer-
sal LiDAR approach to the Colombian Amazon? (iii) What

are the uncertainties associated with the stratification and re-
gression approaches, and what are their advantages and di;
advantages?

COLOMBIA

2 Methods and materials
2.1 Study area

The study region covers 16561695 ha 40%) of the N

Colombian Amazon (Fig. 1), stretching from the Andean A il i
foothills in the west to the Brazilian border in the east,
with unknown variation in natural forest carbon storage Fig. 1. A map showing the fractional cover of photosynthetic vege-
and very limited documentation of deforestation and for- tation (PV; green), non-photosynthetic vegetation (NPV; blue) and
est degradation. The region combines a vast, forested sedbare soil (pink-red) throughout the 16.5 million ha study region in
imentary plain of Tertiary and Quaternary age, with large the Colombian Amazon (see inset). White polygons indicate 38 ar-
Paleozoic sandstone plateaus and remnant Precambrian sgas of airborne LIDAR samples, each up to 30000 ha in size.
faces derived from the Guiana Shield (Duivenvoorden and

Duque, 2010). Andean-derived sediments within the plain

are nutrient rich, while Guyana Shield soils are highly and degradation with the techniques described in Asner et

leached and nutrient poor (Quesada et al., 2012). Lowal. (2010). Finally, we segmented the region into elevation
porosity basement rock within portions of the plain are as-Pands of 50m, derived from the NASA Shuttle Radar To-
sociated with extensive swamps and inundation. Mean anPography Mission (SRTM) digital elevation model (DEM) at
nual temperature is- 25°C, and mean annual precipitation 90 m spatial resolution (Fig. 2b). The SRTM DEM and other
ranges from~ 2000 mmyr ! in the northwest to more than inputs are shown in the Supplement (Fig. S1).

3000 mmyr? in the southeast portions of the study region. ] ]

Tree species diversity is thought to be among the highest ir?-3 LIDAR sampling

the Amazon (Duque et al., 2009).

The region is designated as a REDD+ pilot project are
of the Colombian Institute for Hydrological, Meteorologi-
cal, and Environmental Studies (IDEAM), stretching from
the northwestern departments of Meta and Cagteethe re-

aWith the preliminary stratification map, we planned airborne
LiDAR sampling to achieve at least 1% coverage of each
stratum, while targeting additional terrain variation within
the forested classes that could contribute to regional varia-

mote lowlands of Vaugs and Amazonas. The area is largely tiqn in ACD. The L'iDA.R data were collected in January 2011
inaccessible due to a lack of roads and navigable rivers, aniSing the Carnegie Airborne Observatory (CAO) Alpha sys-

ongoing security issues prevent the widespread use of fored¢M (ttp://cao.ciw.edy The CAO Alpha LIDAR (see As-
inventory plots. ner et al., 2007) was operated at 2000 m above ground level

with 1.12-m spot spacing, 30-degree field of view, beam di-
2.2 Preliminary stratification vergence customized to 0.56 mrad, and 50-kHz pulse repe-

tition frequency, for which the aircraft maintained a ground
To guide LIiDAR sampling, we performed pre-flight land- speed< 95 knots. With these flying parameters, CAO col-
cover stratification using a decision tree with input vari- lected in continuous laser coverage without gaps between
ables known to influence carbon stocks (Fig. 2a). With thelaser spots on the ground. In addition, all flights were planned
CLASIite forest monitoring system (Asner et al., 2009b), we with 100 % repeat coverage (50 % overlap of each swath to
mapped forest cover for the year 2010 using 16 Landsat TMeach adjacent swath) and therefore LiDAR pulse density av-
and ETM+ images at 30 m resolution. With 46 additional eraged 2 points per 1.12-m spot.
TM and ETM+ images from 1990, 2000, and 2005, we used LiDAR sampling totaled 465622 ha (i.e., cloud-free, us-
CLASIite to map regrowth following historic deforestation able data), achieving coverage of 2.8% of the region in
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Fig. 2. Decision trees used to stratify the study region with multi-temporal Landsat imagery analyzed with CLASIite, and a digital elevation
model (DEM) derived from the NASA Shuttle Radar Topography Mission (SRTM). Preliminary stratification (i.e., prior to LiDAR flights)
utilized (a) deforestation, degradation, and regrowth partitioning provided by CLASIite as w@l) discrete SRTM DEM classes to further
partition intact forest. The final stratification further partitioned intact foreschpyractional photosynthetic vegetation (PV) cover, terrain
ruggedness index (TRI), and catchments. Components encircled in blue were later considered as inputs to the regression technique.

38 areas ranging in size from 9000 to 30 000 ha (Fig. 1). Dueallometry studies (Chave et al., 2005; Niklas, 2006), demon-
to security concerns within the study region, all flight oper- strating that dry tree biomass (and thus carbon content, which
ations were conducted at night — an option afforded by air-is ~ 48 % of biomass by weight; Martin and Thomas, 2011),
borne LiDAR. can be estimated as a function of tree diameter, height, and
Canopy three-dimensional structure, as detected by Liwood density. Thus, the universal model relied on plot-level,
DAR, was analyzed by binning discrete LIiDAR returns into rather than tree-level, inputs of field-measured diameters in
volumetric pixels (voxels) of 5m spatial resolution and 1 m the form of basal area (BA), wood density (a weighted av-
vertical resolution, yielding histograms representing the ver-erage based on each tree’s basal area), and LiDAR-derived
tical distribution of vegetation in each>55m spatial cell. ~ MCH to estimate ACD in units of Mg C hid. Upon calibra-
These data were further reduced to mean canopy profiléion, the model was
height, or MCH, which is the volumetric vertical center of the
canopy (as opposed to top-of-canopy height). LIDAR MCH ACD = 2.04MCH#30BAO 940912 @)

has been used in a large number of studies to estimate ACRyich explained 95 % of the variation in ACD across the four
with demonstrably high precision and accuracy (Lefsky ety qhicq| regions. Asner et al. (2012b) further demonstrated

al., 2002a; Asner etal., 2010, 2011; Mascaro et al., 2011a, b}y, plot-level BA could be estimated from LIDAR accord-

ing to a linear MCH-to-BA conversion specific to each re-
2.4 LiDAR-to-ACD conversion gion, hereafter termed the “stocking coefficient” (SC), and

that regional WD could be substituted for plot-level WD.
This study is the first to apply a streamlined approach to con\When these regional substitutions were made — that is, two
vert LIDAR MCH measurements to ACD in tropical forests, numerical constants in place of exhaustive inventories of tree
which we summarize here. Asner et al. (2012b) calibrated aliameters, heights and wood densities — the model explained
single model based on 482 field plots spread across four dis31 % of variation in ACD. In this way, the model could be
tinct tropical regions (Hawaii, Madagascar, Padamet). adjusted for a new study by simply inputting SC and WD for
The architecture of the universal model follows basic treeany tropical region.

Biogeosciences, 9, 2683696 2012 www.biogeosciences.net/9/2683/2012/
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Here, we used eleven 0.28-ha field plots to estimate theof the study region, and to minimize error resulting from
two regional input constants needed for the calibration, andatmospheric contamination of satellite imagery, we supple-
subsequently validated this method using traditional inven-mented the original satellite data used for pre-flight stratifi-
tory techniques (described below). We derived a regional SGation with an additional 85 Landsat TM and ETM+ images
of 1.52 (Fig. S2a), and thus we substituted 1BZH for to derive maps of fractional photosynthetic vegetation (PV),
the BA term in the LIiDAR calibration equation (Eq. 1). We non-photosynthetic vegetation (NPV) and bare soil cover us-
determined that WD was not significantly related to MCH, ing CLASIite (Supplement). These results were combined
and therefore we applied the basal-area weighted mean ofiith our original historical forest change maps (deforesta-
0.61 (Fig. S2b). For comparison, the SC and WD values fortion, disturbance, regrowth) and variables from SRTM in-
the southwestern Peruvian Amazon were 1.53 and 0.56, recluding elevation, slope, aspect and a terrain ruggedness in-
spectively (Asner et al., 2012b). With these inputs, Eq. (1)dex (TRI). The TRI was computed as the square root of the
was simplified to a regionally calibrated LIDAR equation:  sum of the squared differences between each pixel and its

280 surrounding 1X 11 pixel kernel (modified from Riley et al.,
ACD = 1.9314MCH-%% (2)  1999), and thus it is an index of topographic variability at
local scales.
With these input satellite and airborne LiDAR data, we

We validated the universal LiDAR calibration equation using s.ough.t t_o maximize parsimony and m|n|m|ze_ACD varia-
traditional forest inventory techniques with allometric regres- 10N Within each stratum. In areas of airborne LIDAR cover-
sion equations (Table S1). Although we used the same plot29€: We aSSESSGFi relatlon'sh|.p.s between e_nvwonmgntgl vari-
this validation was critical to determine whether two simple ables from satellite, bO_th lnd|V|_duaIIy and in combination,
regional constants (i.e., SC and WD) could substitute for tra-2Nd forest ACD from LiDAR using correlation and regres-
ditional field inventory. For dead trees and palms, we utilizedS'°" ane_ll_yse_s, respectively. Based on these_fmdlngs, the _ﬂ'
growthform-specific equations. Lianas were considered, puhal stratification approach followed an extension of the deci-

none were detected over the minimum size class (10 cm dbh)%ion tree used for preliminary stratification (Fig. 2c) in 13_6
For all other trees, we utilized a general moist forest modellin@! classes (Supplement). We then calculated ACD statis-
of Chave et al. (2005). We corrected for local height varia- 1S from the LIDAR coverage of each class. Following As-
tion by directly measuring the heights of the largest trees inn€' €t al. (2010), we determined that the median value best
all plots (> 50 cm dbh) and additional trees spanning a rangerepresented the ACD cﬁstnbuuon W|_th|n each class, a_nd then
of stem diameters using a laser hypsometer (Impulse-ZOO?_OpU|ated all classes in the map with its corresponding me-
LaserTech Inc., USA). For the remaining trees, we produced!ian ACD value.

a model relating height and diameter using maximum like-
lihood analysis (Fig. S3; R Development Core Team, 2011).

Wood density values were assigned based on genus- (33 %y aiso upscaled the LiDAR-based ACD estimates using an
or family-level (42 %) identifications according to Chave et 4jterative regression-based approach (Saatchi et al., 2011).

al. (2009), and are detailed in Table S2. These values wergy yever, to take advantage of the historical forest cover

determined by averaging all listings at the genus- and family-change information (deforestation, degradation, regrowth)

level within the database. In the absence of such an identifiaﬁorded by the CLASIite analyses described earlier, we ap-

cation (25 %), a regional estimate of 0.58 was applied (tefyjieq the regression approach only to the forested classes,

Steege et al., 2006). Plot centers were determined using gnq then embedded the non-forest results derived earlier into
global positioning system (GPS) with differential correction e regression-based map. Thus, the regression technique uti-

(Leica GS-30, Leica Geosystems Inc., Switzerland), whichjj;eq here was a hybrid of regression and stratification, al-

provided< 1 m positional uncertainty in most cases. though forested pixels accounted for the vast majority of the
study area. The regression employed the same potential envi-
ronmental parameters considered for the stratified approach.

To upscale LiDAR-derived ACD, we relied on the notion that A combination of the parameters that explained significant
nested sources of variation in carbon stocks exist throughoufiation in LIDAR-based ACD results was ultimately used
most tropical regions. These may occur, for example, due tdOF regional mapping.

localized gradients in riparian vegetation, mesoscale varia-

tion in canopy cover, and large-scale controls such as eleva-

tion, with overlapping human influences at all scales. Strat-

ification allows for parsing a region based on these factors,

and the finer the strata are delineated; the greater the possi-

bility of detecting ACD differences among those strata with

airborne LiDAR. First, however, to improve our coverage

2.5 Model validation

2.7 Regional upscaling based on regression

2.6 Regional upscaling based on stratification

www.biogeosciences.net/9/2683/2012/ Biogeosciences, 9, 28835-2012
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2.8 Uncertainty analyses 200

Universal equation
We estimated uncertainties in each step of the project, in-g :Jffl&mgm» °
cluding measurement errors in LiDAR (type 1) and field al- ¢, 150 | /
lometric equations underlying the universal LIDAR model < e esson S
(type 2), as well as prediction errors in application of the % r=091 . \a
universal model (type 3) and upscaling to the regional level ¢ g0 | RMSE =17.8 Mg C ha %
(type 4). Errors of types 1-3 were quantified empirically by £ P
previous studies, and we summarize each of these in the re 2 Q// o
sults. For errors of type 4 (upscaling), we subset our LIDAR % 50 7
coverage to 75 % of its full extent and evaluated the perfor- g //
mance of each upscaling technique on the remaining 25 %. ™ -
To subset the data, we restricted each flight polygon to a 0t ‘ ‘ ; ;
width of 2600 m, simulating a more limited flight campaign. 0 5 10 15 20 25
With the 75 % subset, we completed each step of the analysis LIDAR mean canopy profile height (m)

using the same methodology. We then compared predicted

ACD to LiDAR-derived ACD at the pixel level in the re- Fig. 3. Regressions comparing the universal LiDAR equation of As-

maining 25 % of the original LIDAR extent. Using this 75% "€’ et al. (2012b) with traditional validation field plots measured

training/25 % validation split, we calculated average pixel- ithin the study region.

level uncertainty as the root mean square error between pre-

dicted and observed ACD. Because spatial resolution needs ., . . . .

vary across data applications (e.g., research versus carbon afc—V""“d"’l.tIon pf the universal LIDAR appro ach de_monstrat_es

counting), we examined pixel level uncertainty at both 30-m '°F the first time that plot-scale calibration of airborne Li-

and 1-ha ,resolution DAR can be accomplished from a very small number of field
We also considered the possibility of spatial dependenc lots for a new region. Furthermore, it demonstrates that

in the errors produced by both upscaling approaches. W IDAR data can be calibrated u;ing simpler field measure-
used Moran’s |, an index of spatial autocorrelation, to deter_ments of basal area (for determination of the stocking coef-

mine whether the stratification and regression-based upscaﬂc'ent; Fig. S2a), and genus-level taxonomic sampling (for

ing produced clustering of errors, which would indicate con- determination of regional WD; Fig. S2b). These very limited

trols over ACD not captured by the models (Moran, 1950). Iélpués requllreg io cahbr_ate tr:je utr_uve_rsal L'tDAIZ mf(f)dfl (asdlnd
Moran’s | ranges from-1 to 1, where positive values indi- 9. 2) can lead to a major reduction in cost and effort neede

cate clustering and negative values indicate values arrange?? effectively characterize the LIDAR-to-ACD relationship

in opposition (e.g., a checkerboard type pattern). Due to com:°" @ region.
putational limitations, we assessed Moran’s | on randomly, ,, |5 AR _ccale carbon patterns
selected continuous subsamples of the upscaling residuals,

accounting for 0.3 % and 2% of the study area at 30-m antjrporne LiDAR-based estimates of ACD revealed pro-
1-ha resolution, respectively (R Development Core Teamy,,nced variation within and among sampling areas totaling

2011). 465622 ha (Fig. 4). Landscapes impacted by human activ-
ity exhibited abrupt changes in ACD at forest edges and in

3 Results and discussion degraded zones, p_articularly in the northwest region along
the base and foothills of the Andes. In forested areas of the

3.1 Validation of the universal LiDAR approach remote lowlands, ACD fluctuations aligned spatially with a

range of natural environmental controls, mainly terrain fea-
Traditional field inventory produced a LiDAR-to-ACD re- tures associated with mesas and local highlands, depressions
gression that was in close agreement with the universal Liin swamps and inundated areas, and riparian zones. Mapping

DAR equation (compare Egs. 2 and 3): and quantifying this local and sub-regional ACD variation
363 throughout the region was requisite to the analysis of envi-
ACD = 2.1043MCH"3%3, (3)  ronmental controls over carbon density.

Specifically, the universal and traditional approaches werez 3 Environmental controls over ACD
nearly identical in terms of both slope(values were
the same) and predictive power (RMSE differed by only Using environmental variables derived from the SRTM and

0.3MgCha) (Fig. 3). Thus, the universal model (Eq. 2) CLASlite datasets against the LIDAR-based ACD maps,
was deemed sufficient for appllcatlon to the 38 LiDAR sam- we found that elevation exp|ained 19% — the |argest de-

pling polygons used for mapping ACD. tected proportion — of the spatial variation in carbon stocks

Biogeosciences, 9, 2683696 2012 www.biogeosciences.net/9/2683/2012/
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was most sensitive to elevation in the PV class represent-
ing the lowest overall canopy cover (80-83 %), with a pro-
nounced leftward skew of the ACD distributions as elevation
increased from less than 100 m to more than 500 m.

The mid-PV class (84-96 %) accounted for more than
70% of forested area across all elevations and a majority
of aboveground carbon storage within the LiDAR coverage.
Within this class, we observed that variation in the TRI was
locally associated with ACD (Fig. S4), a pattern not apparent
at the full regional scale (Fig. 5). To minimize ACD variation
within each mapping class for subsequent regional extrapola-
tion, we iteratively identified a TRI threshold to bisect each
class at mid-PV values (Fig. 2c). Pixels with low TRI (0—
5) generally corresponded to flatter riparian corridors, often
with lower-ACD forests than their higher TRI (5+) counter-
parts (Fig. S4). We found no other sub-regional or local-scale
patterns relating ACD to other potential factors (e.g., aspect,
soil fraction).

We emphasize that other explanatory factors — such as soil
type or distance from infrastructure — were considered for use
in these models, but the available data were found to lack the
detail needed to assign additional spatial variance in ACD to
them. This is a common problem when scaling up field or air-
borne data in many tropical regions, and here we limited our
analysis to variables readily derived from globally-available
satellite imagery. Nonetheless, we also recognize that some
Fig. 4.Example LiDAR-based maps of aboveground carbon densityregions do have much more detailed data available, which

(ACD; left side) and ground elevation (right side) f@) heavily  has peen used for analyses of environmental controls over
deforested lands in the northwest regidio) alluvial and riparian carbon stocks (Asner et al., 2011).

forests in the central region; afd) terra firme forests in the south-

east region of the study. Units are Mg Ctafor ACD and meters 34 Redi | b K . h
for elevation, and both are shown at 30 m spatial resolution. ACD*" egional carbon stocks — comparing approaches

values are shown in actual units; elevation data are stretched for ) ) ) )
maximum contrast, but generally varies by 200m or less in eachResults of the environmental analysis guided the upscaling
image. of LIDAR ACD estimates to the regional level, first with

the stratification-based approach. Here, we iteratively de-

rived segmentation thresholds for each variable to minimize
throughout the study region (Fig. 5). Correlations betweenACD variation within each stratum (Maniatis and Mollicone,
elevation and biomass are not new (e.g., Aplet et al., 1998)2010). Fractional PV cover, elevation and the TRI explained
but it was surprising here because the study area is relativelthe largest proportion of the ACD variation, with PV and el-
flat, with over 85 % of the forested area within a narrow bandevation operating at the regional level and TRI at the local
of elevation (100-300 m). PV fractional cover accounted forscale as described earlier. While these factors emerged as im-
9 % of the regional variation in ACD, and bare soil fraction portant controls over ACD, we also incorporated catchment
just 3%. Slope, aspect and the TRI each explained less thaboundaries to account for additional variation observed in the
2 % of the ACD variation at the whole-region scale. LiDAR data that was expressed irrespective of terrain or frac-

Within the forested classes, we observed higher ACD withtional cover (Fig. 2¢) (see Supplement).

increasing PV, peaking with a PV fraction of 84—96 %, above The final stratification-based ACD map contains classes,
which we observed a significant decline in ACD (Fig. 5). each with a median ACD value computed from distributions
Further review revealed that the high-PV/low-ACD condi- developed with airborne LIiDAR sampling, and thus repre-
tion corresponded to swampland, agriculture, or other secsenting the highest probability carbon value in each class (see
ondary vegetation. Through iterative evaluation of ACD dis- Table S3). The stratification-based map indicated lower ACD
tributions within PV sub-strata, we established thresholdslevels in the northwest where elevation is higher (Fig. 7a).
for further segmentation by PV fraction into three discrete However, within this area, heavy deforestation and degrada-
classes: 80—-83 %, 84-96 %, and 97—100 % (Fig. 2c). Withirtion have also driven ACD as low as 0—6 Mg Cfian many
each of these PV fraction classes, the distribution of carborareas. Near the center of the study region, sandstone plateaus
stocks was also found to change with elevation (Fig. 6). ACDare capped by short-statured vegetation with low ACD.

>120

ACD (Mg C hal)

0
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Fig. 5. Correlation matrices relating site factors to aboveground carbon density (ACD), including elevation a.s.l. (m), fractional cover of
photosynthetic vegetation (PV) and bare soil as determined by CLASIite, TRI (terrain ruggedness index), and topographic slope and aspect.
Blue points indicate individual pixel values; open circles represent the median value within each of ten bins evenly spaced along the horizontal
axis (these are intended to assist in visualization and do not impact model fit); lines are the best fit polynomials for the data being compared.
The lower left portion of the matrix shows thé values for the best-fit polynomials** indicates statistical significance &f < 0.001.

Carbon stocks increase to the southeast, where elevationdement). It is important to note that the TRI did not add to
are lowest and annual rainfall reaches 3000 mnt y(Tian the strength of the model. In this region, the TRI operates
et al., 2000). Median ACD in these wetter forests reachesat a localized scale, and these controls are difficult to incor-
130 Mg C hal, and over many stretches, forest cover is un- porate into regional regression models. In addition to being
interrupted, suggesting low to no human use. Naturally lowunable to capture localized terrain effects, the regional re-
ACD features also exist in the far south, such as in topo-gression approach, by definition, does not incorporate sub-
graphic depressions that are often inundated by water (Duivfegional features such as the active floodplain areas contain-
envoorden and Duque, 2010). Finally, the map highlights theing early successional vegetation with low carbon stocks.
mediating role of catchment and localized terrain controls on  Total regional aboveground carbon storage was estimated
carbon stocks, including the suppression of biomass in activat 1.468 Pg and 1.454 Pg using the stratification and regres-
floodplains and riparian corridors to the southeast. sion approaches, respectively. Similarly, mean ACD among
The regression method required relatively little process-forested classes was 103.8 and 102.8 Mg Cth&lotwith-
ing, and it yielded an regional ACD pattern similar to that standing an overall systematic bias, we would expect the two
derived with the stratification approach (Fig. 7b). We deter-maps shown in Fig. 7 to produce similar regional-scale car-
mined that only PV and elevation influenced the fit of the bon stock values, especially here because each map incorpo-
regression model at the scale of the entire study area (Supates the same non-forest results derived through CLASIite
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Fig. 6. Example frequency distributions of LiDAR-derived aboveground carbon density (Mg bﬂuy elevation and fractional cover of
photosynthetic vegetation (PV).
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Fig. 7. Aboveground carbon density (ACD) across the study region calculated (eimggional stratification with elevation, fractional
cover of photosynthetic vegetation and terrain ruggednessgmdgression analysis with elevation and fractional cover of photosynthetic
vegetation.

analysis. In general, spatially explicit carbon mapping meth- Despite the regionally-integrated similarities between up-
ods will yield similar regionally-integrated results as long scaling approaches, there were systematic differences —some
as there are no large systematic biases, such as those oexceeding 15Mg C ha — at the sub-regional level (Fig. 8).
served when generic ACD values are applied to low reso-Stratification-based mapping resulted in lower ACD in two
lution forest cover maps (Gibbs et al., 2007; Goetz et al.,catchments and in the active floodplains (red in Fig. 8), again
2009; Avitabile et al., 2011). We have found this to be a ma-because stratification and LIiDAR sampling suggested that
jor drawback of using Tier-l mapping guidelines provided by sub-regional scale variation was important. Conversely, the
the IPCC (IPCC, 2006), which can have large systematic bi-stratification approach yielded higher ACD values through-
ases in comparison to high-resolution results (Asner et al.put the majority of upland forests, owing to the availabil-
2010, 2011). ity of the TRI to resolve local topographic variability. We
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Difference Carbon (Mg C/ha) gions, a pan-tropical model by Chave et al. (2005) was used.
-5 Thus, the extent to which this pan-tropical model is not rep-

5;‘:” resentative of the Colombian Amazon may introduce a bias
s in our LiDAR-based estimates. Chave et al. (2005) consid-
[ 004 ered errors in model application of the pan-tropical model at
Ef;‘:f_m the regional scale (e.g., its accuracy for a “new” region); for

- all sites, their average reported error is 9.4 %. Note that each

measurement error considered is a source of potential bias;
these errors are directional and do not differ across spatial
resolutions.

We identified two sources of prediction error, including
the application of the universal LiDAR equation to airborne
data, and the extrapolation of LiDAR-scale ACD estimates
to the regional level. The universal LiDAR equation pre-
dicted the ACD of field validation plots with an uncertainty
of 18.1 Mg C hal (Fig. 3), or about 20 % at the 0.28 ha reso-
lution of the field plots. While we relied on a limited number
Fig. 8. Difference in aboveground carbon density calculated usingt piots, 20 % error at 0.28 ha spatial resolution is well within
regional stratification and regression analysis (from Fig. 7). the range of values previously reported for tropical LIDAR

studies. Furthermore, as we detail in the Supplement, LiDAR

calibration errors can be modeled predictably with spatial
believe this may be associated with either higher soil fertility resolution. Briefly, Mascaro et al. (2011b) used a large in-
or increased drainage (see also Asner et al., 2010). Anothafentory plot with mapped trees to demonstrate that CAO Li-
difference arises in the central portion of the study region,DAR calibration errors scaled according to the inverse square
where small residual artifacts within and along the edges ofroot of the plot area between 30 m and 1 ha spatial resolution
the satellite imagery are expressed in the regression map. Ag.e., from~ 35 to 10 %, respectively). Mascaro et al. further
advantage of the stratification approach is its ability to dimin- showed that at resolutions below 1 ha, nearly half of the error
ish such effects because mapped carbon values are associaigttaused by disagreement between LiDAR and field mea-
with each stratum, not with each satellite image. Overall, ansurements concerning which trees (or portions of trees) are
advantage of quantitatively comparing both upscaling meth-considered inside or outside of a calibration plot. This por-
ods is that the areas of maximum disagreement can be tation of the error is essentially “sub-tree” — existing at a spatial
geted for additional airborne LIDAR sampling. Finally, the resolution smaller than tree crowns — and thus can be safely
regional comparisons provided here serve as a starting poirgmitted for carbon mapping purposes. Following this empir-
for additional comparisons using other methods, includingical analysis, we estimate calibration errors of 21.5% and
the global approaches (Saatchi et al., 2011; Baccini et al.10.0 % at 30 m and 1 ha resolution, respectively (Table 1).

2012). Finally, we evaluated pixel-level uncertainty associated
with extending LiDAR results to the regional level. To do so,
3.5 Sources of uncertainty in carbon mapping we produced regional ACD maps based on a 75 % of the Li-

DAR coverage (following the same methodology), and eval-

We identified and propagated four sources of error through-uated their performance in the remaining 25 % extent. Pixel-
out the study (Table 1). Measurement errors included LiDARIevel errors were 29.0 Mg C ha (32.9 % of the mean carbon
height errors and allometric errors in field-estimated ACD. stock) using the stratification approach, and 32.6 MgCha
LiDAR height errors are influenced by uncertainty in sensor(37.0 %) using the regression approach. At 1-ha spatial reso-
position and orientation as well as laser ranging. These errorkition, these errors declined to 24.3 % and 28.7 % for strati-
are low at the top of the canopy-(0.15m by Asner et al., fication and regression approaches, respectively.
2007), but may reach 1 m at the ground in Amazon forests We assumed that all four sources of error were inde-
with relatively poor GPS networks. Thus we estimated Li- pendent, and therefore propagated the errors as the square
DAR height errors to be 5 %, assuming a mean forest canopyoot of the sum of all squared errors (Table 1). Overall,
height of 20 m. we estimated a 28.3% pixel-level error for ACD deter-

Allometric errors might influence the application of the minations across the study corridor at 1 ha resolution us-
universal LIDAR calibration equation to a new region (below ing the stratification method, and 32.2% using the regres-
we separately consider errors in its predictions at the pixekion approach. A side-by-side comparison of LiDAR-derived
level). The universal model was calibrated using field-basedACD and regional ACD derived from land-cover stratifica-
ACD estimates determined by the application of allometriction indicates good agreement between LiDAR-observed and
regression equations; for most large trees and for most reregionally-predicted ACD using the stratification approach
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Table 1. Sources of error in high-resolution mapping of aboveground carbon density in the Colombian Amazon. Errors are provided at
resolutions of 30 m and 1 ha using the stratification- and regression-based upscaling approaches.

Source of Error Relative Error (%)

Stratification ~ Regression
30-m 1-ha 30-m 1-ha

Measurements

LiDAR height detection 5.0 5.0 5.0 5.0
Uncertainty in field allometry 9.4 9.4 94 94
Predictions

LiDAR calibration (universal model) 215 100 215 10.0
Scaling LiDAR carbon to habitat level 32.9 243 37.0 287

Totals
Pixel-scale mean errors (in LIDAR) 240 146 240 146
Pixel-scale mean errors (region-wide) 40.828.3 441 322

(Fig. S5). Finally, we contrasted mean LiDAR-observed andTable 2. Moran’s | values for residuals produced by stratification-
regionally-predicted ACD in the large sections of each flight and regression-based upscaling approaches. At 30-m resolution, the
polygon set aside for determination of pixel-level errors. We analysis was conducted on a subset of points representing 0.3 %
found that both approaches predicted ACD well, although©f the total data set(= 15664), and 2% at 1-ha resolutiom £

a limited bias was observed using the regression approacfi®11)- All values are significant & < 0.001.

(Fig. S6); this is consistent with its slightly weaker perfor-

mance overall. Collectively, we contend that the environmen- Stratification Regression
tal controls identified through iterative statistical analysis and 30m lha 30m 1ha
incorporated into regional stratification effectively represent Moran’s| 0.047 0.083 0.125 0.186

the ACD variation found throughout the region.

Residuals for the stratification-based approach indicated
very low spatial autocorrelation of errors: Moran’s | ranged
from 0.05 to 0.08 depending on spatial resolution (Table 2).to produce a calibration for which we have equal confidence
By contrast, regression-based upscaling yielded higher spavith the traditional approach. The universal approach pro-
tial autocorrelation; this clustering of errors suggests thatvides cost-effective calibration and use of LiDAR in remote
modest variation in ACD was not exp|ained by the regressionand difficult-to-access areas such as the Colombian Amazon.
model. These results, along with higher pixel-level errors for We also found that, even with limited foreknowledge of
the regression approach, suggest that stratification better cagarbon stock variation in a region, a systematic analysis of
tured landscape-scale controls on ACD due to a combinatiofgnvironmental controls on LIDAR-scale ACD can provide an
of (Eq 1) ingesting additional possib|e controls over ACD effective means to Upscale LiDAR measurements thrOUghOUt
(i.e., the inclusion of localized TRI variation in the strati- @ region. Through this process, we gained new insight into
fication approach which was not retained in the regressiorfcological drivers of ACD variation across the Colombian
analysis), and (Eq. 2) the degree to which unknown localized®mazon, revealing previously unknown variation mediated

controls on ACD are captured by stratification but remain ab-Py elevation, terrain ruggedness, and canopy fractional cover.
sent from the regression inputs. We found strengths and weaknesses in both stratification

and regression-based approaches to upscaling. Stratification-

based mapping provides a means to dissect a region by poten-
4 Conclusions tial environmental controls, sample the resulting strata with

airborne LiDAR, and apply the results to minimize ACD
We demonstrate that high-resolution mapping of tropical for-variance per mapping class. On the other hand, regression
est carbon stocks assisted by airborne LIiDAR can be accomapproaches are less laborious and capture the general trends,
plished with limited field calibration data and limited preex- but will miss the landscape features that are not expressed
isting knowledge of the study region. In place of previous consistently throughout a region. Clearly, applying both ap-
calibration models that relied on exhaustive inventories ofproaches provides analytical leverage to identify areas of
tree diameters, heights, and wood densities, we used a neuncertainty for additional investigation. High-resolution ap-
universal LIiDAR model — adjusted by rapid field-based as-proaches that report pixel-scale uncertainties will provide the
sessment of basal area and a regional wood density constantmost confidence in the effort to monitor changes in tropical
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forest carbon stocks. This improved confidence will allow Asner, G. P., Hughes, R. F., Varga, T. A., Knapp, D. E., and
resource managers and decision-makers to more rapidly and Kennedy-Bowdoin, T.: Environmental and biotic controls over
effectively implement actions that better utilize and conserve aboveground biomass throughout a tropical rain forest, Ecosys-

forests in remote tropical regions. tems, 12, 261278, 2009a. )
Asner, G. P., Knapp, D. E., Balaji, A., and Paez-Acosta,

G.: Automated mapping of tropical deforestation and forest

Supplementary material related to this article is degradation: CLASIite, J. Appl. Remote Sens., 3, 033543,
available online at: http://www.biogeosciences.net/9/ doi:10.1117/1.3223672009b.
2683/2012/bg-9-2683-2012-supplement.pdf Asner, G. P., Powell, G. V. N., Mascaro, J., Knapp, D. E., Clark, J.

K., Jacobson, J., Kennedy-Bowdoin, T., Balaji, A., Paez-Acosta,
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