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Abstract. We present data from a comprehensive investi-
gation carried out from 2007 to 2010, focussing on nitro-
gen pollution in the Oglio River basin (3800 km2, Po Plain,
Northern Italy). Nitrogen mass balances, computed for the
whole basin with 2000 and 2008 data, suggest a large N
surplus in this area, over 40 000 t N yr−1, and increasing be-
tween 2000 and 2008. Calculations indicate a very large im-
pact of animal husbandry and agricultural activities in this
watershed, with livestock manure and synthetic fertilizers
contributing 85 % of total N inputs (about 100 000 t N yr−1)

and largely exceeding crop uptake and other N losses (about
60 000 t N yr−1). Nitrogen from domestic and industrial ori-
gin is estimated as about 5800 and 7200 t N yr−1, respec-
tively, although these loads are overestimated, as denitri-
fication in treatment plants is not considered; nonetheless,
they represent a minor term of the N budget. Annual ex-
port of nitrogen from the basin, calculated from flow data
and water chemistry at the mouth of the Oglio River, is es-
timated at 13 000 t N yr−1, and represents a relatively small
fraction of N inputs and surplus (∼12 % and 34 %, respec-
tively). After considering N sinks in crop uptake, soil den-
itrification and volatilization, a large excess remains unac-
counted (∼26 000 t N yr−1) in unknown temporary or perma-
nent N sinks. Nitrogen removal via denitrification was eval-
uated in the Oglio riverbed with stable isotope techniques
(δ15N andδ18O in nitrate). The downstream final segment
of the river displays an enriched nitrate stable isotope com-
position but calculations suggest a N removal corresponding
to at most 20 % of the unaccounted for N amount. Deni-
trification was also evaluated in riverine wetlands with the
isotope pairing technique. Areal rates are elevated but over-
all N removal is low (about 1 % of the missing N amount),
due to small wetland surfaces and limited lateral connectiv-
ity. The secondary drainage channel network has a much

higher potential for nitrogen removal via denitrification, due
to its great linear development, estimated in over 12 500 km,
and its capillary distribution in the watershed. In particular,
we estimated a maximum N loss up to 8500 t N yr−1, which
represents up to 33 % of the unaccounted for N amount in
the basin. Overall, denitrification in surface aquatic habitats
within this basin can be responsible for the permanent re-
moval of about 12 000 t N yr−1; but the fate of some 14 000 t
remains unknown. Available data on nitrate concentration in
wells suggest that in the central part of the watershed ground-
water accumulates nitrogen. Simultaneously, we provide ev-
idences that part of the stored nitrate can be substantially re-
cycled via springs and can pollute surface waters via river-
groundwater interactions. This probably explains the ten fold
increase of nitrate concentration in a reach of the Oglio River
where no point pollutions sources are present.

1 Introduction

Over the last 50 yr, nitrogen cycling in watersheds heavily
exploited by urbanization, agriculture and animal farming
has undergone major alterations as a consequence of mul-
tiple interplaying factors (Vitousek et al., 1997). Sewage
treatment plants, manure production and spreading, use of
industrially fixed nitrogen fertilizers, fixation by crops and
atmospheric deposition have resulted in point and diffuse re-
leases of reactive nitrogen into the environment greatly ex-
ceeding crop uptake and other N-removal processes in soil
and aquatic compartments (Puckett, 1995; Cassman et al.,
2002; Galloway et al., 2008). Simultaneously, intensive
agricultural practices have simplified the landscape and re-
moved natural buffers as vegetated riparian areas and wet-
lands. The absence of these elements has greatly enhanced

Published by Copernicus Publications on behalf of the European Geosciences Union.



362 M. Bartoli et al.: Nitrogen balance and fate in a heavily impacted watershed

nitrogen lateral and vertical migration and made the sur-
face and groundwater more prone to nitrogen contamination
(Balestrini et al., 2011). This risk is augmented by the use
of large water volumes for irrigation and by traditional prac-
tices based on soil flooding over permeable areas, that en-
hance N loss via runoff and leaching (Cassman et al., 2002;
Böhlke et al., 2007). High infiltration rates decrease ground-
water residence time, altering rates of biogeochemical reac-
tions; elevated concentrations of nitrogen in surface waters
saturate microbial processes and uptake by primary produc-
ers, making nitrogen control by natural processes less effec-
tive (Böhlke et al., 2007; Mulholland et al., 2008). This
increased N loading has a suite of negative consequences,
including demonstrated health effects, enhanced eutrophica-
tion, and contributions to global warming (Ward et al., 2005;
Davidson, 2009). Open questions about the fate of the nitro-
gen surplus in impacted watersheds concern where and for
how long does the excess nitrogen accumulate, and what pro-
cesses and transformations does it undergo (van Breemen et
al., 2002; Puckett et al., 2011).

We addressed these and related questions in the lower
Oglio River, a central sub-basin (3800 km2) of the Po
River watershed, which is the largest river basin in Italy
(71 057 km2). About 50 % of the Po watershed is exploited
for agriculture. The Po basin hosts a human population
of over 17× 106 inhabitants, approximately 3.1× 106 cattle
(∼50 % of the national stock) and 6.0× 106 pigs (∼65 % of
the national stock). Agriculture and livestock together con-
tribute to∼80 % of the total nitrogen load generated by the
Po River basin (∼550 000 t N yr−1), which has led to a dif-
fuse nitrate contamination of both surface and groundwa-
ter (Cinnirella et al., 2005). Furthermore, the annual ni-
trate load exported from the Po River basin has increased
2–3-fold over two decades, from∼40× 106 t N yr−1 in the
period 1968–1972 to 80× 106 t N yr−1 (dry years) up to
143× 106 t N yr−1 from 1990 onwards. This delivery of N
represents the major N input term in the Adriatic Sea (Franco
and Michelato, 1992; Zoppini et al., 1995).

Within the Po River watershed, we analyzed the sub-basin
of the lower Oglio River, due to its elevated human popu-
lation and farmed animal densities, maize-oriented intensive
agriculture, highly permeable soils, landscape simplification
and flood irrigation practices. Original data and information
from multiple recent studies are here presented with the goal
of quantifying the N sources, sinks, and major transforma-
tions within this watershed. First we provide background on
the patterns of nitrate concentrations along the river course,
followed by a summary of the major input and output terms
in the N budget, including an estimate of N exported via river
discharge and N removed via denitrification in surface water
compartments within the basin. Finally, we evaluate the role
of groundwater as N sink and that of springs as hotspots of N
recycling.

2 Study area

All the data and calculations presented in this work refer to
the lower Oglio River, a 156 km long watercourse (from here
onwards Oglio River), and its watershed, comprising a to-
tal surface of 3800 km2. The Oglio River originates from
a subalpine lake, Lake Iseo and flows into the Po River
(Fig. 1). According to the K̈oppen classification the study
area has an humid subtropical climate, with a mean an-
nual temperature of∼13◦C and an annual precipitation of
∼800 mm. The Oglio River regulation practices optimize
the amount of water that flows through a series of 6 hy-
droelectric power plants located within the first 22 km of
the reach. They maintain lake water level within a narrow
range (184.85 to 186.55 m a.s.l.) and retain lake water dur-
ing non-irrigation periods in order to release more water for
agricultural needs during summer. Water release from Lake
Iseo is 45± 33 m3 s−1 during the non-irrigation period and
67± 32 m3 s−1 (www.laghi.net/Oglio/) during the irrigation
period, generally between May and September. During the
irrigation period up to 85 m3 s−1 can be diverted into a series
of artificial channels, mostly located along the Oglio’s initial
42 km. As a consequence, water flow in the Oglio River is
generally at its minimum immediately downstream of these
diversions.

Arable land represents about 60 % of the total Oglio
River watershed area and maize is the dominant crop cover-
ing about 65 % of the arable surface (Agricultural Informa-
tion System of Lombardy Region, 2008;www.siarl.regione.
lombardia.it). In more than two thirds of the arable land,
irrigation is performed via submersion, a traditional practice
made possible by both abundant water availability in this area
and by coarse-textured soils. The Oglio River crosses the
Po Plain, the largest alluvial basin in Italy, derived mostly
from erosion of the Alps during the Quaternary. Soil parti-
cle size decreases with increasing distance from the sediment
source, from northwest to southeast across the Oglio water-
shed (Brenna et al., 2004). Accordingly, the permeability of
the unconfined aquifer in the gravels and sands of the higher
plain greatly exceeds that of the more clay-rich lower plain.
The water table depth varies from about 30 m in the north-
west to 2–3 m in the southeast (Carcano and Piccin, 2002).
The transition between the two areas is marked by numerous
permanent outflows, the so-called “springs belt”, that runs
parallel to the Alps and is crossed by the Oglio River ap-
proximately 30 km south of the Lake Iseo. The Oglio River
is fed by groundwater along most of its length (Lombardy
Region, 2006).

3 The nitrate “anomaly” in the Oglio River

From 2007 to 2010 we conducted detailed, seasonal-based
monitoring of the Oglio River water, in the framework of
a project aimed at defining restoration strategies and the
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Fig. 1. The map on the left shows the lower Oglio River, its main tributaries, the area within the basin where springs are located and the
sampling stations; the map on the right reports the land use within the basin. With lower Oglio River and lower Oglio basin we indicate the
river segment that originates from the Lake Iseo and flows into the Po River and its associated watershed.

minimum vital flow of this river (Racchetti et al., 2008,
2010). Water samples were collected from 80 stations along
the river course, including riverine sites (n = 60), tributaries
(n = 14), and point sources such as wastewater treatment
plants (WWTPs,n = 6, Fig. 1). All samples were analyzed
for dissolved and particulate nitrogen forms (NH+

4 , NO−

2 ,
NO−

3 , dissolved organic -DON- and particulate -PN-) by
means of standard spectrophotometric techniques (A.P.H.A.,
1981). Flow measurements were performed by Oglio Con-
sortium, the Oglio River water management authority.

This monitoring data revealed recurrent nitrate trends dur-
ing summer campaigns over the 4-yr period. In particular, ni-
trate concentrations displayed a steep, 10-fold increase from
about 0.8 to 7.7 mg N l−1 over the relatively short reach be-
tween km 25 to km 50 (Fig. 2). This reach contains the sec-
tion of the Oglio River downstream from the last great di-
version for irrigation, and is the portion characterized by low
flows (5 to 10 m3 s−1). We calculated from flow and con-
centration data that the N-NO−3 increase is equivalent to an
N input to the river varying between 4 and 8 t N-NO−

3 d−1.
However, this reach contains no significant tributaries nor
WWTPs, which means that point sources are not responsi-
ble for the nitrate load. Ammonium and organic nitrogen
concentrations are generally low (<0.14 mg N l−1), so cou-
pled ammonification and nitrification cannot be responsible
for the measured nitrate increase. We thus hypothesized a
generalized problem of diffuse nitrate contamination in this
area. To verify this hypothesis we conducted a catchment
scale N inventory, including all the potential N sources and
sinks.

Fig. 2. Concentration of nitric nitrogen and water flow in the Oglio
River during summer season. Values are averages (±standard de-
viation) from whole river samplings carried out on 3–5 July 2007,
9–11 July 2008, 5–7 August 2009 and 28–30 July 2010.

4 Nitrogen mass balance in the Oglio River watershed

4.1 The contribution of agriculture and animal farming

A detailed nitrogen mass balance was conducted according
to the soil system budget approach (Oenema et al., 2003).
This work had a twofold aim: (1) verify whether uncoupled
input and output terms generate a large N surplus in this basin
and (2) identify those areas within the watershed where the
risk for surface and groundwater pollution is highest. The
soil system budget was calculated on an annual basis (for
the years 2000 and 2008) as the net difference between N
inputs (livestock manure, synthetic fertilizers, atmospheric
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deposition, biological fixation and wastewater sludge) and N
outputs (crop uptake, ammonia volatilization and denitrifica-
tion in soils) within the catchment’s agricultural land. N bud-
get calculations were performed at a spatial resolution of in-
dividual municipalities (over 250, having a surface from 500
to 9000 ha) using farming census data (National Statistics In-
stitution, 5th Agricultural Census 2000;http://censagr.istat.
it/dati.htm; Agricultural Information System of Lombardy
Region, 2008;www.siarl.regione.lombardia.it), then aggre-
gated to the catchment scale by means of GIS techniques.
The overall budget gains robustness from the comprehensive
and high-resolution datasets available for this area and the
use of site-specific agronomic coefficients (for more details
see Soana et al., 2011). Uncertainties derive from those rates
(i.e. ammonia volatilization and denitrification in soils) taken
from the literature (Bussink et al., 1998; Asman et al., 1998;
Rotz et al., 2004; Smil, 1999) as no data are available for
the investigated area. An interval of confidence was associ-
ated to the input, output and surplus terms of the 2008 budget
by using minimum and maximum parameters for each spe-
cific item (Soana et al., 2011). Calculations indicated that in
2000 total N input was about 80 000 t yr−1 and that most of
such input was due to manure (50 %) and to synthetic fertiliz-
ers (35 %). Output terms accounted for about 50 000 t N yr−1

and were mostly sustained by crop uptake (65 %). The differ-
ence between inputs and outputs indicates an excess of about
30 000 t N yr−1. The N budget estimated for the year 2008
was also positive, with inputs exceeding outputs by about
40 000 t N yr−1. N inputs from livestock manure and syn-
thetic fertilizers increased by approximately 20 % in an al-
most 10 yr period. For both years, and almost everywhere
in the catchment, livestock manure was the biggest N source
(Table 1); the only exceptions were some mountain munici-
palities with less intensive animal farming.

The comparison between N input and output sug-
gests an elevated N surplus in this watershed, averaging
180 kg N ha−1 arable land (AL) yr−1 in 2008. The N sur-
plus varies greatly across the basin (Fig. 3). The most crit-
ical zone is the central portion of the Oglio River water-
shed, where some municipalities have a N surplus exceeding
400 kg N ha−1 AL yr−1. To put this surplus in context, the to-
tal N amount (not N surplus) recommended by the European
Community to be spread on arable lands via manure varies
between 170 and 340 kg N ha−1 AL yr−1 (Nitrates Directive,
91/976/EEC) in vulnerable and non vulnerable zones, re-
spectively. The comparison of the N mass balance between
the two years suggests that the critical situation of the year
2000 did not improve, on the contrary we calculated an even
larger N surplus in 2008. This contradicts the indications of
the Nitrates Directive specifically aiming at the reduction of
NO−

3 pollution in surface and groundwater of Nitrate Vulner-
able Zones.

The Nitrogen Use Efficiency (NUE) of agroecosystems
is defined as the proportion of all N inputs that is removed
via the harvest of aboveground material in crops (Liu et al.,

Fig. 3. Spatial distribution of N surplus (=difference between N in-
put and N output terms in a soil system budget) within the Oglio
River watershed. Values of the N surplus were assigned to the cen-
troid of all the over 250 municipalities within the basin and then in-
terpolated by means of the ordinary kriging technique. Calculations
were performed with the GIS software SAGA (System for Auto-
mated Geoscientific Analyses, version 2.0.5,http://www.saga-gis.
org). Data refers to budget calculations performed for the year 2008.

2008). In the Oglio River basin, NUE decreased from 0.43
to 0.39 between 2000 and 2008, reflecting an increased risk
of N runoff and pollution of aquatic ecosystems. Calculated
values for the study area lay within the range reported in the
literature for maize-based agricultural systems, having gen-
erally a NUE< 50 % (Smil, 1999; Cassman et al., 2002).

4.2 Domestic and industrial contributions to N
pollution

Nitrogen loads from domestic and industrial sources were
calculated in order to evaluate their relevance within the wa-
tershed N budget. The Oglio River basin hosted a popula-
tion of about 1 140 000 in 2000 and about 1 270 000 in 2008
(National Statistics Institution, 2000 and 2008;http://demo.
istat.it). Assuming a per capita N production of 12.5 g d−1

(Provini et al., 1998), the N potential load was 5200 t N yr−1

in 2000 and 5800 t N yr−1 in 2008, with an increase of 11 %.
Domestic N loads amount to only∼6 % of the total N input
to the Oglio basin in 2008. About 85 % of the total popu-
lation is connected to the sewage system, meaning that ur-
ban wastewater is almost entirely delivered to WWTPs be-
fore being discharged into the Oglio River itself or into the
secondary drainage system. Based on regional inventory
(Lombardy Region, 2006), there are over 210 WWTPs in the
Oglio River basin having a total permitted capacity of about
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Table 1. Nitrogen balance in the Oglio River basin computed for the years 2000 and 2008. Data are expressed as tons of nitrogen produced
or consumed per year in the whole basin or as kilograms of nitrogen produced or consumed per year per hectare of arable land (AL).

N balance terms 2000 2008

INPUT t N yr−1 kg N ha−1 AL yr−1 t N yr−1 kg N ha−1 AL yr−1

Livestock manure 42 521 187 51 512 232
Synthetic fertilizers 27 640 121 33 564 151
Biological fixation 7975 35 12 182 54
Atmospheric deposition 1800 8 1800 8
Wastewater sludge – – 1057 5∑

input 79 936 351 100 115 450

OUTPUT

Crop uptake 34 259 150 38 915 175
NH3 volatilization 10 147 45 12 704 57
Denitrification in soils 7016 31 8440 38∑

output 51 422 226 60 060 270

Balance 28 514 125 40 056 180

1 100 000 inhabitants equivalent (IE). Domestic wastewater
management is characterized by a multitude of small facili-
ties: about 53 % of the total number of plants have a capacity
up to 2000 IE and only 6 % are larger than 10 000 IE. The ef-
fluents of 9 WWTPs, collecting domestic wastes of only 4 %
of the total IE within the watershed, are discharged directly
into the Oglio River main course. The remaining facilities
are scattered within the catchment and their effluents enter
the secondary drainage network.

Our calculation of potential N load from urban areas is
likely a great overestimate of the true N load discharged into
surface water by WWTPs, as we did not consider denitrifica-
tion occurring in the treatment plants. This is obviously not
true because sewage plants with over half (53 %) of the total
permitted capacity in the basin operate denitrification as ter-
tiary treatment (Lombardy Region, 2006), and thus remove a
variable fraction of the incoming N load. As a consequence
N loads released by WWTPs are likely even smaller than 6 %
of the other total N input terms.

Industrial point source N inputs were estimated consider-
ing the number of workers in the different N polluting in-
dustrial sectors and their specific N production factors (Pag-
notta and Barbiero, 2003). Calculations were performed for
2001, the last year for which national census data on indus-
trial activities are available with municipality resolution (Na-
tional Statistics Institution, 8th Industrial Census 2001;http:
//dwcis.istat.it/cis/index.htm). The Oglio River basin hosted
in 2001 over 1 500 000 industrial equivalent inhabitants and
the N load potentially generated was about 7200 t N yr−1.

4.3 Diffuse nitrate sources in the Oglio River course

As nitrate is the dominant N form in the Oglio River, a ten-
tative budget of this ion was realized in the water course.
The aim of this calculation was to confirm outcomes from
previous watershed analyses, suggesting large dominance of
diffuse nitrogen pollution in this area. We calculated the con-
tribution of diffuse sources of nitrate in the Oglio River by di-
viding the whole river length into 10 reaches where flow and
chemical data were available for both the river and the clos-
ing section of each main tributary. In each segment, diffuse
sources of nitrate were calculated as the difference between
downstream loads and those from upstream plus those dis-
charged from tributaries; results were then integrated the for
the whole Oglio River. In this simplified calculation we con-
sidered nitrate inputs from tributaries as point sources and we
did not consider denitrification nor biological uptake within
the river reaches; failure to quantify these processes leads
to conservative estimates of diffuse NO−

3 loads. Outcomes
suggested a strong seasonality of the nitrate budget associ-
ated with different water flow, but the contribution of point
sources to the nitrate load never exceeded 35 % (Fig. 4). As
nitrate inputs from tributaries include diffuse loads gener-
ated within their sub-basins, the real contribution of point
pollution sources in the Oglio River watershed is probably
much lower (<10 %), as suggested by calculations reported
in Sects. 4.1 and 4.2.
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Fig. 4. Contribution of diffuse and point sources to nitrate loads in
the Oglio River, calculated in the period 2007–2010.

5 Export of N from the basin

The buffer capacity of a basin against N pollution of surface
water can be evaluated calculating the fraction of the excess
nitrogen that is exported from the watershed at its closing
section (Caraco et al., 2003). In particular, the higher is
this fraction and the lower is the buffer capacity of the sys-
tem. To this purpose, we estimated from the large dataset
of flow and water chemistry data, the annual flux of nitro-
gen exported via Oglio River discharge. The calculation was
performed by multiplying monthly dissolved and particulate
nitrogen concentrations (NH+4 , NO−

2 , NO−

3 , dissolved or-
ganic -DON- and particulate -PN-) by average monthly water
flow at the Oglio River origin at the Sarnico dam, and at the
river’s mouth, and then integrating values to one year. Ni-
trogen contributions from Lake Iseo were subtracted from
outflowing total N loads. Data sources for dissolved and par-
ticulate nitrogen concentrations are from the database of the
Department of Environmental Sciences of the Parma Uni-
versity for 2007–2010 (Racchetti et al., 2008, 2010) and
the database of the Regional Agency for the Environment
(ARPA) for 2000 to 2008. Daily flow data were extracted
from the database of the Oglio River Consortium (1980–
2010,www.laghi.net/Oglio/).

Calculated total nitrogen export from the watershed ap-
proached 13 000 t N yr−1, with 90 % as nitrate. Comparing
population (333 inhabitants km−2) and N export (2950 kg N-
NO−

3 km−2) per unit area relative to other impacted water-
sheds in the world, the Oglio had among the highest of both
population density and N export (Caraco and Cole, 1999;
Billen et al., 2011; Soana et al., 2011).

Looking at things from another perspective we can argue
that N export from the basin represents about 34 % of the
N surplus calculated into the watershed for the year 2008,
which means that some 26 000 t N are somehow retained
within the basin, by processes still to be identified. This in

turn suggests that there are efficient processes causing a net
N loss or retention in the basin. These mechanisms could
permanently remove N by dissimilative processes (denitrifi-
cation) or store and/or transport N in another environmen-
tal reservoir (soil, groundwater). Below, we address both of
these alternatives.

6 Denitrification in aquatic habitats

6.1 Dissimilative nitrogen loss in wetland habitats:
high removal over small surfaces

Denitrification in lateral shallow habitats is a natural buffer-
ing process against nitrogen excess within watersheds. In or-
der to quantify its relevance within the Oglio River we have
investigated N removal via denitrification in a number of per-
ifluvial wetlands (Racchetti et al., 2011). Wetlands are rare in
the Oglio River basin, totalling only 200 ha, or 0.05 % of the
watershed area. Small, relict wetlands are scattered through-
out the watershed. For example, for three study reaches,
wetlands – mainly oxbow lakes – occupy less than 5 % of
the area within embankment that might be flooded (Fig. 5).
There is little potential for formation of new perifluvial areas,
because arable land covers more than 60 % of the basin sur-
face and because embankments impede the lateral mobility
of the Oglio River. Furthermore, wetland environments are
progressively isolated from the main water body by the evo-
lution of the riverine landscape and by eutrophic conditions
and rapid infilling.

We characterized benthic fluxes of inorganic nitrogen and
rates of denitrification within these isolated and connected
environments. During both winter and summer 2007, we
collected intact sediment cores from 12 riverine wetlands
(marshes, oxbow lakes and ponds) within the Oglio River
watershed (Table 2), of which half were hydraulically con-
nected with the river while the remaining were isolated. The
cores were incubated in the dark (Dalsgaard et al., 2000),
and denitrification rates were measured adding15NO−

3 to the
cores water phase, according to the isotope pairing technique
(Nielsen, 1992). This method allows to split total denitrifi-
cation (DTOT) into denitrification of nitrate diffusing to the
anoxic sediment from the water column (DW) and denitrifi-
cation of nitrate produced within the sediment due to nitrifi-
cation (DN). Details on analytical methods and calculations
are reported in Racchetti et al. (2011).

All sampled environments were eutrophic to hypertrophic,
with fluffy and organic sediments (8–33 % organic matter
content as loss on ignition), a shallow water column (depth
0.3 to 1.5 m) and small areal extent (<1 to <20 ha). To-
tal denitrification rates (DTOT =DW +DN) were significantly
higher in summer than in winter. Rates measured in river-
connected wetlands were up to two orders of magnitude
higher than rates measured in isolated ones, likely due to ex-
tremely elevated nitrate concentrations in the water column
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Fig. 5. Examples of relict wetland habitats within the Oglio River watershed. These oxbow lakes have a surface varying between 0.60 and
8.28 ha, which is small compared to the area that can be potentially flooded by the Oglio River (from 44.06 to 95.87 ha).

Table 2. In situ nitrate concentration and temperature, ammonium and nitrate plus nitrite fluxes, denitrification rates and denitrification
efficiency measured in 12 riverine wetlands during summer and winter 2007. Half of the study sites were connected with (C) and half
were isolated (I ) from the Oglio River. Total denitrification (DTOT) was split into denitrification supported by water column nitrate (DW)

and denitrification coupled to nitrification in sediments (DN). Denitrification efficiency was calculated as the ratio between denitrification
rates and inorganic nitrogen effluxes (DIN + N2) across the sediment-water interface (Eyre and Ferguson, 2002) and as the ratio between
denitrification and the theoretical ammonium production within sediments (A) (Dalsgaard, 2003).

Winter Summer

I C I C

In situ
T (◦C) 10.20± 1.02 9.33± 0.61 25.20± 0.20 24.50± 0.56
NO−

3 (mg N l−1) 0.32± 0.20 9.34± 1.74 0.38± 0.30 8.26± 1.32

Fluxes
NO−

x (mg N m−2 h−1) −0.43± 1.19 −8.83± 4.40 −1.54± 0.67 −16.53± 11.45
NH+

4 (mg N m−2 h−1) 2.62± 3.07 −0.25± 0.54 5.15± 1.74 6.29± 6.50

DW (mg N m−2 h−1) 0.69± 0.22 2.07± 0.50 0.90± 0.49 9.12± 3.59
Denitrification DN (mg N m−2 h−1) 0.04± 0.03 0.46± 0.02 0.24± 0.12 0.58± 0.32

DTOT (mg N m−2 h−1) 0.73± 0.20 2.53± 0.64 1.15± 0.57 9.70± 3.43

Denitrification DTOT/(DTOT + DIN) 0.12± 0.03 0.44± 0.17 0.2± 0.07 0.52± 0.10
efficiency DTOT/A 0.58± 0.22 4.43± 0.99 0.48± 0.29 6.75± 1.43

and to elevated water temperature in summer in the shallow-
water systems (Table 2). However, the addition of increas-
ing amounts of15NO−

3 in the water overlying sediments col-
lected at isolated sites resulted in an immediate stimulation
of denitrification rates, suggesting an elevated denitrification
potential also for these sediments.

Total denitrification was mostly sustained (60–100 %) by
denitrification of water column nitrate (DW), suggesting
strong regulation of the benthic denitrification by nitrate
availability. The production of nitrate within surface sed-
iments was generally low, due to limited oxygen penetra-
tion in organic sediments; as a consequence, rates of cou-
pled nitrification-denitrification (DN) had generally a minor
importance. Benthic denitrification in hydrologically con-
nected wetlands rapidly removed nitrate from the water col-
umn, but mineralization of organic nitrogen and regeneration

of ammonium partially balanced nitrogen loss via denitrifi-
cation at both isolated and connected sites, especially during
summer (Table 2).

In order to quantify the maximum potential of wetland
areas within the Oglio River Basin to serve as nitrogen
sinks via denitrification, we extrapolated the maximum rates
measured experimentally at connected sites to all the sur-
face presently occupied by wetlands in Oglio basin. We
calculated a maximum potential N removal in wetlands of
250 t N yr−1, a very small amount compared to that gener-
ated within the basin or exported to the Po River. Overall, N
loss via benthic denitrification was a minor fraction (<1 %)
of the basin N surplus due to limited extent and hydrological
connectivity of these environment within the Oglio River.

www.biogeosciences.net/9/361/2012/ Biogeosciences, 9, 361–373, 2012



368 M. Bartoli et al.: Nitrogen balance and fate in a heavily impacted watershed

6.2 Nitrogen removal in the Oglio River and in the
secondary drainage network

The relevance of denitrification as natural buffer for excess
nitrogen was evaluated also in lotic environments within
the Oglio River basin. N loss in the river course was esti-
mated using a dual isotopic approach (δ15NNO3 ‰ vs. AIR
andδ18ONO3 ‰ vs. V-SMOW). In selected campaigns con-
ducted during 2009 and 2010, water samples were collected
from the river its main tributaries and other potential nitrate
sources in the watershed for stable isotope analyses of dis-
solved nitrate (Delconte et al., 2012). Samples were prepared
and purified using the ion exchange resin method described
by Silva et al. (2000). Nitrate isotopes were determined by
IRMS, using a dual inlet Finnigan MAT 250 mass spectrom-
eter. Uncertainties (1σ) are±0.5 ‰ for δ15NNO3 and±1 ‰
for δ18ONO3. Denitrification causes the isotopic composition
of both δ15N and δ18O in nitrate to increase exponentially
as nitrate concentration decreases. Isotopic composition in-
creases for both elements in a roughly 2:1 ratio, causing data
to plot along a slope of about 0.5δ18O/δ15N (Fig. 6) (Kendall
et al., 2008). Assimilation by phytoplankton also results in
an increase in theδ15N andδ18O of the residual nitrate, but in
this case the ratio of the augment is assumed to be close to 1:1
(Granger et al., 2004). Dual isotopic analyses of nitrate are
therefore a powerful tool to assess the presence of denitrifica-
tion or assimilation and quantify their relevance (Deutsch et
al., 2009). We report here results from sampling performed
in July 2010, during low-flow conditions, although the ob-
served isotopic pattern for the Oglio River water does not
show marked seasonal differences (Delconte et al., 2012).

The Oglio River can be divided into three distinct sections
based on patterns of nitrate concentration (Fig. 2) and iso-
topic composition (Fig. 6). In the first 15 km, the isotopic
composition indicated an origin from atmospheric deposi-
tion or a contribution from synthetic fertilizers. Between 15
and 45 km, the isotopic composition indicated contribution of
nitrate derived from anthropogenic organic matter (i.e. am-
monification and nitrification of organic nitrogen from ma-
nure and/or septic system effluents) to stream nitrate. From
km 50 onward, an enrichment inδ15N values was observed,
while theδ18O values were rather similar to each other, and
samples showed no clear distinctive signature of the nitrate
origin.

Therefore, in the middle and final reach of the river (grey
and black triangles in Fig. 6), a decrease in concentration
and an enriched nitrate isotope composition suggest the pres-
ence of assimilation or denitrification processes. We believe
that nitrogen assimilation by phytoplankton is scarcely rele-
vant in the Oglio River, as suggested by low chlorophyll val-
ues in the water (generally below 10 µg l−1, data not shown).
Furthermore, decreasing nitrate concentrations and enriched
isotopic compositions are a common trend in all seasons,
also when primary production is limited by light and tem-
perature (Delconte el al., 2011). On the other hand, while

denitrification in the hyporheic zone of the upstream reaches
is probably limited by oxic conditions and low organic car-
bon in the gravel bottom, it is likely to occur downstream,
in the riverbed fine sediments. Denitrification may occur as
well in soils and groundwater feeding the river. Indeed, in the
southern portion of the watershed, denitrification in ground-
water is indicated by low nitrate concentrations co-occuring
with the presence of dissolved Fe and Mn (ARPA Lombardy,
2009). Unfortunately, the distinction between hyporheic and
groundwater denitrification is very difficult to establish, since
both processes have similar fractionation factors (Hinkle et
al., 2001; Sebilo et al., 2003). If denitrification is occurring,
assuming an isotopic difference inδ15N of at most +4 ‰,
and a fractionation factor of 1.020 (Kendall, 1998), it may
account for the removal of at most 20 % of the N load at
the Oglio River closing section (Mariotti et al., 1988), corre-
sponding to∼3200 t yr−1.

In the Oglio River basin, direct measurements of denitrifi-
cation rates in the secondary drainage system, which consists
mainly of irrigation channels, are not available. We thus es-
timated the range of theoretical denitrification rates in this
aquatic compartment according to the equation proposed by
Christensen et al. (1990) (for more details see Soana et al.,
2011). In particular, in order to quantify the maximum poten-
tial N removal via denitrification, we up-scaled the calculated
upper rates to the whole surface occupied by the ditch net-
work. The latter was evaluated in about 6250 ha, correspond-
ing to a total stream length of over 12 500 km, by means
of a GIS analysis. The calculated theoretical N removal is
equivalent to∼5500 t N denitrified during the 5-month pe-
riod when the system is active for irrigation practices. In
addition, assuming the highest denitrification rates reported
in the literature (Mander et al., 1997), we estimated that fur-
ther ∼3000 t N yr−1 of the surplus in the catchment can be
removed in vegetated buffer strips adjacent to the secondary
drainage network (linear extension of about 9500 km).

7 The relevance of groundwater for N-cycling in the
Oglio River watershed

7.1 Temporary accumulation and net N loss in the
central and southern portion of the basin

Denitrification in the Oglio River, in the secondary drainage
system and in its riparian area can account for at maxi-
mum 3200, 5500 and 3000 t N yr−1, respectively, represent-
ing about 45 % of the nitrogen amount which is in excess and
not exported out of the Oglio River basin (∼26 000 t N yr−1,
according to the budget performed for the year 2008). These
values are intended as maximal rates of denitrification. The
final fate of at least 14 300 t N yr−1 is at present not known,
and we speculate whether groundwater can represent a sig-
nificant site of N accumulation or loss in this watershed.
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Fig. 6. Isotopic composition of nitrate in water from the Oglio River (white triangles = upstream reach; grey triangles = middle reach; black
triangles = downstream reach), springs (squares) and selected WWTPs (diamonds). Compositional fields: 1 – synthetic fertilizers; 2 –
nitrified synthetic fertilizers; 3 – soil organic matter and contamination from mixed sources; 4 – anthropogenic organic matter (sewage and
manure); 5 – evolution during nitrification; 6 – evolution during denitrification. Modified after Kendall (1998), and Clark and Fritz (1997).

In the Oglio River basin, nitrate distribution in ground-
water from the shallow unconfined aquifer is not uniform
(Fig. 7). Concentrations near or above the threshold for
drinking water standards (50 mg NO−

3 l−1 or 11.29 mg N-
NO−

3 l−1) are commonly observed in the middle portion of
the basin. This area is particularly vulnerable to diffuse con-
tamination, due to the combined effects of coarse-grained
soils, flood-based irrigation practices, and widespread maize
cultivation, a crop that requires large N amendments (Figs. 1
and 7). This area also receives a large excess input of an-
imal manure, leading to N excess (Fig. 3). The downward
migration of this N surplus is also confirmed by nitrate iso-
tope composition, (enrichedδ15N and lowδ18O), identifying
anthropogenic organic matter (i.e. ammonification and nitri-
fication of organic N from manure and/or septic system efflu-
ents) as the pollution source in this area (Sacchi et al., 2011).

We could thus consider groundwater in the central part
of the Oglio watershed as an accumulation site for the ex-
cess nitrogen, particularly during the irrigation period (May–
September). In this area nitrate concentrations have in-
creased in groundwater over the last decade, even in rela-
tively deep wells (>30 m) (ERSAF Lombardy, 2009). This
temporal trend is concurrent with the increase in animal ma-
nure spreading.

Although these data suggest that groundwater is a N accu-
mulation site, we have evidences in the Oglio watershed of
nitrogen transport from subsurface to surface water network,
particularly in the “springs belt” zone between the north-
ern and southern portion of the catchment. This area also

corresponds to the reach where the nitrate increases sharply
in the Oglio River (Figs. 2 and 7), probably due to nitrate-rich
groundwater feeding the river course.

Rapid extraction of large volume of water for irrigation
from permeable areas can lead to reduced water residence
times in groundwater (B̈ohlke et al., 2007). This change has
multiple implications, such as faster recycling of pollutants
(as nitrogen but also herbicides) and reduced transformation
by biogeochemical processes (i.e. denitrification).

Confirmation of this accelerated water recycling is ob-
tained by stable isotope analyses of dissolved nitrate. In
July 2010, in the upper part of the watershed we collected
three groundwater samples characterized by high nitrate con-
centrations. Their isotopic composition is consistent with
other groundwater data from the northern part of the basin
(Sacchi et al., 2009, 2011) and is similar to that measured in
the Oglio River water in that part of the watershed (Fig. 6).
Therefore both concentration trends and nitrate isotope com-
position suggest the presence of mixing between Oglio River
and groundwater. By contrast, in the southern portion of
the basin, nitrate is often absent from groundwater, not only
due to the low permeability of the unsaturated zone or to
comparatively lower N input. Here, isotopic evidences in-
dicates rapid denitrification occurring within the soil and in
groundwater (Sacchi et al., 2011), and this is also confirmed
by reducing conditions and the occurrence of Mn and Fe in
groundwater (ARPA Lombardy, 2009).

We thus conclude that groundwater can be a large poten-
tial sink for N, especially in the southern portion of the basin,
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Fig. 7. Mean nitrate concentrations in the surficial aquifer within the
Oglio River basin (mg N-NO−3 l−1, data from 2002–2008). Black
dots show the location of censused springs within the watershed and
highlight the location of the springs belt, which is at the interface
between high and middle plain.

where N is permanently removed via denitrification. On the
other hand, in the northern and central part, nitrate accumu-
lates in groundwater and is recycled to the surface, acting as
an internal source of pollution.

7.2 Linking ground and surface water: the spring belt

Variable water volumes from the unconfined shallow aquifer
feed springs or interact with surface water bodies; as a conse-
quence groundwater contaminants and nitrogen in particular
can be substantially recycled to the surface. To verify this
hypothesis, during 2010 and 2011, water samples were col-
lected from a number of springs and characterized for flow
and concentration of dissolved gas and nutrients, in particu-
lar O2, CO2, CH4, N2O, NH+

4 , NO−

2 and NO−

3 (Laini et al.,
2011). Water from the springs was generally supersaturated
with N2O and displayed extremely high N-NO−

3 concentra-
tions, up to 20 mg N l−1. Overall, within the analyzed water-
shed, about 50 springs were censused (Fig. 7); each had a rel-
atively low water flow, generally below 50 l s−1. They prob-
ably represent a small fraction of the deep water that is recy-
cled to the surface, as most of flow occurs not in channels but
within the upper soil layers. Subsurface water movements
can mobilize the pollutants that are stored in groundwater.
On the other hand, groundwater mass balance calculations

in the area indicate that the water volume outflowing from
springs is up to ten times larger than that feeding the Oglio
River, suggesting that the “spring belt” represents one of the
main discharge areas of a nitrate-rich shallow aquifer (Lom-
bardy Region, 2006).

We thus speculate that the retention of the nitrate stock in
the groundwater of the central and northern portion of the
Oglio River watershed is only a temporary buffer as little
denitrification and a relevant flux to the surface water is go-
ing on. Ultimately, this means that pollution mitigation mea-
sures will not lead to immediate results. This observation
is in general agreement with the performance evaluation of
the Nitrates Directive application, indicating longer recovery
time and less performing results for groundwater with respect
to surface water (EEA, 2010; Bouraoui and Grizzetti, 2011).
This time lag is generally not appreciated by stakeholders.

8 Summary and conclusions

In the Oglio River basin, most municipalities have a high
population of farmed animals, without sufficient agricul-
tural land for manure spreading. The current legislation
specifies upper limits on manure spreading of 170 and
340 kg N ha−1 yr−1, for vulnerable and non-vulnerable soils,
respectively. Results from this study indicate much higher
amounts resulting in N surplus exceeding reported limits.
They also suggest that the arable land area theoretically nec-
essary to spread manure produced should be 3 times higher
than exists. In light of what we have shown any rise of the
limits of manure spreading in this vulnerable zone should be
carefully considered.

Excess nitrogen can determine multiple environmental im-
pacts. Since both denitrification and nitrification produce ni-
trous oxide, elevated direct and indirect N2O emissions are
reported in this area (Laini et al., 2011; Leip et al., 2011).
Agricultural and farming activities are the main source of
N2O and contribute to nearly 2 % of the current greenhouse
gas effect (IPCC, 2007). N2O is also regarded as the main
cause of the destruction of stratospheric ozone in the next fu-
ture (Ravishankara et al., 2009). Elevated emissions of am-
monia to the atmosphere are also expected, with potentially
negative consequences as eutrophication, soil acidification,
fine particles formation and alteration of the global green-
house balance (Anderson et al., 2003; Erisman et al., 2007;
Leip et al., 2011).

Excessive manure spreading has led to a large excess of
bioavailable nitrogen to the Oglio River watershed and to
broad-scale diffuse contamination by nitrate. We found el-
evated concentrations of N-NO−3 in the Oglio River, in most
of its tributaries, in all wetlands hydraulically connected
with the river, in groundwater and in springs. High con-
centrations of N-NO−3 in all water compartments is an evi-
dent sign of N-saturation in the terrestrial but probably also
in the aquatic portions of the watershed (Mullholand et al.,
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2008). Available information suggests that the contamina-
tion of groundwater is an ongoing process, as nitrate concen-
trations keep increasing (ERSAF Lombardy, 2009), although
the exact timing is presently undetermined.

We demonstrated that wetlands have the potential to re-
move, per unit area, large amounts of N. Denitrification
rates measured at connected sites for example are among
the highest reported in the literature, up to 25 mg N m−2 h−1

(Seitzinger et al., 2006; Piña-Ochoa and́Alvarez-Cobelas,
2006) but they are ineffective sinks due to the small surface.
Our results support the importance of restoring lateral inter-
actions between the river and its perifluvial areas, as elevated
denitrification potentials were also found at isolated sites.

Nitrate isotope analyses, together with N mass balance cal-
culations in the Oglio River, also suggest that denitrification
in the Oglio River itself is probably a minor N sink. The
lateral interactions with the surronding areas are in fact ex-
tremely limited in time and in space due to the regulation of
water flow and the presence of banks for most of its course.
The secondary drainage network is capillary extended in this
watershed and accounts for 100 times the length of the river,
with proportionally more interfaces for microbial processes
to occur. The secondary drainage network may be an impor-
tant sink for bioavailable nitrogen owing to its hydrological
connections with terrestrial systems, high rates of biological
activity, and streambed sediment environments that favour
microbial denitrification. Still, our estimates suggest that ni-
trogen removal via denitrification in irrigation channels is at
maximum 45 % of the missing nitrogen amount.

An important N-sink function within the watershed
is likely contributed by processes that result in net N-
accumulation and not in a net N-permanent loss. Such accu-
mulation can result in nitrate contamination of groundwater,
but also in organic N enrichment within arable lands or par-
ticulate N burial in aquatic environments, the latter two not
considered in the present study. Nitrogen accumulation in
groundwater can be a large potential sink for N, but it could
be temporary as stored N could be recycled to the surface
and act as an internal source of pollution, with strong analo-
gies with organic sediments in eutrophic lakes (Puckett et
al., 2011). Even if allochtonous sources of pollution are con-
trolled, lakes can remain eutrophic for many years as nutrient
recycling sustains primary productivity.

Detailed investigation by hydrogeologists is needed, in or-
der to clarify the path of groundwater and to date the nitrogen
that is recycled by springs. This will allow for an estimation
of the time required by groundwater to recover from nitrate
pollution if N loads are significantly reduced in the future.
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