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Abstract. A process-based fire parameterization of interme-
diate complexity has been developed for global simulations
in the framework of a Dynamic Global Vegetation Model
(DGVM) in an Earth System Model (ESM). Burned area in
a grid cell is estimated by the product of fire counts and aver-
age burned area of a fire. The scheme comprises three parts:
fire occurrence, fire spread, and fire impact. In the fire occur-
rence part, fire counts rather than fire occurrence probability
are calculated in order to capture the observed high burned
area fraction in areas of high fire frequency and realize pa-
rameter calibration based on MODIS fire counts product. In
the fire spread part, post-fire region of a fire is assumed to be
elliptical in shape. Mathematical properties of ellipses and
some mathematical derivations are applied to improve the
equation and assumptions of an existing fire spread parame-
terization. In the fire impact part, trace gas and aerosol emis-
sions due to biomass burning are estimated, which offers an
interface with atmospheric chemistry and aerosol models in
ESMs. In addition, flexible time-step length makes the new
fire parameterization easily applied to various DGVMs.

Global performance of the new fire parameterization is
assessed by using an improved version of the Community
Land Model version 3 with the Dynamic Global Vegetation
Model (CLM-DGVM). Simulations are compared against
the latest satellite-based Global Fire Emission Database ver-
sion 3 (GFED3) for 1997–2004. Results show that simulated
global totals and spatial patterns of burned area and fire car-
bon emissions, regional totals and spreads of burned area,
global annual burned area fractions for various vegetation
types, and interannual variability of burned area are reason-

able, and closer to GFED3 than CLM-DGVM simulations
with the commonly used Glob-FIRM fire parameterization
and the old fire module of CLM-DGVM. Furthermore, aver-
age error of simulated trace gas and aerosol emissions due to
biomass burning is 7 % relative to GFED3. Results suggest
that the new fire parameterization may improve the global
performance of ESMs and help to quantify fire-vegetation-
climate interactions on a global scale and from an Earth sys-
tem perspective.

1 Introduction

Fire is critical in Earth system modeling on a global scale
due to the close fire-vegetation-climate interactions (Bow-
man et al., 2009). On the one hand, vegetation and climate
regulate fire occurrence and spread by determining fuel load,
fuel flammability, and fire spread rate (van der Werf et al.,
2008; Archibald et al., 2009). On the other hand, fire has
important feedbacks on vegetation and climate. First, fire
plays an integral role in shaping global vegetation (Sousa,
1984). Bond et al. (2004) suggested that closed forests would
double from 27 % to 54 % of vegetated grid cells in a
world without fire. Second, due to vegetation–climate in-
teractions, fire can affect water, energy and momentum be-
tween land and atmosphere indirectly by changing vege-
tation characteristics (Chambers and Chapin, 2002; Bond-
Lamberty et al., 2009). Third, global fire carbon emissions,
which were around 2.1 Pg C yr−1 with large interannual vari-
ability (1.4–3.2 Pg C yr−1) from 1960 to 2009 (Schultz et
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al., 2008; van der Werf et al., 2010), significantly affect
the global net land-to-atmosphere carbon flux, whose mean
value was about−0.7 Pg C yr−1 from 1980 to 2004 (IPCC,
2007). In addition, biomass burning emits not only over 40 %
of the global black carbon and abundant greenhouse gases
that contribute to climate warming, but also∼ 30 % of the
global cloud condensation nuclei (CCN) (Day, 2004; Arora
and Boer, 2005) that decrease the precipitation efficiency of
clouds (Andreae et al., 2004; Lindsey and Fromm, 2008).

A Dynamic Global Vegetation Model (DGVM) (grid cell
size: 103–105 km2) simulates global vegetation succession
dynamically and integrates biogeochemistry, biogeography,
and vegetation dynamics of the land surface into a single and
physically consistent framework (Foley et al., 1996; Sitch et
al., 2003; Quillet et al., 2011). A DGVM may be coupled to
atmospheric general circulation models (AGCMs) to simu-
late vegetation-atmosphere interactions in the framework of
Earth System Models (ESMs) (Levis et al., 1999; Brovkin
et al., 2006; Delire et al., 2011). A fire-enabled DGVM in
an ESM is the quantitative assessment tool of global fire-
vegetation-climate interactions from an Earth system per-
spective.

Current fire parameterization schemes in DGVMs can be
divided into three types. The first type is simple in structure
and light in computational burden, including the fire parame-
terization schemes in TRIFFID (Cox, 2001), IBIS (Kucharik
et al., 2000), ED (Moorcroft et al., 2001), VEGAS-DGVM
(Zeng et al., 2005) and SDGVM (Woodward and Lomas,
2004). TRIFFID prescribes a constant loss rate attributed
to disturbance, and hence cannot model fire as a climate-
dependent and vegetation-dependent process in the context
of global change. The other four DGVMs assume fire to be
a simple empirical function of litter moisture content and/or
litter amount, whose fire simulations have not been evalu-
ated against the observations. Generally, this type of param-
eterization does not explicitly estimate the burned area and
fire emissions, which are primary fire-related variables in
the ESMs. The second type, by contrast, is represented by
complex process-based fire parameterization schemes, such
as MC-FIRE (Lenihan and Neilson, 1998) in MC-DGVM
(Bachelet et al., 2003) and SPITFIRE in LPJ-SPITFIRE
(Thonicke et al., 2010). Both schemes introduce a great num-
ber of equations and parameters to distinguish fire behaviors
among various fuel types and between surface fire and crown
fire. MC-FIRE assumes one ignition per year per grid cell,
and its performance is evaluated only in the United States
rather than on a global scale (http://www.fs.fed.us/pnw/mdr/
mapss/fireforecas-ts/methods.shtml). The LPX (Prentice et
al., 2011), a modified LPJ-SPITFIRE, performed better in
global total of annual burned area than the process-based fire
parameterizations of intermediate complexity (Kloster et al.,
2010); however, its lower skill in global spatial patterns does
not justify its more complex design.

The third type is process-based fire parameterization of in-
termediate complexity. Schemes of this type include Glob-

FIRM (Thonicke et al., 2001) and CTEM-FIRE (Arora and
Boer, 2005). Glob-FIRM is the most commonly used, and
has been used as a fire module in LPJ (Sitch et al., 2003),
SEIB-DGVM (Sato et al., 2007), CLM3-DGVM (Levis
et al., 2004), ORCHIDEE (Krinner et al., 2005), CoLM-
DGVM (Dai et al., 2003; Chen, 2008), and CLM4-CNDV
(Oleson et al., 2010; Lawrence et al., 2011; Castillo et al.,
2012). Some of them, such as CLM3-DGVM, have incorpo-
rated the Glob-FIRM with minor changes. Compared with
the first two types, this type of parameterization can capture
the major processes of fire dynamics with efficient computa-
tion.

Existing parameterization schemes belonging to the third
type have shortcomings. For example, Glob-FIRM does not
account for the availability of ignition sources, the impact of
wind speed on fire spread, and the incomplete combustion
of plant tissues in post-fire regions. In CTEM-FIRE, human-
caused ignition probability and cloud-to-ground lightning
fraction are simply assumed to be constant globally; and the
equations and assumptions for calculating the burned area
are not self-consistent (see Sect. 2.2 in this paper). Moreover,
though CTEM-FIRE simulates global burned area well when
human-caused ignition probability is set to be 0.5, it con-
siderably underestimates the annual burned area in the trop-
ical savannas and boreal Asia (Kloster et al., 2010), which
are areas of high fire frequency according to 2001–2009
MODIS Monthly Active Fire Count product (Giglio et al.,
2006) (Fig. 1).

In this study, we develop a process-based fire parame-
terization of intermediate complexity that overcomes these
shortcomings. In addition, estimation of trace gas and aerosol
emissions due to biomass burning is introduced, which offers
an interface with atmospheric chemistry and aerosol mod-
els in ESMs. It is important for ESMs to capture the fire-
atmospheric chemistry and composition-climate-vegetation
interactions, and to estimate greenhouse gas and aerosol forc-
ing of climate more reasonably in global change projec-
tions (Thornton et al., 2008). Then, using a DGVM as a
model platform, the simulated burned area and fire emissions
are evaluated against the satellite-based global fire product,
GFED3 (Giglio et al., 2010; van der Werf et al., 2010). The
structure of this paper is as follows. Section 2 describes the
new fire parameterization scheme. Section 3 briefly intro-
duces the DGVM and the application of the fire parameteri-
zation in the model. Section 4 outlines the data for the sim-
ulation and evaluation. Section 5 presents the global perfor-
mance of the developed fire parameterization. Conclusions
and discussions are provided in Sect. 6.

2 Fire parameterization

A basic equation of the new fire parameterization is that
burned area in a grid cell per time step,Ab (km2 (time
step)−1), is determined by

Biogeosciences, 9, 2761–2780, 2012 www.biogeosciences.net/9/2761/2012/

http://www.fs.fed.us/pnw/mdr/mapss/fireforecas- ts/methods.shtml
http://www.fs.fed.us/pnw/mdr/mapss/fireforecas- ts/methods.shtml


F. Li et al.: Fire parameterization of intermediate complexity in a DGVM 2763

Fig. 1. MODIS active fire counts (count (1000 km2)−1 mon−1) in the peak month of each year averaged over 2001–2009. 1000 km2 are
representative area set by CTEM-FIRE. Regions where value>30 count (1000 km2)−1 mon−1 represent regions of more than 1 count
(1000 km2)−1 day−1.

Ab =Nfa, (1)

whereNf (count (time step)−1) is fire counts in the grid cell;
a (km2) is average fire spread area of a fire. The basic equa-
tion is different from those used by other process-based fire
parameterizations of intermediate complexity. In Glob-FIRM
(Thonicke et al., 2001), annual burned area is estimated by
a non-linear function of fire season length, and fire season
length is a function of fire occurrence probability in time
steps. In CTEM-FIRE (Arora and Boer, 2005), daily burned
area in a grid cell is calculated as the product of fire occur-
rence probability for a representative area 1000 km2, aver-
age burned area of a fire, and the grid-cell area divided by
1000 km2. Kloster et al. (2010) proposed a modified version
of CTEM-FIRE by introducing anthropogenic ignition prob-
ability (≤ 1.0) and suppression factor in the calculation of
ignition probability (≤ 1.0) and adding parameterization of
deforestation fires. The modified version has the same basic
function as CTEM-FIRE. Compared with Glob-FIRM, the
new fire scheme can explicitly consider the impact of wind
speed and fuel wetness on fire spread rate by the parameter-
ization of a (see Sect. 2.2). On the other hand, in the basic
function of CTEM-FIRE, daily fire occurrence probability in
a representative area of 1000 km2 is≤ 1.0 (Eq. 1 in Arora and
Boer, 2005 and probability theory). In order to capture high
burned area fraction in regions where fire counts>1.0 count
(1000 km2)−1day−1 (Fig. 1), one may apply smaller repre-
sentative area, shorter time-step length, or larger fire spread
rate (quantitatively equivalent to simulate more than one fire
during a time step). Using fire countsNf eliminates this prob-
lem (fire counts have no mathematical upper limit), and does
not require the assumption of representative area. In addi-
tion, unlike fire occurrence probability, fire countsNf have

MODIS observations, so parameters about fire occurrence
can be calibrated (see Appendices A and B).

The new fire parameterization comprises three parts: fire
occurrence, fire spread, and fire impact (Fig. 2). The fire oc-
currence part estimates fire countsNf . The fire spread part
estimates average fire spread area of a firea. After burned
area is calculated, the impacts of fire on vegetation com-
ponents and structure, the carbon cycle, and trace gas and
aerosol emissions are estimated in the third part. The first
two parts have the same length of time step and can be up-
dated hourly or daily. The third part can be updated hourly,
daily, monthly, or annually. To generalize plant function to
the global scale, DGVMs generally represent vegetation as
plant functional types (PFTs) instead of species (Bonan et
al., 2002). The PFTs used in the present study are listed in
Table 1.

2.1 Fire occurrence

Whether a fire occurs due to an ignition source depends on
three independent constraints: fuel load, fuel moisture, and
human suppression (Schoennagel et al., 2004; Pechony and
Shindell, 2009). Accordingly, fire countsNf are taken as

Nf =Nifbfm(1− fs), (2)

whereNi (count (time step)−1) is the number of ignition
sources due to natural causes and human activities;fb and
fm represent the availability and combustibility of fuel, re-
spectively;fs is the fraction of both anthropogenic and natu-
ral fires suppressed by human activities. The last three terms
vary between 0.0 and 1.0.
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Fig. 2. Structure of the fire parameterization developed in the present study. Text boxes in yellow, red, and blue colors represent three parts
in the fire module: fire occurrence, fire spread, and fire impact.

Table 1.Plant functional types (PFTs) used for parameter settings.

PFT Abbreviation

Trees
Broadleaf Evergreen Tropical BET Tropical
Broadleaf Deciduous Tropical BDT Tropical
Broadleaf Evergreen Temperate BET Temperate
Needleleaf Evergreen Temperate NET Temperate
Broadleaf Deciduous Temperate BDT Temperate
Needleleaf Evergreen Boreal NET Boreal
Broadleaf Deciduous Boreal BDT Boreal

Grasses
C4 –
C3 Non-arctic –
C3 Arctic –

Shrubs
Broadleaf Deciduous Temperate BDS Temperate
Broadleaf Deciduous Boreal BDS Boreal

2.1.1 Ignition countsNi

Ni (count (time step)−1) is given as

Ni = (In + Ia)Ag (3)

whereIn (count km−2 (time step)−1) and Ia (count km−2

(time step)−1) are the number of natural and anthropogenic
ignitions per km2, respectively;Ag is the area of the grid cell
(km2).

The number of natural ignitions due to lightning dis-
chargesIn is estimated by

In = ψIl, (4)

whereψ =
1

5.16+2.16cos(3λ) is the cloud-to-ground lightning
fraction and depends on the latitudeλ (Prentice and Mack-
erras, 1977);Il (flash km−2 (time step)−1) is the total light-
ning flashes. For an offline simulation, observations ofIl can
be obtained from the NASA LIS/OTD (ftp://ghrc.msfc.nasa.
gov/pub/lis/climatology/LRTS/data/). Within an ESM,Il can
be estimated from convective activity and cloud-top height
simulated by the AGCM and a resolution-dependent calibra-
tion factor (Price and Rind, 1994).

Venevsky et al. (2002) proposed a scheme to parameter-
ize the number of anthropogenic (intentional and acciden-
tal) ignitions as a nonlinear function of population density.
The form of nonlinear function has been tested in peninsu-
lar Spain by Venevsky et al. (2002) and on a global scale
by Pechony and Shindell (2009). In addition, the scheme is
used in the modified version of CTEM-FIRE to estimate hu-
man ignition probability, which is assumed equal to 1 when
population density is no less than 300 person km−2 (Kloster
et al., 2010). Following Venevsky et al. (2002), the number
of anthropogenic ignitionsIa is modeled as a monotonic in-
creasing function of population density:

Ia =
αDpk(Dp )

n
. (5)

α = 3.89× 10−3 (count person−1 mon−1) is the number of
potential ignition sources by a person per month, which is
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optimally estimated in Appendix A;Dp (person km−2) is
the population density;k(Dp) = 6.8D−0.6

p represents anthro-
pogenic ignition potential varied with human population den-
sityDp, and reflects that people in scarcely populated regions
interact more with natural ecosystems and thus potentially
produce more ignitions;n is the number of time steps in a
month (mon (time step)−1).

2.1.2 Fuel availabilityfb

Fuel availabilityfb is given as

fb =


0

Bag−Blow
Bup−Blow

1

Bag< Blow
Blow ≤ Bag ≤ Bup
Bag> Bup

(6)

whereBag (g C m−2) is the aboveground biomass of com-
bined leaf, stem and aboveground litter (leaf litter and
woody debris) pools;Blow (g C m−2) is the lower fuel thresh-
old below which fire does not occur;Bup (g C m−2) is
the upper fuel threshold above which fire will occur if
other conditions are favorable (Fig. 3a). Glob-FIRM (Thon-
icke et al., 2001) assumesBlow = Bup = 200 g C m−2 (where
fuel is defined as aboveground litter). CTEM-FIRE (Arora
and Boer, 2005) arbitrarily adoptsBlow = 200 g C m−2 and
Bup = 1000 g C m−2 (where fuel is defined as aboveground
biomass) to reflect that fire becomes more likely to occur
as fuel load increases until there is no longer a fuel load
constraint. In this present study,Blow = 155 g C m−2 and
Bup = 1050 g C m−2 are estimated by maximizing the corre-
lation between observed and simulated fire counts at 24 grid
cells in the United States based on remote sensing product,
reanalysis data, and field data (Appendix A).

2.1.3 Fuel combustibilityfm

Fuel combustibilityfm is estimated by

fm = fRHfθ , (7)

wherefRH and fθ represent the dependence of fuel com-
bustibility on relative humidity RH (%) and on surface soil
wetnessθ , respectively.fRH reflects the response of fuel
combustibility to real-time climate conditions. Soil wetness
has a memory of preceding precipitation and land surface wa-
ter and heat status (Shinoda and Yamaguchi, 2003), sofθ
can reflect the response of fuel combustibility to preceding
climate conditions.
fRH is calculated by

fb =


1 RH≤ RHlow

RHup−RH
RHup−RHlow

RHlow < RH< RHup

0 RH≥ RHup

(8)

and displayed in Fig. 3b. According to the China Forest
Fire-Danger Weather Grading Criteria (Wang et al., 1995)

Fig. 3. Dependence of fire occurrence on(a) fuel availability fb,
(b) relative humidityfRH, and(c) soil wetnessfθ .

and Zhou and Lu (2009), fires will not occur and spread if
RH≥ 70 %, and relative humidity will no longer be a con-
straint factor for fire occurrence and spread if RH≤ 30 %.
Therefore, RHlow = 30 % and RHup = 70 % are used as the
lower and upper thresholds of relative humility in Eq. (8) and
the dependence of fire spread rate in the downwind direction
on relative humidityCRH in Sect. 2.2.
fθ is given by

fθ = exp[−π(
θ

θe
)2] (9)

and displayed in Fig. 3c, whereθ is the soil wetness, defined
as volumetric soil moisture relative to that at saturation;θe
is the extinction coefficient of soil wetness. Equation (9) as-
sumes that the constraint of soil wetness on fire occurrence is
higher than 95 % whenθ exceedsθe. θe = 0.69, which is de-
rived from the MODIS Active Fire Count product (Giglio et
al., 2006), the CLM 4.0 surface data (Lawrence and Chase,
2007, 2010), and the Climate Prediction Center (CPC) soil
wetness product (Fan and van den Dool, 2004) (Appendix B).

Both fRH and fθ are important for estimating the fuel
combustibility (Appendix A).

2.1.4 Fraction of fires suppressed by humansfs

Humans influence fires not only by adding ignition sources
(intentionally and accidentally), but also by suppressing both
anthropogenic and natural fires. In general, success of fire
suppression depends on early fire detection, and fires are
more likely detected in more densely populated regions (Pe-
chony and Shindell, 2009). Accordingly, the fraction of fires
suppressed by humans is parameterized as a monotonic in-
creasing function of population density:

fs = ε1 − ε2exp(−0.025Dp) (10)

and is displayed in Fig. 4. The fractions of fires sup-
pressed in densely populated regions (i.e.Dp → +∞) and
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in uninhabited regions (i.e.Dp = 0) are estimated byε1 and
ε1 − ε2, respectively. In the present study, they are simply
assumed to be 99 % and 1 %; thenε1 = 0.99 andε2 = 0.98.
When global grid data relating to fire management policy and
fire suppression capability (influenced by socio-economic
conditions) become available, the coefficientsε1 andε2 can
be determined more accurately and vary in space and time.
As shown in Fig. 4, the effect of fire suppression on anthro-
pogenic ignitions starts at∼ 1 person km−2 and is stronger
with increasing population density. The unsuppressed an-
thropogenic ignition frequencyIa (1− fs) peaks at a popu-
lation density of 16 person km−2, then falls due to increased
fire suppression, which is supported by the analysis of rela-
tionship between population density and the MODIS Active
Fire Count in Southern Africa (Archibald et al., 2009) and on
a global scale (Pechony and Shindell, 2009).

2.2 Fire spread

The post-fire region of a fire is typically taken to be elliptical
in shape with the wind direction along the major axis and the
point of ignition at one of the foci (Fig. 5). The ellipse shape
of a fire is defined by length-to-breadth ratio:

LB =
l

w
=
(up + ub)

2v
(11)

where l (m) andw (m) are the lengths of major and mi-
nor axes of the elliptical post-fire region;up (m s−1) andub
(m s−1) are fire spread rates in the downwind and upwind di-
rections, respectively;v (m s−1) is the fire spread rate perpen-
dicular to the wind direction. In the present study, we adopt

LB = 1.0+ 10.0[1− exp(−0.06W)] (12)

(Arora and Boer, 2005), whereW (m s−1) is wind speed. Ac-
cording to mathematical properties of ellipses, the head-to-
back ratioHB is

HB =
up

ub
=
LB + (L2

B − 1)0.5

LB − (L2
B − 1)0.5

. (13)

LB andHB are monotonic increasing functions with wind
speed (Fig. 6a and b). The assumption of a globally constant
HB = 5.0 in CTEM-FIRE (Arora and Boer, 2005) is mostly
inconsistent with Eq. (13) (Fig. 6b).

Fire spread rate in the downwind direction is represented
as

up = umaxCmg(W) (14)

(Arora and Boer, 2005), whereumax (m s−1) is the average
maximum fire spread rate in natural vegetation regions;Cm
andg(W) represent the dependence ofup on fuel wetness
and wind speedW , respectively, and vary between 0.0 and
1.0. Arora and Boer (2005) proposed using a value on the low

Fig. 4. Fraction of fires suppressed by humansfs (blue
solid), total anthropogenic ignitionsIa (count km−2 month−1;
gray dash), and unsuppressed anthropogenic ignitionsIa(1− fs)

(count km−2 month−1; black solid) as functions of population den-
sity.

Fig. 5. Conceptual elliptical fire shape that is used to estimate the
burned area with the wind direction along the major axis and the
point of ignition at one of the foci.

side of observed fire spread rates to estimateumax for scale
transformation from individual fires to large-scale grid-cell
average. Zhou and Lu (2009) and Cochrane and Ryan (2009)
pointed out that surface fire is the most common fire type and,
on average, spreads fastest in grasslands, and faster in shrub-
lands than in forests; crown fires generally spread faster than
surface fires and usually occur in coniferous forests due to the
flammable resin in plant tissues and/or ladder fuels. Collec-
tively, average maximum fire spread rate is set to be 0.2 m s−1

for grass PFTs, 0.17 m s−1 for shrub PFTs, 0.15 m s−1 for
needleleaf tree PFTs, and 0.11 m s−1 for other tree PFTs
rather than 0.13 m s−1 for all PFTs in CTEM-FIRE. All of
these values are on the low side of observed fire spread rates
in regions with different dominant vegetation types (Albini
and Stocks, 1986; Riggan et al., 2004; Vega et al., 2006).
Cm = CβCRH is estimated by the dependence ofup on root
zone soil wetness (Cβ ) and relative humidity (CRH). Here,
β is a root zone soil moisture limitation function, and de-
pends on the root distribution of PFTs and the soil water

Biogeosciences, 9, 2761–2780, 2012 www.biogeosciences.net/9/2761/2012/
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Fig. 6. (a)Length-to-breadth ratioLB, (b) head-to-back ratioHB,
and(c) dependence of fire spread rate in the downwind direction on
wind speedg(W) as functions of wind speed.

potential of each soil layer (Levis et al., 2004; Oleson et al.,
2010). Due to a lack of observations to calibrate function of
Cβ , we adopt a simple linear function, whereβlow = 0.3 and
βup = 0.7 are applied as the lower and upper thresholds of
root zone soil wetness, respectively.Cβ , similar to a nonlin-
ear function used in CTEM-FIRE (Arora and Boer, 2005),
describes that fire spreads faster when the root zone is drier.
CRH is set equal tofRH, with the reasons given in Sect. 2.1.3.

Following Eq. (14), the fire spread rate perpendicular to
the wind directionv is:

v = umaxg(0)Cm (15)

CTEM-FIRE (Arora and Boer, 2005) introduces a parame-
terization equation regardingg(W) and assumesg(0)= 0.1.
In fact, g(W) can be derived from Eqs. (11), (13), (14) and
(15):

g(W)=
2LB

1+
1
HB

g(0) (16)

(Fig. 6c). Fire spread rate in the downwind direction in-
creases by 20 % (obtained by Eqs. (14) and (16) as wind
speed increases from 15 to 20 km h−1). This is broadly con-
sistent with an increase of about 25 % from the analysis of
fire observations in the North Kimberley region of northwest
Australia (Vigilante et al., 2004). Sinceg(W)= 1.0, andLB
andHB are at their maximaLmax

B = 11.0 andHmax
B = 482.0

whenW → ∞, g(0) can be derived as

g(0)=

1+
1

Hmax
B

2Lmax
B

= 0.05, (17)

which is half of the value assumed in CTEM-FIRE (Arora
and Boer, 2005).

According to the area formula for an ellipse, average
burned area of a fire with average fire durationτ (s) can be
represented as

a = π
l

2

w

2
× 10−6

=
πu2

pτ
2

4LB
(1+

1

HB
)2 × 10−6 (18)

where 10−6 converts m2 to km2. Based on the MODIS ac-
tive fire observations, Giglio et al. (2006) reported that 2001–
2004 mean persistence of most fires in the world was around
1 day. In the absence of global grid data on barriers to fire
(e.g. rivers, lakes, roads, firebreaks) and human fire-fighting
efforts, average fire duration is simply taken to be 1 day in
the present study. The average fire duration of 1 day is also
used in CTEM-FIRE (Arora and Boer, 2005) and its modified
version (Kloster et al. 2010) which assume fire extinguishing
probability to be 0.5, and is equal to the mathematical expec-
tation of stochastic fire duration in Venevsky et al. (2002).

2.3 Fire impact

In the present study, as recommended by Fosberg et
al. (1999), the impacts of fire on vegetation, carbon cycle,
and atmospheric chemistry are considered.

2.3.1 Fire impact on vegetation and the carbon cycle

Fire affects vegetation and the carbon cycle through biomass
combustion and post-fire mortality. Biomass combustion
transfers carbon from combusted leaves, stems, roots and
aboveground litter to the atmosphere; then post-fire mortality
transfers carbon from leaves, stems and roots killed by fire to
the litter pool.

Fire carbon emissions value of thej -th PFT,φj (g C (time
step)−1), is

φj = Ab,jCj · CCj (19)

whereAb,j (km2 (time step)−1) is burned area for thej -th
PFT which is burned area in a grid cell weighted by fractional
coverage of this PFT in vegetated region;Cj = (Cleaf,Cstem,
Croot, CL,ag)j is a vector with carbon density for leaves,
stems, roots, and aboveground litter (g C km−2) as elements;
CCj = (CCleaf, CCstem, CCroot, CCL,ag)j is corresponding
combustion completeness factor vector (Table 2). Note that
the fire impact time step can be longer than that of fire occur-
rence and spread; in this case,Ab,j is the accumulated burned
area during the fire impact time step.

Parameterization of fire-related mortality varies with time-
step length of estimation of fire impact on vegetation and car-
bon pools. In DGVMs that estimate the impact of fire annu-
ally, such as IBIS (Kucharik et al., 2000), LPJ (Sitch et al.,
2003), CLM3-DGVM (Levis et al., 2004), SDGVM (Wood-
ward and Lomas, 2004), ORCHIDEE (Krinner et al., 2005),
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Table 2.PFT-specific parameter values for combustion completeness factors for leaves (CCleaf), stems (CCstem), roots (CCroot) and above-
ground litter (CCL,ag); whole-plant mortality factor (ξj ); tissue-mortality factors for leaves (Mleaf), stems (Mstem) and roots (Mroot).

PFT CCleaf CCstem CCroot CCL,ag ξj Mleaf Mstem Mroot

BET Tropical 0.70 0.15 0.00 0.50 0.10 0.70 0.60 0.10
BDT Tropical 0.70 0.10 0.00 0.45 0.07 0.70 0.55 0.07
BET Temperate 0.70 0.15 0.00 0.50 0.10 0.70 0.60 0.10
NET Temperate 0.75 0.20 0.00 0.55 0.13 0.75 0.65 0.13
BDT Temperate 0.70 0.10 0.00 0.45 0.07 0.70 0.55 0.07
NET Boreal 0.75 0.20 0.00 0.55 0.13 0.75 0.65 0.13
BDT Boreal 0.70 0.15 0.00 0.50 0.10 0.70 0.60 0.10
C4 0.85 – 0.00 0.85 0.20 0.85 – 0.20
C3 Non-arctic 0.85 – 0.00 0.85 0.20 0.85 – 0.20
C3 Arctic 0.85 – 0.00 0.85 0.20 0.85 – 0.20
BDS Temperate 0.80 0.30 0.00 0.60 0.15 0.80 0.70 0.15
BDS Boreal 0.80 0.30 0.00 0.60 0.15 0.80 0.70 0.15

SEIB-DGVM (Sato et al., 2007), and CoLM-DGVM (Dai et
al., 2003; Chen, 2008), whole-plant mortality is calculated
as an annual accumulation. For thej -th PFT, the number
of individuals killed by fire per km2 (individual km−2 (time
step)−1) is given by

Pdisturb,j =
Ab,j

fjAg
Pj ξj (20)

wherefj is the fraction coverage of thej -th PFT;Pj (in-
dividual km−2) is the vegetation population density for the
j -th PFT; ξj is the whole-plant mortality factor (Table 2).
All the uncombusted carbon in the individuals killed by fire
is transferred to the litter pool. By contrast, in DGVMs that
estimate the impact of fire hourly, daily or monthly, such as
TRIFFID (Cox, 2001), CTEM (Arora, 2003), and CLM4.0-
CNDV (Oleson et al., 2010; Lawrence et al., 2011; Castillo et
al., 2012), tissue mortality (g C km−2 (time step)−1), which
transfers a part of uncombusted leaf, stem and root car-
bonC

′

j = (Cleaf(1− CCleaf), Cstem(1− CCstem), Croot(1−

CCroot)) (g C km−2) to the litter pool, is given by

9j =
Ab,j

fjAg
C

′

j · Mj (21)

whereMj = (Mleaf,Mstem,Mroot) are tissue-mortality fac-
tors for leaves, stems and roots (Table 2).

Value ranges of combustion completeness factors and
tissue-mortality factors in Table 2 are similar to those in ear-
lier studies (Czimczik et al., 2003; Arora and Boer, 2005;
van der Werf et al., 2010; Kloster et al., 2010; Rosa et al.,
2011). For tree PFTs, the value range of combustion com-
pleteness factors is set to 0.70–0.75 for leaves, 0.1–0.2 for
stems, zero for roots, and 0.45–0.55 for aboveground litter
(combined leaf litter and woody debris); tissue-mortality fac-
tors are set to 0.7–0.75 for leaves, 0.55–0.65 for stems, and
0.07–0.13 for roots. For grass PFTs, the value of combus-
tion completeness factors is set to 0.85 for leaves and above-
ground litter (only leaf litter), and zero for roots; the value

of tissue-mortality factors is set to 0.85 for leaves, and 0.2
for roots. For shrub PFTs whose physical characteristics are
between those of trees and grasses, combustion complete-
ness factors are set to 0.8 for leaves, 0.3 for stems, zero for
roots, and 0.6 for aboveground litter (combined leaf litter and
woody debris); the tissue-mortality factors are set to 0.8 for
leaves, 0.7 for stems, and 0.15 for roots. In addition, we use
whole-plant mortality factors of 0.07–0.13 for tree PFTs, 0.2
for grass PFTs, and 0.15 for shrub PFTs, which are the same
as the tissue-mortality factors for roots.

Specific values of combustion completeness factors and
mortality factors for trees are PFT-dependent (Table 2).
Needleleaf tree PFTs are given larger combustion complete-
ness factors and mortality factors than other tree PFTs, be-
cause resin in their plant tissues and aboveground litter sup-
ports combustion and leads to more serious tissue-mortality
or whole-plant mortality (Zhou and Lu, 2009). Conversely,
BDT Tropical and BDT Temperate are assigned smaller stem
combustion completeness factors, whole-plant mortality fac-
tors, and stem-mortality factors than other tree PFTs, to ac-
count for their thick bark, which resists combustion and dam-
age (Hoffmann et al., 2003).

2.3.2 Fire impact on emissions of trace gases and
aerosols

The estimation of trace gas and aerosol emissions offers an
interface with atmospheric chemistry and aerosol models in
ESMs. Emissions for trace gas and aerosol speciesx and the
j -th PFT,Ex,j (g specie (time step)−1), are given by

Ex,j = EFx,j
φj

[C]
(22)

(Andreae and Merlet, 2001), where EFx,j

(g specie (kg dm)−1) is PFT-dependent emission factor,
and [C] = 450 g C (kg dm)−1 is a conversion factor from
dry matter to carbon. The emission factors of trace gases
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Table 3. PFT-specific emission factors (g specie (kg dm)−1) for trace gases. CO2: carbon dioxide, CO: carbon monoxide, CH4: methane,
NMHC: non-methane hydrocarbon, H2: hydrogen gas, NOx: nitrogen oxides, N2O: nitrous oxide.

PFT CO2 CO CH4 NMHC H2 NOx N2O

BET Tropical 1631 100 6.8 7.1 3.28 2.55 0.20
BDT Tropical 1654 64 2.4 3.7 0.98 2.49 0.20
BET Temperate 1576 106 4.8 5.7 1.80 3.24 0.26
NET Temperate 1576 106 4.8 5.7 1.80 3.24 0.26
BDT Temperate 1576 106 4.8 5.7 1.80 3.24 0.26
NET Boreal 1576 106 4.8 5.7 1.80 3.24 0.26
BDT Boreal 1576 106 4.8 5.7 1.80 3.24 0.26
C4 1654 64 2.4 3.7 0.98 2.49 0.20
C3 Non-arctic 1576 106 4.8 5.7 1.80 3.24 0.26
C3 Arctic 1576 106 4.8 5.7 1.80 3.24 0.26
BDS Temperate 1576 106 4.8 5.7 1.80 3.24 0.26
BDS Boreal 1576 106 4.8 5.7 1.80 3.24 0.26

(Table 3) and aerosols (Table 4) are based on field data in
most fire-prone biomes, compiled by Andreae and Merlet
(2001) and updated annually (M. O. Andreae, personal
communication, 2011). Emission factors are scaled from
biome-level to PFT-level using the method in Thonicke et
al. (2005, 2010) which derived PFT emission factors of trace
gases from Andreae and Merlet (2001) and M. O. Andreae
(personal communication, 2003).

3 Application in CLM-DGVM

The Community Land Model version 3 with the Dynamic
Global Vegetation Model (CLM3-DGVM) (Levis et al.,
2004) is a widely used DGVM in current global change re-
search. Land surface model CLM3, as a biogeophysics mod-
ule, simulates water and heat states and gross primary pro-
duction (GPP) used by the DGVM. In turn, the DGVM pro-
vides the CLM3 with information regarding vegetation com-
position, structure, and phenology. Three computational time
steps are adopted in CLM3-DGVM: a sub-hourly (suggested
range: 1200–3600 s) time step for biogeophysics and biogeo-
chemistry processes; a daily time step for plant phenology;
and an annual time step for vegetation dynamics processes.
The vegetation dynamics processes comprise reproduction,
turnover, mortality due to negative net primary production,
allocation, competition, background mortality and mortality
due to stress, fire disturbances, and survival and establish-
ment processes. In the model, only natural vegetation is sim-
ulated, represented by the carbon stored in leaves, roots, sap-
wood and heartwood for woody PFTs and leaves and roots
for grass PFTs.

In the present study, the CLM3-DGVM revised by Zeng
et al. (2008) and Zeng (2010) (hereafter simply called CLM-
DGVM) is used as a platform to evaluate fire parameter-
izations. CLM-DGVM incorporates CLM3-DGVM with a
submodel for temperate and boreal shrubs, as well as revi-

Table 4. PFT-specific emission factors (g specie (kg dm)−1) for
aerosols. PM2.5: particles less than 2.5 micrometers in diameter,
TPM: total particulate matter, TC: total carbon, OC: organic car-
bon, BC: black carbon.

PFT PM2.5 TPM TC OC BC

BET Tropical 8.3 11.8 6.0 4.3 0.56
BDT Tropical 5.2 8.5 3.4 3.2 0.47
BET Temperate 12.7 17.6 8.3 9.1 0.56
NET Temperate 12.7 17.6 8.3 9.1 0.56
BDT Temperate 12.7 17.6 8.3 9.1 0.56
NET Boreal 12.7 17.6 8.3 9.1 0.56
BDT Boreal 12.7 17.6 8.3 9.1 0.56
C4 5.2 8.5 3.4 3.2 0.47
C3 Non-arctic 12.7 17.6 8.3 9.1 0.56
C3 Arctic 12.7 17.6 8.3 9.1 0.56
BDS Temperate 12.7 17.6 8.3 9.1 0.56
BDS Boreal 12.7 17.6 8.3 9.1 0.56

sions to the “two-leaf” scheme used in the photosynthesis
calculation and to the calculation of PFTs’ fractional cov-
erage. By adding temperate and boreal shrubs, the model
now has 12 PFTs, including 7 tree PFTs, 3 grass PFTs, and
2 shrub PFTs (same as in Table 1). Zeng (2010) showed that
CLM-DGVM reasonably simulated global vegetation distri-
bution and dependence of vegetation distribution on climate
conditions.

When the new fire parameterization is used in CLM-
DGVM, fire occurrence and fire spread parts are calculated
at the same hourly time step as biogeophysical and biogeo-
chemical processes. The fire impact part is updated annually
with other vegetation dynamics processes, so the whole-plant
mortality scheme in Eq. (20) is adopted in parameterization
of vegetation mortality due to fire. In CLM-DGVM, stems
are divided into sapwood and heartwood (the inside of sap-
wood) for woody PFTs; litter is divided into aboveground
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Table 5.Datasets used to drive CLM-DGVM and evaluate simulations.

Types Variables Sources Resolutions

Forcing data Precipitation
Surface air temperature
Wind speed Qian et al. (2006) T62 (∼ 1.875◦),
Specific humidity 3-hourly
Air pressure
Downward solar radiation

Relative humidity NCEP/NCAR 2.5◦, 6-hourly
CRU 10 min, monthly∗

Lightning frequency NASA LIS/OTD v2.2 2.5◦, 2-hourly∗

2.5◦, daily

Population density GPWv3, 0.5◦, 5-yr
HYDE v3.1 5 min, 10-yr

Evaluation data Burned area GFED3 0.5◦, monthly
Fire emissions

∗ Climatology data.

litter and belowground litter. Accordingly, we set the com-
bustion completeness factors of sapwood and heartwood to
twice and 1 / 4 of those for stems, respectively; carbon in
leaves, sapwood and heartwood of fire-killed individuals is
transferred to the aboveground litter pool, while root carbon
of fire-killed individuals is transferred to the belowground lit-
ter pool. Like most land surface models and DGVMs, CLM-
DGVM is a single-point model and assumes no energy and
material to be exchanged between adjacent grid cells; hence,
we do not consider fire propagations between grid cells. The
simulations are run globally at T62 (∼ 1.875◦) spatial hori-
zontal resolution.

4 Data

Table 5 lists the data for simulation and evaluation. CLM-
DGVM with the new fire parameterization is spun-up for
880 yr to approach an equilibrium state through cycling 55-yr
(1950–2004) forcing data. The 55-yr forcing data are gener-
ated as follows. 1950–2004 precipitation, surface air temper-
ature, wind speed, specific humidity, air pressure, and down-
ward solar radiation data with T62 (∼ 1.875◦) and 3-hourly
resolution are from Qian et al. (2006). 6-hourly 2.5◦ reanal-
ysis relative humidity data from the National Centers for En-
vironmental Prediction/National Center for Atmospheric Re-
search (NCEP/NCAR) are corrected by the Climate Research
Unit (CRU) data using the method of Qian et al. (2006).
Lightning data from May 1995 to December 2004 are de-
rived from 2.5◦ daily lightning time series (4260×144×73)
and 2-h climatological lightning data (365×12×144×73) in
the NASA LIS/OTD grid product v2.2 (ftp://ghrc.msfc.nasa.

Fig. 7. 1997–2004 mean annual global burned area: GFED3 and
CLM-DGVM simulations with the new fire parameterization (Mod-
new), the commonly used Glob-FIRM (Glob-FIRM), and the old
fire parameterization in CLM-DGVM (Mod-old).

gov/pub/lis/climatology/LRTS/data/), while the 2-h climato-
logical lightning data are used before May 1995. Population
density data in 1990, 1995, 2000, and 2005 at 0.5◦ spatial res-
olution are provided by the GPWv3 (CIESIN, 2005). Prior
to 1990, 5 min decadal data from the HYDEv3.1 database
are used (Klein Goldewijk et al., 2010). Finally, relative hu-
midity, lightning frequency, and population density data are
regridded to T62 and 3-hourly resolution to match the reso-
lution of Qian’s data and model resolution.

1997–2004 monthly burned area and fire emissions from
the Global Fire Emission Database version 3 (GFED3)
(Giglio et al., 2010; van der Werf et al., 2010) are used
as benchmarks to assess the global performance of fire
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Fig. 8.Spatial distribution of annual burned area fraction averaged over 1997–2004 for GFED3 and CLM-DGVM with different fire param-
eterizations. The global spatial correlations (Cor) between observations and simulations are also given.

parameterizations. GFED3 burned area is a mixture of ob-
servations and satellite-based estimates, generated by 500-
m MODIS burned area maps, active fire detections from
multiple satellites, local regression, and regional regression
trees (Giglio et al., 2010; L. Giglio, personal communica-
tion, 2012). GFED3 fire emissions are the output of a revised
CASA biogeochemical model driven by GFED3 burned area,
MODIS vegetation and land data, active fire detections from
multiple satellites, weather observations, MODIS photosyn-
thetically active radiation, and AVHRR NDVI data (van der
Werf et al., 2010). GFED3 fire product represents the most
comprehensive attempt to date to derive burned area and
fire emissions from remote sensing data, and provides a
suiTable benchmark for DGVM present-day fire simulations
(Prentice et al., 2011).

5 Results

CLM-DGVM simulations with the fire parameterization in-
troduced in Sect. 2 (Mod-new) are evaluated against the
GFED3 fire product. The evaluation period is 1997–2004,
which is the common period between GFED3 and the model
forcing data. In addition, Mod-new is compared against
CLM-DGVM simulations with the commonly used Glob-
FIRM fire parameterization (Glob-FIRM) and the old fire pa-
rameterization in CLM-DGVM (Mod-old). The two fire pa-
rameterization schemes are described in detail by Thonicke
et al. (2001) and Levis et al. (2004), respectively.

5.1 Burned area

Figure 7 shows the GFED3 and simulated annual global
burned area averaged over the time period 1997–2004. The
mean annual global burned area of the new fire module is
330 Mha yr−1, close to the GFED3 (380 Mha yr−1). Rela-
tive to GFED3, both Glob-FIRM (54 Mha yr−1) and Mod-
old (93 Mha yr−1) tend to underestimate the global burned
area by at least 75 %. Furthermore, new fire parameteriza-
tion reproduces the main feature of the global spatial dis-
tribution of burned area fraction (Fig. 8). It correctly cap-
tures the high burned area fraction for tropical savannas, the
medium fraction for northern Eurasia, and the low fraction
for deserts due to low fuel availability and for humid forests
due to low fuel combustibility. Its simulation is closer to
GFED3 than the commonly used Glob-FIRM and the old
fire module, especially in the tropics. Global spatial correla-
tion between GFED3 and simulations rises from Cor = 0.39
for the Glob-FIRM and Cor = 0.44 for the old fire module
to Cor = 0.60 for the new one. In addition, using a biogeo-
chemical model CLM-CN (Thornton et al., 2007), Kloster et
al. (2010) tested the global performance of CTEM-FIRE and
its modified version, and reported that simulated 1997–2004
mean annual global burned area and global spatial correla-
tion were 300 Mha yr−1 and Cor = 0.19 for CTEM-FIRE and
182 Mha yr−1 and Cor = 0.52 for its modified version. Com-
pared with both, the Mod-new shows not only a more accu-
rate simulation of global burned area but also higher global
spatial correlation with GFED fire product.
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Fig. 9. (a) Map of 14 regions used in this study (left), after Giglio et al. (2006, 2010), van der Werf et al. (2006, 2010) and Kloster et
al. (2010);(b) GFED3 and simulated regional annual burned area and(c) standard deviation of gridded burned area fraction in each region.
BONA: Boreal North America; TENA: Temperate North America; CEAM: Central America; NHSA: Northern Hem. South America; SHSA:
Southern Hem. South America; EURO: Europe; MIDE: Middle East; NHAF: Northern Hem. Africa; SHAF: Southern Hem. Africa; BOAS:
Boreal Asia; CEAS: Central Asia; SEAS: South East Asia; EQAS: Equatorial Asia; AUST: Australia.

GFED3 and simulated regional burned area are shown
in Fig. 9. The African continent contains the majority
of global burned area. Based on GFED3, 1997–2004 av-
erage annual burned area is 134 Mha yr−1 for Northern
Hemisphere Africa (NHAF) and 124 Mha yr−1 for South-
ern Hemisphere Africa (SHAF), respectively. All simulations
have a low bias over Africa, but Mod-new (110 Mha yr−1,
70 Mha yr−1) captures the high burned area in Africa bet-
ter than Glob-FIRM (9 Mha yr−1, 14 Mha yr−1) and Mod-
old (21 Mha yr−1, 23 Mha yr−1) (Fig. 9b), as well as
CLM-CN simulations with the CTEM-FIRE (74 Mha yr
−1, 45 Mha yr−1) and its modified version (45 Mha yr−1,
26 Mha yr−1) provided by Kloster et al. (2010). Mod-new
also captures the highest spread of burned area fraction in
Africa (Fig. 9c). In addition, all CLM-DGVM simulations
underestimate both the burned area and spread of burned area
fraction over Australia (Fig. 9b and c), which is similar to the
CTEM-FIRE and its modified version (Kloster et al., 2010).

Figure 10 shows the global burned area fractions of natural
vegetation types (including trees, grasses, and shrubs). Here,
global burned area fraction of a vegetation type means the
fraction of area covered by the vegetation type that burned.
Mod-new shows decreasing global burned area fraction in
the order of grasses, trees, and shrubs as GFED3. It simulates
global burned area fraction of trees accurately. The simula-
tion errors for both grasses and shrubs relative to GFED3
are less than 30 %, though the Mod-new overestimates the
global burned area fraction of grasses and underestimates
that of shrubs. Mod-new is closer to GFED3 than Glob-
FIRM and Mod-old for all vegetation types. The Glob-FIRM
and Mod-old underestimate global burned area fractions of

Fig. 10.1997–2004 mean annual global burned area fraction of var-
ious natural vegetation types for GFED3 and CLM-DGVM simula-
tions with different fire parameterizations.

natural vegetation types, and all of their errors are larger than
60 % relative to GFED3.

Next, we test the simulated global spatial pattern of fire
interannual variability by using standard deviation of an-
nual burned area fraction (Fig. 11). The new fire parame-
terization and GFED3 show generally similar patterns, e.g.,
the high interannual variation over tropical savannas, the
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Fig. 11.Same as Fig. 8, but for standard deviation (Std) of annual burned area fraction, which is used as a spatially explicit measure of fire
interannual variability.

medium variation over northern Eurasia, and the low vari-
ation over the deserts and humid forests. The global spa-
tial correlation between GFED3 and simulations increases
from Cor = 0.16 for the Glob-FIRM and Cor = 0.18 for the
Mod-old to Cor = 0.42 for the Mod-new. Figure 12 shows
the GFED3 and simulated interannual variability of global
burned area. Mod-new reproduces the peak in 1998 and year-
to-year variation from 2000 to 2004. The temporal correla-
tion between simulations and GFED3 is 0.71, higher than the
Glob-FIRM (−0.16) and Mod-old (−0.01).

5.2 Fire emissions

Besides burned area, fire emissions are important variables
to evaluate fire simulations. As shown in Fig. 13, the new fire
module can reproduce the high carbon emissions in tropical
savannas, the medium emissions in Northern Asia, and the
low emissions in humid forests and deserts. Its global spa-
tial correlation with GFED3 is 0.61, higher than the Glob-
FIRM (Cor = 0.36) and the Mod-old (Cor = 0.39). The global
fire carbon emissions (GFCE) simulated by the new fire pa-
rameterization, averaged over 1997–2004, are 2.0 Pg C yr−1,
closer to the GFED3 products (GFCE = 2.1 Pg C yr−1) than
the Glob-FIRM (GFCE = 3.3 Pg C yr−1) and the Mod-old
(GFCE = 3.5 Pg C yr−1). The overestimation of fire carbon
emissions will cause DGVMs with the Glob-FIRM and old
fire parameterization to underestimate land carbon storage
and overestimate net carbon exchanges between the global
terrestrial biosphere and the atmosphere. Furthermore, the
ratio of global annual carbon emissions to burned area re-
flects the combustion completeness of biomass in post-fire

Fig. 12. Annual global burned area normalized by the mean for
1997–2004 from GFED3 and CLM-DGVM simulations with differ-
ent fire parameterizations. The numbers in brackets denote temporal
correlation between observations and simulations.

regions. The ratio for the Mod-new is 5.9 Tg C Mha−1, closer
to GFED3 (5.5 Tg C Mha−1) than the other two fire modules
(Glob-FIRM: 60.9 Tg C Mha−1, Mod-old: 37.9 Tg C Mha−1)
(Table 6). The overestimation for the Glob-FIRM and the
Mod-old is mainly because the observed low combustion
completeness for stems and coarse woody debris is not ac-
counted for in the two schemes. In addition, for 1997–2004,
the new fire parameterization has higher global spatial cor-
relation and a more accurate ratio of global annual carbon
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Fig. 13.Same as Fig. 8, but for annual fire carbon emissions. Besides global spatial correlation (Cor) between GFED3 and simulations, the
GFED3 and simulated 1997–2004 mean annual global fire carbon emissions (GFCE) are also given.

Table 6. Ratio of 1997–2004 average global annual carbon emis-
sions to burned area from GFED3 and simulations with various fire
parameterization schemes.

Sources Ratio (Tg C ha−1)

GFED3 5.5
Mod-new 5.9
Glob-FIRM 60.9
Mod-old 37.9
CTEM-FIRE* 8.5
Modified CTEM-FIRE* 9.8

* Kloster et al. (2010) tested global performance of the
CTEM-FIRE and its modified version in a biogeochemical
model CLM-CN (Thornton et al., 2007).

emissions to burned area than the CTEM-FIRE (Cor = 0.25,
ratio = 8.5 Tg C Mha−1) and its modified version (Cor = 0.45,
ratio = 9.8 Tg C Mha−1) (Kloster et al., 2010) when com-
pared to GFED product.

Fire emissions contribute substantially to global budgets
of trace gases and aerosols. The new fire parameterization
introduces estimates of trace gas and aerosol emissions due
to biomass burning as an interface with atmospheric chem-
istry and aerosol models in ESMs. As shown in Fig. 14, the
simulated emissions of all types of trace gases and aerosols
are in good agreement with the GFED3 products, and the av-
erage of relative errors is 7 %.

Fig. 14. 1997–2004 mean annual global emissions of trace gases
and aerosols due to biomass burning from GFED3 fire product and
CLM-DGVM simulation with the new fire parameterization.

6 Conclusions and discussions

In the present study, we have developed a process-based
global fire parameterization scheme of intermediate com-
plexity that fits the framework of DGVMs and is suitable for
global change research. The fire parameterization comprises
three parts: fire occurrence, fire spread, and fire impact. In
the first part, the number of fires is determined by ignition
counts due to anthropogenic and natural causes and three
constraints: fuel load, fuel moisture, and human suppres-
sion. The anthropogenic ignition and suppression are ex-
plicitly considered as a function of population density. Fire
counts rather than fire occurrence probability are estimated
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to improve the simulation accuracy on annual global burned
area and global spatial distribution of burned area fraction. A
sensitive test is performed using the new fire parameteriza-
tion but estimating fire occurrence probability, i.e. assuming
fire counts in a grid cell calculated in Eq. (2) no more than
1 count h−1. As shown in Fig. 15, high burned area fraction
in tropical savanna region where fire occurs frequently can-
not be caught well, which is the same as CTEM-FIRE and its
modified version (Kloster et al., 2010). Simulated 1997–2004
annual global burned area decreases to 138 Mha yr−1 (Mod-
new: 330 Mha yr−1, GFED3: 380 Mha yr−1), and global spa-
tial correlation (Cor) of simulated burned area fraction with
GFED3 drops to 0.44 (Mod-new: Cor = 0.60). In the second
part, post-fire region is assumed to be elliptical in shape.
Average burned area of a fire is determined by average fire
spread rate and fire duration. We correct the calculations
of HB, g(W) andg(0) in CTEM-FIRE using mathematical
properties of ellipses and some mathematical derivations to
make parameterization equations in this part self-consistent.
After burned area is estimated by fire counts and average
burned area of a fire, biomass combustion, post-fire mortal-
ity, adjustment of carbon pools, and trace gas and aerosol
emissions are estimated in the fire impact part. Estimation of
trace gas and aerosol emissions due to biomass burning is in-
troduced to provide an interface with atmospheric chemistry
and aerosol models in ESMs. Furthermore, the fire occur-
rence and spread parts can be updated hourly or daily, and
fire impact part can be updated hourly, daily, monthly, or an-
nually, which covers the scope of time-steps set by existing
DGVMs. It makes the new fire parameterization easy to ap-
ply to various DGVMs.

CLM-DGVM is used as the model platform to assess
the global performance of the new fire parameterization.
Simulations are compared against the latest satellite-based
GFED3 fire product for 1997–2004. Results show that sim-
ulated mean annual global burned area is 330 Mha yr−1 and
global fire carbon emissions are 2.0 Pg C yr−1, closer to the
GFED3 (380 Mha yr−1, 2.1 Pg C yr−1) than CLM-DGVM
simulations with the commonly used Glob-FIRM fire pa-
rameterization (54 Mha yr−1, 3.5 Pg C yr−1) and the old fire
module in CLM-DGVM (93 Mha yr−1, 3.3 Pg C yr−1). The
new fire parameterization also reasonably simulates global
spatial distribution of annual burned area fraction and fire
carbon emissions, shown to have higher global spatial cor-
relation with GFED3 than the Glob-FIRM and the old one
in burned area fraction (Mod-new: Cor = 0.60, Glob-FIRM:
Cor = 0.39, Mod-old: Cor = 0.44) and annual fire carbon
emissions (Mod-new: Cor = 0.61, Glob-FIRM: Cor = 0.36,
Mod-old: Cor = 0.39). Compared with the 1997–2004 global
evaluation results of the CTEM-FIRE and its modified ver-
sion reported by Kloster et al. (2010), the new fire parame-
terization not only simulates global burned area and ratio of
global fire carbon emission to burned area more accurately,
but also shows higher global spatial correlation with GFED
fire product on burned area fraction and fire carbon emis-

Fig. 15.Spatial distribution of 1997–2004 mean annual burned area
fraction (% yr−1) simulated by CLM-DGVM, using the new fire
parameterization but estimating fire occurrence probability (i.e. as-
suming fire counts calculated in Eq. (2) no more than 1 count h−1).
Mean annual global burned area and global spatial correlation (Cor)
are also given.

sions. Moreover, average error of the simulated global fire
emissions of various trace gases and aerosols is 7 % relative
to GFED3, and can provide skillful estimates of fire emis-
sions to atmospheric chemistry and aerosol models in ESMs.
Results suggest that the new fire parameterization may im-
prove the performance of ESMs and help to quantify fire-
vegetation-climate interactions on a global scale and from an
Earth system perspective.

Future development regarding design and evaluation of the
fire parameterization are in three aspects. First, representa-
tion of anthropogenic impacts on fires needs further improve-
ment. In the new fire parameterization, only population den-
sity is used to parameterize anthropogenic ignitions and sup-
pression. In reality, fire management policy and fire suppres-
sion capability, for example, are also important (Chuvieco et
al., 2008; Pechony and Shindell, 2009) but have not been in-
cluded yet. Moreover, there are different kinds of fires. Agri-
cultural fires are found to account for 8–11 % of 2001–2003
annual global fire counts (Korontzi et al., 2006), and 4.7 %
and 3 % of 2001–2009 annual global burned area and fire
carbon emissions (van der Werf et al., 2010). Our fire param-
eterization and the Glob-FIRM (Thonicke et al., 2001) do not
model them due to the absence of crop PFTs in the model-
platforms CLM-DGVM and LPJ, which leads to inaccurate
fire simulations over real cropland. For example, burned area
and fire carbon emissions over the cropland are overesti-
mated in America (Figs. 8 and 13). Other global fire mod-
els with cropland information assume no fires in cropland
(Arora and Boer, 2005; Thonicke et al., 2010; Kloster et al.,
2010; Prentice et al., 2011) and hence underestimate burned
area and fire carbon emissions over cropland. Peat fires and
deforestation fires are important sources for fire carbon emis-
sions (van der Werf et al., 2010). So far, no global fire model
includes peat fires. In the present study, this could explain
the underestimation of burned area and especially fire carbon
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emissions in Indonesia and boreal peatlands (Figs. 8 and 13).
In all existing global fire models, only modified CTEM-FIRE
(Kloster et al., 2010) has tried to model deforestation fires
in a biogeochemical model with land use change data. In
Kloster et al. (2010), fires in a grid cell are set to be the
sum of deforestation fires and fires due to natural and an-
thropogenic (intentional and accidental) ignitions. Second,
average fire duration is taken as 1 day in the present study.
However, fire duration varies with climate conditions, vege-
tation and land characteristics, and human activities, which
will be quantified when global or regional fire duration data
with high temporal resolution (e.g. hourly) become available.
Third, the new fire parameterization’s simulation of fire sea-
sonality needs to be evaluated using DGVMs, which simu-
late the seasonality of above-ground biomass and estimate
fire impact hourly, daily or monthly. Vegetation dynamics
processes in most existing DGVMs, including CLM-DGVM,
are updated annually. Accordingly, impact of fires on above-
ground biomass is estimated at the end of year, and above-
ground biomass during a year is constant. Therefore, when
using CLM-DGVM as the test platform of the new fire pa-
rameterization, impact of fuel-load variability (including that
caused by earlier fires) during a year on fire seasonality can-
not be captured, and fire seasonality is simulated inaccurately
for regions where fires are limited by fuel availability.

Appendix A

In this appendix, three parameters in the fire occurrence
part are calibrated. They are the number of potential igni-
tion sources produced by one personα in Eq. (5), and the
lower and upper fuel thresholdsBlow andBup in Eq. (6). All
the three parameters have not estimated objectively in earlier
studies. Also, we check whether making fuel combustibility
dependent on both relative humidityfRH and soil wetnessfθ
in Eq. (7) is redundant.

The six datasets used here include (i) the MODIS Active
Fire Count product (Giglio et al., 2006), (ii) relative humidity
data and (iii) population density data introduced in Sect. 4,
(iv) the CPC soil moisture product (Fan and van den Dool,
2004), (v) the FCCS above-ground biomass dataset that just
covers the United States (McKenzie et al., 2007; Ottmar et
al., 2007; Spracklen et al., 2009,http://www.fs.fed.us/pnw/
fera/fccs), and (vi) vegetation fractional cover data from the
CLM4.0 surface data (Lawrence and Chase, 2007, 2010).
The common period for the first four datasets is 2001–2004,
and last two datasets describe present fuel loading and vege-
tation characteristics. All the datasets are interpolated to T62
spatial resolution.

Twenty-four grid cells over the United States are selected,
satisfying three conditions. First, the fraction of croplands
is less than 5 % and natural vegetation is present, given that
fires in croplands and natural vegetation regions behave dif-

ferently and the latter is the focus of the present study (Ta-
ble 1). Second, the grid cell contains no missing data. Third,
monthly mean ignition counts due to lightning are negligi-
ble (Ia ≤ 5 % of MODIS fire counts) to simplify the optimal
estimation of parameters (see below).

At the selected grid cells, the number of fires in a time step
is

Nf =Nifbfm(1− fs)=
αDpk(Dp)

n
Agfbfm(1− fs). (A1)

Using the constrained optimization method in MATLAB Op-
timization Toolbox, the correlation between simulated and
observed 2001–2004 annual fire counts is highest (0.83)
when Blow = 155 g C m−2 and Bup = 1050 g C m−2. The
constantα can then be expressed as

α =
avg(Nf, MODIS)n

avg(Dpk(Dp)Agfbfm(1− fs))
(A2)

= 3.89× 10−3(count person−1mon−1).

In addition, based on the sample, we also check the redun-
dancy of parameterizations about fuel combustibility on rel-
ative humidityfRH and soil wetnessfθ in Eq. (7). If we re-
move the termfRH, the correlation between simulated and
observed 2001–2004 annual fire counts drops from 0.83 to
0.73. If the termfθ is removed, the correlation drops from
0.83 to 0.77. We conclude that bothfRH andfθ contribute to
reasonable estimates of fuel combustibility.

Appendix B

Based on Eq. (9), the constraint of soil wetness on fire occur-
rence is higher than 95 % (i.e.fθ < 0.05) when soil wetness
θ exceeds the extinction coefficient of soil wetnessθe. The
datasets used to calibrateθe include the MODIS monthly ac-
tive fire count product (Giglio et al., 2006), the CPC monthly
soil wetness product (Fan and van den Dool, 2004), and the
PFT fraction coverage data from the CLM 4.0 surface data
(Lawrence and Chase, 2007, 2010). All data are interpolated
to grid cells at T62 spatial resolution. The common period of
the first two datasets is 2001–2009, and vegetation data from
CLM 4.0 surface data describe present vegetation composi-
tion and structure.

The calibration procedure of parameterθe is as follows.
First, a sample is selected from the above three global
datasets. It comprises the soil wetness data in grid cells and
months from 2001 to 2009 that meet two conditions: (i) the
fraction of croplands is less than 5 % with reasons introduced
in Appendix A, and the fractional coverage of natural vegeta-
tion is larger than 50 %; (ii) there is at least one fire in the grid
cell in the month. The sample size is 37 677. Then,θe = 0.69
is estimated using the upper 95th quantile of the sample.
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Appendix C

Table C1List of model variables.

Variable Description Unit

a Average post-fire area of a fire km2

Ab Burned area per time step km2 (time step)−1

Ab,j Burned area of thej -th PFT km2 (time step)−1

Ag Area of grid cell km2

Bag Aboveground biomass g C m−2

Blow Lower fuel threshold g C m−2

Bup Upper fuel threshold g C m−2

Cj Carbon density vector for thej -th PFT g C km−2

C
′

j Carbon density vector after combustion g C km−2

for thej -th PFT
CCj Combustion completeness factor vector –

for thej -th PFT
Cm Dependence ofup on fuel wetness –
CRH Dependence ofup on RH –
Cβ Dependence ofup onβ –
Dp Population density person km−2

Ex,j Emissions for speciesx andj -th PFT g specie (time step)−1

EFx,j Emission factor for speciesx andj -th PFT g specie (kg dm)−1

fb Fuel availability factor –
fj Fuel combustibility factor –
fm Fraction coverage of thej -th PFT –
fRH Dependence of fuel combustibility on RH –
fs Fraction of fires suppressed by humans –
fθ Dependence of fuel combustibility onθ –
g(W) Dependence ofup onW –
HB Head-to-back ratio –
Ia Anthropogenic ignition counts count km−2 (time step)−1

Il Total lightning flashes flash km−2 (time step)−1

In Natural ignition counts due to lightning count km−2 (time step)−1

k(Dp) Anthropogenic ignition potential –
l Length of major axis of elliptical post-fire region m
LB Length-to-breadth ratio –
Mj Tissue-mortality factor vector for thej -th PFT –
n The number of time steps in a month mon (time step)−1

Nf Fire counts per time step count (time step)−1

Ni Ignition counts per time step count (time step)
Pdisturb,j Fire-killed individuals for thej -th PFT per km2 individual km−2 (time step)−1

Pj Vegetation population density for thej -th PFT individual km−2

RH Relative humidity (%) –
RHlow Lower relative humidity threshold (%) –
RHup Upper relative humidity threshold (%) –
ub Fire spread rate in the upwind direction m s−1

umax Average maximum fire spread rate m s−1

up Fire spread rate in the downwind direction m s−1

v Fire spread rate perpendicular to the wind direction m s−1

w Length of minor axis of elliptical post-fire region m
W Wind speed m s−1

α Monthly potential ignition counts per person count person−1 mon−1

β Root zone soil wetness –
φj Fire carbon emissions of thej -th PFT g C (time step)−1

λ Latitude ◦

θ Surface soil wetness –
θe Extinction soil wetness –
ξj Whole-plant mortality factor of thej -th PFT –
τ Average fire duration s
9 Cloud-to-ground lightning fraction –
9j Tissue mortality g C km−2 (time step)−1
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