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Abstract. Although Arctic tundra has been estimated to
cover only 8 % of the global land surface, the large and po-
tentially labile carbon pools currently stored in tundra soils
have the potential for large emissions of carbon (C) under
a warming climate. These emissions as radiatively active
greenhouse gases in the form of both CO2 and CH4 could
amplify global warming. Given the potential sensitivity of
these ecosystems to climate change and the expectation that
the Arctic will experience appreciable warming over the next
century, it is important to assess whether responses of C ex-
change in tundra regions are likely to enhance or mitigate
warming. In this study we compared analyses of C exchange
of Arctic tundra between 1990 and 2006 among observa-
tions, regional and global applications of process-based ter-
restrial biosphere models, and atmospheric inversion mod-
els. Syntheses of flux observations and inversion models in-
dicate that the annual exchange of CO2 between Arctic tun-
dra and the atmosphere has large uncertainties that cannot
be distinguished from neutral balance. The mean estimate
from an ensemble of process-based model simulations sug-
gests that Arctic tundra has acted as a sink for atmospheric

CO2 in recent decades, but based on the uncertainty esti-
mates it cannot be determined with confidence whether these
ecosystems represent a weak or a strong sink. Tundra was
0.6◦C warmer in the 2000s compared to the 1990s. The cen-
tral estimates of the observations, process-based models, and
inversion models each identify stronger sinks in the 2000s
compared with the 1990s. Some of the process models in-
dicate that this occurred because net primary production in-
creased more in response to warming than heterotrophic res-
piration. Similarly, the observations and the applications of
regional process-based models suggest that CH4 emissions
from Arctic tundra have increased from the 1990s to 2000s
because of the sensitivity of CH4 emissions to warmer tem-
peratures. Based on our analyses of the estimates from ob-
servations, process-based models, and inversion models, we
estimate that Arctic tundra was a sink for atmospheric CO2 of
110 Tg C yr−1 (uncertainty between a sink of 291 Tg C yr−1

and a source of 80 Tg C yr−1) and a source of CH4 to the
atmosphere of 19 Tg C yr−1 (uncertainty between sources of
8 and 29 Tg C yr−1). The suite of analyses conducted in this
study indicate that it is important to reduce uncertainties in

Published by Copernicus Publications on behalf of the European Geosciences Union.



3186 A. D. McGuire et al.: Assessment of the carbon balance of Arctic tundra

the observations, process-based models, and inversions in
order to better understand the degree to which Arctic tun-
dra is influencing atmospheric CO2 and CH4 concentrations.
The reduction of uncertainties can be accomplished through
(1) the strategic placement of more CO2 and CH4 monitoring
stations to reduce uncertainties in inversions, (2) improved
observation networks of ground-based measurements of CO2
and CH4 exchange to understand exchange in response to
disturbance and across gradients of climatic and hydrological
variability, and (3) the effective transfer of information from
enhanced observation networks into process-based models to
improve the simulation of CO2 and CH4 exchange from Arc-
tic tundra to the atmosphere.

1 Introduction

The distribution of the Arctic tundra biome covers approx-
imately 8 % of the global land surface, largely north of the
boreal forest treeline (McGuire et al., 1997). The exact lo-
cation of the biome’s southern border is subjective, with the
transition between closed boreal forest and treeless tundra
up to several hundred kilometers wide in regions of low to-
pographic relief (Vlassova, 2002; Callaghan et al., 2005).
Climate in the Arctic is harsh, characterized by cold win-
ters and cool summers, with mean July temperatures below
∼ 12◦C (Callaghan et al., 2005) and annual mean temper-
atures typically below−10◦C (New et al., 1999). Conse-
quently, plant growth is restricted to a relatively short grow-
ing season on the order of three months or less during the
boreal summer. The tundra biome is home to approximately
1800 species of vascular plants and has less species diversity
than more temperate biomes (Asner et al., 2003; Callaghan
et al., 2005). The stature of vascular plant species is lim-
ited by environmental conditions, with trees almost entirely
absent and woody plant species restricted largely to shrubs
and dwarf shrubs. In addition to vascular plant species, non-
vascular mosses and lichens play a very important role in
the structure and function of tundra ecosystems. Frozen soils
are prevalent in northern high latitudes and there is a gra-
dient of continuous to discontinuous permafrost from north
to south. Most of the tundra biome is underlain by continu-
ous permafrost. The spatial and temporal dynamics of per-
mafrost and periodic disturbance are crucial in shaping the
arctic landscape and its heterogeneity, with important conse-
quences for the areal extent of wetlands and the exchange of
carbon dioxide (CO2) and methane (CH4).

Future climate warming is predicted to be pronounced
over the Arctic, especially during winter and spring. The
arctic autumn and winter are expected to warm between 3
and 6◦C by 2080 (SWIPA Assessment Executive Summary,
2011), which is expected to lead to longer growing seasons,
thawing of permafrost, warming and deepening of the soil
active layer, and large changes in hydrology. These changes

are likely to substantially affect tundra ecosystem structure
and function. In fact, there is increasing evidence that physi-
cal and ecological changes are already occurring throughout
the tundra biome (Serreze et al., 2003, Hinzman et al., 2005;
McDonald et al., 2004; Piao et al., 2008, 2011; Post et al.,
2009; Rawlins et al., 2010; Rowland et al., 2010; Beck and
Goetz, 2011; Kim et al., 2012).

The large and potentially labile carbon (C) pools currently
stored in Arctic soils (Ping et al., 2008; Tarnocai et al., 2009)
have the potential to be emitted as radiatively active green-
house gases in the form of both CO2 and CH4 under warmer
conditions (Schuur et al., 2008, 2011; Chapin et al., 2008;
McGuire et al., 2009; Schaefer et al., 2011; Koven et al.,
2011). Whether the emissions of CO2 from tundra soils tends
to amplify or mitigate global warming depends on the degree
to which C accumulation in tundra plants responds to warm-
ing (Sitch et al., 2007). This balance determines whether the
tundra is a source or sink of CO2. Changes in the emissions
of CH4 may also affect the degree to which tundra amplifies
or mitigates global warming. While CH4 has only a small
role on the mass balance of C between the atmosphere and
tundra, it is a highly potent greenhouse gas. Changes in CH4
emissions are likely to be strongly linked to changes in hy-
drology (Merbold et al., 2009). Current emissions of CH4 are
difficult to quantify due to substantial variability in time and
space due to variations in the environment associated with
topography, hydrology, and soil chemistry.

Because of the substantial changes that are already affect-
ing the structure and function of Arctic tundra, it is impor-
tant to assess how C exchange of Arctic tundra has been
changing in recent decades. The response of C dynamics
of Arctic tundra to environmental change can be evaluated
through a synthesis of (1) observations of C exchange with
the atmosphere, (2) the application of process-based mod-
els, and (3) the analysis of atmospheric inversion models of
C exchange with the atmosphere. Each of these scaling ap-
proaches has it strengths, weaknesses, and limitations in as-
sessing the carbon dynamics of Arctic tundra. In this paper
we compare analyses of C dynamics of Arctic tundra in the
two most recent decades among the three scaling approaches
to gain insight on how C exchange of Arctic tundra may be
responding to ongoing environmental changes. The analysis
in this paper represents the Arctic tundra contribution to the
Global Carbon Project’s REgional Carbon Cycle and Assess-
ment Processes (RECCAP) synthesis (Canadell et al., 2011).

2 Methods

2.1 Estimates from flux observations

Methods for ground-based observation of the exchange of C
between land and atmosphere face great challenges in Arc-
tic environments. The challenges include (1) comprehensive
spatial coverage in the face of a heterogeneous landscape
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mosaic that is often characterized by “hot spots”; (2) contin-
uous sampling to achieve full year-round estimates of carbon
dynamics; (3) high temporal resolution to sample episodic
exchanges of CO2 and CH4; and (4) collection of C exchange
data without line power in remote conditions.

A single technique is not available that meets all of these
challenges. Currently, manual chambers, automatic cham-
bers, and eddy covariance towers are the primary techniques
being used to measure C exchange between tundra with the
atmosphere. For CO2 flux measurements, these sampling
techniques are linked to infrared gas analyzers that measure
CO2 concentrations. For CH4, the field technology is less
developed, and has relied on gas sample collection in the
field, with laboratory estimates of CH4 concentrations using
gas chromatographs. Eddy covariance measurement systems
have recently been developed that allow continuous direct
CH4 concentration estimates in the field, and these are start-
ing to be more commonly used to measure CH4 exchange
(e.g., Rinne et al., 2007; Jackowicz-Korczynski et al., 2010).
In Table 1 we compare the relative performance of these
methods for a number of requirements and considerations.
Because typical tundra areas are heterogeneous, it is often
necessary to employ chamber methods of measurement to
differentiate the C exchange for the individual components
(e.g., soil, moss, and vascular plants) and to better under-
stand the underlying processes of land–atmosphere C ex-
change. Chamber-based measurements complement tower-
based measurements that more effectively integrate across a
heterogeneous landscape. In Supplement 1 we have compiled
approximately 250 estimates from 120 published papers of
the mean exchange of CO2 and CH4 between Arctic tundra
and the atmosphere at growing season, winter season, and
annual time scales based on published observational studies.
The exchange of CO2 with the atmosphere is reported as net
ecosystem exchange (NEE), i.e., net land–atmosphere CO2
flux, in which a positive NEE represents a loss of CO2 from
tundra to the atmosphere. Similarly, the exchange of CH4 is
reported as a positive flux when the net exchange is to the
atmosphere and as a negative flux when the net exchange
is into the ecosystem. Both CO2 and CH4 estimates are re-
ported in units of C. In this study we used only estimates
of CO2 and CH4 exchange from Supplement 1 for the time
period between 1990 and 2009 unless stated otherwise.

2.2 Estimates from process-based models

The spatial domain of Arctic tundra we considered in this
study (Fig. 1) was defined by the Regional Carbon Cycle As-
sessment and Processes (RECCAP) Activity. It is important
to note that the spatial domain of Arctic tundra was defined
from an atmospheric perspective as a region that could po-
tentially be resolved by the applications of inversion mod-
els. The region extends into boreal forest in some areas (for
example in western North America). In this study we com-
pare the carbon dynamics of Arctic tundra between 1990

Table 1. A summary of the technical performance different flux
measurement techniques. ++ means high performance, + means ad-
equate performance,− means less than adequate performance, and
−− means poor performance.

Eddy
covariance

Automatic
chambers

Manual
chambers

Steady state,
undisturbed
measurement

++ +/− −

Integration over
spatial
variability

++ −(quantity
of chambers
vs. mosaic)

−(quantity
of chambers
vs. mosaic)

Direct measure-
ment of small
scale spatial
variability

−− + ++

Tracking tempo-
ral variability

++ ++ −(campaigns
as basis for
modeling)

Costs −− −− ++

Workload ++ + –

Performance
under all climate
conditions

+/− +/− ++

and 2006 estimated by regional applications of three mod-
els that have focused on representing processes in ecosys-
tems underlain by permafrost: LPJ-Guess WHyMe (Smith et
al., 2001; Wania et al., 2009a, b, 2010; Hickler et al., 2012),
Orchidee (Koven et al., 2009, 2011), and version 6 of the
Terrestrial Ecosystem Model (TEM6; McGuire et al., 2010;
Hayes et al., 2011). For evaluating the production estimates
of the three regional process-based models, we have also in-
cluded the Terrestrial Carbon Flux (TCF) model (Kimball et
al., 2009) in the regional process-based model analysis. The
general features of the models are compared in Table 2 (see
Supplement 2 for more details).

The TCF is unique among the models in that it is partially
driven by satellite-based vegetation gross primary production
(GPP) estimates from the NASA Moderate Resolution Imag-
ing Spectroradiometer (MODIS) for the period between 2000
and 2009 (Zhao and Running, 2010). The MODIS (MOD17)
GPP estimates are used to derive vegetation net primary pro-
duction (NPP), while heterotrophic respiration (RH) is de-
termined from a simulated surface (< 10 cm depth) soil or-
ganic carbon pool and dynamic soil moisture and temper-
ature constraints to litter decomposition. The TCF does not
account for other carbon emission sources, including fire dis-
turbance, so NEE is derived as the residual difference be-
tween NPP and RH, and assumed equivalent to net ecosystem
production (NEP). The TCF calculations assume dynamic
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Fig. 1.The Arctic Tundra RECCAP Region.

steady-state conditions between NPP and RH so that esti-
mated NEE / NEP has no trend over the decade from 2000
to 2009. The other three models were driven in a prognos-
tic fashion by atmospheric CO2 and climate data of their
own choosing over the simulation period. Because of each
model’s choice of climate data, both LPJ-Guess WHyMe
and TEM6 produced estimates for only the 1990–2006 time
period. Therefore, we only compare 2000–2006 among the
models in the most recent decade. See Supplement 2 for more
details on the application of the regional models in this study.

All models estimate GPP, NPP, RH, and NEP. Both LPJ-
Guess and TEM6 make estimates of losses of carbon to the
atmosphere associated with fire and biogenic CH4 emissions.
In addition, TEM6 also calculates ecosystem losses of car-
bon from the export of harvested products and dissolved or-
ganic carbon. For each of the models we also calculate the
net ecosystem carbon balance (NCB) as the sum of NPP and
the atmospheric and export losses. The sign conventions for
NEP and NCB are positive for a net flux of carbon into the
ecosystem. We also report net CO2-C exchange with a sign
convention of positive representing a source to the atmo-
sphere and negative representing a sink into tundra ecosys-
tems. In this study, we compare the mean C budget estimated
from 1990–1999 and 2000–2006 among simulations of LPJ-
Guess WHyMe, Orchidee, and TEM6. We also report net
CO2-C exchange for each of the models as previously de-
fined. We also provide mean GPP and NPP estimates sim-
ulated by TCF for 2000–2006. To explore issues involving
the mean seasonal cycle of CO2 exchange, we compare the

mean monthly flux estimates for GPP, NPP, RH, and NEP for
1990–2006 simulated by LPJ-Guess, Orchidee, and TEM6,
and for 2000–2006 simulated by TCF. We also compare in-
terannual variability for estimates of GPP, NPP, RH, NEP,
other atmospheric losses, export losses, and NCB among the
models. To explore the importance of changing climate on
the regional applications of the process-based models, we
conducted additional simulations that were driven by con-
stant climate keeping all other drivers unchanged. The con-
stant climate for the three models was based on the 1901–
1930 climate used to drive their transient simulations. We
estimate the effect of a changing climate on NPP, RH, and
NEP between 1990 and 2006 by subtracting the estimates of
the constant climate simulation of each model from that of
the corresponding transient climate simulation.

The RECCAP activity is also comparing the mean C bud-
gets for the 1990s and 2000s estimated by a suite of global
applications of dynamic global vegetation models (DGVMs).
These DGVM applications were conducted as part of the
Trendy project (http://dgvm.ceh.ac.uk) to examine trends in
the net land C exchange over the period 1980–2009. In this
study we compare the mean C budget of these global ap-
plications for the Arctic tundra region of this study for the
time periods 1990–1999 and 2000–2006. The DGVM ap-
plications compared in this study include contributions from
CLM4C (Lawrence et al., 2011), CLM4CN (Thornton et al.,
2007, 2009; Bonan and Levis 2010; Lawrence et al., 2011),
Hyland (Levy et al., 2004), LPJ (Sitch et al., 2003), LPJ-
Guess (Smith et al., 2001), O-CN (v0.74; Zaehle and Friend,
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Table 2.Description of process-based models compared in this study. See Supplement 2 for additional details.

Model Description
Recent Arctic
Applications

LPJ-Guess WHyMe
Smith et al. (2001)
Wania et al. (2009a)
Wania et al. (2009b)
Wania et al. (2010)

Orchidee
Koven et al. (2009)
Koven et al. (2011)

TCF
Kimball et al. (2009)

TEM6
Hayes et al. (2011)
McGuire et al. (2010)

Scale

Temporal Resolution Daily 30 min Daily Month
Application Daily to Century Diurnal to multi-seasonal

(Century application)
Daily to Decadal Seasonal to Century

Spatial Resolution 0.5◦ 2◦ 25 km 0.5◦

Application Plot – Globe Plot – Globe Plot – Region Plot – Globe

Structure

Vegetation Dynamic Prescribed Prescribed Prescribed

Litter/Soil Pools 1/3 4/3 3 2

Microbial Pools No No No No

Processes

General Photosynthesis Farquhar et al. (1980)
modified by Haxeltine and
Prentice (1996)

Farquhar et al. 1980 MODIS MOD17 production
efficiency model (Running et
al., 2004)

GPP based on multiple lim-
iting factors (see McGuire
et al., 1997)

Heterotrophic
Respiration (RH)

Dependent on soil carbon,
soil temperature and moisture
(Smith et al., 2001). Follows
Wania et al. (2009a, b) for
peatlands.

Q10 of 2 with respect
to each soil layer
temperature for unfrozen
soil layers; linear drop
off to 0 RH between
0 and−2◦C

Dependent on surface
(<10 cm) soil organic
carbon, surface soil
temperature and moisture
(Kimball et al., 2009)

Dependent on soil organic
carbon, soil moisture, soil
temperature (see Zhuang et
al., 2003)

Fire Yes. On upland soils only, not
in peatlands.

No No Yes

C : N dynamics Optimal N allocation to
canopy assumed (Haxeltine
and Prentice, 1996)

No No Yes

Especially Relevant to
Arctic Tundra
Ecosystems

Non-Vascular Plants
(Mosses/Lichens)

Yes, but mosses only
represented in peatlands

No No Yes in soil thermal dynam-
ics, no in biogeochemical
dynamics

Permafrost Freeze-thaw processes as
described in Wania et
al. (2009a, b)

Freeze/thaw processes
described in Poutou et
al. (2004); permafrost
carbon pools described in
Koven et al. (2009)

No Yes, see Zhuang et
al. (2001, 2003) and
Hayes et al. (2011)

Lateral Hydrology No No No No

Methane Yes, as described in Wania et
al. (2010)

No No Yes, see Zhuang et
al. (2004, 2007)

2010), SDGVM (Woodward et al., 1995; Woodward and Lo-
mas, 2004), and TRIFFID (Cox, 2001). The models used
a common protocol (http://dgvm.ceh.ac.uk) applying CRU-
NCEP climatology over the period 1901–2009. Note that the
global application of LPJ-Guess is quite different from the re-
gional application of LPJ-Guess WHyMe, which represents
processes relevant to Arctic tundra function and structure in-
cluding (1) soil water freezing; (2) Arctic shrub and open
ground plant functional types (e.g.,Sphagnummosses and
tundra graminoids); (3) peatland hydrology, decomposition,
and plant functional types; (4) a methane module for peat-
lands; and (5) root exudates (see Supplement 2 for details).

2.3 Estimates from inversion-based models

We also analyzed the mean land–atmosphere CO2-C ex-
change for the Arctic tundra domain from a set of ten

inversion models that were applied in support of RECCAP
analyses (Gurney, 2012). The inversion models include
C13 CCAM law, C13MATCH rayner, CTRACKEREU,
CTRACKER US, JENAs96v3.3, JMA 2010,
LSCE an v2.1, LSCEvar v1.0, NICAM niwa woaia,
and rigcpatra. Among these inversion models, the applica-
tions span the time period from 1985–2009. However, the
period of application is highly variable among the models.
We report the mean NEE estimate for Arctic tundra from
1990–1999 and 2000–2006 for eight of the applications of
these inversion models; we do not report the results from
CTRACKER EU or CTRACKERUS as these models did
not start making estimates until 2001. We report the mean
season cycle of CO2-C exchange estimates based on the time
period of application of each of the ten models. Similarly, we
report the interannual variability of NEE anomalies across
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the time period of application of each of the ten models.
We include CTRACKEREU and CTRACKERUS in the
seasonal cycle and interannual variability analyses.

3 Results

3.1 Estimates based on flux observations

3.1.1 CO2 exchange

Most direct observational studies of the exchange of CO2 be-
tween tundra and the atmosphere have been conducted dur-
ing the summer growing season. These studies generally in-
dicate that Arctic tundra has been a sink for atmospheric CO2
during the summer in all subregions of the Arctic (i.e., NEE
is largely negative; Fig. 2) and that there has not been a sub-
stantial change in the sink strength between the 1990s and
2000s (Table 3). While it appears from Table 3 that the sum-
mer sink strength in Eurasia has more than doubled since
2000 (from−25 to−73 g C m−2 summer−1), the mean esti-
mates are not significantly different as the 95 % confidence
limits, since 2000 overlap the 95 % confidence limits for
the 1990s. The existing observations suggest that wet (low-
land) tundra is a sink for CO2 during the growing season
(−43 g C m−2 summer−1), while dry/mesic (upland) tundra
tends to be a growing season source of CO2 to the atmo-
sphere with a confidence interval that overlaps neutral bal-
ance (Table 4).

Only a handful of studies have estimated the exchange of
CO2 in winter, as there are considerable challenges in main-
taining accurate flux measurements outside the growing sea-
son. The available estimates indicate that tundra ecosystems
are wintertime sources of CO2 to the atmosphere (Fig. 2, Ta-
ble 3). Given that few studies have been conducted, it does
not appear that the strength of sources differs among subre-
gions (29 to 41 g C m−2 winter−1; Table 3). Also, the scarcity
of winter exchange data does not allow us to evaluate if there
are differences in source strength between the 1990s and
2000s. The existing observations suggest that there is little
difference in the source strength of CO2 during the winter
between wet and dry/mesic tundra (31 g C m−2 winter−1, Ta-
ble 4).

There are a growing number of observationally based stud-
ies that estimate annual CO2 exchange between tundra and
the atmosphere. In general, the range of variability among
estimates is scattered around neutral annual CO2 exchange
in all subregions (Fig. 2). In North America, the data sug-
gest that tundra ecosystems tended to be annual sources of
CO2 to the atmosphere prior to 2000 (29 g C m−2 yr−1), but
have been weak sinks since 2000 (−3 g C m−2 yr−1; Table 3).
The existing observations suggest that wet tundra is a strong
sink for CO2 annually, while dry/mesic tundra tends to be an
annual source of CO2 to the atmosphere with a confidence
interval that overlaps neutral balance (Table 4).

Based on the mean and range of NEE observations re-
ported in Table 3 for the different geographical regions of
the Arctic, we developed first order estimates of NEE and
ranges in uncertainty in those estimates for Arctic tundra be-
tween 1990 and 2009 (see Supplement 3 for details). This
analysis suggests that tundra was source of 138 Tg C yr−1 as
CO2 to the atmosphere in the 1990s, with a range of uncer-
tainty between a−102 Tg C yr−1 sink and a 378 Tg C yr−1

source. In contrast, the analysis suggests that tundra was
a −202 Tg C yr−1 sink in the 2000s with an uncertainty
range between a−628 Tg C yr−1 sink and 224 Tg C yr−1

source. Across the two decades, we estimate that tundra
was a sink of−103 Tg C yr−1 with an uncertainty between
a−297 Tg C yr−1 sink and 89 Tg C yr−1 source.

3.1.2 CH4 exchange

Similar to data on CO2 exchange, most of the studies of the
exchange of CH4 between tundra and the atmosphere have
been conducted during the summer growing season. These
studies generally indicate that Arctic tundra is a substan-
tial source of CH4 to the atmosphere during the summer
(Fig. 2) and that there has not been a substantial change
in the strength of the source between the 1990s (3.0 to
7.8 g CH4-C m−2 summer−1 across regions) and 2000s (1.4
to 12.5 g CH4-C m−2 summer−1 across regions; Table 3).
However, the existing observations suggest that there are dif-
ferences among different tundra types as mean summer emis-
sions of CH4 for wet tundra are 9.2 g C m−2 compared with
0.8 g C m−2 for dry/mesic tundra with no overlap in the con-
fidence intervals (Table 4). There are only two studies that
have estimated the exchange of CH4 in winter, and these
studies indicate that tundra ecosystems are a weak source
of around 3.0 (range 0.1 to 6.0) g CH4-C m−2 winter−1 to
the atmosphere. The comparison of tundra CH4 emissions
between summer and annual estimates suggests that CH4
emissions in winter supports this range, as annual fluxes
are 5.4 g CH4-C m−2 higher than summer fluxes in wet tun-
dra vs. 1.5 g CH4-C m−2 higher in dry tundra (Table 4).

Based on the mean and range of CH4 observations re-
ported in Table 3 for the different geographical regions of
the Arctic, we developed estimates of CH4 emissions and
ranges in uncertainty in those estimates for Arctic tundra be-
fore and since 2000 (see Supplement 3 for details). This anal-
ysis suggests that tundra emitted 10 Tg C yr−1 as CH4 to the
atmosphere in the 1990s, with a range of uncertainty between
−1 and 22 Tg C yr−1. The analysis suggests that tundra was
stronger emitter of CH4 during the 2000s (20 Tg C yr−1), but
the uncertainties since 2000 are much larger than in the 1990s
(between a sink of 11 and a source of 51 Tg C yr−1). We sus-
pect that the larger uncertainty in the 2000s is associated with
more measurements of CH4 across a greater diversity of tun-
dra vegetation types. Across the two decades, our analysis in-
dicates that tundra emitted 11 Tg C yr−1 as CH4 with a range
from 0 to 22 Tg C yr−1.

Biogeosciences, 9, 3185–3204, 2012 www.biogeosciences.net/9/3185/2012/
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Table 3. Summary of observationally based estimates of mean net CO2-C and CH4-C exchange from Arctic tundra to the atmosphere
(g C m−2 season−1) for different subregions.

Time Period North America North Atlantic Northern Europe Eurasia

CO2 Exchange

Summer

1990–1999 −7 (521; −22 to 72) −32 (9;−58 to−5) −98 (4;−127 to−68) −25 (18;−50 to−1)
2000–2009 −18 (28;−39 to 3) −53 (12;−90 to−16) −92 (5;−220 to 36) −73 (12;−141 to−4)
1990–2009 −11 (80;−23 to 1) −44 (21;−66 to−21) −94 (9;−151 to−38) −44 (30;−74 to−14)

Winter

1990–2009 31 (9;15 to 47) – 41 (3; 11 to 71) 29 (2;−13 to 73)

Annual

1990–1999 29 (9; 2 to 57) – −25 (6;−63 to−14) −

2000–2009 −3 (14;−28 to 21) – −19 (33;−30 to−8) −

1990–2009 10 (23;−10 to 28) −68 (4;−213 to 78) −20 (39;−30 to−10) −82 (6;−134 to−30)

CH4 Exchange

Summer

1990–1999 2.4 (10; 0.7 to 4.2) – 7.8 (13; 1.4 to 14.2) 3.0 (15;−0.4 to 6.5)
2000–2009 1.4 (9;−0.2 to 2.9) – 12.5 (10; 1.9 to 23.0) 5.1 (29; 1.6 to 8.6)
1990–2009 1.9 (19; 0.8 to 3.0) 3.1 (3; 2.3 to 3.8) 9.9 (23; 4.5 to 15.2) 4.4 (44; 1.9 to 6.9)

Annual

1990–1999 4.4 (24; 1.4 to 7.4) – 15.0 (3;−18.3 to 48.3) −

2000–2009 16.9 (2;−12.0 to 45.7) – 11.3 (27; 6.6 to 16.0) 8.2 (7,−1.8 to 18.1)
1990–2009 5.4 (26; 1.9 to 8.9) – 11.7 (30; 7.2 to 16.1) 8.2 (7;−1.8 to 18.1)

1 Number of site-year estimates.
2 95 % confidence interval.

Table 4. Summary of observationally based estimates of mean net
CO2-C and CH4-C exchange from Arctic tundra to the atmosphere
(g C m−2 season−1) for different tundra types.

Time Period Wet Tundra Dry/Mesic Tundra

CO2 Exchange

Summer −43 (451; −27 to−592) 5 (46;−11 to 21)
Winter 31 (3; 1 to 61) 31 (7; 11 to 51)
Annual −26 (27;−15 to−37) 10 (12;−27 to 47)

CH4 Exchange

Summer 9.2 (38; 5.4 to 13.0) 0.8 (25; 0.3 to 1.4)
Annual 14.6 (22; 8.5 to 20.2) 2.3 (24; 0.3 to 4.3)

1 Number of site-year estimates.
2 95 % confidence interval.

3.2 Process-based model estimates

3.2.1 Mean C budgets for 1990–1999 and 2000–2006

GPP estimated by the regional applications of process-based
models over the Arctic tundra region from 1990 through
1999 varies from 1755 Tg C yr−1 (191 g C m−2 yr−1) for
LPJ-Guess WHyMe to 5295 Tg C yr−1 (577 g C m−2 yr−1)
for Orchidee (Table 5). NPP is estimated to be approx-
imately 65 %, 61 %, and 40 % of GPP by LPJ-Guess
WHyMe, Orchidee, and TEM6, respectively. TEM6 esti-
mates a higher proportion of GPP allocated to autotrophic
respiration because the temperature sensitivity of autotrophic
respiration in the model increases with decreasing mean
annual temperature (McGuire et al., 1992). RH estimates
vary from 875 Tg C yr−1 (95 g C m−2 yr−1) for TEM6 to
2954 Tg C yr−1 (322 g C m−2 yr−1) for Orchidee, and RH is
estimated to be less than NPP by each model. NEP esti-
mates vary from 85 Tg C yr−1 (10 g C m−2 yr−1) for TEM6
to 255 Tg C yr−1 (28 g C m− 2 yr−1) for Orchidee. TEM es-
timates 30 Tg C yr−1 in fire emissions, which is 20 Tg C yr−1

more than is estimated by LPJ-Guess WHyMe. After
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Fig. 2.A summary of the data presented in Supplement 1; the summary includes observations prior to 1990. The synthesis of observed NEE
for different geographical regions is shown in the first five panels. The mean (g C m−2 day−1) +/− standard deviation and the median are
shown for summer, winter, and annual analyses. The number of studies used from Supplement 1 to estimate each mean/median is shown
above the bars. Methane emissions for the circumpolar North are shown in the sixth panel in a similar fashion.

accounting for fire emissions of CO2, the estimates of the
net exchange of CO2 vary from 55 Tg C yr−1 taken up from
the atmosphere by TEM6 to 255 Tg C yr−1 taken up by Or-
chidee, which is a higher range of uptake than is estimated
by the global applications of process models (from neutral
balance estimated by Hyland to an uptake of 188 Tg C yr−1

by LPJ-Guess). Approximately 80 % of the NEP estimated
by TEM6 is lost to fire emissions, biogenic CH4 emissions,
and the export of harvested products and DOC. Approxi-
mately 20 % of NEP estimated by LPJ-Guess WHyMe is
lost to fire and CH4 emissions. Thus, NCB estimated by the
models varies from approximately 20 Tg C yr−1 (TEM6) to
255 Tg C yr−1 (Orchidee).

In comparison to the 1990s, GPP estimated by the re-
gional applications of process-based models over the Arc-
tic tundra region from 2000 through 2006 is higher (from
an increase of 9 g C m−2 yr−1 by TEM to an increase of
38 g C m−2 yr−1 by Orchidee; compare Table 6 to Table 5).
The satellite-based estimate of GPP by TCF from 2000–
2006 is 307 g C m−2 yr−1, which is 47 % and 14 % higher
than the estimates by LPJ-Guess WHyMe and TEM6, re-
spectively, and 50 % of the estimate by Orchidee. Similar to
GPP, both NPP and RH estimates of the regional applications

are higher in the 2000s compared to the 1990s. Although
NEP estimates increase by 1 to 6 g C m−2 yr−1 between the
two decades across the models, the increase from 1990 to
2006 is significant only for the LPJ-Guess WHyMe simu-
lation (0.57 g C m−2 yr−1; P = 0.001). The TEM6 simula-
tion estimates that fire emissions doubled in the 2000s com-
pared to the 1990s. Estimates of the net uptake of CO2 in-
crease (lower or more negative net CO2-C exchange) for both
LPJ-Guess WHyMe and Orchidee in the 2000s compared
to the 1990s, but decrease for TEM6. Between 1990 and
2006 both Orchidee and LPJ-Guess WHyMe estimate sub-
stantially greater net uptake of CO2 (31 and 4 g C m−2 yr−1,
respectively; Table 7) than TEM6 (4 g C m−2 yr−1). Among
the global models, only LPJ and SDGVM estimate less net
uptake of CO2 (less negative net CO2-C exchange) in the
2000s (Table 6) compared to the 1990s (Table 5). The great-
est uptake between 1990 and 2006 among the global models
is simulated by LPJ-Guess (23 g C m−2 yr−1), which is simi-
lar to the uptake estimated by LPJ-Guess WHyMe (Table 7)

To explore the importance of changing climate on the re-
gional applications of the process-based models, we con-
ducted additional simulations that were driven by constant
climate. We estimated the effect of a changing climate on
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Table 5.Mean C budget of Arctic tundra simulated by process models for 1990–1999.

Model GPP NPP RH NEP FIREC CO2
∗ BIOCH4 OTHER NCB

g C m−2 yr−1

Regional Apps.

LPJ-G WHyMe 191 124 102 22 1 −21 4 – 17
Orchidee 577 350 322 28 – −28 – – 28
TEM6 261 105 95 10 4 −6 2 2 2

Global Apps.

CLM4C 101 31 30 1 1 0 – – 0
CLM4CN – – – 1 – −1 – – 1
Hyland 23 11 11 0 – 0 – – 0
LPJ 464 291 253 38 18 −20 – – 20
LPJ-Guess 490 306 265 41 20 −21 – – 21
O-CN 64 28 27 1 – −1 – – 1
SDGVM – – – 23 5 −18 – – 18
TRIFFID 332 208 200 8 – −8 – – −8

Tg C yr−1

Regional Apps.

LPJ-G WHyMe 1755 1133 934 199 10 −189 34 – 155
Orchidee 5295 3209 2954 255 –−255 – – 255
TEM6 2391 960 875 85 30 −55 15 20 20

Global Apps.

CLM4C 929 289 275 14 8 −6 – – 6
CLM4CN – – – 5 – −5 – – 5
Hyland 210 105 105 0 – 0 – – 0
LPJ 4255 2671 2323 348 169 −179 – – 179
LPJ-Guess 4497 2804 2433 371 183−188 – – 188
O-CN 585 256 252 4 – −4 – – 4
SDGVM – – – 212 44 −168 – – 168
TRIFFID 3053 1907 1837 70 – −70 – – 70

∗ Net CO2-C exchange, positive sign indicates source to the atmosphere and negative sign indicates tundra sink.

NPP, RH, and NEP between 1990 and 2006 by subtract-
ing the estimates of the constant climate simulation of each
model from that of the corresponding transient climate simu-
lation. This analysis indicated that climate change between
1990 and 2006 caused NPP and RH of all three models
to increase (Table 8). In comparison to TEM6, NPP was
69 % and 106 % more sensitive in the LPJ-Guess WHyMe
and Orchidee simulations, respectively. In contrast, the RH
sensitivity of LPJ-Guess WHyMe was similar to that of
TEM6, while the RH sensitivity of Orchidee was 146 %
more sensitive than TEM6. The different sensitivities of
NPP and RH caused quite different sensitivities in NEP.
Climate change between 1990 and 2006 caused LPJ-Guess
WHyMe NEP to increase by 8 g C m−2 yr−1, TEM6 NEP to
increase by 1 g C m−2 yr−1, and Orchidee NEP to decrease
by 4 g C m−2 yr−1.

3.2.2 Seasonal cycle and changes in the seasonal cycle

While the shape of the seasonal cycle of NPP, RH, and NEP
is similar among the regional applications of the process-
based models, the amplitude of the fluxes are different
(Fig. 3). All models estimate that the month of maximum
production and decomposition is July, but the timing of the
transition to positive NEP in the spring and to negative NEP
in the autumn varies among the models. Both LPJ-Guess
WHyMe and Orchidee have the same pattern of differences
in monthly NEP between the 2000s and 1990s (Fig. 4), with
the largest increases in July. LPJ-Guess WHyMe has rela-
tively larger increases in May, while Orchidee has relatively
larger increases in August. The summer increases of LPJ-
Guess WHyMe and Orchidee are driven by increases in NPP
that are greater than increases in RH. In contrast, TEM6
has the largest increases in September, followed by August
as NPP increases in August and September are greater than
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Table 6.Mean C budget of Arctic tundra simulated by process models for 2000–2006.

Model GPP NPP RH NEP FIREC CO2
1 BIOCH4 OTHER NCB

g C m−2 yr−1

Regional Apps.

LPJ-G WHyMe 209 135 110 25 1 −24 4 – 20
Orchidee 615 371 337 34 – −34 – – 34
TEM6 270 109 98 11 8 −3 2 2 −1
TCF 307 181 183 2 – – – – −

Global Apps.

CLM4C 108 34 32 02 1 −1 – – 1
CLM4CN – – – 1 – −1 – – 1
Hyland 27 14 14 0 – 0 – – 0
LPJ 502 315 274 222 19 −3 – – 3
LPJ-Guess 562 349 305 44 20 −24 – – 24
O-CN 74 32 31 32 – −3 – – 3
SDGVM – – – 21 5 −16 – – 16
TRIFFID 361 227 210 17 – −17 – – 17

Tg C yr−1

Regional Apps.

LPJ-G WHyMe 1918 1239 1009 230 9 −221 37 – 184
Orchidee 5643 3404 3092 312 –−312 – – 312
TEM6 2476 1000 899 101 73 −28 18 18 −8
TCF 2817 1661 – – – – – – −

Global Apps.

CLM4C 994 314 296 18 9 −9 – – 9
CLM4CN – – – 8 – −8 – – 8

Hyland 248 124 123 1 – −1 – – 1
LPJ 4608 2887 2518 369 171 −198 – – 198
LPJ-Guess 5160 3204 2797 407 185−222 – – 222
O-CN 682 298 287 11 – −11 – – 11
SDGVM – – – 193 47 −146 – – 146
TRIFFID 3310 2079 1927 152 – −152 – – 152

1 Net CO2-C exchange, positive sign indicates source to the atmosphere and negative sign indicates tundra sink.
2 Reported NEP does not equal reported NPP – reported RH.

increases in RH; in June and July there are similar increases
in both NPP and RH. All three models indicate substantially
lower NEP in October because of increases in RH when NPP
is close to zero in both decades.

3.2.3 Interannual variability

Among the regional applications of the process-based mod-
els, Orchidee stands out as having the highest range of in-
terannual variability in GPP, NPP, RH, and NEP (Fig. 5).
Correlations are high among the models for interannual vari-
ability in the anomalies of GPP (R = 0.73 to 0.88; Fig. 5a)
and RH (R = 0.81 to 0.97; Fig. 5c). The correlations for
NPP anomalies (Fig. 5b) are slightly lower (R = 0.66 to

0.80), except for a low correlation between TCF and TEM6
(R = 0.23). In contrast, correlations among the anomalies of
NEP (Fig. 5d) are poor and range from negative correlations
(R = −0.64 between Orchidee and TCF) to low positive cor-
relations (R = 0.30 between Orchidee and TEM6).

TEM6 estimates of fire emissions are characterized by
substantial interannual variability in comparison to LPJ-
Guess WHyMe, which has little interannual variability in
fire emissions (Fig. 6a); the variability is uncorrelated be-
tween the models (R = 0.07). LPJ-Guess estimates of bio-
genic CH4 emissions are correlated with those of TEM6
(R = 0.69; Fig. 6b), but are characterized by more interan-
nual variability than those of TEM6. The other flux anoma-
lies estimated by TEM6 have less interannual variability
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Table 7.Mean C budget of Arctic tundra simulated by process models for 1990–2006.

Model GPP NPP RH NEP FIREC CO2
1 BIOCH4 OTHER NCB

g C m−2 yr−1

Regional Apps.

LPJ-G WHyMe 200 130 106 24 1 −23 4 – 19
Orchidee 596 361 330 31 – −31 – – 31
TEM6 266 107 97 10 6 −4 2 2 0

Global Apps.

CLM4C 105 32 31 1 1 0 – – 0
CLM4CN – – – 1 – −1 – – 1
Hyland 25 13 13 0 – 0 – – 0
LPJ 483 303 264 302 19 −11 – – 11
LPJ-Guess 526 328 285 43 20 −23 – – 23
O-CN 69 30 29 22 – −2 – – 2
SDGVM – – – 22 5 −17 – – 17
TRIFFID 347 218 205 13 – −13 – – 13

Tg C yr−1

Regional Apps.

LPJ-G WHyMe 1837 1186 972 214 9 −205 35 – 170
Orchidee 5469 3307 3023 284 –−284 – – 284
TEM6 2434 980 887 93 52 −41 16 19 6

Global Apps.

CLM4C 962 302 286 16 9 −7 – – 7
CLM4CN – – – 8 – −8 – – 8
Hyland 229 115 114 1 – −1 – – 1
LPJ 4432 2779 2421 359 170 −189 – – 189
LPJ-Guess 4829 3004 2615 389 184−205 – – 205
O-CN 634 277 270 7 – −7 – – 7
SDGVM – – – 203 46 −157 – – 157
TRIFFID 3182 1993 1882 111 – −111 – – 111

1 Net CO2-C exchange, positive sign indicates source to the atmosphere and negative sign indicates tundra sink.
2 Reported NEP does not equal reported NPP – reported RH.

(∼ 0.25 g C m−2; Fig. 6c) than fire emissions (∼ 16 g C m−2;
Fig. 6a) and bioigenic CH4 emissions (∼ 0.5 g C m−2;
Fig. 6b). In general, the correlations among the models for in-
terannual variability in NCB (Fig. 6d) are similar to those for
NEP (Fig. 6d), except that all of the correlations are weaker
between TEM6 and the other models. This suggests that fire
emissions, biogenic CH4 emissions, and other export fluxes
are important to consider in evaluating interannual variability
in carbon storage of Arctic tundra.

3.3 Atmospheric inversion estimates

We analyzed the net exchange of CO2 (i.e., NEE) be-
tween Arctic tundra and the atmosphere estimated by in-
versions for 1990–1999 and 2000–2006 (Table 9). Among
the three models that made estimates between 1990 and
1999, the mean annual exchange ranged from a source of

140 Tg C yr−1 (15 g C m−2 yr−1) to a sink of 321 Tg C yr−1

(35 g C m−2 yr−1). In comparison to the 1990–1999 time
period, the range among the eight models that made esti-
mates for 2000–2006 is wider and ranges from a source of
206 Tg C yr−1 (22 g C m−2 yr−1) to a sink of 439 Tg C yr−1

(48 g C m−2 yr−1).
The shape of the mean seasonal cycle of NEE be-

tween 2000 and 2006 is generally similar among the
inversions (Fig. 7). All models indicate that the maxi-
mum NEE occurs in July, but the number of months
with negative NEE varies among the models between two
(C13 MATCH rayner) and four (LSCEan v2.1). Among the
inversion models, the NEE estimates of individual months
are generally within 10 g C m−2 except for LSCEan v2.1,
which estimates higher releases of CO2 to the atmosphere
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Table 8. Inferred climate effect of NPP, RH, and NEP for 1990–
2006 as the difference between simulations of the regional appli-
cations of process models driven by transient climate and constant
climate.

Inferred
Model Transient Constant Climate

Climate Climate Effect

NPP (g C m−2 yr−1)

LPJ-Guess WHyMe 128 101 27
Orchidee 359 326 33
TEM6 106 90 16

RH (g C m−2 yr−1)

LPJ-Guess WHyMe 105 86 19
Orchidee 328 291 37
TEM6 96 81 15

NEP (g C m−2 yr−1)

LPJ-Guess WHyMe 23 15 8
Orchidee 31 35 −4
TEM6 10 9 1

 

 
 
 

 

 
 

Fig. 3. Mean monthly fluxes of gross primary production (GPP),
net primary production (NPP), heterotrophic respiration (RH), and
net ecosystem production (NEP) simulated by LPJ-Guess WHyMe
(PanelA), Orchidee (PanelB), and TEM6 (PanelD) between 1990
and 2006 and by TCF (PanelC) between 2000 and 2009.

than the other models in April and May and higher uptake of
CO2 in July, August, and September.

Among the inversion models, interannual variability is
smallest for LSCEan v2.1 (standard deviation of NEE
anomalies = 2.1 g C m−2 yr−1) and largest for rigcpatra

 

 
 
  
Fig. 4.Difference in mean monthly NEP between the 2000s (2000–
2006) and the 1990s (1990–1999) for LPJ-Guess WHyMe, Or-
chidee, and TEM6.

 

 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Comparisons among LPJ-Guess WHyMe, Orchidee, TCF,
and TEM of inter-annual variability between 1990 and 2010 for
anomalies of gross primary production (GPP, PanelA), net primary
production (NPP, PanelB), heterotrophic respiration (NPP, Panel
C), and net ecosystem production (NEP, PanelD).

(standard deviation = 13.1 g C m−2 yr−1) (Fig. 8). Similar to
the correlations of interannual variability in NEP anomalies
among the process-based models, the correlations of inter-
annual variability in NEE anomalies among the inversion
models is poor with a mean correlation of 0.03; correla-
tions range between−0.38 (between CTRACKEREU and
C13 CCAM law) to +0.99 (between CTRACKERUS and
LSCE an v2.1).
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Table 9.Mean annual net CO2-C exchange estimates of inversion models of Arctic tundra for the time periods 1990–1999 and 2000–2006.

Model 1990–1999 2000–2006 1990–2006 1990–1999 2000–2006 1990–2006
Tg C yr−1 Tg C yr−1 Tg C yr−1 gC m−2 yr−1 g C m−2 yr−1 g C m−2 yr−1

C13 CCAM law – 243 – 26
C13 MATCH rayner – −283 – −31
JENA s96v3.3 – −117 – −13
JMA 2010 −321 −341 −331 −35 −37 −36
LSCE an v2.1 – −124 – −14
LSCE var v1.0 140 206 173 15 22 19
NICAM niwa woaia −178 −80 −129 −19 −9
rigc Patra – −439 – −48 −14
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4 Discussion

The changing C balance of Arctic tundra has been an issue
of concern for several decades (Billings et al., 1983; Oechel
et al., 1993; McGuire et al., 2000, 2009, 2010; Chapin et al.,
2000; Sitch et al., 2007; Hayes et al., 2011). It has been hy-
pothesized that tundra will become a source of C to the atmo-
sphere because of C emissions associated with the warming
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Fig. 7. Comparison among inversion model estimates of the mean
net monthly exchange of CO2 between Arctic tundra and the atmo-
sphere.

Fig. 8. Comparison among inversion model estimates of the inter-
annual variability between 1985 and 2009 for anomalies of the net
annual exchange of CO2 between arctic tundra and the atmosphere.

of soil organic matter in the active layer as well as the ex-
posure of previously frozen C to decomposition as the active
layer deepens. Some recent model applications that consider
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soil C stocks at depth in high latitudes and the exposure of
those stocks to decomposition upon permafrost thaw indi-
cate that northern terrestrial ecosystems will release soil C
to the atmosphere (Koven et al., 2011; Schaefer et al., 2011;
Schneider von Deimling et al., 2012). It has also been hy-
pothesized that tundra could become a sink for atmospheric
CO2 if N-limited plants in tundra regions take up a substan-
tial proportion of N that is released by enhanced decompo-
sition (Shaver et al., 1992). Some coupled climate–carbon
model simulations predict that the northern high latitudes
will serve as a substantial land carbon sink during the 21st
century because both climate warming and elevated global
[CO2] favor increased productivity and CO2 uptake in the
region (Friedlingstein et al., 2006; Qian et al., 2010; Sitch et
al., 2008). Whether tundra becomes a source or a sink of at-
mospheric CO2 in response to warming is an important sci-
entific issue to resolve, as substantial source activity could
compromise efforts to mitigate the increase of greenhouse
gases in the atmosphere. Changes in CH4 emissions are also
important, because of the high global warming potential of
CH4. In terms of climate forcing, increasing CH4 emissions
could offset the effects of a CO2 sink, or enhance the effects
of a CO2 source. In this study, we attempt to shed some light
on these issues by analyzing the C balance of Arctic tundra
through a synthetic comparison among estimates of CO2 and
CH4 fluxes based on observations, regional and global appli-
cations of process-based models, and inversion models. We
focused our comparison on the mean CO2 and CH4 budgets
for the time periods 1990–1999 and 2000–2006, on aspects
of the seasonal cycle of CO2 exchange, and on interannual
variability of CO2 exchange.

4.1 Mean C budgets for the 1990s and 2000s

Table 10 compares the mean net exchanges of CO2-C and
CH4-C from Arctic tundra to the atmosphere among obser-
vations, process-based models, and inversion models (see
Supplement 3 for documentation of the estimates reported
in Table 10). Syntheses of the compilation of flux observa-
tions and of inversion model results for Arctic tundra indicate
that the annual exchange of CO2 between Arctic tundra and
the atmosphere has large uncertainties that cannot be distin-
guished from neutral balance. The synthesis of process-based
model simulations indicate that Arctic tundra has been acting
as a sink for atmospheric CO2, but based on the uncertainty
estimates it is not clear if Arctic tundra acted as a weak or a
strong sink. In comparison to the global process-based mod-
els, the regional process-based models indicate that Arctic
tundra acted as a stronger sink.

Analysis of the CRU-NCEP data sets indicates that the re-
gion was 0.6◦C warmer in the 2000s compared to the 1990s.
Most of the warming was in the autumn and winter (1.1◦C
warmer) followed by summer (0.3◦C warmer), and little dif-
ference in the spring. The pattern of warmer autumns, win-
ters, and summers in the 2000s occurred in all of the subre-

gions except North America in which the mean summer tem-
perature was not different between the two decades. It is no-
table that the central estimates of the observations, process-
based models, and inversion models each identify stronger
CO2 sinks in the warmer 2000s compared with the 1990s. A
stronger sink in the 2000s compared to the 1990s suggests
that the efficiency of the tundra CO2 sink is not currently
weakening; a common response of process-based models to
warming in this region is that NPP increases faster in re-
sponse to warming than RH (Sitch et al., 2007).

The largest changes in central estimates between the 1990s
and 2000s are for those of the observations and the inversion
models, and there is more convergence among the central es-
timates in the 2000s than in the 1990s. The large changes
between decades for the observations and inversion models
might reflect biases in the 1990s since the diversity of flux
observations, and the number of CO2 concentration mea-
suring stations and inversion model applications were fewer
than in the 2000s. The only mean source activity is that sug-
gested by the observations in the 1990s. In particular, the
source strength of the observations in North America in the
1990s is driving the overall source estimate for Arctic tundra
in the 1990s. It is possible that sampling of observations in
the 1990s was biased toward dry tundra, which tends to act
as a source for C in the observations in both the 1990s and
2000s.

In general, the regional process-based model applications
predict stronger sinks than the suite of global applications of
DGVMs. This is primarily due to the response of Orchidee,
which has the highest NPP and NEE among the 11 models.
It is notable that NPP and the sink strength of O-CN is much
less than that of Orchidee, which might reflect the role of N
in limiting productivity in O-CN. Although the sink strength
of the central estimates of both regional and global process-
based model applications increase from the 1990s and 2000s,
5 of the 11 process-based models show either no change or
a weaker sink between decades (TEM6, CLM4CN, Hyland,
LPJ, and SDGVM). Detailed analysis of one of the model
applications (TEM6) suggests that tundra became a weaker
sink from the 1970s through the 2000s because of the ef-
fects of climate on net ecosystem carbon balance (McGuire
et al., 2010). The constant climate experiments we conducted
with the regional model applications suggests that warming
increases both NPP and RH in all three models, but that the
relative responses of NPP and RH to warming are different
among the models. This analysis indicates that the process-
based models do not agree on the relative responses of NPP
and RH to climate change, and that this uncertainty in the
responses of NPP and RH in these models is the major lim-
itation in the application of process-based models to assess
whether Arctic tundra will act as a positive or negative feed-
back to climate change.

Our analysis of CH4 responses between decades is lim-
ited to comparison between the observations and the re-
gional model applications (Table 10). There is substantial
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Table 10. Comparison of estimates of mean net CO2-C and CH4-C exchange from arctic tundra to the atmosphere (Tg C yr−1) among
observations, process-based models, and inversion models.

Time Period Observations Regional Process- Global Process- Inversion Models
Based Models Based Models

CO2 Exchange

1990–1999

Central Estimate 138 −166 −78 −13
Uncertainty −102 to 378 −255 to−55 −188 to 0 −321 to 140

2000-2006∗

Central Estimate −202 −187 −93 −117
Uncertainty −628 to 224 −312 to−28 −222 to−1 −439 to 243

1990–2006∗

Central Estimate −103 −177 −86 −96
Uncertainty −297 to 89 −284 to−41 −205 to−1 −331 to 173

CH4 Exchange

1990–1999

Central Estimate 10 25 – –
Uncertainty −1 to 22 15 to 34 – –

2000–2006∗

Central Estimate 20 28 – –
Uncertainty −11 to 51 18 to 37 – –

1990–2006∗

Central Estimate 11 26 – –
Uncertainty 0 to 22 16 to 35 – –

∗ The estimates for the observations reported for the 2000–2006 and the 1990–2006 periods may include information after
2006.

uncertainty in the 2000s CH4 flux observation-based esti-
mate. Because of big differences in estimates of CH4 fluxes
between wet and dry/mesic tundra (Table 4), uncertainties
could be reduced by adequately sampling CH4 exchange be-
tween these two types of tundra within each of the subregions
that we considered in scaling the CH4 observations. The syn-
thesis of observations produces central estimates in the 1990s
(10 Tg CH4-C yr−1) and 2000s (20 Tg CH4-C yr−1) that are
consistent with the range of uncertainty (23 to 75 Tg CH4-
C yr−1) among observation-based and process-model esti-
mates (McGuire et al., 2009) for northern high latitude terres-
trial regions that include boreal forest in addition to tundra.
The central estimates in Table 10 are also consistent with the
range of uncertainty (11 to 38 Tg CH4-C yr−1) among CH4
inversion models for northern high latitudes (McGuire et al.,
2009). Similarly, the range of uncertainty of CH4 exchange
estimated by LPJ-Guess WHyMe and TEM6 are within the
ranges of uncertainty for both the bottom-up (based on ob-
servations and process-based models) and top-down (based
on inversion models) reported by McGuire et al. (2009).

The central estimates of the observations suggest that CH4
emissions have increased more than 100 % from the 1990s
to the 2000s, while the applications of LPJ-Guess WHyMe
and TEM6 suggest that CH4 emissions have only increased
∼ 10–20 % from the 1990s to the 2000s. Previous analy-
ses with TEM6 suggest that increasing temperature is the
most important climate variable in the response of CH4 emis-
sions to climate change (Zhuang et al., 2007; McGuire et al.,
2010). However, it is important to recognize that there are
substantial uncertainties and challenges in accurately model-
ing the response of CH4 emissions to climate change in the
Arctic (Ringeval et al., 2010; Petrescu et al., 2010).

4.2 Seasonal cycle and changes in the seasonal cycle

The sink strength of Arctic tundra for CO2 could increase
between decades because of more net CO2 uptake during the
middle of the growing season or because of greater net up-
take of CO2 at either the start or end of the growing season.
In general, the pattern of mean seasonal cycle NEP of the
regional model applications is consistent with the pattern of
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mean seasonal cycle NEE of the inversion models. All appli-
cations identify that the greatest CO2 uptake occurs in July,
but there are differences among both the regional model ap-
plications and inversions about the length of the net uptake
period. Our analysis of the seasonal exchange of CO2of the
regional model applications indicates that NPP of LPJ-Guess
WHyMe, Orchidee, and TEM6 increased during the growing
season in the 2000s compared to the 1990s. This is consistent
with a number of remote sensing studies that have concluded
that the Arctic tundra has become more productive during
the last several decades (Nemani et al., 2003; Zhang et al.,
2008; Beck and Goetz, 2011; Goetz et al., 2011) in asso-
ciation with warmer summers (Piao et al., 2011). However,
the models show different patterns in the response of NEP
between decades. Both LPJ-Guess WHyMe and Orchidee
show strong patterns of mid-growing season because NPP is
more responsive than RH to the higher growing season tem-
peratures of the 2000s. In contrast, TEM6 has stronger NEP
increases late in the growing season. A number of studies
have concluded that the growing season in northern high lat-
itude regions has increased in recent decades (McDonald et
al., 2004; Euskirchen et al., 2006; Parmesan, 2007; Karlsen
et al., 2009; Piao et al., 2011), although the increase varies
both spatially and temporally. The TEM6 late season NEP
response is consistent with a recent analysis for boreal Eura-
sia that suggests that the springtime extension of the growing
season has stalled from 1997–2006 while the fall season has
continued to lengthen and warm (Piao et al., 2011). The pat-
tern of lower October NEP between decades among all three
models is consistent with the analysis of Piao et al. (2008),
which concludes that warmer and longer falls lead to greater
CO2 release in northern terrestrial ecosystems (see also Par-
mentier et al., 2011).

4.3 Interannual variability

Our analysis of inter-annual NEP anomalies among the re-
gional model applications and of inter-annual NEE anoma-
lies among the inversion models indicates that there is lit-
tle agreement among the models on the pattern of inter-
annual exchanges of CO2 between Arctic tundra and the at-
mosphere. Although different inversions generally agree on
the pattern inter-annual variability of regional NEE (Gurney
et al., 2008), this is not the case for the Arctic tundra region
and suggests that the inversions are not well constrained in
this region. The regional applications of the process-models
generally agree on patterns of inter-annual variability for
GPP, NPP, and RH. The interannual patterns of GPP for LPJ-
Guess WhyMe, Orchidee, and TEM6 are consistent with the
satellite-based inter-annual variability of TCF, but the inter-
annual variability of TEM6 NPP is not well correlated with
that of TCF. Clearly, differences between GPP / NPP and RH
need to be better constrained for the models to improve esti-
mates of inter-annual variability.

4.4 Best estimates of carbon balance from 1990–2009

For the arctic tundra region, the use of observations, process-
based models, and inversion models each have shortcomings
with respect to estimating the net exchanges of CO2 and
CH4 with the atmosphere in the 1990s and 2000s. Problems
with observations include small sample size in comparison to
the area being considered, biases in tundra types sampled in
both space and time, different sampling technologies among
the samples, and changes in sampling technology through
time. Process-models have uncertainties with respect to con-
ceptualization, formulation, and parameterization issues. In-
version models are not well constrained for the tundra re-
gions. Given the shortcomings of these approaches, we de-
cided to weight them equally in making estimates of net CO2
and CH4 exchange with the atmosphere for the time period
from 1990–2009. For estimating CO2 exchange, we first av-
eraged the regional and global process-based model central
estimates and high and low estimates of uncertainty for the
1990–2006 period in Table 10 and then average those esti-
mates with the corresponding estimates for the observations
and inversion models. This procedure results in an estimate
of the net CO2-C exchange of CO2 between the atmosphere
and tundra ecosystems of a 110 Tg C yr−1 sink with an uncer-
tainty range between a sink of 291 Tg C yr−1 and a source of
80 Tg C yr−1. For estimating CH4 exchange, we averaged the
central and the high and low estimates of uncertainty for the
1990–2006 period in Table 10 between the observations and
the regional process-based models. This procedure results in
an estimate of net CH4-C exchange between the atmosphere
and tundra ecosystems of a source of 19 Tg C yr−1 with an
uncertainty range between sources of 8 and 29 Tg C yr−1.

5 Conclusions

The syntheses of the compilation of flux observations and of
inversion model results for Arctic tundra in this study indi-
cate that the annual exchange of CO2 between Arctic tundra
and the atmosphere has large uncertainties that cannot be dis-
tinguished from neutral balance in the 1990s and 2000s. In
contrast, the synthesis of process-based model simulations
indicate that Arctic tundra acted as a sink for atmospheric
CO2 in recent decades, but based on the uncertainty estimates
it is not clear if Arctic tundra acted as a weak or a strong
sink. Our analyses suggest that both the CO2 sink strength
and the CH4 emissions of Arctic tundra have increased in re-
cent decades. However, the analyses we conducted in this
study indicate that responses of the seasonal exchange of
CO2 between decades and the interannual variability in CO2
exchange of process-based models are not consistent. Al-
though the regional models generally agree on patterns of
inter-annual variability in production and decomposition, the
constant climate experiments we conducted with the regional
models indicates that the relative sensitivity of production
and decomposition to climate change are different among
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the models. Thus, it is clearly important to reduce uncer-
tainties in the observations, process-based models, and inver-
sions in order to better understand the degree to which Arctic
tundra is influencing atmospheric CO2 and CH4 concentra-
tions. As inversion models are currently poorly constrained
for making estimates of CO2 exchange for Arctic tundra,
there is a need to identify and place additional atmospheric
CO2 monitoring stations in a strategic fashion for better con-
straining inversion models. The availability and technology
of ground-based observations in Arctic tundra are improving,
particularly through the implementation of the Arctic Ob-
serving Network that has been ongoing since the beginning
of the International Polar Year in 2007 (Sörlin and Danell,
2008). However, it is important to improve the network so
that observations can be effectively stratified into those for
dry/mesic tundra vs. wet tundra so that regional estimates
based on ground-based observations can be improved and un-
certainties reduced. More importantly, observation networks
need to be designed so that the observations can ultimately
be synthesized to understand how and why the net annual
and seasonal exchanges of CO2 and CH4 are changing in re-
sponse to climate variability and change in different tundra
types that span hydrological variability. Also, the effects of
disturbances such as fire and thermokarst on the exchange
of CO2 and CH4 are not well represented in observation
networks. Information from enhanced observation networks
needs to be effectively transferred into process-based mod-
els to improve the simulation of CO2 and CH4 exchange so
that process-based models can more reliably assess whether
Arctic tundra will act as to amplify or mitigate global cli-
mate change. The effective transfer of this information re-
quires better coordination, integration, and synthesis among
measurement groups and between measurement and model-
ing groups.

Supplementary material related to this article is
available online at:http://www.biogeosciences.net/9/
3185/2012/bg-9-3185-2012-supplement.pdf.
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Zöckler, C.: Arctic tundra and polar desert ecosystems, in: Arctic
climate impact assessment (ACIA), 243–352, Cambridge Uni-
versity Press, Cambridge, UK, 2005.

Canadell, J. G., Ciais, P., Gurney, K., Le Quere, C., Piao, S., Rau-
pach, M. R., and Sabine, C. L.: An international effort to quantify
regional carbon fluxes, Eos, 92, 81–82, 2011.

Chapin III, F. S., McGuire, A. D., Randerson, J., Pielke Sr., R., Bal-
docchi, D., Hobbie, S. E., Roulet, N., Eugster, W., Kasischke, E.,
Rastetter, E. B., Zimov, S. A., Oechel, W. C., and Running, S. W.:
Feedbacks from arctic and boreal ecosystems to climate, Global
Change Biol., 6, S211–S223, 2000.

Chapin III, F. S., Randerson, J. T., McGuire, A. D., Foley, J. A.,
and Field, C. B.: Changing feedbacks in the climate-biosphere
system, Front. Ecol. Environ., 6, 313–320,doi:10.1890/080005,
2008.

Cox, P. M.: Description of the “TRIFFID” dynamic global vegeta-
tion model, Hadley Centre Technical Note 24, 2001.

Euskirchen, E. S., McGuire, A. D., Kicklighter, D. W., Zhuang, Q.,
Clein, J. S., Dargaville, R. J., Dye, D. G., Kimball, J. S., McDon-
ald, K. C., Melillo, J. M., Romanovsky, V. E., and Smith, N. V.:
Importance of recent shifts in soil thermal dynamics on grow-
ing season length, productivity, and carbon sequestration in ter-
restrial high-latitude ecosystems, Global Change Biol., 12, 731–
750, 2006.

Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: A biochem-
ical model of photosynthetic CO2 assimilation in leaves of C3
species, Planta, 149, 78–90, 1980.

Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W.,
Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G.,
John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W.,
Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., Reick,
C., Roeckner, E., Schnitzler, K. G., Schnur, R., Strassmann, K.,
Weaver, A. J., Yoshikawa, C., and Zeng, N.: Climate-carbon cy-
cle feedback analysis: Results from the C4MIP model intercom-
parison, J. Climate, 19, 3337–3353, 2006.

Goetz, S. J., Epstein, H. E., Alcaraz, D., Beck, P., Bhatt, U., Bunn,
A. G., Comiso, J., Jia, G. J., Kaplan, J. O., Lischke, H., Lloyd,
A. H., Yu, Q., Walker, D. A.: Recent changes in arctic vegeta-
tion: satellite observations and simulation model predictions, in:

www.biogeosciences.net/9/3185/2012/ Biogeosciences, 9, 3185–3204, 2012

http://www.biogeosciences.net/9/3185/2012/bg-9-3185-2012-supplement.pdf
http://www.biogeosciences.net/9/3185/2012/bg-9-3185-2012-supplement.pdf
http://dgvm.ceh.ac.uk
http://dx.doi.org/10.1088/1748-9326/6/4/045501
http://dx.doi.org/10.1029/2010GL042430
http://dx.doi.org/10.1890/080005


3202 A. D. McGuire et al.: Assessment of the carbon balance of Arctic tundra

Eurasian Arctic Land Cover and Land Use in a Changing Cli-
mate, edited by: Gutman, G. and Reissell, A., Springer, ISBN
978-90-481-9117-8, 2011.

Gurney, K. R., Baker, D., Rayner, P., Denning, S., Law, R.,
Bousquet, P., Bruhwiler, L., Chen, Y. H., Ciais, P., Fung, I.,
Heimann, M., John, J., Maki, T., Maksyutov, S., Peylin, P.,
Prather, M., Pak, B., and S. Taguchi, S.: Interannual variations
in continental-scale net carbon exchange and sensitivity to ob-
serving networks estimated from atmospheric CO2 inversions for
the period 1980–2005, Global Biogeochem. Cy., 22, GB3025,
doi:10.1029/2007GB003082, 2008.

Gurney, K. R: Global atmospheric carbon budget, Biogeosciences,
in preparation, 2012.

Haxeltine, A. and Prentice, I. C.: A general model for the light-
use efficiency of primary production, Funct. Ecol., 10, 551–561,
1996.

Hayes, D. J., McGuire, A. D., Kicklighter, D. W., Gurney, K. R.,
Burnside, T. J., and Melillo, J. M.: Is the northern high latitude
land-based CO2 sink weakening?, Global Biogeochem. Cy., 25,
GB3018,doi:10.1029/2010GB003813, 2011.

Hickler, T., Vohland, K., Feehan, J., Miller, P. A., Smith, B., Costa,
L., Giesecke, T., Fronzek, S., Cramer, W., and Sykes, M.: Pro-
jecting the future distribution of European potential natural veg-
etation with a generalized tree-species-based dynamic vegetation
model, Global Ecol. Biogeogr., 21, 50–63, 2012.

Hinzman, L. D., Bettez, N. D., Bolton, W. R., Chapin, F. S., Dyurg-
erov, M. B., Fastie, C. L., Griffith, B., Hollister, R. D., Hope,
A., Huntington, H. P., Jensen, A. M., Jia, G. J., Jorgenson, T.,
Kane, D. L., Klein, D. R., Kofinas, G., Lynch, A. H., Lloyd, A.
H., McGuire, A. D., Nelson, F. E., Nolan, M., Oechel, W. C., Os-
terkamp, T. E., Racine, C. H., Romanovsky, V. E., Stone, R. S.,
Stow, D. A., Sturm, M., Tweedie, C. E., Vourlitis, G. L., Walker,
M. D., Walker, D. A., Webber, P. J., Welker, J. M., Winker, K.
S., and Yoshikawa, K.: Evidence and implications of recent cli-
mate change in northern Alaska and other Arctic regions, Cli-
matic Change, 72, 251–298, 2005.

Jackowicz-Korczynski, M., Christensen, T. R., Backstrand, K.,
Crill, P., Friborg, T., Mastepanov, M., and Ström, L.: Annual cy-
cle of methane emission from a subarctic peatland, J. Geophys.
Res.-Biogeo., 115, G02009,doi:10.1029/2008JG000913, 2010.

Karlsen, S. R., Høgda, K. A., Wielgolaski, F. E., Tolvanen, A.,
Tømmervik, H., Poikolainen, J., and Kubin, E.: Growing-season
trends in Fennoscandia 1982–2006, determined from satellite
and phenology data, Clim. Res., 39, 275–286, 2009.

Kim, Y., Kimball, J. S., Zhang, K., and McDonald, K.C.: Satellite
detection of increasing northern hemisphere non-frozen seasons
from 1979 to 2008: Implications for regional vegetation growth,
Remote Sens. Environ., 12, 472–487, 2012.

Kimball, J. S., Jones, L. A., Zhang, K., Heinsch, F. A., McDonald,
K. C., and Oechel, W. C.: A satellite approach to estimate land-
atmosphere CO2 exchange for Boreal and Arctic biomes using
MODIS and AMSR-E, IEEE T. Geosci. Remote, 47, 569–587,
doi:10.1109/TGRS.2008.2003248, 2009.

Koven, C., Friedlingstein, P., Ciais, P., Khvorostyanov, D., Krinner,
G., and Tarnocai, C.: On the formation of high-latitude soil car-
bon stocks: Effects of cryoturbation and insulation by organic
matter in a land surface model, Geophys. Res. Lett., 36, L21501,
doi:10.1029/2009GL040150, 2009.

Koven, C. D., Ringeval, B., Friedlingstein, P., Ciais, P., Cadule, P.,
Khvorostyanov, D., Krinner, G., and Tarnocai, C.: Permafrost
carbon-climate feedbacks accelerate global warming, P. Natl.
Acad. Sci., 108, 14769–14774,doi:10.1073/pnas.1103910108,
2011.

Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E.,
Swenson, S. C., Lawrence, P. J., Zeng, X., Yang, Z.-L., Levis, S.,
Sakaguchi, K., Bonan, G. B., and Slater, A. G.: Parameterization
improvements and functional and structural advances in version
4 of the Community Land Model, J. Adv. Model. Earth Syst., 3,
M03001,doi:10.1029/2011MS000045, 2011.

Levy, P. E., Cannell, M. G. R., and Friend, A. D.: Modelling the
impact of future changes in climate, CO2 concentration and land
use on natural ecosystems and the terrestrial carbon sink, Global
Environ. Chang., 14, 21–30, 2004.

McDonald, K. C., Kimball, J. S., Njoku, E., Zimmermann, R., and
Zhao, M.: Variability in springtime thaw in the terrestrial high
latitudes: Monitoring a major control on the biospheric assimi-
lation of atmospheric CO2 with spaceborne microwave remote
sensing, Earth Interact., 8, 1–23, 2004.

McGuire, A. D., Melillo, J. M., Joyce, L. A., Kicklighter, D. W.,
Grace, A. L., Moore III, B., and V̈orösmarty, C. J.: Interactions
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