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Abstract. Characterisation of estimates of regional carbon
budgets and processes is inherently a statistical task. In full
form this means that almost all quantities used or produced
are realizations or instances of probability distributions. We
usually compress the description of these distributions by us-
ing some kind of location parameter (e.g. the mean) and some
measure of spread or uncertainty (e.g. the standard devia-
tion). Characterising and calculating these uncertainties, and
their structure in space and time, is as important as the lo-
cation parameter, but uncertainties are both hard to calculate
and hard to interpret. In this paper we describe the various
classes of uncertainty that arise in a process like RECCAP
and describe how they interact in formal estimation proce-
dures. We also point out the impact these uncertainties will
have on the various RECCAP synthesis activities.

1 Introduction

The REgional Carbon Cycle Assessment and Processes
(RECCAP) activity (Canadell et al., 2011) is an international
activity, designed to explicitly consider the spatial dimension
in analyses of the behaviour of the carbon cycle.

The present paper (as part of a series of RECCAP papers)
considers various aspects of the RECCAP studies of carbon
fluxes with the aim of reviewing the uncertainties. In par-
ticular we consider the extent of cross-information between
the various RECCAP components, with analyses of differ-
ent data streams serving to confirm each other, thus reducing
the overall uncertainty, or disagreeing, indicating that some
aspect of uncertainty has been underestimated. We confine
our attention to surface–atmosphere carbon fluxes and some

horizontal carbon fluxes, and only consider other RECCAP
products such as inventories to the extent that the RECCAP
analysis specifically relates to them.

In this overview, we propose that:

– in general terms, we consider the RECCAP activity as
being that of statistical estimation, i.e. constructing sta-
tistical estimates of carbon fluxes and related quantities;

– as a specific choice, we consider the temporal aspects
by using a decomposition similar to that described by
Cleveland et al.(1983) regarding the fluxes as a com-
bination of long-term trend, slowly-varying cycle and
additional “irregular” variation. We show how the REC-
CAP categories map onto this decomposition.

Our discussion is in the spirit ofRaupach et al.(2005)
who wrote that “An essential commonality is that for all
model-data synthesis problems, both nonsequential and se-
quential, data uncertainties are as important as data values
themselves and have a comparable role in determining the
outcome”. The ideal is that synthesis of RECCAP products
is based as far as possible on traceable statistical analysis.
(We are using the term “synthesis” as used byRaupach et al.
(2005) and in RECCAP, and specifically say “synthesis in-
version” for the concept described byFung et al.(1991).) In
extending theRaupach et al.(2005) discussion, we have fo-
cused on those aspects that are most relevant to RECCAP, but
the considerations are, of course, more broadly applicable in
Earth system science.

We motivate what follows with a simple demonstration of
the interaction of different kinds of uncertainty on different
classes of data. Figure1 gives a schematic of the relation be-
tween the impact of integrated and pointwise observations.
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Fig. 1.Schematic of relation between top-down (solid ellipses) and
bottom-up (dashed ellipses) estimates, for an idealised case with
two flux components.

Integrated observations (such as atmospheric concentration)
integrate over many flux components from multiple pro-
cesses and multiple regions. The weighted sum of these com-
ponents is hence well-constrained leading tonegativecorre-
lations among individual flux estimates. On the other hand,
pointwise observations such as process studies are often be-
set by common measurement or methodological problems so
that an error made at one point will likely be made at another,
i.e. errors arepositivelycorrelated.

Figure1 shows that the combination of these two pieces
of information (the intersection of the two ellipses) depends
critically on these different correlation structures, thus it is
important that we define them. The challenge for analysing
the uncertainties inherent in RECCAP is that many of these
uncertainties, particularly those associated with “model er-
ror”, are poorly quantified.

The outline of the remainder of this paper is as follows.
Section2 notes the size of the full problem and the need
to work with restricted projections of a full description of
uncertainty, even in the case of multi-variate Gaussian dis-
tributions. Some mathematical implications are emphasised.
Section3 considers various aspects of modelling uncertain-
ties in terms of four classes – models, data products, invento-
ries and inversions – refining the top-down/bottom-up classi-
fication and reflecting the considerations raised byRaupach
et al.(2005). Section4 describes a three-way decomposition
by time, process and region. Section5 describes the impli-
cations of our approach when analysing the global carbon
budget and its regional decomposition, and Sect.5.2reviews
the various RECCAP “global products” in these terms. Sec-
tion 5.3applies the discussion of the earlier sections to con-
sidering the regional analysis, which is the raison d’être of

RECCAP. It reviews the discussion of uncertainty in the var-
ious RECCAP regional analyses and explores how this af-
fects the ability to achieve a global synthesis with quantified
uncertainty. Our concluding section aims to set the scene for
consistent uncertainty analysis in high-level RECCAP syn-
theses. As noted above, although our discussion is focused on
the RECCAP activity, our conclusions are more broadly ap-
plicable. Similarly, our examples draw mainly on carbon cy-
cle studies rather than broader areas of science, but of course
many of the studies that we use as examples draw on a broad
science base.

In this paper our aim is to explore the limits of formal sta-
tistical analysis, but we note some broader issues beyond this
scope. The First State of the Carbon Cycle Report (SOCCR)
(CCSP, 2007) notes that “rarely, even within a sector or dis-
cipline, are the statistical pre-requisites of meta-analysis met
by the diverse studies of carbon cycle elements”. In such
circumstances, expert judgments can be applied, and the fo-
cus needs to be on consistent communication of the assess-
ments. In the IPCC reports, uncertainties presented in formal
terms are qualified with a descriptor of how reliable they are
thought to be. Other assessments such as the SOCCR study
have adopted similar approaches. The IPCC usage tended to
differ between the working groups – indeedHa-Duong et al.
(2007) argued that this was desirable given the differences
in the fields. However, this inconsistency in terminology was
recently criticised by the review of IPCC procedures (Com-
mittee to Review the IPCC, 2010).

2 Characterising uncertainty

2.1 The exabyte covariance matrix

A statistical characterisation of flux estimates requires both
a measure of “location” (e.g. mean, mode or median) and
a measure of the spread (e.g. percentile ranges or standard
deviation) expressing the uncertainty in the measure of “lo-
cation”. Except for special distributions that can be fully
characterised by two such parameters, additional moments
of these distributions will need to be specified for a full de-
scription.

A minimal description of the uncertainty in a set of esti-
mates such as RECCAP fluxes is given by the covariance.
However, we are immediately confronted by the size of the
problem. For 1 degree by 1 degree resolution over 20 years
with 52 weeks and 5 processes active at each point, we have
≈ 3×108 flux components to be estimated. The size of the
covariance matrix,C, is the square of this, and even subsets
of this matrix need to be carried to relatively high precision
for numerically stable manipulations. These are only illus-
trative numbers since any discretization is a truncation rel-
ative to the continuous flux and concentration fields, with
processes such as growth and disturbance occurring at scales
of metres or less. Even within RECCAP, some studies have
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spatial resolution of one kilometre and/or hourly time reso-
lution. Where such fine scales are needed for models, inven-
tories or data products, the uncertainty must be considered at
the same scales.

The fact that the analysis will never be working with the
full matrix C makes it important to characterise the nature of
truncations and projections. For multi-variate Gaussian dis-
tributions, two different problems arise whenever we con-
sider a projection ofC. These can be classed as truncation
and ambiguity. Both pose problems for the calculation and
interpretation of budgets, but, in both cases, proper treatment
of the statistics of the problem can avoid trouble and generate
information.

2.2 Truncation

The general relation for building up the inverse covariance
matrix, X = C−1, as information is combined, is expressed
as successive instances of

X← X′ = X+GTWG (1)

whereG is a model operator that maps the fluxes onto a set
of observations whose covariance isR with the inverseW =
R−1.

Some of the issues of truncations and projections can be
illustrated by consideringX transformed so as to be parti-
tioned into sets 1 and 2 of “resolved” and “unresolved” fluxes
– these could, for example, be “low-resolution” and “high
resolution” in space and or time. Rewriting (1) in block ma-
trix form gives:[

X11 X12
X21 X22

]
←

[
X′11 X′12
X′21 X′22

]

=

[
X11 X12
X21 X22

]
+ [G1

TG2
T
]W

[
G1
G2

]
(2)

with a corresponding block decomposition ofC.
There are several cases depending on the content ofG and

X:

G1= 0. (or G2= 0) Here, the observations inform only one of the
two resolutions, but information may be passed to the other by pre-
existing correlations (X12 6= 0).

C22≈ 0. Here, although observations inform both subspaces, we
assume near perfect knowledge of the high-resolution space. This
approach was used, for example, byZupanski et al.(2007) who
assumed knowledge of high-frequency variations in flux and used
continuous atmospheric concentration observations to inform more
slowly varying components.Trampert and Sneider(1996) and
Kaminski et al.(2001) showed that, if the confidence implied by
C22≈ 0 was ill-founded, the low-resolution estimates would suf-
fer a biased inference. The error resulting from such truncation is
termed a “truncation” or “aggregation” error.

We can, however, ignoreX22 when updatingC11, i.e. pretend the
problem is carried out only in the low-resolution subspace.

General case.We must consider both resolutions together; hence,
we must construct then invertX and only then take the relevant
submatrix for subspace 1.

Issues of de facto truncation are particularly significant in
ill-conditioned inverse problems where some form of regu-
larisation is needed. We note three different cases that tend
to shade into each other, but for which the results really refer
to somewhat different things:

i. The information that is lost or degraded from the inver-
sion is supplied by other observations – this is what is
envisaged in Fig.1. Prior estimates can play this role in
Bayesian inversions.

ii. The inverse problem is replaced by a different (but re-
lated) problem by truncating the solution space. This
was pioneered byBackus and Gilbert(1968) in seis-
mology.

iii. Extra constraints are added to supplement the observa-
tions. These constraints are often motivated by exter-
nal ideas of reasonable ranges. The parameters that de-
fine these ranges contribute information and hence re-
duce uncertainty. Such approaches return a biased es-
timate but with a reduced error compared to their un-
constrained counterparts. This approach comes in many
variants: e.g. ridge regression, shrinkage estimators.

These issues apply far more widely than just RECCAP and
the carbon cycle. However, the evolution of the field has seen
carbon cycle studies draw heavily on experience from other
areas of science, with relatively little sign of practices in the
analysis of the carbon cycle influencing wider practice.

2.3 Ambiguity

When a total carbon flux is decomposed into contributions
from different processes, ambiguity can arise from impreci-
sion in the definitions, with a given flux component attributed
to more than one process, or to none. We will use “ambigu-
ity” here in this limited sense and exclude other forms of
imprecision such as the failure to distinguish between flux
vs. storage budgets and/or CO2 vs. carbon budgets (Enting,
2002, Sect. 14.1). We also exclude “equifinality”, i.e. ill-
conditioning of calibration. This is noted in Sect. 3.2.

The problem of ambiguity is illustrated by the case of sea-
sonal savanna burning. A common disaggregation for terres-
trial fluxes may include an undisturbed seasonal cycle and
a biomass burning contribution. In savanna ecosystems the
undisturbed seasonal cycle will include the decomposition
of annual grasses at the end of the dry season. This is also a
common time for savanna fires. If these two components are
independently estimated, such as by a terrestrial model with
no burning processes and satellite estimates of burned area,
a given carbon atom may be classified as passing from the
surface to the atmosphere twice. A solution is to build a sin-
gle model that treats both processes and conserves mass (e.g.
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Van Der Werf et al., 2006), but this is not always possible
or desirable. An alternative is to explicitly budget the “dif-
ference” processes. Even if these are poorly known, large
proportional uncertainties in a small component will give
only small contributions to absolute uncertainty, although it
must be realised that there can be a number of such ambi-
guities. An equivalent approach acknowledges the coupling
of the two estimates by including negative covariances into
C and partitioning the prior estimates accordingly. Obser-
vations that project onto only one of the covarying compo-
nents will also help constrain the other, and we can choose to
project onto sums of the troublesome components if we wish
to avoid the ambiguity altogether.

An important point to note is that whileC can be extended
to describe linear combinations of fluxes, the inverseX =
C−1 only exists for a set of linearly independent fluxes since
otherwiseC is singular. In the normal Bayesian approach,
the prior covariance usually provides a linearly independent
basis, but this may not be the case if ambiguous components
are included.

3 Filling in the matrix

3.1 Principles

The uncertainties in RECCAP data sets are considered in
terms of four classes, each with somewhat different statistical
characteristics, building on the discussion byRaupach et al.
(2005). We characterise these types of data set as “models”,
“data products”, “inventories” and “inversions”. This order
of presentation reflects some of the ambiguities and overlaps
between the classes. We begin with “models” because almost
all cases of the other types of data set actually involve some
sort of model. There is, of course, quite direct use of models
in data products. As noted below, aspects of inventory con-
struction are comparable to the development of “data prod-
ucts”. Finally, inversions not only have a model (of atmo-
spheric and/or ocean carbon transport) as a key component,
but also, if Bayesian techniques are used, the inversions will
bring in, as priors, other classes of estimate, each with their
own model and classes of error.

Raupach et al.(2005) noted that their discussion was
“largely omitting questions of spatial and temporal error
structure”. We have been able to add relatively little in quan-
titative terms, but in various sections below, we note studies
that can contribute to this essential aspect of carbon cycle
uncertainty.

3.2 Models

For the purposes of this discussion, we classify model error
as structural error, parameter error, forcing error and repre-
sentation error, noting that there can be some overlapping of
the categories. To the extent that they are distinct, these types
of error will be cumulative, although not necessarily strictly

additive. Intercomparison studies, where multiple models are
run with various sets of standard conditions, provide a way
of identifying the relative importance of these types of error.
Again, these considerations apply across wide areas of Earth
system science, but, where appropriate, we draw our exam-
ples from carbon cycle studies.

Structural error. Structural error in models occurs when models
misrepresent the functional forms of the relations between inputs
and observable quantities. It usually requires a calibration exercise
to identify it (since we must exclude parameter error described be-
low) or, in rare cases, one can perform a perfect experiment in which
the inputs are exactly known. Model intercomparisons can explore
the significance of different modelling choices and may show inter-
model spreads comparable to the differences between model means
and observations (Doney et al., 2004). However, as noted byKnutti
et al.(2010) in the context of climate modelling, intercomparisons
are not designed to yield formal error estimates.

Representation error.This arises from the mismatch between what
a model represents (e.g. grid cells) and what gets observed (e.g.
local values). As such it could be considered as a special case of
“structural error”. In some cases there is an ambiguity as to whether
such error should be regarded as a model error (failure to repre-
sent detailed behaviour) or observational error (failure of the ob-
servational data to capture the scales of the model) (Enting, 2002,
Sect. 5.4.1).

Parameter error.Even when model structure is correct, there is
usually insufficient information from ab initio reasoning or obser-
vations to specify precisely the model parameters. The common ar-
gument that we cannot undertake a formal calibration exercise with
insufficient information hides rather than circumvents this problem.
Parameter sensitivities for specific terrestrial carbon models have
been studied byMitchell et al. (2009) for Biome-BGC and byZa-
ehle et al.(2005) for LPJ-DVGM. Calibration uncertainty is more
amenable to statistical analysis – note in particular the Optimisa-
tion InterComparison (OptIC) for comparison of parameter estima-
tion methods in terrestrial biogeochemical models (Trudinger et al.,
2008). An extreme case of parameter uncertainty is what is known
as “equifinality” where multiple solutions of the calibration calcu-
lation are possible because the calibration is under-determined.

Forcing error. Zhao et al.(2011) have investigated the effect of un-
certainty in meteorological forcing of fluxes from the ORCHIDEE
terrestrial carbon model, comparing results with observed meteorol-
ogy at tower sites and four different sets of gridded meteorological
fields.Jung et al.(2007) compared three terrestrial biosphere mod-
els, one run with two different sets of meteorological forcing. They
found that differences in forcing were particularly important for in-
terannual variations of GPP. Other aspects of the model behaviour
were more sensitive to structural differences such as the treatment
of the nitrogen cycle.

The RECCAP activity involves two types of forward mod-
els, ocean carbon models and terrestrial carbon models, and
intercomparisons have been made for each.Orr et al.(2001)
described the OCMIP (ocean carbon) intercomparison, and
Doney et al.(2004) analysed OCMIP-2, suggesting that once
models were selected on the basis of more realistic physics,
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the real uncertainty in projections of biogeochemical fields
would be less than the between model spread.Sitch et al.
(2008) have compared terrestrial models, and the earlier
Potsdam NPP intercomparison is described byCramer et al.
(1999), with a subsequent study describing the models’ re-
sponses to climate change (Cramer et al., 2001). All stud-
ies showed large differences between models, even when as
many inputs as possible were standardized.

Issues of combining results from multiple models have
been particularly important for climate modelling. An IPCC
expert group has prepared a set of guidelines for use of mul-
tiple models (Knutti et al., 2010).

3.3 Data products

For RECCAP, the main types of “data product” come from
remotely sensed data (often calibrated by ground truth). Such
data require a model representation to interpret the raw data
(radiances at various frequencies) as properties of the Earth
system.Raupach et al.(2005) give tables of indicative prop-
erties of error covariance in such observing systems, but,
apart from noting the importance, they say little about the
spatial and temporal covariance.

Beer et al.(2010) used, among other techniques, vari-
ous spatially distributed fields, including the remotely sensed
fraction of absorbed photosynthetically active radiation (FA-
PAR), to model GPP with their model calibrated at fluxnet
sites.

Beer et al.(2010) shows another important characteristic
of these data products: the observations are rarely of the ex-
act quantity needed by a study such as RECCAP. There is a
more or less simple model relating the observations and the
RECCAP-relevant field, and so the “model errors” described
above also pertain to these products.

An important type of data product for regional carbon
studies is obtained by up-scaling of FLUXNET data.Jung
et al. (2011) used a machine learning approach to up-scale
FLUXNET data to 0.5◦ by 0.5◦ global coverage at monthly
resolution using remotely-sensed data for meteorology and
land use. They had previously undertaken a “synthetic data”
study (Jung et al., 2009) in order to assess various machine
learning approaches to such upscaling of GPP. They sug-
gested relatively small uncertainties in their GPP (about 6 %).

A disappointing but unsurprising result from theJung et al.
(2011) study was that predictive capability was relatively
poor for Net Ecosystem Exchange.

In considering spatially and temporally ranging data sets
and data products, we need to consider the separate roles of
variability and uncertainty. These are distinct concepts, al-
though variability will contribute to uncertainty when esti-
mates are based on sub-sampling a quantity with spatial or
temporal variability.Enting(2008) has used the cases of sta-
tionary temporal variation to illustrate how different combi-
nations of signal variability and correlation in the noise af-
fect the uncertainty in optimal estimation for various cases of
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Fig. 2.Schematic of relations between top-down and bottom-up es-
timates for two idealised cases of two flux components which differ
greatly in the quality of bottom-up information.

subsampling (i.e. spectral truncation). For spatial variability
and uncertainty, the situation is more complicated, because
two-dimensional variation and correlation need to be consid-
ered and neither of these will necessarily have a stationary
distribution.

3.4 Inventories

We use the term here in its literal sense of constructing a
total by counting. The task will often be divided, e.g. dif-
ferent uses for fossil fuels, or may involve sampling such as
biomass derived from detailed plot studies. Furthermore, the
measured and desired quantities are rarely the same and so
some kind of model frequently intervenes (e.g. allometric
equations (e.g.Wolf et al., 2010) or the Kaya identity (e.g.
Rayner, 2010)).

Inventories are often used as prior estimates in inversions,
and they often provide detail at much smaller scales than
can be informed by the atmosphere.Heimann et al.(2004)
noted that “the impressive regional details...are to a large ex-
tent provided by the a priori flux fields” – it follows that all
the uncertainties in the fine-resolution detail of the posterior
flux comes from the priors.

Figure 2 gives a schematic of this. Two different cases
of bottom-up information are shown, both with the same
methodological uncertainty, but one (dotted ellipses) having
much larger inter-case uncertainty than the other (dashed el-
lipses). This illustration suggests that in such cases, the top-
down constraint does little to help the improved bottom-up
information reduce the overall uncertainty. Note also that
many inventories are defined only at integrated scales, such

www.biogeosciences.net/9/2889/2012/ Biogeosciences, 9, 2889–2904, 2012



2894 I. G. Enting et al.: RECCAP uncertainty

as national UNFCCC emission estimates or crop yields ag-
gregated to administrative regions.

Calculation of uncertainties in inventories is, in principle,
simple if the inventory is calculated by direct sum. Calcula-
tion of the covariance structure of inventory-based estimates
is much harder, since problems like omitted categories are
systematic and persistent.

3.5 Inversions

Inversions represent cases of indirect inference where the di-
rection of inference is in the opposite direction to real-world
causality. Consequently, the dissipative nature of most bio-
physical systems means that such inverse problems will be
ill-conditioned: highly sensitive to both model error and data
error.

The “classic” atmospheric CO2 inversion problem of de-
ducing surface fluxes from concentration data was described
by Enting (2002). The study byChevallier et al.(2010) il-
lustrates many of the refinements that have been developed
over the last decade.Gloor et al.(2003) described a synthe-
sis inversion approach to using interior ocean data to estimate
air-sea fluxes. There have also been joint atmosphere–ocean
carbon inversions (Jacobson et al., 2007a,b).

Given that concentration changes represent the combined
effects of transport and net sources, inversions use the con-
centration data along with modelled transport in order to es-
timate net sources, so that uncertainty arises from both the
concentration data and the modelled transport. The Bayesian
synthesis inversion propagates observational error (Enting
et al., 1995). Notionally, this type of inversion calculation can
also propagate model error (Tarantola, 2005, see Eq. 1.101),
but the very different statistical characteristics of “model er-
ror” limit the extent to which this can be done in practice.

The issues of model error discussed above recur in the role
of model error in inversions. The TransCom intercomparison
(Gurney et al., 2002) contributes to understanding of atmo-
spheric transport uncertainty, both through collective stud-
ies and through targeted investigations of specific cases. As
with other intercomparisons (Knutti et al., 2010), this has not
translated into a generic quantitative prescription for assess-
ing these errors. Indeed, models can share a systematic bias
(Stephens et al., 2007). Estimation of the error characteris-
tics of atmospheric models is possible in applications data
assimilation for numerical weather prediction (NWP). This
is because of the large amounts of data and the repeated abil-
ity to compare the forecast (and associated estimates of un-
certainty) to the next set of observations (Dee and de Silva,
1999, for example).

For global-scale CO2 inversions, with less data available,
common practice has been to estimate the observational error
from the precision and variability found in the measurement
program. Alternatively,Michalak et al.(2005) has shown that
if groups of measurements can be assumed to have a fixed
structure of variance, then scaling factors for this variance

can be an additional parameter to be estimated by maximum
likelihood.Gourdji (2011) has noted that the same approach
could, in principle, be applied to estimating variances of prior
fluxes in Bayesian inversions. In mesoscale inversions, with
more data available, the inverse problem is closer to data
assimilation in NWP and combined uncertainties, including
transport uncertainty, can be estimated (e.g.Lauvaux et al.,
2009).

Many atmospheric CO2 inversions have considered only
atmospheric transport of CO2 and neglected other lateral
transports of carbon. The main cases of such transports are
river carbon (organic and inorganic), trade (food and fibre),
and atmospheric transport of reduced carbon (mainly CO and
CH4). Neglect of such lateral transport can cause a number
of problems:

– a bias in the priors and/or pre-subtracted fields;

– neglect of particular fluxes – omission of the CO2
source from oxidation of CO in the free atmosphere
is particularly problematic since error cannot be sim-
ply corrected by local repartitioning of estimated sur-
face fluxes;

– misinterpretation of results – for example an agricul-
tural region may appear to the atmosphere as a signifi-
cant sink while transport of the resulting crop may im-
ply no net storage.

The last of these problems represents a bias that can be cor-
rected by simple post-processing of the results, but the first
two require a model-dependent correction that will usually
not be available.

The various lateral transports have been discussed: re-
duced carbon (Enting and Mansbridge, 1991; Sunthar-
alingam et al., 2005; Folberth et al., 2005), trade (Ciais et al.,
2007, 2008) and rivers (Ciais et al., 2008; Sarmiento and
Sundquist, 1992). The neglect of such lateral transport in
inversions should be treated as a bias or “offset” to be cor-
rected, not just as an added uncertainty as is done for the
“truncation bias” (Kaminski et al., 2001). There is, of course,
a need to address the uncertainty in the offset correction.

Commonly, CO2 inversions adopt a Bayesian approach
and incorporate various types of “bottom-up” information. In
a Bayesian mode, the CO2 inversion is performing the syn-
thesis shown schematically in Fig.1. This is a very powerful
approach but, for the purposes of RECCAP, is subject to an
important caveat that such estimates are not independent of
the various other components of the RECCAP analysis. At-
mospheric inversions are an important component of REC-
CAP (Canadell et al., 2011), and the results will be reported
as part of the present special issue.

A new “variable selection” approach to CO2 inversions
has been described byGourdji (2011) – (see alsoHuntzinger
et al., 2011). A geostatistical inversion has its “geostatisti-
cal trend” term supplemented by a small number of auxiliary
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Fig. 3. Schematic of two different possibilities for relations between multiple estimates of carbon budget.(a): Various classes of estimate
give consistent views that can be combined to refine the overall budget.(b): Various classes of estimate do not give consistent views and
imply the need to estimate (and seek to identify) a residual process.
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Fig. 4. Schematic of relations between top-down and bottom-up
estimates for idealised case of two flux components which differ
greatly in the quality of bottom-up information.

space–time distributions chosen from data sets that are ex-
pected to be relevant to CO2 flux. A stepwise choice of which
set of variables are included is made on the basis of statisti-
cal tests, with the process terminating when none of the re-
maining candidate variables give sufficient improvement to
the fit. This type of approach may provide a basis for using
Bayesian inversion with multiple models of potential fluxes
(or transport).

4 Decompositions of fluxes

4.1 Temporal decompositions

As noted in the introduction, we followCleveland et al.
(1983) in representing the fluxes as a combination of long-
term trend, slowly-varying cycle and additional “irregular”
variation. This general separation into three temporal com-
ponents represents a form of spectral filtering, although the
appropriateness of the specific robust non-linear filters used
by Cleveland et al.(1983) will depend on the data set in ques-
tion.

As a point of clarification, it is important to distinguish
between the various meanings of the term “trend”. In much
of the RECCAP analysis, the term “trend” refers to the rate
of change. ForCleveland et al.(1983) “the trend” refers to a
slowly varying function – we use the term “trend function” to
distinguish this usage. In geostatistical analysis, “the trend”
refers to an underlying function that constrains the solution
(Michalak et al., 2004; Gourdji, 2011, for example). We use
the term “geostatistics trend” for this case.

Overall, the decomposition encompasses the aims and ca-
pacity of the RECCAP study, while providing precise defini-
tions and the capacity for more detailed descriptions in future
studies. At present, for some components of RECCAP (e.g.
ocean inversions) only long-term means are available.

On expressing the RECCAP contributions in terms of this
decomposition into temporal components:

– the RECCAP “mean” becomes a particular value of the
trend function – it needs to be referenced to a particu-
lar time, and there must be a specification of the time-
averaging that is used in producing the trend function;
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– the RECCAP “trend”, i.e. the rate of change is thus the
derivative of the trend function, again requiring a speci-
fication of the reference time and the time-averaging;

– the time averaged characteristics of cycle represent the
value of the “cycle” function, again at a particular time
and with a particular smoothing – it can be characterised
in terms of slowly varying amplitude and phase for each
harmonic;

– changes of cycles can be expressed as rate of change of
the amplitudes and phases;

– the irregular component is, of course, the most compli-
cated, but summary statistics, e.g. the root-mean-square
value, can help characterise this component and, poten-
tially, any sustained changes in its behaviour.

For many components of RECCAP, the higher frequency
data will not be available.

Uncertainties in each of the components come from:

– distortion of the signal, due to the estimation procedure
differing from the formal requirements (e.g. when data
records are too short too support the degree of smooth-
ing applied for other RECCAP components);

– contamination of one component by another due to the
estimation procedure differing from the formal require-
ments;

– uncertainty in original data at frequencies passed by the
decomposition procedure. Often this is estimated from
residuals by assuming a white noise structure. Any such
assumption needs to be justified.

In spectral terms it would be desirable to have the frequen-
cies that are included in the “trend function” well separated
from the dominant frequencies of the interannual variability
which have a significant ENSO contribution. However, it will
often be necessary to compromise due to the limited length
of series, e.g. use of 5-yr running mean in Southern Ocean
studies (B. Tilbrook, personal communication, 2011).

Each of the separated components can be considered as an
example of “truncated solutions” as discussed in Sect.2.2;
the discussion of that section gives the criteria for whether
or not the uncertainties for a particular temporal component
can be treated in isolation from the other components (e.g.
Thompson et al., 2010).

4.2 Process decompositions

Table1 shows a hierarchical decomposition of carbon-cycle
processes acting at a point. Different combinations of fluxes
are captured by various observational and modelling ap-
proaches. Such a complex description demands care to either
avoid or characterize ambiguity, but it does not necessarily
follow that we should therefore seek a simpler description.

Table 1.Hierarchical decomposition of carbon cycle processes and
fluxes acting at terrestrial ecosystem locations. Terrestrial sites can
also have emissions from human and geological processes. Various
observational and modelling approaches capture different groups of
fluxes. Some of these carbon exchanges, particularly respiration and
disturbance, need to be further partitioned between CO2 and vari-
ous forms of reduced carbon. The role of climate change in various
forms of disturbance is an additional ambiguity.

GPP

Respiration
Autotrophic
Heterotrophic

Disturbance
Storm damage
Pests
Fire direct
Fire delayed
Other effects of climate change

Export (or import)
Biofuel harvest
Crop harvest
Manure addition etc (Import)
Export by rivers
Timber harvest

Many of these processes are linked by the dynamics of car-
bon pools, and it remains a topic of much debate whether
we should build these couplings (via some kind of model)
into the inverse mechanism or not. Such an approach re-
duces the dimensionality of the problem but may also intro-
duce incorrect dynamics. It is possible to include the model
state in the estimation so that it, along with model param-
eters and forcing, can be affected by observations. This is
the so-called weak constraint formalism in which the model
need not evolve exactly according to its prescribed dynamics.
This is particularly valuable when the forms of the dynami-
cal equations are themselves uncertain.Wang et al.(2009)
pointed out that the Kalman Filter naturally incorporates a
weak dynamical constraint. Another approach, the explicit
consideration of residual fluxes, is considered below.

4.3 Spatial decompositions

The spatial decomposition of the carbon cycle is the essence
of the RECCAP activity. Compared to the time-domain, there
is much less in the way of well-established statistical tech-
niques. Furthermore, an assumption of statistical stationar-
ity must be restricted to the smaller scales. For the carbon
cycle, spatial differences occur in many different contexts.
Often, the interest in spatial information is as a proxy for
process. Natural fluxes reflect the Earth’s biogeochemical re-
gions: biomes and ocean provinces. Political divisions are re-
flected in the patterns of human emissions, and the extent
to which data about these emissions (and other carbon cycle
data) are collected. Inversions are generally spatially-limited,
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only able to provide estimates of a limited number of modes.
Furthermore, these modes are determined by the data and
cannot be arbitrarily assigned by the investigator (Wunsch
and Minster, 1982).

The various types of spatial decomposition are generally
not well matched, beyond the obvious land vs. ocean par-
tition. The need for re-mapping between mis-matched spa-
tial decompositions becomes an additional source of bias and
ambiguity, comparable to that associated with process ambi-
guity. Again, an appropriate approach is explicit inclusion of
mis-match contributions and associated uncertainties which
are likely to be dominated by systematic biases. As long
as the uncertainties in such mis-matches are small in abso-
lute terms, even if large in proportional terms, useful cross-
information is possible even with mis-matched spatial parti-
tioning.

5 Global to regional analyses

5.1 Context

In comparing syntheses of global or regional carbon bud-
gets, an important distinction is whether or not an analysis
includes a “residual flux” – the so-called “missing sink”.

Figure3 gives a schematic of two possible situations for
combinations of flux estimates. Part (a) shows three joint es-
timates of two fluxes (notionally land and ocean) with a set
of flux values that are consistent with all three estimates. In
contrast, part (b) shows three inconsistent estimates with no
set of fluxes providing a good fit to all constraints.

There are two complementary ways in which the issue of
the residual flux can be formulated in a framework of statis-
tical estimation. One can calculate it explicitly and then test
whether it is significantly different from zero, or one can pose
the problem from the outset as a hypothesis test, namely that
the residual is zero.

Le Qúeŕe et al.(2009) constructed a simple annual bud-
get for atmospheric CO2 over the last 50 yr, considering
fossil fuel inputs, land-use change, oceanic and terrestrial
fluxes, and atmospheric increase. Their interest was largely
on long-term changes in this budget, and much of the short-
term variability was driven by the variability in atmospheric
growth-rate or modelled terrestrial flux. In this they were
implicitly following Bousquet et al.(2000) and subsequent
analyses which suggest that terrestrial flux is the dominant
driver of interannual variability. Focussing on their uncer-
tainty analyses,Le Qúeŕe et al.(2009) used multi-model en-
sembles for as many terms in their budget as possible, es-
pecially the highly uncertain terrestrial term, but only had
single estimates for emissions from land use and fossil car-
bon. This gives them a very limited ensemble size to esti-
mate distributions but means that systematic effects, such as
year–year correlations in model behaviour, are naturally ac-
counted for. They also estimated a residual term based on

failure to close their budget and noted that it was generally
very large suggesting either missing processes (unlikely at
the global scale) or serious inconsistency among their esti-
mates.Sarmiento et al.(2010) have analysed recent decades
of the carbon cycle, partitioning land into northern extra-
tropical vs. tropical and southern zones bounded by 18 de-
gree latitudes. For the oceans, 48 degrees south was used
for further partitioning into “southern” and “southern hemi-
sphere temperate” oceans. The approach was to estimate a
net land flux using the combination of atmospheric CO2 in-
versions, fossil fuel inventories and ocean carbon modelling.
This bypassed the question of whether the land sink is con-
sistent with current models and inventories, and concentrated
on the overall temporal behaviour. Their conclusion was that,
superimposed on considerable interannual variability, there
was a step change from around 0.3 PgC yr−1 terrestrial sink
to around 1.15 PgC yr−1 sink from 1989 onwards.

5.2 Global products

In this section we apply the principles discussed above to
comment briefly on the characterization of uncertainty in the
various RECCAP global products.

5.2.1 Fossil

Andres et al.(2012) comment on the various types of un-
certainty in estimates of fossil fuel emissions. They note
that global uncertainty is dominated by uncertainties of the
largest emitters, but, fortunately, fractional uncertainty is
generally lower for large emitters. Uncertainty is currently
increasing as the fraction of emissions from “high uncer-
tainty” countries is growing to become a significant part of
the total. Uncertainties increase as we seek more highly re-
solved estimates in space or time, since the methodology of
downscaling estimates by multiplication of national totals
by some spatial proxy necessarily convolves uncertainties.
There is, as yet, little evidence available for estimating tem-
poral error correlation for fossil fuel emissions, a quantity
necessary for efficient trend detection.

There is a separate uncertainty around the use of fossil fuel
emissions within inversions since not all combustion imme-
diately yields CO2 (e.g.Enting and Mansbridge, 1991; Fol-
berth et al., 2005; Suntharalingam et al., 2005). This, how-
ever, is best treated as an uncertain correction term in the
inversion process rather than an uncertainty in the estimation
of fossil fuel emissions.

Rayner(2010) generate uncertainty in the parameters of
their fossil fuel model using a Monte Carlo technique. Their
model calculates emissions at a point as a product of national
emissions and a spatial proxy blending nightlights and popu-
lation. Both the spatial field and national multiplier carry an
uncertainty, so the pointwise emissions have a large but un-
correlated component of uncertainty arising from uncertainty
in the spatial proxy, plus a smaller component arising from
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uncertainty in national emissions. This second component of
uncertainty is correlated at national scales. When emission
estimates are aggregated to these national scales, the first
component becomes insignificant, and uncertainty is equal
to the specified uncertainty in national emissions.

5.2.2 Land-use change and forestry

After early speculation of very large emissions from defor-
estation (Woodwell et al., 1978), Houghton et al.(1983)
introduced a “book-keeping” approach that relates carbon
stocks to records of land-use change, supplemented by proxy
information such as population data.

Houghton(2010) has reviewed various estimates and pro-
posed a range of±0.5 PgC yr−1. He noted the various con-
tributions to uncertainty as:

– uncertainties about the processes and activities included
in the analyses;

– uncertainty about rates of change of land-use change
and management;

– uncertainty about density of carbon stocks in affected
areas;

– uncertainties regarding the fate of affected ecosystems
and carbon stocks.

The question of the fate of the carbon is important. Black
carbon comprises a small but increasing component of the
budget (Novakov et al., 2003). Similarly, the use of biofuels
is a significant part of global combustion (Yevich and Logan,
2003), but the impact on the global-to-regional scale carbon
budget depends greatly on whether or not such use is from a
sustainable practice that balances emissions with regrowth.

The discussion of the RECCAP global product (Houghton
et al., 2012) notes three methods, differing mainly in how the
carbon densities are assigned:

– “book-keeping” from agricultural and forestry records –
this generally has to use representative average carbon
densities, but is the only available technique for produc-
ing long records;

– remote sensing, which can, in principle, match carbon
densities to actual locations where change occurs;

– modelled carbon, but this still requires, as input, a spec-
ification of where changes occur.

5.2.3 Ocean CO2 flux

The proposed RECCAP ocean CO2 flux product (Rik Wan-
ninkhof, personal communication, 2011) is to be based on
the analysis of ocean CO2 partial pressure (pCO2).

The air–sea flux is expressed as

Fsea:air= κK01pCO2 (3)

whereK0 is the solubility of CO2, andκ is a wind-speed
dependent transfer coefficient. This is written as

κ = a〈U2
〉
0.5 (4)

where〈U2
〉
0.5 is the mean-square wind speed at 10 m.

The preliminary estimate of annual mean flux
is −1.19 PgC yr−1, with 0.13 PgC yr−1 interannual
standard deviation and a decreasing sink trend of
0.1 PgC yr−1 decade−1.

The overall uncertainty (expressed as±1 s.d.) in the
annual mean flux was estimated at±0.7 PgC yr−1, at-
tributed to uncertainties of±0.18 PgC yr−1 from interpola-
tion of the pCO2 data;±0.42 PgC yr−1 from uncertainty
in κ; ±0.28 PgC yr−1 from the 〈U2

〉
0.5 uncertainty; and

±0.5 PgC yr−1 from the correction involved in taking the
pCO2 data to a common reference time.

The results are to be presented as maps at 4◦
×5◦ resolu-

tion, for:

– 20-yr mean sea-to-air fluxFsea:air and s.d. of annual
means of sea-to-air flux

– trend of sea-to-air flux and error of trend of sea-to-air
flux.

For comparison the “T-09” climatology of sea-to-air flux
from Takahashi et al.(2009) is specified as sea-to-air flux
from T-09 and s.d. of sea-to-air flux.

The various mean data sets are to be supplemented by plots
of standard deviations reflecting the seasonal variability and
plots reflecting the effect of interannual variability on esti-
mated trends. The various plots of standard deviations are
measures of variability, not measures of uncertainty (see dis-
cussion in Sect.3.3 above). However, uncertainties can re-
flect the amount of variability in cases of incomplete sam-
pling or if we wish to use a climatology to represent a given
year.

5.2.4 Terrestrial carbon modelling

For terrestrial ecosystems, RECCAP is drawing on several
global modelling studies. There is additional modelling for
some particular regions. As noted in Sect.3.2, model in-
tercomparisons can provide a framework for investigation
differences between models, but cannot provide quantitative
estimates of uncertainties.Huntzinger et al.(2011) propose
geostatistical criteria for systematic comparison of terrestrial
carbon models.

Section3.2 notes various studies relevant to specific as-
pects of calibration uncertainty in terrestrial carbon models
(Mitchell et al., 2009; Zaehle et al., 2005; Trudinger et al.,
2008; Zhao et al., 2011). Huntzinger et al.(2011) use a geo-
statistical approach to compare multiple terrestrial models in
terms of cross-correlations in order to identify relevant model
differences, such as sensitivity to forcing variables. A more
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generic approach to comparing spatially varying data is given
by Scipal et al.(2008), who use cross-correlations between
three data sets to obtain estimates of the errors of each. This
approach is critically dependent on the assumption of no cor-
relation between the errors in the different data sets.

5.2.5 Inversions

As soon as we wish to disaggregate the carbon budget into
even its coarsest process description (e.g. land vs. ocean up-
take), we cannot simply use the global growth rate. We re-
quire some ancillary information such as isotopic informa-
tion (e.g.Francey et al., 1995; Keeling et al., 1995), addi-
tional gases (Keeling et al., 1993), or information on spa-
tial gradients (Gurney et al., 2002). This makes even global
decompositions from inversions inherently spatial in nature.
Uncertainties are characteristically large unless global con-
straints (e.g. oxygen trends) are available, since the uncer-
tainty will be dominated by the least well-constrained region.

5.3 Implications for regional budgeting

Before considering the various regional analyses in REC-
CAP, we note a comparable (but with less coverage)
study.Ciais et al.(2010) compared atmospheric inversions
to land-based accounting for the (extra-tropical) Northern
Hemisphere. They used inversions for four different mod-
els/systems, and compared these results to land-based ac-
counting for four large land regions for which land-based
analyses existed. These were:

– SOCCR (CCSP, 2007) for North America;

– CARBO-EUROPE (Schulze et al., 2010);

– IIASA for Russia;

– andPiao et al.(2009) for China.

They concluded that “the NH terrestrial sink estimation is
consistent between the top-down and the bottom-up ap-
proaches at the scale of the regions considered, given uncer-
tainties associated with each method”. The results illustrate
the principle of the schematic of Fig. 1, with the top-down es-
timates having the larger uncertainties for individual regions,
while the two approaches show comparable uncertainty on
the hemispheric scale due to the negative correlation in the
top-down estimates.

The question –where, if anywhere, is there evidence of
a missing sink?– can serve as a focus for considering how
much the information in the set of regional studies reduces
the uncertainty in the global picture. The more general ques-
tions are: Do the RECCAP components cross-inform each
other? How much do regional studies contribute to a more
precise global description? In assessing regional budgets, the
uncertainties in fossil carbon emissions play a more impor-
tant role than on the global scale.

The study byTans et al.(1990) provided a striking exam-
ple of using regional information to refine a global descrip-
tion. ThepCO2 data for northern and tropical regions were
supplemented by an inversion study to determine the north–
south difference in fluxes.

On the other hand, Fig.4 suggests that reducing the uncer-
tainties in a single region may not translate into more com-
prehensive constraints. The uncertainties in totals are domi-
nated by the uncertainty in the most poorly known summand.

Our temporal decomposition (see Sect.4.1) provides a hi-
erarchy of difficulty for synthesising RECCAP components.
Difficulties are magnified as we move from estimating most
likely values to some measure of uncertainty.

Mean. Specifying some sort of mean flux is the minimum require-
ment for RECCAP components. Where there may be difficulty in
incorporating such results into a global or regional synthesis is when
they cannot be referenced to a specific reference time and averaging
period.

Rate of change.Many, but not all, of RECCAP means may also
have associated rates of change.

Seasonal cycles.Many RECCAP components include estimates of
cycles. In particular terrestrial carbon models are usually tuned to
reproduce the seasonal cycle. However cycles are not a primary
RECCAP focus.

Change of cycles.Estimating longer-term trends on the seasonal
cycles should be possible for a number of components, but as with
the cycles themselves, this is not a primary focus of RECCAP.
However, changes in cycles in response to changing environmental
conditions may provide a useful additional constraint on terrestrial
models.

Interannual variability. Analysing interannual variability (IAV)
poses a challenge for RECCAP. Among the difficulties are: the
smaller number of components that include estimates of IAV, the
need for consistency in definition of IAV, and the possibility of
non-stationarity in the uncertainties (since many aspects of IAV are
linked to the phase of the seasonal cycle).

The difficulties for IAV mean that a quantitative answer to
the complementary question –when, if ever, is there evidence
of a missing sink?– remains elusive.

6 Concluding remarks

The RECCAP study (Canadell et al., 2011) is a unique effort
in synthesising a large body of quantitative knowledge about
the carbon cycle. Experience from comparable exercises in
other contexts suggest that as much will be learned about the
problems in performing such an exercise for the first time as
is learned about the targeted science. Examples from our own
experience include:

– Carbon cycle calculations as input to the 1994 IPCC Ra-
diative Forcing Report (Enting et al., 1994) – this was
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already a second attempt, following an unsuccessful at-
tempt organised by the IPCC Technical Services Unit,
and even in this second attempt, problems were encoun-
tered with ambiguity in classification of fluxes (Enting
et al., 1994, appendix A.6);

– The Transcom intercomparison, where initial compro-
mises (e.g. the neglect of reduced carbon, fossil emis-
sions either fixed or with a single global uncertainty)
have persisted;

– The OptIC exercise (Trudinger et al., 2008), where a
limited focus on the sampling distribution of the esti-
mates has meant a failure to fully address the original
aims.

As discussed above, the RECCAP exercise is structured in
terms of both global and regional studies. Syntheses can be
considered in terms of how regional studies fit into the global
perspective. Questions for a regional study are:

– Is it consistent with the global perspective, in particular
the global growth of CO2?

– Does it refine or modify the global synthesis?

– Do any such modifications of the global synthesis mod-
ify other regional estimates?

Each of these questions can only be answered if there is a
quantitative understanding of the uncertainties in the respec-
tive estimates. This will not be possible in all cases, since in
the words of the SOCCR report (CCSP, 2007) noted above,
“ rarely, even within a sector or discipline, are the statistical
pre-requisites of meta-analysis met by the diverse studies of
carbon cycle elements”.

The RECCAP process also envisages a set of high-level
syntheses (Canadell et al., 2011):

Top-down/bottom-up comparisons.This topic is the closest to the
present paper. In Sect.3.5we noted that the whole process of com-
bining components and propagating uncertainties could, in princi-
ple, be done within the inversion process.Ciais et al.(2010) per-
formed a top-down/bottom up comparisons for the four best-studied
regions of the globe and found general consistency in the estimates.
The questions for RECCAP are whether such consistency is still
found when these regional analyses are refined and whether other
regions show similar consistency. As noted above, inclusion of un-
certainties in fossil carbon emissions will be an essential part of
such analyses.

Terrestrial carbon synthesis.The terrestrial biota is the component
of the carbon cycle that has:

– greatest spatial heterogeneity;

– greatest interannual variability;

– greatest uncertainty; and

– maybe greatest vulnerability to climate change.

Spatially resolved estimates can come from “data products” as in
the study byJung et al.(2011) or from explicit modelling. The
RECCAP analysis draws on several global model studies. Addi-
tional terrestrial model studies contribute to some of the regional
analyses. Some techniques for assessing the uncertainty, given the
difficulties mentioned above, are noted in Sect.5.2.4.

Interannual variability. As noted in the previous section, charac-
terising the uncertainties in estimates of interannual variability is
significantly more difficult than analysing uncertainties in means,
trends and cycles. This is an area where more comprehensive anal-
ysis is needed.

Attribution. Questions of attribution shift the focus from a descrip-
tive account of fluxes to a mechanistic account of “how is the carbon
cycle working?” Many of these issues are captured byEnting(2002,
Fig. 14.2), which assigns “functional roles” to the various fluxes.
The main roles are “equilibrium” and “perturbation”, with “pertur-
bation” subdivided into “forcing”, “response” and “random”. For
current concerns, expanding this to be “forcing”, “response”, “feed-
back” and “random” seems more appropriate. This sort of mecha-
nistic view is essentially one of modelling, and so attribution studies
from RECCAP and its extensions are likely to reflect this. Attri-
bution studies can, of course, be expected to draw heavily on the
techniques developed for attribution of climate change.

Human drivers.Raupach et al.(2007) analysed trends in CO2
emissions for 9 national groupings, using a Kaya identity approach
to characterise how the changes over time differed between groups.
The additional information from RECCAP may potentially refine
such analyses, and the characterisation of uncertainties is important
when assessing the significance of any changes in the different pat-
terns of the human drivers.

These four “high-level syntheses” represent four different
directions for RECCAP. The “top-down/bottom-up” analysis
is a chance to take stock of what has been achieved. “Inter-
annual variability” is a challenge for the future. “Attribution”
is a new perspective that will involve shifting the balance be-
tween observational and modelling studies. Finally, under-
standing the role of the human drivers of change in the car-
bon cycle provides the basis of mitigating such changes. In
each of the high-level directions, a comprehensive character-
isation of the uncertainties is essential for progress.
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Appendix A

Notation

C Covariance matrix for flux estimates – subscripted to
denote particular cases.

F CO2 flux to the atmosphere – subscripted to denote
particular cases.

G Model operator, mapping fluxes onto a set of obser-
vations.

K0 Solubility of CO2.
R Covariance matrix for a set of observations.
t Time.
U Wind-speed, used in convertingpCO2 data for fluxes.
W Inverse of covariance matrix for a set of observations.
X Inverse covariance matrix for flux estimates – sub-

scripted to denote particular cases. Only exists when
defined over a linearly independent set of flux com-
ponents.

κ Gas exchange coefficient.
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and Tans, P. P.: Regional changes in carbon dioxide fluxes of land
and oceans since 1980, Science, 290, 1342–1346, 2000.

Canadell, J. G., Ciais, P., Gurney, K., Le Quéŕe, C., Piao, S., Rau-
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