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Abstract. The terrestrial biosphere is currently a strong sink
for anthropogenic CO2 emissions. Through the radiative
properties of CO2, the strength of this sink has a direct in-
fluence on the radiative budget of the global climate sys-
tem. The accurate assessment of this sink and its evolution
under a changing climate is, hence, paramount for any effi-
cient management strategies of the terrestrial carbon sink to
avoid dangerous climate change. Unfortunately, simulations
of carbon and water fluxes with terrestrial biosphere mod-
els exhibit large uncertainties. A considerable fraction of this
uncertainty reflects uncertainty in the parameter values of the
process formulations within the models.

This paper describes the systematic calibration of the pro-
cess parameters of a terrestrial biosphere model against two
observational data streams: remotely sensed FAPAR (frac-
tion of absorbed photosynthetically active radiation) pro-
vided by the MERIS (ESA’s Medium Resolution Imaging
Spectrometer) sensor and in situ measurements of atmo-
spheric CO2 provided by the GLOBALVIEW flask sampling
network. We use the Carbon Cycle Data Assimilation System
(CCDAS) to systematically calibrate some 70 parameters of
the terrestrial BETHY (Biosphere Energy Transfer Hydrol-
ogy) model. The simultaneous assimilation of all observa-

tions provides parameter estimates and uncertainty ranges
that are consistent with the observational information. In a
subsequent step these parameter uncertainties are propagated
through the model to uncertainty ranges for predicted carbon
fluxes.

We demonstrate the consistent assimilation at global scale,
where the global MERIS FAPAR product and atmospheric
CO2 are used simultaneously. The assimilation improves the
match to independent observations. We quantify how MERIS
data improve the accuracy of the current and future (net and
gross) carbon flux estimates (within and beyond the assimi-
lation period).

We further demonstrate the use of an interactive mission
benefit analysis tool built around CCDAS to support the de-
sign of future space missions. We find that, for long-term av-
erages, the benefit of FAPAR data is most pronounced for
hydrological quantities, and moderate for quantities related
to carbon fluxes from ecosystems. The benefit for hydrologi-
cal quantities is highest for semi-arid tropical or sub-tropical
regions. Length of mission or sensor resolution is of minor
importance.
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1 Introduction

The terrestrial biosphere is a significant sink for atmospheric
CO2 and thus plays a key role in the radiative budget of
the global climate system (Denman et al., 2007). Prognos-
tic terrestrial vegetation models are used to simulate the
strength and distribution of this sink and its response to cli-
mate change. These prognostic models solve the equations
governing the evolution of the carbon, water, and energy bal-
ance. In their formulation, these equations rely on a set of
constants, which we call process parameters. There is un-
certainty in both the correct formulation of the equations and
then the correct values of the process parameters. This uncer-
tainty yields significant uncertainties in the simulated terres-
trial carbon sinks on decadal and longer time scales (Denman
et al., 2007). On shorter time scales parameter, uncertainty is
reflected in large uncertainties in the hydrological cycle on
all spatial scales.

The use of observational information is required to reduce
this uncertainty. Systematic model calibration through inver-
sion procedures can infer parameter ranges that are consistent
with the observations and exclude parameter ranges that are
inconsistent with observations (Tarantola, 1987). Remaining
inconsistencies can be attributed to weaknesses in the formu-
lation of the model equations or errors in the observational
data. For such calibration procedures it is desirable to use
multiple data streams and sample at multiple locations and
points in time. To assure consistency, it is then essential to
impose all observational constraints simultaneously, an ap-
proach we call consistent assimilation. In a non-linear model,
any step-wise inclusion of the observational information typ-
ically yields a suboptimal estimate of final parameter values,
i.e. consistency with the observational information used in
early steps is not assured.

The first mathematically rigorous calibration of a prog-
nostic terrestrial biosphere model was performed within the
Carbon Cycle Data Assimilation System (CCDAS,http:
//CCDAS.org) built around the Biosphere Energy Trans-
fer HYdrology scheme (BETHY,Knorr, 2000; Knorr and
Heimann, 2001). CCDAS estimates the values of BETHY’s
process parameters including their uncertainty ranges and
maps them onto simulated carbon and water fluxes. The sys-
tem was first used with 20 yr of atmospheric carbon dioxide
observations provided by the GLOBALVIEW flask sampling
network (GLOBALVIEW-CO2, 2008). The system evaluated
the effect of this observational constraint on the net and gross
fluxes of CO2 over the assimilation period (Rayner et al.,
2005), and also on their predictions from years (Scholze
et al., 2007) to decades (Rayner et al., 2011).

The above studies showed that the flask sampling data
can only constrain part of BETHY’s parameter space. For-
tunately there is an ever-increasing set of observational con-
straints on the terrestrial biosphere becoming available. One
of the requirements for assimilation of a given data stream
is the capability to simulate (by a so-called observation op-

erator) its counterpart in the model. For the assimilation of
atmospheric carbon dioxide, the role of the observation op-
erator was taken by an atmospheric transport model (TM2,
Heimann, 1995) that was coupled to BETHY.

A further observational constraint on the terrestrial bio-
sphere is provided by “fraction of absorbed photosyntheti-
cally active radiation” (FAPAR) (Gobron et al., 2008) prod-
ucts. FAPAR is an indicator of healthy vegetation, which ex-
hibits a strong contrast in reflectance between the visible and
the near-infrared domains of the solar spectrum (Verstraete
et al., 1996). FAPAR products can thus be derived from
observations provided by space-borne instruments, e.g. by
ESA’s Medium Resolution Imaging Spectrometer (MERIS).
The extensions of CCDAS for assimilation of FAPAR are de-
tailed byKnorr et al.(2010), who also demonstrate the con-
sistent assimilation of FAPAR at multiple sites. These exten-
sions include modules for simulation of hydrology and leaf
phenology and, as observational operator, a two flux scheme
of the radiative balance within the canopy.

Here we report on the first consistent assimilation of flask
samples of atmospheric CO2 and FAPAR at global scale, i.e.
the simultaneous assimilation of both data streams. To limit
the computation time in development, testing, and debug-
ging, this challenging exploration of uncharted territory was
conducted in BETHY’s fast, coarse spatial resolution.

A further application of advanced assimilation systems
that can propagate uncertainties from the observations to
target quantities of interest is quantitative network design
(QND). QND is particularly appealing because it can eval-
uate the benefit of hypothetical data streams based on their
assumed uncertainty.Kaminski and Rayner(2008) describe
the methodological framework and present a set of exam-
ples related to the global carbon cycle. Within CCDAS, the
QND concept was applied to support the design of an ac-
tive LIDAR mission sampling atmospheric CO2 from space
(Kaminski et al., 2010). For FAPAR assimilation at site-
scale, the concept was applied to evaluate the effect of mod-
ifications of sensor characteristics on uncertainties in current
and future carbon fluxes (Knorr et al., 2008). In this paper
we describe the development of an interactive mission bene-
fit analysis (MBA) software tool based on the global version
of CCDAS. The MBA tool quantifies the benefit of space
missions in terms of their constraint on various carbon and
water fluxes, and we demonstrate the effect of design aspects
such as mission length and sensor resolution.

The remainder of the paper is organised as follows. Sec-
tion 2 describes first CCDAS (Sect.2.1) and then the
MBA tool (Sect.2.2). The observational data are presented
in Sect. 3. Next, Sect.4 describes the consistent global-
scale assimilation of MERIS FAPAR and atmospheric CO2
(Sect.3.2), and Sect.5 presents our simulations for mission
design. Finally, we draw conclusions and give perspectives
in Sect.6.

Biogeosciences, 9, 3173–3184, 2012 www.biogeosciences.net/9/3173/2012/

http://CCDAS.org
http://CCDAS.org


T. Kaminski et al.: Assimilation of MERIS FAPAR into a terrestrial model 3175

2 Methods

2.1 CCDAS

The Carbon Cycle Data Assimilation System (CCDAS) is
a variational assimilation system built around the Biosphere
Energy Transfer HYdrology (BETHY) scheme. The system
is described in full detail elsewhere (Scholze, 2003; Kamin-
ski et al., 2003; Rayner et al., 2005; Scholze et al., 2007;
Knorr et al., 2010).

In brief, BETHY, simulates carbon uptake and plant and
soil respiration embedded within a full energy and water
balance and phenology scheme (Knorr, 2000). The model
is fully prognostic and is thus able to predict the future
evolution of the terrestrial carbon cycle under a prescribed
climate scenario. The process formulation distinguishes 13
plant functional types (PFTs) based on the classification by
Wilson and Henderson-Sellers(1985). Each model grid cell
can be populated by up to three different PFTs. Driving data
(precipitation, minimum and maximum temperatures, and in-
coming solar radiation) were derived from a combination of
available monthly gridded and daily station data (R. Schnur,
personal communication, 2008) using a method byNijssen
et al.(2001).

As mentioned above, assimilation of atmospheric CO2
requires, as an observation operator, an atmospheric trans-
port model (TM2,Heimann, 1995) coupled to BETHY. CO2
fluxes from processes not represented in BETHY, i.e. fos-
sil fuel emissions, exchange fluxes with the ocean and emis-
sions from land use change, were prescribed as inScholze
et al. (2007). The observation operator for FAPAR calcu-
lates the vertical integral of the absorbed photosynthetically
active radiation (PAR) by healthy green leaves between the
canopy top and the canopy bottom, divided by the incom-
ing radiation. FAPAR thus equals the net PAR flux entering
the canopy at the top (incoming minus outgoing) minus the
net PAR flux leaving the canopy at the bottom (outgoing mi-
nus incoming, i.e. reflected from soil background), divided
by the incoming PAR flux at the top of the canopy. The PAR
flux is calculated by a two-flux scheme (Sellers, 1985), which
takes into account soil reflectance, solar angle and incoming
amount of diffuse radiation.

Equating satellite and model FAPAR means that, given
the same illumination conditions, the same number of pho-
tons enter the photosynthetic mechanism of the vegetation,
even if some of the assumptions differ between BETHY and
the model used to derive FAPAR (Gobron et al., 2000). It
also means that FAPAR in the model is defined based on the
assumption that the canopy consists only of photosynthesis-
ing plant parts (Pinty et al., 2009), which is consistent with
the definition used for deriving the MERIS FAPAR product.
The resultant LAI is one that ensures measured and mod-
elled absorbed PAR are consistent. BETHY also assumes that
the conductance of the leave pores, or “stomata”, for both
CO2 and water vapour adapts to the available PAR across the

canopy. This means that shaded sections of the canopy do
not only absorb less PAR, they also have a lower leaf con-
ductance. This assumption is well supported by the fact both
whole-canopy conductance and FAPAR show a similar satu-
rating behaviour for increasing leaf area index (Schulze et al.,
2001). We therefore assume that adjusting the leaf area index
to match measured FAPAR will also improve the consistency
between modelled and actual canopy conductance to water
vapour.

Assimilation of FAPAR required the extension of CCDAS
by components included in BETHY for simulating hydrol-
ogy and leaf phenology. In the previous CCDAS setup, these
components were used in a preliminary assimilation step that
provided input to CCDAS. This extension was necessary
to allow consistent assimilation of FAPAR and atmospheric
CO2.

CCDAS implements a probabilistic inversion concept (see
Tarantola, 1987) that describes the state of information on
a specific physical quantity by a probability density function
(PDF). The prior information on the process parameters is
quantified by a PDF in parameter space and the observational
information by a PDF in the space of observations. Their re-
spective means are denoted byx0 andd and their respective
covariance matrices byC0 andCd, whereCd accounts for un-
certainties in the observations as well as uncertainties from
errors in simulating their counterpart (model error). If the
prior and observational PDFs were Gaussian and the model
linear, the posterior PDF would be Gaussian, too, and com-
pletely characterised by its meanxpostand covariance matrix
Cpost. Further,xpost would be the minimum of the following
cost function:

J (x) =
1

2
[(M(x) − d)T C−1

d (M(x)− d)

+(x − x0)
T C−1

0 (x − x0)] , (1)

whereM(x) denotes the model operated as a mapping of the
parameters onto simulated counterparts of the observations.
Further,Cpost would be given by:

C−1
post= J′′(xpost) , (2)

whereJ′′(xpost) denotes the Hessian matrix ofJ , i.e. the ma-

trix composed of its second partial derivatives∂
2J

∂xi∂xj
.

Our model is non-linear, and we approximate the posterior
PDF by a Gaussian withxpostas the minimum of Eq. (1) and
Cpost from Eq. (2).

The inverse step is followed by a second step, the estima-
tion of a diagnostic or prognostic target quantityy. The cor-
responding PDF is approximated by a Gaussian with mean

y = N(xpost) (3)

and covariance

Cy = N′(xpost)CpostN′(xpost)
T

+ Cy,mod , (4)

whereN(x) is the model operated as a mapping of the pa-
rameters onto the target quantity. In other words, the model
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is expressed as a function of the vector of its parametersx

and returns a vector of quantities of interest, for example the
uptake of carbon integrated over a region and time interval.
The linearisation (derivative) ofN aroundxpost is denoted by
N′(xpost) and also called Jacobian matrix.Cy,mod denotes the
uncertainty in the simulation ofy resulting from errors inN .
If the model was perfect (a hypothetical case),Cy,mod would
be zero, and only the first term would contribute toCy . Con-
versely, if all parameters were known to perfect accuracy (an
equally hypothetical case),Cpost would be zero and only the
second term would contribute toCy .

The minimisation of Eq. (1) and the propagation of un-
certainties are implemented in a normalised parameter space
with Gaussian priors. The normalisation is such that parame-
ter values are specified in multiples of their standard devi-
ation, i.e.C0 is the identity matrix (for details seeKamin-
ski et al., 1999; Rayner et al., 2005). In addition, for some
bounded parameters a suitable variable transformation is in-
cluded. Through comparison with a Monte Carlo approach,
Ziehn et al.(2012) demonstrate that the Gaussian assump-
tion is a good approximation for the posterior parameter PDF.
The authors of that study therefore recommend use of Gaus-
sian prior PDFs in a gradient method, which was found to be
greatly more efficient computationally. They used CCDAS
with assimilation of CO2 data similar to this study, but had
to restrict the investigation to a subset of the full parameter
space due to the very high computational costs of the Monte
Carlo algorithm.

Technically, the minimisation ofJ is performed by a pow-
erful iterative gradient algorithm, where, in each iteration,
the gradient ofJ is used to define a new search direction.
The gradient (plusJ itself) are efficiently evaluated by a sin-
gle run of the so-called adjoint code ofJ . The associated
computational cost is independent of the number of parame-
ters and is in the current case comparable to 3–4 evaluations
of J . Likewise,J′′(xpost) is evaluated by a single run of the
derivative code of the adjoint code (Hessian code). Here the
associated computational cost grows roughly linearly with
the number of parameters (more precisely an affine func-
tion of the number of parameters). In the present case of 71
parameters, the cost is comparable to about 60 evaluations
of J . These numbers are only a rough indication of perfor-
mance as they vary with platform, compiler, and even com-
piler flags. For performance numbers of the previous CCDAS
implementation, we refer toKaminski et al.(2003). All CC-
DAS derivative code (adjoint, Hessian, Jacobian) is gener-
ated from the model code by the automatic differentiation
tool Transformation of Algorithms in Fortran (TAF,Giering
and Kaminski, 1998). The Hessian code is generated by reap-
plying TAF to the adjoint code.

2.2 Mission benefit analysis

Our mission benefit analysis is based on the Quantitative
Network Design (QND) methodology presented byKamin-

ski and Rayner(2008). The approach exploits the fact that
the uncertainty propagation from the observations to the pa-
rameters (via Eq.2) and then further to the target quantities
(Eq. 4) can be performed independently from the parame-
ter estimation. The requirements for the evaluation ofJ′′ in
Eq. (2) are the data uncertainty (Cd), the capability to simu-
late (expressed byM(x)) a counterpart of the data stream via
an appropriate observational operator, and a reasonable para-
meter vector. We can then evaluate the benefit of hypothetical
or planned observational data streams on the uncertainty re-
duction in relevant target quantities.

A QND system for mission benefit analysis (MBA tool)
was built around the extended CCDAS framework for global
scale assimilation described in Sect.4. The tool can com-
bine prior information, flask samples of atmospheric carbon
dioxide, and global coverage FAPAR within a single cost
function (see Fig.1). For the tool, the sensitivity of each
data item (each observation of FAPAR or atmospheric CO2)
with respect to the process parameters was precomputed and
stored for a run of 14 yr. These sensitivities are the deriva-
tives ofM(x) (see Eq.1), which are evaluated for the opti-
mal parameter vectorx determined by the assimilation run
(see Sect.4). To approximate the posterior parameter uncer-
tainty (Eq.2) resulting from a user-defined data uncertainty
(Cd of Eq. 1) requires just matrix multiplications and a ma-
trix inversion. In this inversion step, the user can choose the
length of the mission. This will determine how many of the
14 yr of data for which sensitivities were precomputed are
actually used in the assessment. Further, the user can choose
to include or exclude the information from the atmospheric
CO2 observations.

Evaluation of Eq. (4) yields posterior uncertainties for any
target quantity that can be simulated by the model. The target
quantities offered by the MBA tool are annual mean values
of net ecosystem production (NEP), net primary production
(NPP), evapotranspiration, and plant available soil moisture
averaged over five years. Each of these quantities is avail-
able for six regions of the globe. The Jacobian matrixN′ (of
Eq.4) representing the derivative of the target quantities with
respect to the model parameters was also precomputed and
stored. For this step, just as for the previous step, the tool
only requires matrix multiplications.

In summary, all steps to assess a mission configuration
from the precomputed CCDAS output only involve matrix
algebra. On a standard notebook these operations take only
a few seconds, which enables the tool to run in interactive
mode. The options for the configuration comprise the uncer-
tainty in the FAPAR product, the length of the mission, and
whether atmospheric CO2 observations are included or ex-
cluded. Based on the same methodology, a similar tool (in-
cluding a web interface, seehttp://imecc.ccdas.org) was set
up for the design of networks composed of in situ measure-
ments (direct measurements of the biosphere–atmosphere ex-
change flux as well as flask and continuous samples of the
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Fig. 1.Flow of information for evaluation of the cost function.J is the sum of the cost function contributions from the individual information
items. Ovals denote data and rectangular boxes denote processing (i.e. code modules).

atmospheric CO2 concentration) of the carbon cycle (Kamin-
ski et al., 2012).

3 Observational data

3.1 MERIS FAPAR

We use FAPAR products derived from the Medium Resolu-
tion Imaging Spectrometer (MERIS) of the European Space
Agency (ESA). We use the Level 3 product for the period
June 2002 to September 2003. The data were processed at
ESA’s Grid Processing on Demand (GPoD,http://gpod.eo.
esa.int) facility on a global 0.5 degree grid in the form of
monthly composites and then interpolated to the model’s
coarse resolution 10 by 8 degree grid.

We use an uncorrelated data uncertainty of 0.1 for the defi-
nition of Cd in Eq. (1) irrespective of how many observations
where used in the spatial averaging of the FAPAR pixels (Go-
bron et al., 2008).

3.2 Atmospheric CO2

We use monthly mean values of atmospheric CO2 concen-
trations provided by the GLOBALVIEW flask sampling net-
work (GLOBALVIEW-CO2, 2008). We use data for the pe-
riod from 1999 to 2004 at two sites, Mauna Loa (MLO)
and South Pole (SPO). We use the time series of residual
standard deviations (RSD) from the compilation to assign
a data uncertainty to the observations. We only use data from
years when sufficient measurements are made to assign val-
ues without the gap-filling procedures in the GLOBALVIEW
compilation.

4 Assimilation experiments

The consistent assimilation uses both data streams, the
MERIS FAPAR product and the atmospheric CO2 observa-
tions, as simultaneous constraints. Figure1 displays the flow
of information in the forward sense, i.e. from process pa-
rameters to the cost (or misfit) function. As mentioned, we
use the computationally fast, 8 by 10 degree resolution with
about 170 land grid cells. Our assimilation interval is the five
year period from 1999 to 2004.

Several approaches to address the problem of bias in the
FAPAR data product have been investigated. For the global-
scale assimilation, we resolved to the following solution:
we computed the average FAPAR over three years for each
model grid cell and compared this value to the average ob-
served value. We then multiplied the cover fraction of each
PFT within the grid cell concerned by the ratio averaged ob-
served FAPAR divided by average model FAPAR. If this ratio
was above 1, which only occurred in very few grid cells, no
correction was applied.

In order to investigate the occurrence of multiple minima,
we started five minimisations of the cost function from differ-
ent starting points, including the prior parameter value. Out
of these five minimisations, four find the same minimum. The
minimisation starting from the prior parameter value takes
153 iterations to reduce the cost functionJ from from 4574
to 2829, and the norm of its gradient by more than eight or-
ders of magnitude from 4×103 to 2×10−5. At the minimum,
the respective contributions (see Eq.1) of the prior term, the
CO2 observations, and the MERIS observations to the total
cost functionJ are 124, 61, and 2644.

At both stations, MLO (left hand panel of Fig.2) and SPO
(right hand panel of Fig.2), the fit to atmospheric CO2 has
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Fig. 2. Atmospheric CO2 at Mauna Loa (left hand panel) and South Pole (right hand panel) in ppm: Observations (black), prior (blue), and
posterior (red).

Fig. 3.Posterior-prior FAPAR for 4 months in 2003: January (upper left panel), April (upper right panel), July (lower left panel), and October
(lower right panel).

improved considerably. The trend and both the amplitude and
the phase of the seasonal cycle have improved. Figure3 dis-
plays the change in simulated FAPAR through the assimi-
lation (posterior–prior) for four months of 2003. FAPAR is
reduced over the Amazon Forest, increased over Australia,
and exhibits an increased seasonal cycle over East Asia and
the North American high latitudes.

For validation of the calibrated model, i.e. the model with
the posterior parameter values, we need independent infor-
mation. This information is provided by flask samples of
the atmospheric CO2 concentration at extra sites withheld
from our assimilation procedure. Figure4 displays observed

concentration (black) together with concentrations simulated
with prior (blue) and posterior (red) parameter values for
Point Barrow, a marine site in Alaska (left hand panel), and
Izaña, a mountain site on the Canary Islands (right hand
panel). We note that the posterior provides a considerably
better fit than the prior, i.e. the validation confirms that
the calibrated model performs better than the uncalibrated
model.

The uncertainty reduction for the parameters is displayed
in Fig. 5. Parameters 1 through 71 are control parameters of
BETHY, while Parameter 72 is the initial atmospheric CO2
concentration used by the transport model. Of the BETHY
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Fig. 4. Atmospheric CO2 at Point Barrow (left hand panel) and Izaña (right hand panel) in ppm: observations (black), prior (blue), and
posterior (red).

Fig. 5.Uncertainty reduction in process parameters.

parameters, numbers 57 to 71 relate to the phenology model,
which controls leaf area and thus has an immediate impact
on simulated FAPAR. While the site-scale assimilation of
Knorr et al. (2010) constrained the parameters outside the
phenology model only marginally, in the current global scale
assimilation of FAPAR and atmospheric CO2, ten of these
parameters show an uncertainty reduction of about 20 % or
more.

Of more general interest are uncertainty reductions in tar-
get quantities such as predicted fluxes, because they are less
specific to the model used than the process parameters. Here,
we select net ecosystem production and net primary produc-
tion (NEP and NPP) integrated over the period from 1999 to
2003 and six regions (Fig.6). For all regions and both tar-
get quantities, we find a considerable degree of uncertainty
reduction, where fluxes in Australia are somewhat less con-
strained by the data than it is the case for the other con-

tinents. It is interesting to note that, even though the ob-
served atmospheric CO2 is more closely related to the net
atmosphere-biosphere flux (NEP) than to only one compo-
nent of it (NPP), the impact of the two data sets is to constrain
NPP more than NEP compared to the prior case.

5 Mission benefit analysis

As a first example we analyse the individual information
content in our two data streams (Fig.7). We assume a long
mission of 14 yr. For simulation of regional NEP (left hand
panel), we note that the FAPAR constraint is marginal, and
that most of the uncertainty reduction can be attributed to
the atmospheric CO2 observations. The same holds for NPP
(right hand panel).

Interestingly, the picture is reversed for hydrological target
quantities (Fig.8), i.e. evapotranspiration (left hand panel)
and plant available soil moisture (right hand panel). It ap-
pears that FAPAR is a powerful constraint for those param-
eters with a strong effect on hydrological fluxes, while at-
mospheric CO2 is powerful in constraining parameters with
a strong effect on the carbon fluxes for the case of long-term
averages.

Next we investigate why the constraint of FAPAR on car-
bon fluxes is weak. Mathematically, this weak constraint is
reflected by a sub-space within the overall parameter space
that is at the same time crucial to simulate long-term carbon
fluxes and either not at all or only weakly constrained by the
MERIS FAPAR data (Fig.7). In the first case the model sim-
ulated FAPAR data would have zero sensitivity to this part
of the parameter space, while in the second case the sensi-
tivity would be only small. There is an important difference
between both cases: unlike the zero sensitivity, the weak sen-
sitivity can be compensated for by a reduced data uncertainty.

Such a reduced data uncertainty would correspond to
a new hypothetical mission concept. We investigate two

www.biogeosciences.net/9/3173/2012/ Biogeosciences, 9, 3173–3184, 2012
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Fig. 6.Uncertainty reduction in simulated NEP (left hand panel) and NPP (right hand panel) over six regions.

Fig. 7.Reduction in uncertainty in NEP (left hand panel) and NPP (right hand panel) over six regions from MERIS sensor for a 14-yr mission.
For assimilation of CO2 (red) and FAPAR (brown) separately and jointly (green).

hypothetical sensor concepts: the first sensor has higher spa-
tial resolution than the MERIS sensor and the second is a hy-
pothetical sensor with ideal resolution. We reproduce the
characteristics of the sensor with higher resolution by reduc-
ing the data uncertainty for FAPAR from 0.1 (corresponding
to our data uncertainty for the MERIS sensor, see Sect.3.1)
to 0.05. For the sensor with ideal resolution, we use a data un-
certainty of 0.001. We stress that this low value is selected to
explore an extreme case, not a case we can hope to achieve
in reality. Even if future instruments might allow consider-
ably higher precision, the theoretical limitations imposed by
radiative transfer through heterogeneous canopy would pre-
vent data uncertainties as low as this.

Figure9 shows the reduction in parameter uncertainty for
the MERIS sensor and both hypothetical mission concepts.

We see that while for some parameters the uncertainty reduc-
tion improves with sensor resolution, a large fraction of the
parameters remains unobserved. Figure10 shows the corre-
sponding uncertainty reductions in annual NEP and NEP av-
eraged over the mission period of 14 yr (note change of scale
on y-axis). Indeed, the uncertainty reduction improves only
marginally with sensor resolution, i.e. the unobserved param-
eters are important for constraining these carbon fluxes.

We further studied the effect of mission length. Figure11
indicates that for the hydrological target quantities, the gain
in uncertainty reduction through a mission length extension
from 3 to 14 yr is hardly larger than 10 percentage points. Un-
derlying this result is a similar mechanism as in the enhanced
resolution experiment. Extending the mission length does
improve the constraint on those parameters that influence
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Fig. 8. Reduction in uncertainty in evapotranspiration (left hand panel) and plant available soil moisture (right hand panel) over six regions
from MERIS sensor for a 14-yr mission. For assimilation of CO2 (red) and FAPAR (brown) separately and jointly (green).

Fig. 9. Reduction in parameter uncertainty for a 14-yr mission for FAPAR data from the MERIS sensor (top left hand panel) a hypothetical
higher resolution sensor (top right hand panel) and from a hypothetical ideal resolution sensor (bottom panel).
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Fig. 10. Reduction in uncertainty in NEP (left hand panel) and NPP (right hand panel) over six regions from three sensor concepts: the
MERIS sensor (green), the higher resolution sensor (brown), and the ideal resolution sensor (red).

Fig. 11.Reduction in uncertainty in evapotranspiration (left hand panel) and plant available soil moisture (right hand panel) over six regions
from MERIS sensor for a mission length of 3 yr (green), 5 yr (brown) and 14 yr (red).

FAPAR but it cannot reduce uncertainties of parameters that
do not influence FAPAR. The residual uncertainty in the hy-
drological target quantities can be attributed to uncertainty in
these unobserved parameters.

6 Conclusions and perspectives

The study demonstrates the potential of consistent assimila-
tion of multiple data streams, i.e. as a simultaneous constraint
on the process parameters of a terrestrial biosphere model.
This is the first study to combine, in a mathematically rigor-
ous framework, observed FAPAR and atmospheric CO2.

The most important result of this study is that the MERIS-
derived FAPAR product can be used to constrain quantities

of the global water cycle. In more general terms, FAPAR
can be highly valuable and beneficial for local to global scale
ecosystem, hydrology and carbon cycle modelling when ap-
plied within a data assimilation framework. This includes
prognostic studies where data from climate simulations are
used and predictions are made beyond the period of observa-
tions. Validation of the calibrated model resulting from the
assimilation against independent observations shows a clear
performance improvement.

The systematic application of the mathematically rigor-
ous uncertainty propagation capability implemented by CC-
DAS allows to support the design of space missions with
maximised benefit expressed in terms of uncertainties of in-
ferred carbon or water fluxes. The study has developed an
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interactive mission benefit analysis (MBA) tool that allows
instantaneous evaluation of a range of potential mission de-
signs. Applying the MBA tool, the study showed that the
benefit of FAPAR data is most pronounced for hydrologi-
cal quantities, and moderate for quantities related to carbon
fluxes from ecosystems. In semi-arid regions, where vegeta-
tion is strongly water limited, the constraint delivered by FA-
PAR for hydrological quantities was especially large, as doc-
umented by the results for Africa and Australia. Sensor res-
olution is less critical for successful model calibration, and
with even relatively short time series of only a few years, sig-
nificant uncertainty reduction can be achieved. The enhanced
constraint through a higher resolution or an extended mission
length can only achieve an extra uncertainty reduction in the
part of the parameter space that impacts FAPAR. The residual
uncertainty in the hydrological or carbon fluxes reflects un-
certainty in the unobserved parameters. The unobserved part
of the parameter space can only be illuminated by a comple-
mentary type of observation. Obviously, the parameter space
will differ between models and even between setups of the
same model. Also, the link between the parameters and a spe-
cific data stream obviously depends on details of the process
formulation. The mechanism that creates residual uncertainty
from parameters not observed by a given observational net-
work is, however, general.

For computational efficiency this pilot study uses a coarse
spatial resolution. We find that CCDAS at this resolution re-
produces the main features of the observed global FAPAR
distribution, which gives us confidence that the results are
representative of a simulations at higher spatial resolution.
One would certainly expect that the constraint of FAPAR will
be stronger on finer scales as more observations enter the data
assimilation procedure with the number of parameters kept
constant. However, the above-described residual uncertainty
through parameters not observable through the combination
of FAPAR and atmospheric CO2 will remain.

We note that the approach used here to constrain process
parameters of a global model can be considered an auto-
mated procedure for scientific investigation of the processes
the parameters represent. We further note that the approach
of multi-data stream assimilation presented here could eas-
ily be extended to include more than one data stream from
remotely sensed products. Obvious candidates are land sur-
face temperature from the Advanced Along-Track Scanning
Radiometer (AATSR), surface soil moisture from the Soil
Moisture and Ocean Salinity (SMOS) mission, and possi-
bly column-integrated CO2 observations. This would allow
a rigorous assessment of the consistency of multiple data
streams (as done here for FAPAR and atmospheric CO2). Use
of SMOS is particularly interesting, as it would allow com-
paring the benefits of SMOS soil moisture data to the already
considerable benefit of FAPAR for hydrological quantities.

The complementary nature of existing and potential future
data streams could be explored by an extension of the MBA
tool. A prominent candidate observation would be a column-

integrated CO2 product. The MBA tool could be extended
such that observational data uncertainty and sampling strat-
egy for the mission are assessed in terms of the uncertainty
reduction in the tool’s target quantities, i.e. terrestrial car-
bon fluxes but also hydrological quantities. The tool’s con-
cept is, however, general and thus also applicable to other
sensor types, such as RADAR (e.g. BIOMASS, SMOS, or
the Advanced Orbiting Satellite, ALOS) or LIDAR (e.g. the
Geoscience Laser Altimeter System, GLAS, on ICEsat), in-
dividually or combined.

While the study emphasises improvement of process pa-
rameters, the highly flexible structure of the variational ap-
proach allows, as a slight modification of the existing CC-
DAS framework, to devise a soil moisture monitoring system
that adjusts state variables through time such as soil mois-
ture instead of static parameters. If input data for the ecosys-
tem model can be derived from near-real time sources such
as weather forecasting analyses or satellite data, this could
result in an effective operational monitoring system for soil
moisture.

Underlying the CCDAS-approach is the assumption of
fundamental equations that govern the processes controlling
the terrestrial biosphere and that rely on process parameters
in their formulation. Following this assumption of universal
mechanisms, the specification of parameter values that de-
pend on the type of plant/ecosystem but not on its location is
reasonable. The distinction between these types can be based
on a map of PFTs, as done in BETHY and the majority of
the state-of-the-art global terrestrial biosphere models. The
number PFTs required for an accurate representation of the
variation in plant function is a matter of debate and depends
on the question asked (see, e.g.Groenendijk et al., 2011). The
selection of PFTs chosen in this study is motivated mainly by
the large functional differences between the major life forms
of trees. While the number of PFTs and the associated size
of the parameter space will certainly impact our results in a
quantitative way, the mechanisms we describe are general.
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