
Biogeosciences, 9, 3513–3530, 2012
www.biogeosciences.net/9/3513/2012/
doi:10.5194/bg-9-3513-2012
© Author(s) 2012. CC Attribution 3.0 License.

Biogeosciences

Degradation state of organic matter in surface sediments from the
Southern Beaufort Sea: a lipid approach

J.-F. Rontani1, B. Charriere1, M. Petit1, F. Vaultier1, H. J. Heipieper2, H. Link 3, G. Chaillou4, and R. Semṕeré1
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Abstract. For the next decades significant climatic changes
should occur in the Arctic zone. The expected destabilisa-
tion of permafrost and its consequences for hydrology and
plant cover should increase the input of terrigenous carbon
to coastal seas. Consequently, the relative importance of the
fluxes of terrestrial and marine organic carbon to the seafloor
will likely change, strongly impacting the preservation of or-
ganic carbon in Arctic marine sediments. Here, we investi-
gated the lipid content of surface sediments collected on the
Mackenzie basin in the Beaufort Sea. Particular attention was
given to biotic and abiotic degradation products of sterols and
monounsaturated fatty acids. By using sitosterol and campes-
terol degradation products as tracers of the degradation of
terrestrial higher plant inputs and brassicasterol degradation
products as tracers of degradation of phytoplanktonic or-
ganisms, it could be observed that autoxidation, photooxi-
dation and biodegradation processes act much more inten-
sively on higher plant debris than on phytoplanktonic organ-
isms. Examination of oxidation products of monounsaturated
fatty acids showed that photo- and autoxidation processes act
more intensively on bacteria than on phytodetritus. Enhanced
damages induced by singlet oxygen (transferred from senes-
cent phytoplanktonic cells) in bacteria were attributed to the
lack of an adapted antioxidant system in these microorgan-
isms. The strong oxidative stress observed in the sampled
sediments resulted in the production of significant amounts
of epoxy acids and unusually high proportions of monounsat-

urated fatty acids with atransdouble bond. The formation of
epoxy acids was attributed to peroxygenases (enzymes play-
ing a protective role against the deleterious effects of fatty
acid hydroperoxides in vivo), whilecis/trans isomerisation
was probably induced by thiyl radicals produced during the
reaction of thiols with hydroperoxides. Our results confirm
the important role played by abiotic oxidative processes in
the degradation of marine bacteria and do not support the
generally expected refractory character of terrigenous mate-
rial deposited in deltaic systems.

1 Introduction

River-dominated shelves are some of the most important sites
of organic carbon (OC) burial in the marine environment
(Berner, 1982; Hedges and Keil, 1995). The flux of OC to
the sediments of these zones includes autochthonous contri-
butions from primary production in overlying waters as well
as allochthonous inputs from terrigenic sources, such as vas-
cular plants, soils and anthropogenic contaminants (Hedges
et al., 1997).

The large amounts of terrigenous compounds deposited
in deltaic systems are generally considered as being re-
fractory to decomposition due to the presence of protective
lignin structures (de Leeuw and Largeau, 1993; Wakeham
and Canuel, 2006). However, recent findings have questioned
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this paradigm (Vonk et al., 2008; Van Dongen et al., 2008;
Bianchi, 2011). Indeed, several studies demonstrated that ter-
restrial organic matter (OM) was more degraded in coastal
sediments than in river suspended particulate matter (Ingalls
et al., 2003; Unger et al., 2005a, b) and that the reactivity of
the sedimentary OM is not only influenced by its origin but
also by several factors, such as water column depth, redox
conditions, microbial activity, mineral composition and sed-
iment physical characteristics (Alkathib et al., 2012; Nigge-
mann et al., 2007; Hedges et al., 1997). Moreover, relatively
depletedδ13C signatures of bacteria-specific fatty acids were
measured in Rĥone Prodelta, indicating a preferential utili-
sation of terrestrial OM by bacteria (Bourgeois et al., 2011).
Recently, we studied the degradation of suspended particu-
late matter (SPM) from the Mackenzie River to the Beaufort
Sea by using specific lipid degradation tracers (Rontani et al.,
2012a). Lipids of terrestrial vascular plants, which are well
preserved in SPM of the Mackenzie River, appeared to be ex-
tensively degraded by bacterial and especially autoxidative
degradative processes in the water column of the Beaufort
Shelf, while planktonic lipids were only weakly affected. A
good correlation was observed between the extent of autox-
idation and salinity, suggesting that these free radical oxida-
tion processes are enhanced by contact with seawater. In or-
der to explain the specific induction of autoxidative processes
on vascular plant-derived material, a mechanism involving
metal ion-catalysed homolytic cleavage of photochemically
produced hydroperoxides resulting from the senescence of
higher plants on land was proposed.

Recent studies predicted that in the next decades signifi-
cant changes in the Arctic zone will occur (MacGuire et al.,
2009; Griffith et al., 2012). These changes should result in
a river flow increase coupled with a permafrost thaw and
a high coastal erosion modifying the organic and inorganic
terrestrial inputs. The longer period of ice-free conditions in
summer will modify light availability and thus the primary
productivity and photochemical processes affecting both dis-
solved and particulate OM. Consequently, the relative impor-
tance of the fluxes of terrestrial and marine organic carbon to
the seafloor will likely change, as will the processing and
preservation of organic carbon in Arctic sediments (Katsev
et al., 2006). Thus, better knowledge of the degradation pro-
cesses affecting sedimentary organic matter is essential to es-
tablish a baseline to understand the impact of global change
in the Arctic Ocean.

To further investigate and confirm our previous results, we
examined the lipid content of surface sediments from the
Beaufort Shelf. Even though this shelf accounts for only a
few percent of the total Arctic Ocean surface area, it receives
a large amount of freshwater from the Mackenzie River es-
timated at 330 km3 yr−1 (Stein and Macdonald, 2004). This
flux contributes vast quantities of terrigeneous organic car-
bon to Beaufort Sea (O’Brien et al., 2006).

Using specific lipid degradation products from15-sterols
and monounsaturated fatty acids that have been proposed

for distinguishing biotic from abiotic processes, and pho-
tooxidation from autoxidation (Christodoulou et al., 2009;
Rontani et al., 2009, 2011), we evaluated the roles played by
heterotrophic, photodegradative, and autoxidative processes
in the degradation of the main components of OM (higher
plants, micro-algae and bacteria).

2 Material and methods

2.1 Study area

This study was conducted in the southeast Beaufort Sea, with
an emphasis on the MacKenzie delta outflow, during sum-
mer 2009 on board the Canadian research icebreakerCCGS
Amundsenas a part of the international Malina Program. The
physical, biological and sedimentological characteristics of
Malina study area are described in more details in Babin et
al. (2012).

The Mackenzie Shelf is a coastal region of the Beaufort
Sea located along the Arctic Ocean’s Canadian coast, be-
tween Point Barrow in northern Alaska and the western part
of the Canadian Arctic Archipelago. The area is dominated
by a∼ 100 km wide shelf that covers an area of 64 000 km2

(to the isobath 200 m) which is relatively small compared
to the broad Eurasian Shelf (Stein and Macdonald, 2004;
O’Brien et al., 2006). The shelf is bordered on the west by
the Mackenzie Trough and on the east by Amundsen Gulf.
The major input of sediment and particulate organic carbon
to this area comes from the Mackenzie River (O’Brien et al.,
2006). The Mackenzie is the largest river draining into the
Arctic Ocean in sediment and particulate organic carbon sup-
ply (127×106 tons yr−1 of sediment and 2.1×106 tons yr−1

of particulate organic carbon respectively, Macdonald et al.,
1998; Holmes et al., 2002) and the fourth largest in terms
of freshwater discharge (3.3× 1011 m3 yr−1, Milliman and
Meade, 1983; Brunskill, 1986; Macdonald et al., 1998). De-
spite the coastal erosion may be locally important, particu-
larly in the inner shelf, the contribution of the MacKenzie
River is clearly much more important (5.6× 106 t a−1 vs.
64.45× 106 t a−1; Hill et al., 1991; MacDonald et al., 1998;
Rachold et al., 2000) and supplies about 95–99 % of the sed-
iment to the Beaufort Shelf (Rachold et al., 2004).

The shelf is seasonally ice covered. The sea ice usually
starts to form in October and reaches its maximum 2 m-
thickness in March. The landfast ice covers the inner shelf
(< 20 m water depth). It is bounded offshore by an hummock,
or “stamucki”, formed by the collision of the mobile offshore
ice pack and the landfast ice edge. In winter, the stamucki re-
tains the turbidity waters from the MacKenzie River under
the landfast ice to the inner shelf. Sporadic polynya form at
the edge of the landfast ice due to winter winds that push
mobile ice pack away from the stamucki. Around June, the
stamucki breaks and releases the Mackenzie River plume in
the top 10 m of the surface layer of the MacKenzie Shelf.
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This plume is pushed seaward by easterly winds (MacDon-
ald and Yu, 2006). The sea ice break-up favors the formation
of polynya and then marine organic matter production.

Primary productivity over the Mackenzie Delta/Beaufort
Shelf is about 3.3× 106 tons yr−1 of particulate organic car-
bon during late spring and summer (Macdonald et al., 1998).
Production by ice algae accounts for less than 10 % of the
marine production in this area (Horner and Schrader, 1982).

Sediments of the Beaufort shelf are characterized by high
silt and clay content and very low sand content (Hill et al.,
1991; Conlan et al., 2008). It is generally considered that the
particulate organic carbon derived from primary production
is rapidly recycled in the water column and/or at the sedi-
ment interface (Magen et al., 2010), while a large fraction of
land-derived particulate organic carbon (50–60 %) accumu-
late in shelf and slope sediments (Macdonald et al., 1998).
The sedimentation rates vary from 0.040 to 0.12 cm yr−1 in
the Mackenzie Canyon axis (Richerol et al., 2008) and is
around 0.13 cm yr−1 at stations located in the deepest area
of the Mackenzie Shelf (isobaths 200 m depth; Scott et al.,
2009; Bringúe and Rochon, 2012). In shallow sediments of
the shelf, seasonal landfast ice can scour the sediment to wa-
ter depths of 15 to∼ 50 m (Blasco et al., 1998). This fre-
quently resuspends and exports material to the slope and
deep Arctic basins.

2.2 Sediment sampling

Samples were collected from the MacKenzie Shelf and Slope
at eight sites ranging in water depths from 45 m to 580 m
in August 2009 onboard the icebreakerCCGS Amundsen
(Fig. 1). At each sampling station, an USNEL box corer
(50× 50× 40 cm) was deployed for collecting seafloor sed-
iments. Water overlying the box core sediments was drained
with a silicone tube. From each box core, one sample of
ca. 50 cm2 was collected from intact sediment surface (0 to
1 cm) (integrating 7 to 25 yr of sedimentation) and frozen im-
mediately at−80◦C for later analysis.

2.3 Treatment of the samples

Each frozen sediment sample was extracted four times with
CHCl3-MeOH-H2O (1 : 2 : 0.8, v/v/v, 3×) using ultrason-
ication for 15 min (separation of sediment and solvents by
centrifugation at 3500 rpm for 9 min). To initiate phase sep-
aration after ultrasonication, CHCl3 and purified H2O were
added to the combined extracts to give a final volume ratio of
1 : 1 : 0.9 (v/v/v). The upper aqueous phase was extracted
twice with CHCl3 and the combined CHCl3 extracts were
dried over anhydrous Na2SO4, filtered and the solvent re-
moved via rotary evaporation.

The residues thus obtained were then reduced with ex-
cess NaBH4 (70 mg) at room temperature in MeOH (25 ml;
30 min). This was carried out to reduce labile hydroperoxides
(resulting from photo- and autoxidation) to alcohols which
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Fig. 1. Map of the studied area with locations of the different sta-
tions investigated.

were more amenable to analysis using Gas Chromatogra-
phy/Electron impact Mass spectrometry (GC-EIMS). During
this treatment, ketones are also reduced and the possibility
of some ester cleavage cannot be excluded. It is well known
that metal ions can promote autoxidation during hot saponi-
fication procedures. The prior reduction of hydroperoxides
with NaBH4 allowed us to avoid such autoxidative artifacts
during the alkaline hydrolysis. After NaBH4 reduction, water
(25 ml) and KOH (2.8 g) were added and the resulting mix-
tures saponified by refluxing (2 h). After cooling, the contents
were acidified (dilute HCl, 2N) to pH 1 and extracted with
dichloromethane (DCM, 3×10 ml). The combined DCM ex-
tracts were dried over anhydrous Na2SO4, filtered and con-
centrated by way of rotary evaporation at 40◦C to give the
total lipid extract (TLE).

2.4 Osmium tetroxide oxidation

A fraction of TLE and OsO4 (1 : 2, w : w) were added to a
pyridine-dioxane mixture (1: 8, v/v, 5 ml) and incubated for
1 h at room temperature. Then, 6 ml of Na2SO3 suspension
(16 % Na2SO3 in water-methanol, 8.5 : 2.5, v/v) was added
and the mixture was again incubated for 1.5 h. The result-
ing mixture was gently acidified (pH 3) with HCl and ex-
tracted three times with DCM (5 ml). The combined DCM
extracts were subsequently dried over anhydrous Na2SO4,
filtered and concentrated.
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2.5 Silylation

After evaporation of solvent, residues were taken up
in 300 µl of a 2: 1 (v/v) mixture of pyridine and pure
bis(trimethylsilyl)trifluoroacetamide (BSTFA; Supelco) and
silylated at 50◦C for 1 h. The solution was re-evaporated to
dryness under a stream of N2 and the derivatized residue was
taken up in a mixture of EtOAc and BSTFA (to avoid desily-
lation of the more easily silylated compounds) for GC-EIMS
analysis. It may be noted that derivatisation of stera-
3β,5α,6β-triols with pyridine/BSTFA results in the silyla-
tion of only the positions 3 and 6. The use of more powerful
silylating reagents, such as Trimethylsilylimidazole/N,O-
Bis(trimethylsilyl)acetamide/Trimethylchlorosilane (Bor-
tolomeazzi et al., 1999) or BSTFA/Dimethylsulfoxide
(C. Aubert, unpublished results), yields complete silylation
of 3β,5α-dihydroxysterols. Unfortunately, the presence
of an additional (easily silylated) 6β-hydroxyl group in
steran-3β,5α,6β-triol molecules induces a supplementary
steric hindering, which precludes silylation at the 5 position.

2.6 GC-EIMS

Compounds were identified by comparison of retention times
and mass spectra with those of standards and quantified (cal-
ibration with external standards) by GC-EIMS. For low con-
centrations, or in the case of co-elutions, quantification was
achieved using selected ion monitoring (SIM). The main
characteristic mass fragment ions used to quantify degra-
dation products of sterols and monounsaturated fatty acids
were previously described (Marchand and Rontani, 2001;
Christodoulou et al., 2009; Rontani et al., 2009). Standard
oxidation products of palmitoleic, oleic and vaccenic acids
and sterols were obtained according to previously described
procedures (Rontani and Marchand, 2000; Marchand and
Rontani, 2001).

Due to their only partial silylation, steran-3β,5α,6β-triols
need to be analysed with great care. The use of hot splitless
injectors (which can discriminate against high-boiling com-
pounds and induce thermal degradation) should be avoided.
The best results were obtained with an on-column injector
coupled to a deactivated retention gap.

GC-EIMS analyses were carried out with an Agilent
6890 gas chromatograph connected to an Agilent 5973 in-
ert mass spectrometer. The following conditions were em-
ployed: 30 m× 0.25 mm (i.d.) fused silica column coated
with HP-1-MS (Agilent; 0.25 µm film thickness); oven tem-
perature programmed in three sequential steps: (i) 70◦C to
130◦C at 20◦C min−1; (ii) 130◦C to 250◦C at 5◦C min−1;
and (iii) 250◦C to 300◦C at 3◦C min−1; carrier gas (He)
maintained at 0.69 bar until the end of the temperature pro-
gram and then programmed from 0.69 bar to 1.49 bar at
0.04 bar min−1; injector (on column with retention gap) tem-
perature 50◦C; electron energy 70 eV; source temperature

190◦C; cycle time 1.99 and 8.3 cycles s−1 in SCAN and SIM
modes, respectively.

2.7 Choice of15-sterol degradation tracers and
estimation of photooxidation, autoxidation and
biodegradation

The relative importance of biodegradation, photooxidation,
and autoxidation for different components of sediments
was estimated by quantifying specific degradation prod-
ucts of three “model”15-sterols: 24-methylcholest-5,22E-
dien-3β-ol (brassicasterol) (indicative of phytoplanktonic
sources, Volkman, 1986, 2003), 24-methylcholest-5-en-3β-
ol (campesterol), and 24-ethylcholest-5-en-3β-ol (sitosterol)
(both indicative of terrestrial higher plant source in the zone
considered, Gõni et al., 2000). Stera-3β,5α,6β-triols, 14-
stera-3β,6α/β-diols and 5α(H)-stan-3β-ols were selected as
specific tracers of autoxidative, photooxidative and biologi-
cal degradation processes, respectively (Rontani et al., 2009;
Christodoulou et al., 2009; Fig. 2).

Autoxidation of 15-sterols mainly affords non-specific
and unstable15-7α/7β-hydroperoxides and to a lesser ex-
tent 5,6-epoxysterols and stera-3β,5α,6β-triols; the epoxides
being converted to the corresponding triol during the treat-
ment (Christodoulou et al., 2009). On the basis of their high
specificity and stability, stera-3β,5α,6β-triols were selected
as tracers of autoxidative processes (Fig. 2) and autoxidation
percentage was estimated with the following equation: au-
toxidation % = (stera-3β,5α,6β-triol % × 2.4) on the basis
of the results of different incubation experiments (Rontani et
al., 2012a) and autoxidation rate constants previously calcu-
lated by Morrissey and Kiely (2006).

Type II (i.e. singlet oxygen mediated) photooxidation of
15-sterols produces mainly unstable16-5α-hydroperoxides
with low amounts of14-6α/6β-hydroperoxides (Smith,
1981). 14-6α/6β-hydroperoxides were selected as tracers
of photooxidation of 15−-sterols (Fig. 2) due to their
high specificity and relative stability (Rontani et al., 2009;
Christodoulou et al., 2009). These compounds were quan-
tified after NaBH4 reduction to the corresponding diols
and photooxidation percentage was obtained from the equa-
tion: photooxidation % = (14-stera-3β,6α/β-diols %×(1+

0.3)/0.3) (Christodoulou et al., 2009) based on the ratio14-
6α/6β-hydroperoxides /16-5α-hydroperoxides measured in
biological membranes (0.30) (Korytowski et al., 1992).

Although complete mineralisation of15-sterols may be
achieved in the marine environment by bacteria belonging
to several genera, these compounds can also undergo aer-
obic bacterial hydrogenation leading mainly to ster-4-en-
3-ones, 5α(H)-stanones and 5α(H)-stanols (de Leeuw and
Baas, 1986; Wakeham, 1989). 5α(H)-stanols, which are also
produced by NaBH4-reduction of the corresponding stanone
during the treatment, were selected as specific tracers of15-
sterol biodegradation (Fig. 2).
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Fig. 2. Formulae and potential applications of the different lipid tracers of degradation processes employed in the present work.1Quantified
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2.8 Choice of fatty acid degradation tracers and
estimation of photooxidation and autoxidation

The reactivity of unsaturated fatty acids relative to auto- and
photooxidative processes logically increases with the number
of double bonds (Frankel, 1998; Rontani et al., 1998). Oxida-
tion products of polyunsaturated fatty acids (PUFA) are thus
considered as very sensitive tracers of these processes. Un-
fortunately, they are too labile to be used for this purpose. In
contrast, autoxidation and photooxidation products of mo-

nounsaturated fatty acids, although produced much more
slowly, are stable enough in the environment to act as mark-
ers of these processes (Marchand and Rontani, 2001, 2003;
Marchand et al., 2005; Rontani et al., 2011).

Singlet oxygen (1O2)-mediated photooxidation of mo-
nounsaturated fatty acids involves a direct reaction of1O2
with the carbon–carbon double bond by a concerted “ene”
addition (Frimer, 1979) and leads to formation of hydroper-
oxides at each carbon of the original double bond with an
allylic trans-double bond, which can subsequently undergo
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highly stereoselective radical allylic rearrangement (Porter et
al., 1995; Fig. 2). In contrast, free radical oxidation of mo-
nounsaturated fatty acids produces six isomeric hydroperox-
yacids (Frankel, 1998; Fig. 2). Autoxidative processes can be
easily characterised based on the presence ofcis allylic hy-
droperoxyacids, which are specific products of these degra-
dation processes (Porter et al., 1995; Frankel, 1998). In or-
der to evaluate autoxidation, we needed to calculate (after
NaBH4-reduction of hydroperoxides to the corresponding al-
cohols) the amounts of the fourtrans-hydroxyacids arising
from autoxidation according to the proportions of the two
cis-hydroxyacids observed (Frankel, 1998; Marchand and
Rontani 2001; Fig. 2) and the ambient seawater temperature
(−1◦C). The temperature of oxidation has a significant effect
on thecis andtransconfiguration of the initial hydroperox-
ides formed (Frankel, 1998). For this purpose, we employed
different equations previously proposed by Marchand and
Rontani (2001). Photooxidation was estimated fromtrans-
hydroxyacids (after subtraction of the amounts of these com-
pounds arising from autoxidation processes).

We thus quantified the products of both autoxida-
tion and photooxidation of hexadec-9(cis)-enoic (palmi-
toleic), octadec-9(cis)-enoic (oleic) and octadec-11(cis)-
enoic (vaccenic) acids, which were the three dominant mo-
nounsaturated fatty acids in the different sediment samples
investigated. Oleic and palmitoleic acids have diverse pos-
sible biological sources (plants, fungi, yeasts, bacteria, ani-
mals or algae) (Harwood and Russell, 1984), thus their oxi-
dation products may only be used to assess abiotic degrada-
tion of bulk OM of sediments. In contrast, oxidation prod-
ucts of vaccenic acid, which is a typical biomarker for Gram-
negative bacteria (Sicre et al., 1988, Keweloh and Heipieper,
1996), are very useful to estimate the extent of sedimentary
bacteria degradation.

3 Results and discussion

3.1 Biotic and abiotic alteration of 15-sterols

Sterol composition of the different sediments sampled ap-
peared to be dominated by cholesterol and sitosterol. Lesser
amounts of campesterol, brassicasterol, 24-methylcholest-
5,24(28)-dien-3β-ol (24-methylenecholesterol) and 24-
ethylcholest-5,22E-dien-3β-ol (stigmasterol) could be also
detected (Table 1). Similar sterols were previously identi-
fied by Belicka et al. (2004) in the top layer (0–2 cm) of
sediments from the Beaufort Sea. The lowest abundance of
cholesterol observed by these authors in sediments collected
near to the stations 235, 260 and 345 may be attributed to
a progressive degradation of zooplanktonic faecal material,
which contributes significantly to the sinking particles of
this zone and contains a high proportion of cholesterol
(Rontani et al., 2012b), deeper in the sediment in the second
cm of sediments. This assumption is supported by the

penetration depth of oxygen, which may reach 2–4 cm in
this zone (Magen, 2007) and which may contribute to oxic
degradation of the settled organic matter well deeper than
the sediment-water interface.

Degradation tracers of brassicasterol, sitosterol and
campesterol, which could be identified in all investigated
sediments (see example for sitosterol in Fig. 3), were quanti-
fied. The results obtained are summarized in Fig. 4. The three
sterols exhibited well distinct degradation states, with the fol-
lowing order of reactivity: sitosterol> campesterol� bras-
sicasterol. It is interesting to note that Yunker et al. (2005)
previously also reported a faster removal rate relative to or-
ganic carbon of campesterol and sitosterol than of brassicas-
terol in sediment cores from the Beaufort and Chukchi seas
and Canuel and Martens (1996) observed a faster degradation
rate for sitosterol than brassicasterol in nearshore sediments
from North Carolina. Brassicasterol (mainly arising from
marine and freshwater phytoplankton, Volkman, 1986, 2003;
Fahl et al., 2003) appeared to be very weakly affected by bi-
otic and abiotic degradation processes in Beaufort Shelf sed-
iments (Fig. 4). In contrast, autoxidation, photooxidation and
biodegradation processes acted significantly on sitosterol and
campesterol (mainly arising from terrestrial higher plants).
Goñi et al. (2000) previously estimated terrigenous contri-
bution for these two sterols in sediments of the same zone
and found approximately 60 % for campesterol and 70 % for
sitosterol. This lowest contribution of terrigenous material to
campesterol was also outlined by Yunker et al. (1995, 2005).
The reduced degradation observed in the case of campesterol
(Fig. 4) may be thus attributed to a significant contribution of
weakly altered Chlorophytes or Prasinophytes micro-algae
containing high proportions of campesterol (Volkman, 1986)
and present in summer in this zone (Hill et al., 2005), to this
sterol.

It was previously observed that autoxidation processes
play a key role in the degradation of terrestrial suspended
POM in the Beaufort Sea (Rontani et al., 2012a). Although
this seems to be also the case for particles accumulating at
the seafloor, the proportions of autoxidation products (rang-
ing from 20 to 120 % of the residual parent sitosterol; Fig. 4)
are practically one order of magnitude lower than those pre-
viously observed in suspended particles collected in the same
zone. These differences may be attributed to the fact that sus-
pended particles, which spend a very long time in the wa-
ter column (where autoxidation strongly occurs) generally
only weakly contribute (after aggregation) to the sedimentary
record (Wakeham and Lee, 1989). Lateral transport of sedi-
ments that already have known degradation and diagenetic
processes could be another explanation. Indeed, in this case
sediment would consist in part of particles that have settled
closer to land and have thus spent less time in water column
where degradation is more efficient.

Relatively high proportions of Type II photooxidation
products of campesterol and sitosterol (e.g. 60 % of the resid-
ual parent sitosterol at station 680, for example; Fig. 4) were
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Table 1.Sterols content (µg g−1) of the sediments investigated.

Sterols 110 140 235 260 345 390 680 689

Cholesterol 9.3 3.9 1.5 31.6 1.8 2.0 1.5 4.6
Brassicasterol 3.0 2.2 0.3 17.4 0.3 1.0 0.5 1.6
24-Methylenecholesterol 1.5 0.8 0.1 8.2 0.1 0.4 0.3 0.6
Campesterol 1.1 0.6 0.1 5.8 0.1 0.5 0.4 1.1
Stigmast́erol 1.3 0.3 0.1 3.3 0.1 0.3 0.2 0.4
Sitosterol 6.2 1.4 0.4 13.9 0.5 0.8 1.1 1.9
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Fig. 3.Partialm/z 486, 488, 484 and 431 ion chromatograms showing presence of sitosterol degradation products in the total lipid extract of
surface sediments (0–1 cm) collected at the station 680.

detected in the different samples. These results contrast with
the very weak amounts of photooxidation products of these
sterols previously observed in suspended POM (for exam-
ple 10 % of the residual parent sitosterol at the same sta-
tion 680; Rontani et al., 2012a). Due to the involvement of
very intensive autoxidation processes in these suspended par-
ticles, a free radical driven breakdown of photochemically-
produced hydroperoxides might likely explain their unex-
pected very weak content of sterol photodegradation prod-
ucts. These findings support the idea that suspended and sink-
ing particles that reach the seafloor have distinct origins and
then distinct degradation pathways during their transit.

3.2 Biotic and abiotic alteration of monounsaturated
fatty acids

Linear fatty acids ranging from C14 to C18 have been de-
tected in the different samples investigated (Table 2). The

lack of long-chain (C20-C28) fatty acids, which are charac-
teristic of epicuticular waxes of terrestrial higher plants (Ko-
lattukudy, 1976; Gagosian et al., 1987), was attributed to bac-
terial degradation processes, which act intensively on terres-
trial material in the mixing zone of the Mackenzie (Rontani
et al., 2012). Degradation products of the main monoun-
saturated fatty acids present in these sediments, i.e. palmi-
toleic, oleic and vaccenic acids, were quantified. The re-
sults obtained are summarized in Figs. 5a (vaccenic acid),
6a (oleic acid) and 7a (palmitoleic acid). The three selected
monounsaturated fatty acids exhibited well distinct abiotic
degradation states. Photooxidation processes appeared to act
more intensively in bacteria (Fig. 5a) than in other organ-
isms (Figs. 6a and 7a). This observation is in good agree-
ment with the highest photoreactivity of vaccenic acid (rel-
ative to oleic and palmitoleic acids) previously observed by
Christodoulou et al. (2010) during irradiation of non-axenic
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 46 Fig. 4. Estimates of relative biodegradation, autoxidation and pho-
tooxidation (as percentages relative to the residual parent com-
pound) of brassicasterol(A), sitosterol(B) and campesterol(C) for
the different sediments investigated.

cells of Emiliania huxleyiby solar light. It was previously
shown that the photodegradation ofcis-vaccenic acid of het-
erotrophic bacteria was more than two orders of magnitude
faster in the presence of phytoplanktonic cells (Rontani et
al., 2003). Indeed, phytodetritus constitute hydrophobic mi-
croenvironments where the lifetime and potential diffusive
distance of singlet oxygen may be long enough to allow its
transfer to attached heterotrophic bacteria. Damages result-
ing from the presence of high amounts of singlet oxygen in
heterotrophic bacteria may thus be more important than in
senescent phytoplanktonic cells due to the lack of an adapted
photoprotective system in these organisms (Garcia-Pichel,
1994). Vaccenic acid also appeared to be affected by autoxi-
dation (Fig. 5a). Reaction of singlet oxygen with unsaturated
components of the outer lipopolysaccharide membrane of
Gram-negative bacteria (the dominant bacteria in the ocean)
leads to the formation of reactive secondary products, such
as peroxyl radicals, which may in turn accentuate cell dam-
ages (Dahl et al., 1989). The predominance of autoxidation

 47 

Fig. 5.Estimates of relative autoxidation, photooxidation and epox-
ide production (as percentages relative to the residual parent com-
pound)(A) and trans/ cis ratio measured(B) of vaccenic acid for
the different sediments investigated.

relative to photooxidation observed in the case of palmitoleic
acid (Fig. 7a) was attributed to a strong contribution of ben-
thic animals (where Type II photoprocesses do not act) to this
fatty acid.

We detected significant proportions of saturated hydrox-
yacids, methoxyhydrins, diols and chlorohydrins result-
ing from the degradation of 9,10-epoxyhexadecanoic, 9,10-
epoxyoctadecanoic and 11,12-epoxyoctadecanoic acids in
the different samples investigated (Fig. 8). Epoxy acids are
in fact strongly degraded during the treatment; in addition
to a partial reduction with NaBH4 (Marchand and Rontani,
2001), they undergo alcoholysis and hydrolysis during alka-
line hydrolysis and are converted to chlorohydrins and 9,10-
dihydroxyacids during acidification (Holloway and Brown
Deas, 1973; Fig. 8). Epoxides may be formed by classi-
cal addition of a peroxyl radical to a double bond (Berti,
1973) and subsequent fast intramolecular homolytic substi-
tution (Fossey et al., 1995). However, this reaction becomes
competitive (relative to allylic hydrogen atom abstraction)
only in the case of conjugated, terminal, or trisubstituted
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Table 2.Fatty acid content (µg g−1) of the sediments investigated.

Fatty acids 110 140 235 260 345 390 680 689

C14:0 (Myristic acid) 46.4 254.3 65.9 102.0 72.3 253.9 259.2 151.9
C15:0 (Pentadecanoic acid) 18.1 32.1 28.0 79.1 24.7 36.4 38.0 25.2
C16:119 (Cis palmitoleic acid) 30.7 2010.7 70.5 28.3 63.3 1237.3 1220.8 796.5
C16:119 (Transpalmitoleic acid) 3.0 48.3 4.2 0.2 3.2 22.3 111.1 4.8
C16:0 (Palmitic acid) 171.7 613.0 321.4 982.8 309.3 631.9 713.7 447.5
C18:119cis (Oleic acid) 45.0 230.3 135.9 338.2 153.7 208.0 157.5 133.6
C18:119trans(Elaidic acid) 22.4 70.9 28.3 10.1 67.2 32.7 27.9 13.3
C18:1111cis (Cis vaccenic acid) 87.2 231.4 68.8 12.2 107.8 269.4 213.1 278.1
C18:1111trans(Transvaccenic acid) 40.4 120.8 37.8 2.3 84.1 84.1 48.4 60.6
C18:0 (Stearic acid) 50.1 149.7 82.7 310.4 107.4 103.0 80.6 65.7

 48 

Fig. 6.Estimates of relative autoxidation, photooxidation and epox-
ide production (as percentages relative to the residual parent com-
pound)(A) and trans/ cis ratio measured(B) of oleic acid for the
different sediments investigated.

double bonds (Schaich, 2005). In the case of monounsat-
urated fatty acids, such a formation is thus very unlikely.
Epoxidation of the double bonds of fatty acids may be also
induced by cytochrome P-450-dependent monooxygenases
(Ruettinger and Fulco, 1981); however, these enzymes also
catalyse monohydroxylation at theω-1, ω-2 andω-3 posi-
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Fig. 7.Estimates of relative autoxidation, photooxidation and epox-
ide production (as percentages relative to the residual parent com-
pound)(A) andtrans/ cis ratio measured(B) of palmitoleic acid for
the different sediments investigated.

tions and we failed to detect the thus formed hydroxyacids
in lipid extracts. Finally, we attributed the formation of the
epoxy acids detected to the involvement of peroxygenases
(hydroperoxide-dependent oxygenases) during abiotic degra-
dation of higher plant debris, algae or bacteria. Such en-
zymes catalysed epoxidation of unsaturated fatty acids in the
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Fig. 8.Compounds resulting from the degradation of 9,10-epoxyoctadecanoic acid during the treatment.

presence of alkylhydroperoxides as co-substrates (Fig. 9) and
play a protective role against the deleterious effects of fatty
acid hydroperoxides in vivo (Blée and Schuber, 1990). This
hypothesis is well supported by the relative good correlation
observed between the proportions of epoxy acids and these
of fatty acid oxidation products (quantified after NaBH4-
reduction of the corresponding hydroperoxides) (r2

= 0.825,
0.702 and 0.631 with p-value = 0.002, 0.009 and 0.018 for
vaccenic, oleic and palmitoleic acids, respectively; Figs. 5a,
6a and 7a).

While thetrans / cisratio of monounsaturated fatty acids is
usually 0.05 or less in healthy non stressed bacterial popula-

tions (Navarrete et al., 2000), unusually high proportions of
monounsaturated fatty acids with atransdouble bond could
be detected in the sediments analysed. The position of the
double bond of these compounds was unambiguously deter-
mined after OsO4 oxidation and GC-EIMS analyses of the
silylated foregoing diastereoisomeric diols (Fig. 10). Accord-
ing to the fatty acid considered, well distincttrans / cisratios
could be observed (Figs. 5b, 6b and 7b).Cis-transisomeri-
sation of the double bond of monounsaturated fatty acids
may be attributed to (i) photosensitized isomerization pro-
cesses induced by UVR (Christodoulou et al., 2010) gener-
ally involving ketonic triplet energy sensitizers (Testa, 1964;
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Fig. 9.Proposed mechanisms for biotic and abiotic degradation of vaccenic acid in the Beaufort Shelf.

Horspool and Armesto, 1992), (ii)cis-transisomerase activ-
ity enabling Gram-negative bacteria belonging to the genera
PseudomonasandVibrio to adapt to several forms of envi-
ronmental stress (Heipieper et al., 2003), or (iii) the forma-
tion of thiyl radicals (catalyzing double bond isomerisation,
Ferreri et al., 2004) during the antioxidant reactions of bio-
logically relevant thiols (e.g. glutathione) (Chatgilialoglu et
al., 2002) or after methanethiol homolytic cleavage or thio-
late oxidation.

During previous irradiation of non-axenic cells of the hap-
tophyteE. huxleyiby solar light, it was observed that UVR-
induced photosensitizedcis-trans isomerisation processes
acted not only on monounsaturated fatty acids but also on
their oxidation products (Christodoulou et al., 2010). In the

studied sediments, the lack of 9-cis and 10-cis hydroxyacids
(arising from oleic acid oxidation) and 11-cis and 12-cis hy-
droxyacids (arising fromcis-vaccenic acid oxidation) previ-
ously proposed as potential tracers of the effects of UVR in-
situ (Christodoulou et al., 2010) suggests thatcis-transiso-
merisation of monounsaturated fatty acids observed in sed-
iments from the Beaufort Shelf does not result from the in-
volvement of UVR-induced photosensitized processes in the
water column.

Enzymatic cis-trans isomerisation of unsaturated fatty
acids constitutes an important adaptive reaction ofPseu-
domonasandVibrio species to toxic organic compounds or
other environmental stress factors (Heipieper et al., 1992,
2003, 2007). Such an adaptive mechanism appears to be
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Fig. 10.Partialm/z 317 and 345 ion chromatograms showing the distribution of silylated OsO4 derivatives ofcisandtransmonounsaturated
fatty acids in surface sediments (0–1 cm) collected at the stations 110(A) and 260(B).

an alternative way to regulate membrane fluidity when the
growth is inhibited (Heipieper et al., 2003). Based on the
good correlation observed between the hydrophobicity of or-
ganic compounds, growth inhibition and thetrans / cis ra-
tio of unsaturated fatty acids, this enzymatic isomerisation
process was proposed as a marker for stress in contami-
nated environments (Guckert et al., 1986; Frostegard et al.,
1993; White et al., 1996). Values of thetrans / cisratio higher
than 0.1 in environmental samples are generally considered
as indicative of environmental stress conditions at the site
(Guckert et al., 1986; Navarrete et al., 2000). The very high
trans / cisratio observed in the sediments analysed (values
ranging from 0.03 to 0.50 for oleic acid and from 0.18 to 0.78
for vaccenic acid; Figs. 5b and 6b) could thus be attributed
to an adaptive reaction of sedimentary bacteria to the pres-
ence of high amounts of photochemically and autoxidatively-

produced hydroperoxides in sinking particles (Rontani et al.,
2012b) reaching these sediments. However, it was previously
demonstrated that this enzymatic isomerisation process has
a highest specificity for C16 unsaturated fatty acids as sub-
strates (Heipieper et al., 1992) and thetrans / cis ratio ob-
served in the samples for palmitoleic acid (values ranging
from 0.004 to 0.1; Fig. 7b) are considerably lower than in
the case of oleic and vaccenic acids (Figs. 5b and 6b). In
addition, it was recently shown that thecis-transisomerisa-
tion is only an urgent response mechanism in these bacteria
that is later substituted by other adaptive mechanisms (Fis-
cher et al., 2010). Therefore, thetrans / cisratio is not a good
indicator of long-term oxidative stress as it is present in the
investigated sediments. It seems thus very unlikely that the
formation oftransmonounsaturated fatty acids in sediments
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from the Beaufort Shelf results from an enzymaticcis-trans
isomerisation activity.

Functionalised aliphatic thiols (glutathione, methionine-
containing proteins) are present in living organisms in con-
siderable amounts (Ferreri et al., 2005). These compounds,
which are very good hydrogen donors towards radicals, such
as alkoxyl or alkylperoxyl radicals, are extraordinarily effi-
cient antioxidants protecting the cells against consequences
of damage induced by free radicals (Wlodek, 2002) (Eqs. 1–
3).

R-S-H+ R-O•
→ R-S•

+ R-O-H (1)

R-S-H+ R-O-O•
→ R-S•

+ R-O-O-H (2)

2 R-S-H+ R-O-O-H→ 2 R-S•
+ R-O-H+ H2O (3)

However, this role as repairing agents is counterbalanced by
the formation of thiyl radical species, which can damage
other biomolecules (Ferreri et al., 2005; Rontani et al., 2006).
Indeed, thiyl radicals are efficient catalysts forcis-transiso-
merisation of lipids in biological membranes and this pro-
cess cannot be ignored when considering radical damage
to biological components. In sediments, the formation of
thiyl radicals can also result from the homolytic cleavage
of methanethiol produced by bacteria. Several mechanisms
for the bacterial production of methanethiol in the environ-
ment have been identified. It can be formed by (i) microbial
degradation of S-containing amino acids such as methion-
ine (Eq. 4; Ferchichi et al., 1986; Kiene and Visscher, 1987),
(ii) methylation of sulfide (Eq. 5; Lomans et al., 2002) and
(iii) degradation ofβ-dimethylsulfoniopropionate (DMSP)
(Eqs. 6 and 7), a tertiary sulfonium compound produced in
high concentration by certain species of algae (Keller et al.,
1989; Yoch, 2002) and halophytes (Ishida, 1996) for regula-
tion of their internal osmotic environment.

CH3-S-CH2-CH2-CH(NH2)-COOH (4)

→ CH3SH+ CH3-CH2-CO-COOH+ NH3

(S,S)-adenosylmethionine+ SH− (5)

→ (S)-adenosylhomocysteine+ CH3SH

(CH3)2-S+-CH2-CH2-COO−
→ CH3-S-CH2-CH2-COO− (6)

→ CH3SH+ CH2 = CH-COO−

(CH3)2-S+-CH2-CH2-COO− (7)

→ CH2 = CH-COO−
+ CH3-S-CH3 → CH3SH

Thiyl radicals can also be produced by oxidation of thiolate
ions (produced during sulfate reduction) by transition metals,
e.g. Fe+3 (Eq. 8; Wlodek, 2002).

HS−
+ Fe+3

→ HS•
+ Fe+2 (8)

The fact that thiyl radicals act as a catalyst forcis-trans
isomerisation is important, because even a small concentra-
tion of these radical species is able to propagate the reac-
tion, leading to an efficient formation oftrans isomers (Fer-
reri et al., 2007). Because thetrans-configuration is energet-
ically preferred by about 0.6–1 kcal mol−1, a mixture domi-
nated bytrans olefin (about 80 %) may be theoretically ob-
tained (Ferreri et al., 2005). Due to the presence of significant
amounts of intact hydroperoxides in sinking particles reach-
ing these sediments (Rontani et al., 2012b), an induction of
cis-trans isomerisation by thiyl radicals resulting from the
reaction of thiols with hydroperoxides (Fig. 9) seems thus
very likely. This hypothesis is well supported by the relative
good correlation observed between thetrans / cis ratio and
the proportions of vaccenic and oleic acid oxidation products
(quantified after NaBH4-reduction of the corresponding hy-
droperoxides) (r2

= 0.692 and 0.812 with p-value = 0.011
and 0.002, respectively; Figs. 5 and 6). These processes ap-
peared to act very intensively in bacteria and to a lesser extent
in phytodetritus and higher plant debris.

It may be noted that thetrans configuration of double
bonds is 7 to 10 times less sensitive against singlet oxygen-
mediated oxidation than the classicalcisconfiguration (Hurst
et al., 1985). Consequently, ifcis-trans isomerisation pro-
cesses took place in sinking particles, which are generally
considered as the main contributors to the sedimentary record
(Wakeham and Lee, 1989), selective Type II photooxidation
of cisandtransmonounsaturated fatty acids in euphotic layer
could be an additional explanation of the unusually high
trans / cis ratio observed in sediments. Recent analyses of
particles collected by traps in this zone allowed us to show
that the formation oftransmonounsaturated fatty acids does
not act in sinking particles (Rontani et al., 2012b) and thus to
exclude such a possibility.

While algal OM appeared to be weakly degraded in all
the sediments investigated (Fig. 4a), a strong spatial vari-
ability of the autoxidative degradation state of terrestrial OM
was observed (Fig. 4b and c). This variability could be re-
lated to the position of the stations relative to the Macken-
zie mouth. Indeed, a strong autoxidation of terrestrial OM
in SPM was previously observed in the mixing zone of the
Mackenzie (Rontani et al., 2012a). The extent of autoxida-
tion appeared to be well correlated with salinity, suggesting
that these free radical oxidation processes are enhanced by
contact with seawater. Consequently, the stations more dis-
tant from the Mackenzie, where the residence time of terres-
trial OM in seawater is expected to have been longest, should
exhibit the highest autoxidation states. The results obtained
well support this assumption. Indeed, the highest autoxida-
tion states were observed at the stations 110, 235 and 345
(Fig. 4b and c), which are very distant from the Mackenzie,
while the station 689 close to the mouth (Fig. 1) exhibited
the weakest degradation state (Fig. 4b and c). It is interest-
ing to note that Link et al. (2012), which used chlorophyll-
a/phaeopigment ratio as a proxy of the quality or “freshness”
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of the organic matter supply, also observed the highest degra-
dation states at the stations 110, 235 and 345.

The biogeochemical fluxes measured at the same stations
by Link et al. (2012) showed the highest oxygen demands for
the inner shelf sediments (stations 689, 680, 390, and 260).
These oxygen demands, which were associated with high
production rates of metabolites (e.g. NO−

2 , PO3−

4 , NH+

4 ), are
indicative of an intense biodegradation activity in these sed-
iments. These results are in good agreement with the weak
degradation state and thecis / trans ratio of vaccenic acid
measured at these stations (Fig. 5) attesting to the presence
of non-stressed bacteria in a good healthy state and thus very
active.

4 Conclusions

Lipids and their degradation products were quantified in
eight samples of surface sediments collected in the Beaufort
Sea. Brassicasterol (mainly arising from phytoplankton) ap-
peared to be very weakly affected by biotic and abiotic degra-
dation processes in these sediments. These results do not sup-
port the generally expected quick recycling of material de-
rived from primary production in the water column and/or
at the sediment interface of this zone (Magen et al., 2010).
In contrast, autoxidation, photooxidation and biodegrada-
tion processes acted intensively on sitosterol and campesterol
(mainly arising from terrestrial higher plants), while these
compounds appeared to be only photodegraded in particu-
late matter delivered by the Mackenzie River (Rontani et al.,
2012a). The old concept expecting that the pre-degradation
of terrestrial OM on land and in the rivers should result in a
good preservation of this material in the marine environment
seems thus to be erroneous.

In the Arctic, global warming may induce changes in veg-
etation from tundra toward leaf-bearing plants (Goñi et al.,
2005), thus enhancing the delivery of modern vascular plant
organic carbon to rivers. To estimate the consequences of
climate change in this strategic zone, a good knowledge of
the processes controlling degradation and burial of terrestrial
OM is essential. The results obtained here confirm that vas-
cular plant POM delivered by the Mackenzie River to the
Beaufort Sea is strongly affected by biotic and abiotic degra-
dation processes.

We used oxidation products of vaccenic acid, which is a
typical biomarker for Gram-negative bacteria (Sicre et al.,
1988; Keweloh and Heipieper, 1996), to estimate the ex-
tent of abiotic sedimentary bacteria degradation. In contrast,
oxidation products of the non-specific oleic and palmitoleic
acids could only be used to assess abiotic degradation of bulk
OM of sediments. Surprisingly, photo- and autoxidation pro-
cesses appeared to act more intensively in bacteria than in
other organisms. We suggest that singlet oxygen is efficiently
transferred from phytodetritus, where it is produced by pho-
tolytic excitation of chlorophyll, to the heterotrophic bacteria

(and their lipids) that are associated with the detritus. This
transfer has been observed previouslyin vitro (Rontani et
al., 2003; Christodoulou et al., 2010). The highest efficiency
of oxidative damages in bacteria should result from the lack
of an adapted antioxidant system in these microorganisms
(Garcia-Pichel, 1994).

In parallel to the intensive abiotic degradation of mo-
nounsaturated fatty acids observed, significant amounts of
epoxy acids could be detected. The formation of these com-
pounds was attributed to the involvement of peroxygenases
(hydroperoxide-dependent oxygenases) during abiotic degra-
dation of higher plant debris, algae or bacteria contained in
sediments. Such enzymes play a protective role against the
deleterious effects of fatty acid hydroperoxides in vivo.

Unusually high proportions of monounsaturated fatty
acids with atrans double bond could be also detected in
these sediments. Vaccenic, oleic and palmitoleic acids exhib-
ited well distincttrans / cisratios, the highest values (ranging
from 0.18 to 0.78) being observed in the case of vaccenic
acid. Due to the strong oxidative stress observed in the sedi-
ments investigated, induction ofcis-transisomerisation was
attributed to the presence of thiyl radicals resulting from the
reaction of thiols with hydroperoxides. These processes ap-
peared to act very intensively in bacteria and to a lesser extent
in phytodetritus and higher plant debris.
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