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Abstract. Increasing atmospheric CO2 concentration is re-
sponsible for progressive ocean acidification, ocean warm-
ing as well as decreased thickness of upper mixing layer
(UML), thus exposing phytoplankton cells not only to lower
pH and higher temperatures but also to higher levels of solar
UV radiation. In order to evaluate the combined effects of
ocean acidification, UV radiation and temperature, we used
the diatomPhaeodactylum tricornutumas a model organism
and examined its physiological performance after grown un-
der two CO2 concentrations (390 and 1000 µatm) for more
than 20 generations. Compared to the ambient CO2 level
(390 µatm), growth at the elevated CO2 concentration in-
creased non-photochemical quenching (NPQ) of cells and
partially counteracted the harm to PS II (photosystem II)
caused by UV-A and UV-B. Such an effect was less pro-
nounced under increased temperature levels. The ratio of
repair to UV-B induced damage decreased with increased
NPQ, reflecting induction of NPQ when repair dropped be-
hind the damage, and it was higher under the ocean acidifi-
cation condition, showing that the increasedpCO2 and low-
ered pH counteracted UV-B induced harm. As for photosyn-
thetic carbon fixation rate which increased with increasing
temperature from 15 to 25◦C, the elevated CO2 and temper-
ature levels synergistically interacted to reduce the inhibition
caused by UV-B and thus increase the carbon fixation.

1 Introduction

The increase in atmospheric CO2 concentration is expected
to influence the acid–base balance in the pelagic (McNeil and
Matear, 2008) as well as in the coastal waters (Cai et al.,
2011) due to increasingly dissolved CO2, leading to ocean
acidification (Sabine et al., 2004). By the end of this cen-
tury, atmospheric CO2 levels are expected to increase to 800–
1000 ppmv (IPCC A1F1 scenario), while surface seawater
pH would be reduced by 0.3–0.4 pH units (100–150 % in-
crease in H+ concentration) (Caldeira and Wickett, 2003;
Orr et al., 2005). Ocean acidification is known to reduce cal-
cification of coccolithophores (Beaufort et al., 2011; Riebe-
sell and Tortell, 2011) and coralline algae (Gao et al., 1993;
Gao and Zheng, 2010). On the one hand, increasingpCO2
in seawater has been shown to stimulate growth and photo-
synthetic carbon fixation rates of phytoplankton (Hein and
Sand-Jensen, 1997; Schippers et al., 2004; Riebesell et al.,
2007; Wu et al., 2010; McCarthy et al., 2012), while neu-
tral effects of CO2 enrichment were also reported (Tortell et
al., 2000; Tortell and Morel, 2002; Fu et al., 2007). On the
other hand, the increase inpCO2 may alter phytoplankton
community structure (Tortell et al., 2002), and enhance mi-
tochondria respiration (Wu et al., 2010). Ocean acidification
is not an isolated process, and thus interactive effects with
other climate changes, like increasing temperature and UV
radiation (UVR, 280–400 nm), need to be considered in an
holistic way (Boyd, 2011; Hutchins, 2011).

With increasing atmospheric CO2 concentration, global
temperature is expected to increase by 2.5–6.4◦C in the
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atmosphere (Alexiadis, 2007) and by 2–3◦C in the sur-
face oceans by the year 2100 (Houghton et al., 2001). Such
changes will also have important effects on various organ-
isms, since most physiological processes are temperature-
dependent (Allakhverdiev et al., 2008). It is known that
temperature affects the morphology (Mühling et al., 2003)
and biochemical composition (M̈uhling et al., 2005) of
cyanobacteria. However, differential responses to the com-
bined “greenhouse” (warming as well as elevated CO2) treat-
ment have been found in the marine picocyanobacteriaSyne-
chococcusandProchlorococcus, with the growth rate of the
former increasing and that of the latter not changing (Fu et
al., 2007). Hutchins et al. (2007) reported that either ele-
vated CO2 (750 ppmv) or a 4◦C temperature increase stim-
ulated the growth and nitrogen fixation rate of the filamen-
tous cyanobacteriumTrichodesmiumsp., however synergis-
tic effects among these two variables had not been observed.
A 5 ◦C temperature rise only increased photosynthesis and
calcification of Emiliania huxleyigrown under Ca2+ suf-
ficient but not under Ca2+ deficient conditions (Xu et al.,
2011). Nevertheless, the “greenhouse” increased the coccol-
ithophore cell abundance (Feng et al., 2009). The distribu-
tions and ecological niches of major phytoplankton groups
like dinoflagellates (Peperzak, 2003; Cloern et al., 2005; Hal-
legraeff, 2010), diatoms, and coccolithophores (Merico et
al., 2004; Hare et al., 2007) have been suggested to change
with ocean warming. The acceleration of the spring phyto-
plankton bloom and changes in dominant species were af-
fected by the combination of warming and high light levels
(Lewandowska and Sommer, 2010). It is known that a “strat-
ified greenhouse” of the surface oceans has been affected by
progressive oceanic warming and acidification (Doney, 2006;
Beardall et al., 2009), therefore, phytoplankton cells will be
exposed to “greenhouse” under increasing exposures to solar
visible and ultraviolet radiation (UVR, 280–400 nm).

Solar UV-B (280–315 nm) radiation at the Earth’s surface
has been shown to increase due to the ozone depletion and
its interplay with climate change (Manney et al., 2011). UVR
(UV-A + UV-B) is known to inhibit growth and photosynthe-
sis (Helbling et al., 1992; Heraud and Beardall, 2000; Gao et
al., 2007a; Jiang and Qiu, 2011) and damage proteins and the
DNA molecule (Grzymski et al., 2001; Xiong, 2001; Gao et
al., 2008). However, moderate UVR levels were shown to in-
crease photosynthetic carbon fixation (Nilawati et al., 1997;
Barbieri et al., 2002), with UV-A (320–400 nm) even driving
photosynthetic carbon fixation in the absence of PAR (Gao et
al., 2007b).

In an ecological context, where organisms are exposed to
the influence of several abiotic and biotic factors, the effects
of multiple factors can greatly differ from simple combina-
tions of single-factor responses (Christensen et al., 2006),
that is, variables can act in synergistic or antagonistic ways
(Dunne, 2010). For example, at ambient CO2 level, the pres-
ence of UVR stimulated calcification ofE. huxleyii (Guan
and Gao, 2010), however at elevated CO2 levels, it inhibited

calcification (Gao et al., 2009). Fu et al. (2008) reported that
only simultaneous increases in both CO2 and temperature
enhanced the maximum light-saturated carbon fixation rate
(P B

max) of the raphidophyteHeterosigma akashiwo, whereas
CO2 enrichment with or without increased temperature in-
creased or reducedP B

max under high CO2 or high tempera-
ture treatment, respectively, of the dinoflagellateProrocen-
trum minimum. Under ocean acidification conditions, UV-
B inhibited growth of the red tide algaPhaeocystis globosa
(Chen and Gao, 2011).

Obviously, more attention is being paid to the study of the
interactive effects of multiple stressors and ocean acidifica-
tion on different taxonomic groups; however, diatoms have
surprisingly received less attention. Changes in the seawater
carbonate system, such as increasedpCO2 and HCO−

3 con-
centrations and decreased pH, may affect the phytoplankton
energetics maintaining their intracellular acid–base stability,
and thus their physiology coping with additional environ-
mental changes. Consequently, we hypothesize that diatoms
grown under ocean acidification conditions (high CO2/lower
pH) will be more sensitive to increases of UVR and temper-
ature than cells grown at ambient CO2 level. To test this hy-
pothesis, we chose the cosmopolitan diatom speciesPhaeo-
dactylum tricornutumas model organism, and the process
studied was photosynthesis, via carbon incorporation and
photochemical measurements.

2 Materials and methods

2.1 Organism model and culture conditions

Phaeodactylum tricornutumBohlin (strain CCMA 106, iso-
lated from the South China Sea (SCS) in 2004) was ob-
tained from the Center for Collections of Marine Bacte-
ria and Phytoplankton (CCMBP) of the State Key Labo-
ratory of Marine Environmental Science, Xiamen Univer-
sity. Cultures were grown in 0.22 µm filtered natural sea-
water collected from the South China Sea (SEATS station:
116◦ E, 18◦ N) and enriched with Aquil medium (Morel et
al., 1979). The cultures were maintained at 20◦C for about
20 generations before used in experiments. During this pe-
riod, cultures were illuminated with cool white fluorescent
tubes that provided 70 µmol photons m−2 s−1 of Photosyn-
thetic Active Radiation (PAR; 12L:12D). The cultures (trip-
licate per each CO2condition) were continuously aerated
(350 ml min−1) with ambient CO2 level (LC, 390 µatm) or
CO2 enriched (HC, 1000 µatm) air which was controlled with
a CO2 plant chamber (HP1000G-D, Wuhan Ruihua Instru-
ment and Equipment Co., Ltd., Wuhan, China) with varia-
tions< 4 %.

Semi-continuous cultures were operated by diluting them
with the CO2-equilibrated media every 24 h, and the concen-
tration of cells was maintained within a range of 7×104–3×

105 cells ml−1, so that the seawater carbonate system param-
eters were stable (Table 1) with pH variations< 0.02 units.
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Table 1.Mean (±SD,n = 24) values of parameters of the seawater carbonate system under LC (ambient, 390 µatm CO2) and HC (enriched,
1000 µatm CO2) during the eight days prior to experiments. The superscripts represent significant difference between LC and HC.

pCO2 pHNBS DIC HCO−

3 CO2−

3 CO2 Total alkalinity
(µmol kg−1) (µmol kg−1) (µmol kg−1) (µmol kg−1) (µmol kg−1)

LC 8.16± 0.01a 1903.3± 47.66a 1709.3± 39.2a 181.2± 8.4a 12.6a 2171.0± 57.8a

HC 7.82± 0.02b 2127.3± 75.3b 1998.3± 69.2b 96.7± 6.7b 32.3b 2246.4± 84.0a

The concentrations of cells were determined using a Coulter
Counter (Z-2, Beckman) before and after the dilution (prior
to the start of dark period). pH was measured with a pH me-
ter (Benchtop pH 510, OAKTON) that was calibrated daily
with a standard National Bureau of Standards (NBS) buffer
(Hanna). Other parameters of the seawater carbonate sys-
tem (Table 1) were calculated using the CO2SYS software
(Lewis and Wallace, 1998) taking into account the salin-
ity, pCO2, pH, nutrient concentrations and temperature. The
equilibrium constantsK1 andK2 for carbonic acid dissocia-
tion andKB for boric acid were determined according to Roy
et al. (1993) and Dickson (1990), respectively.

2.2 Experimental setup

Samples ofP. tricornutum (either from LC or HC, tripli-
cate cultures for each CO2 level) were harvested (concentra-
tion of ∼ 2× 105 cells ml−1), resuspended in fresh medium
to a final concentration of∼ 2× 104 cells ml−1 and put ei-
ther in 35 or 100 ml quartz tubes (for carbon uptake or mea-
surements of fluorescence parameters, respectively, see be-
low). Three radiation treatments were implemented (with
triplicate samples for each treatment): (1) PAB (PAR + UV-
A + UV-B) treatment – quartz tubes covered with Ultra-
phan film 295 (Digefra, Munich, Germany), thus receiv-
ing irradiances above 295 nm; (2) PA (PAR + UV-A) treat-
ment – quartz tubes covered with Folex 320 film (Mon-
tagefolie, Folex, Dreieich, Germany), samples receiving ir-
radiances above 320 nm; and (3) P treatment – quartz tubes
covered with Ultraphan film 395 (UV Opak, Digefra), sam-
ples receiving only PAR (400–700 nm). The transmission
of these cut-off foils and quartz tubes are available else-
where (Figueroa et al., 1997). The tubes for carbon incorpo-
ration and for fluorescence measurements were placed under
a solar simulator (Sol 1200 W; Dr. Ḧonle, Martinsried, Ger-
many). The cells were exposed to irradiances of 63.5 W m−2

(PAR, 290 µmol photons m−2 s−1), 23.1 W m−2 (UV-A) and
1.20 W m−2 (UV-B) for 60 min under three temperature lev-
els: 15, 20 and 25◦C, by maintaining the tubes in a circu-
lating water bath for temperature control (CTP-3000, Eyela).
During the exposures, measurements of fluorescence param-
eters were done (see below); after exposure, part of the sam-
ples were processed for carbon uptake measurements, while
part of them were allowed to recover for 80 min (under the
initial growth light level of 70 µmol photons m−2 s−1), dur-

ing which fluorescence parameters were measured (see be-
low).

2.3 Measurements and analysis

2.3.1 Radiation measurements

The irradiances received by the cells were measured using
a cosine response broad-band filter radiometer (ELDONET,
Real Time Computer, M̈ohrendorf, Germany) that has chan-
nels for UV-B (280–315 nm), UV-A (315–400 nm) and PAR
(400–700 nm).

2.3.2 Effective photochemical quantum yield

For the determination of the effective photochemical quan-
tum yield (8PS II), aliquots of 2 ml of sample from each
tube (total of 9 tubes per CO2 level, that is, triplicate
per each radiation treatment) were taken every 1 min, both
during exposure and recovery, and immediately measured
(without any dark adaptation) using a xenon–pulse ampli-
tude modulated fluorometer (XE-PAM, Walz, Germany).
Each sample was measured 4 times and the8PS II was de-
termined by measuring the instant maximum fluorescence
(F ′

m) and the steady state fluorescence (Ft) of the light-
adapted cells and calculated according to Genty et al. (1989)
as: 8PS II = (F ′

m − Ft)/F
′
m = 1F/F ′

m. Non-photochemical
quenching (NPQ) was calculated as: NPQ =(Fm − F ′

m)/F ′
m,

whereFm represents the maximum fluorescence yield after
dark adaptation for 10 min andF ′

m the maximum fluores-
cence yield determined using a saturating white light pulse
(5000 µmol photons m−2 s−1 in 0.8 s) at the actinic light lev-
els (300 µmol photons m−2 s−1, similar to the exposure PAR
level).

The inhibition of8PS II due to UVR, UV-A, or UV-B was
calculated as:

InhUVR (%) = (8PS II P− 8PS II PAB)/(8PS II P) × 100,

InhUV-A (%) = (8PS II P− 8PS II PA)/(8PS II P) × 100,

InhUV-B(%) = (8PS II PA− 8PS II PAB)/(8PS II P) × 100

= InhUVR (%) − InhUV-A (%),

where8PS II P, 8PS II PA, and8PS II PAB indicate the values of
8PS II in the P, PA and PAB treatments, respectively.
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The rates of UV-induced damage to the photosynthetic
apparatus (k, in min−1) and repair (r, in min−1) were esti-
mated according to Heraud and Beardall (2000), applying the
Kok model that assumes simultaneous operation of the dam-
age and recovery during the photoinhibitory exposures, and
calculated as follows:Y = r/(r + k) +k/(r + k) ∗e−(r+k)∗t ,
whereY represents8PS II at tn time.

2.3.3 Photosynthetic carbon uptake

Samples were inoculated with 5 µCi (0.185 MBq) of labeled
sodium bicarbonate (ICN Radiochemicals). A total of 20
tubes per CO2 level (6 for each radiation treatment, plus
2 dark controls) were exposed under the solar simulator,
with 3 tubes per radiation treatment (plus 2 dark) being fil-
tered (Whatman GF/F, 25 mm) right after the 60 min of the
exposures, while the other 9 tubes were filtered after the
60 min of recovery. After filtration, the filters were placed
into 20 ml scintillation vials, exposed to HCl fumes overnight
in darkness, and dried at 45◦C for 4 h. Scintillation cock-
tail (Wallac Optiphase Hisafe 3, Perkin Elmer Life and An-
alytical Sciences, USA) was added to the vials, and the
samples were counted after 1 h using a liquid scintillation
counter (LS6500 Multi-Purpose Scintillation Counter, Beck-
man Counter, USA). The rate of photosynthetic carbon fixa-
tion was calculated according to Holm-Hansen and Helbling
(1995). The inhibition due to UVR, UV-A or UV-B was de-
termined in the same way as described for8PS II.

2.3.4 Chlorophyll a (chl a)

Concentration of chla at the beginning of the exposures was
determined by filtering∼ 250 ml of culture onto a What-
man GF/F filter (diameter: 25 mm), extracted in 5 ml abso-
lute methanol overnight at 4◦C, and then centrifuged (10 min
at 5000 g). The absorption spectrum of the supernatant was
obtained by scanning the sample from 250 to 750 nm with a
scanning spectrophotometer (DU 800, Beckman Coulter Inc)
and the concentration of chla was calculated using the equa-
tion of Porra (2002).

2.3.5 Data analysis

Three replicates for each radiation/temperature/CO2 condi-
tion were used in all experiments, so that the data is plot-
ted as mean and standard deviation values. Three- and two-
way ANOVA tests were used to determine the interaction be-
tween UVR, temperature and CO2 concentration, or among
two of these variables, respectively. The two-sample paired
t-test was also used to determine significant differences be-
tween CO2, temperature or UV treatments. Significance level
was set atP < 0.05.

3 Results

3.1 Carbonate system during semi-continuous growth

The pH levels in the LC or HC cultures were 8.16 (±0.01)
and 7.82 (±0.02), respectively, being significantly different
(P < 0.01, two-sample paired t-test). In the HC cultures,
DIC, HCO−

3 and CO2 levels were significantly higher by
11.8 %, 16.9 % and 156.3,%, respectively, and that of CO2−

3
was lower by 46.6 %. There was no significant difference in
the total alkalinity between the two cultures, with the varia-
tions being< 0.4 %.

3.2 Growth and photochemical responses

The growth rate of the HC-grownP. tricornutumcells was
higher by 3.7 % (P = 0.001) as compared to that of the LC-
grown ones after being acclimated for more than 20 genera-
tions.

When exposed to UV radiation, the effective photochemi-
cal quantum yield (8PS II) decreased significantly during the
first 10–20 min of exposure in all radiation/temperature/CO2
treatments (Fig. 1); after this period,8PS II remained more
or less constant. These trends were best described and fit-
ted using a first order exponential decrease function (8PS II =

a+b∗e(−c∗t), wheret represents the time of exposure, anda,
b andc are adjustment parameters). Regardless of the tem-
perature and CO2 levels, the samples receiving PAR alone
had less decrease in8PS II (the lowest value reached ca. 0.5)
after 10–20 min of exposure than those additionally receiv-
ing UV-A (in which 8PS II decreased to 0.3–0.4) or UV-
A + B (8PS II decreased to 0.2–0.3). At the same temperature
level, HC-grown cells had generally better photochemical
performance (i.e., higher8PS II) than LC-grown ones, and
this was more evident in the UV-treated samples. These dif-
ferences in photochemical responses were clearly seen when
plotting the8PS II ratios of HC- to LC-grown cells (Fig. 2),
which was∼ 1 in the P treatment at all temperatures. In the
presence of UV-A or UV-A + UV-B, these trends were of in-
creasing HC / LC8PS II ratio during the 10–20 min of expo-
sure, and then leveling off and maintaining rather constant
values. The ratios HC / LC8PS II, however, increased with in-
creasing temperature: For example, under the PAB treatment,
the ratios had mean values of 1.22, 1.30, and 1.41 for samples
exposed at 15, 20 and 25◦C, respectively. At 25◦C, sam-
ples receiving UV-B had a significantly higher (P < 0.01)
HC / LC8PS II ratio than samples in the PA treatment; how-
ever, no significant differences were found between the PA
and PAB treatments at 15 or 20◦C (P > 0.1).

The rates of damage (k) and repair (r) during the expo-
sures, estimated from the changes in8PS II over time under
different treatments, are presented in Fig. 3. There were dif-
ferences in damage rates due to UV-A or UV-B (Fig. 3a and
b) between the LC- and HC-grown cells, however changes
were not significant at all temperature levels tested. In terms
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Fig. 1. Changes in effective photochemical quantum yield (8PS II)

of P. tricornutumcells grown under ambient (390 µatm, LC) (A, C
andE) and elevated CO2 (1000 µatm, HC) partial pressures (B, D
andF) when exposed to solar radiation for 60 min under three radia-
tion treatments – PAB (irradiated above 295 nm, black squares), PA
(irradiances above 320 nm, white circles) and P (irradiances above
395 nm, half solid triangles) – at 15, 20 and 25◦C. Solid lines repre-
sent the best fit while the broken lines represent the 95 % confident
limits.

of the effects caused by UV-A or UV-A + B (Fig. 3a and b),
lower values were observed at 20◦C (growth temperature) in
both LC- and HC-grown cells, although the difference was
not significant either. The repair rates (Fig. 3c and d) in the
presence of UV-A or UV-B appeared to be higher in the HC-
grown cells, but the differences were also not significant.

In order to determine the potential “protecting” role of
excess energy dissipation via non-photochemical quenching
(NPQ), the variations of the ratio of repair (r) to damage
(k), r/k, estimated from the changes in8PS II over time
were plotted against NPQ (Fig. 4). Inverse linear relation-
ships were observed, with highr/k values associated with
lower NPQ ones. Under the PA treatment,r/k in LC- and
HC-grown cells had a similar decrease with increasing NPQ
values (Fig. 4a). The addition of UV-B significantly reduced
r/k (P < 0.05) (Fig. 4b) and led to a differential decrease of
the ratio between the HC- and LC-grown cells. Nevertheless,

Fig. 2.Ratio of the HC- to LC-grown cells’ effective quantum yield
(8PS II) in P. tricornutumexposed to the three radiation treatments
– PAB (irradiated above 295 nm, black squares), PA (irradiances
above 320 nm, white circles) and P (irradiances above 395 nm, half
solid triangles) – at 15, 20 and 25◦C. Solid lines represent the best
fit while the broken lines represent the value of 1.

HC-grown cells always had higherr/k than LC-grown cells
at all NPQ values.

Once the stress was removed (i.e., after exposure, when
the samples were shifted to low light levels),8PS II recov-
ered; this recovery was best described and fitted by a first or-
der exponential equation:8PS II = a+b∗(1−e(−c∗t)), where
t represents the time of exposure, anda, b andc are adjust-
ment parameters (Fig. 5). Pre-exposure to UV-A and UV-
B markedly hindered the recovery of8PS II, especially in
the 15◦C treatment for the LC-grown cells (Fig. 5a). How-
ever, the recovery rate of the LC-grown cells increased with
temperature (Fig. 5a, c and e). In the HC-acclimated cells
(Fig. 5b, d and f), the differences in recovery among the radi-
ation treatments were not significant regardless of the preced-
ing exposures to UV, with the exception of that incubated at
15◦C under the PAB treatment (P < 0.05). Within the same
experimental temperature level, HC-grown cells had in gen-
eral higher recovery rates than LC-grown ones, especially in
cells that received UV.

www.biogeosciences.net/9/3931/2012/ Biogeosciences, 9, 3931–3942, 2012
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Fig. 3.Damage (k, in min−1) and repair rates (r, in min−1) of P. tri-
cornutumcells grown at ambient (LC, white bars) and elevated CO2
(HC, black bars) concentrations while exposed to radiation treat-
ments with UV-A,(A) and (C), or UV-A + B, (B) and (D), at 15,
20 or 25◦C. The bars represent the means (n = 3) and the vertical
lines are the standard deviation. Lines above histogram bars indi-
cate significant difference between LC and HC, and the same letters
indicate insignificant differences among the temperature treatments
within the HC- or LC-grown cells.

3.3 Photosynthetic carbon fixation responses

Chl a content did not change throughout the exposure period
within each CO2 treatment, and there was no significant dif-
ferences in the chla content between the LC- and HC-grown
cells (0.27 vs. 0.26 pg chla cell−1, SD = 0.017).

The photosynthetic carbon fixation rates during the expo-
sures and recovery are shown in Fig. 6. After 60 min of ex-
posure (Fig. 6a, c and e), the LC-grown cells had higher pho-
tosynthetic carbon fixation rates than the HC-grown ones,
with the highest values found under the P treatment at 25◦C
(∼ 1.36 pg C cell−1 h−1). Moreover, the presence of UV-A
or UV-A + UV-B reduced photosynthetic carbon fixation re-
gardless of the growth CO2 conditions or temperature levels.
Increasing temperature from 15◦C (Fig. 6a) to 20 or 25◦C
(Fig. 6c and e) significantly enhanced carbon fixation rates
(P < 0.01). During the next 60 min recovery period, no sig-
nificant differences among radiation treatments in the LC-
grown cells were found at 15 or 25◦C (Fig. 6b and f), but
at 20◦C carbon fixation was lower in the PAB than under
the P or PA treatments (Fig. 6d). The HC-grown cells, in-
stead, presented different responses: The lowest values were
determined at 15◦C (Fig. 6b), whereas the highest were at
20◦C (Fig. 6d). When comparing photosynthetic carbon fix-
ation rates among the exposure and recovery periods, it was
seen that they were in general significantly higher (P < 0.05)
when UV-A or UV-A + B was removed during the recovery
period, except that at 25◦C. At 20◦C, the carbon fixation rate

Fig. 4. Ratio of damage (k) to repair (r) as a function of non-
photochemical quenching (NPQ) ofP. tricornutum cells grown
at ambient (LC, white symbols) and elevated CO2 (HC, black
symbols) concentrations when exposed to PAR + UV-A(A) or
PAR + UV-A + UV-B (B) at 15 (squares), 20 (circles) or 25◦C (tri-
angles). The broken lines represents linear regressions (A: R2

=

0.86 (LC) and 0.98 (HC);B: R2
= 0.85 (LC) and 0.97 (HC)).

was higher (P < 0.01) under the low PAR received during
the recovery period, regardless the CO2 levels.

When the UVR-induced inhibition of the photosynthetic
carbon fixation was compared among the different CO2 lev-
els/temperatures (Fig. 7), it was seen that UV-A induced the
highest inhibition at the lower temperature (15◦C) (Fig. 7a).
The HC-grown cells showed higher sensitivity to UV-B at
the lower temperature, but a reversed trend was observed at
higher temperatures (20 and 25◦C), although the differences
were not significant (P > 0.1). The “greenhouse” effects sig-
nificantly reduced the photosynthetic inhibition (P < 0.05)
caused by both UV-A (Fig. 7a) and UV-B (Fig. 7b).

4 Discussion

Global climate change brings about a combination of sev-
eral factors that act together in such a way that they modify
the dynamics of the ocean systems and hence, of the com-
munities living there. In our study, we addressed the com-
bined effects of three variables associated to climate change
– ocean acidification (as addressed by a rise in CO2 and H+

concentrations), UV and temperature – on the cosmopolitan
diatomPhaeodactylum tricornutum. Overall, we determined
that the “greenhouse” treatment resulted in a generally better
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Fig. 5. Recovery of the effective photochemical quantum yield
(8PS II) in the LC- (A, C and E) and HC- (B, D and F) grown
cells of P. tricornutumafter exposure to three radiation treatments
– PAB (irradiated above 295 nm, black squares), PA (irradiances
above 320 nm, white circles) and P (irradiances above 395 nm, half
solid triangles) – at 15, 20 and 25◦C. Solid lines represent the best
fit while the broken lines represent the 95 % confident limits.

photosynthetic performance of this species and less sensitiv-
ity to UV.

In the present study we used the same strain ofP. tricor-
nutumas in previous studies carried out by Wu et al. (2010).
Increased growth rate and unaffected cellular chla content
under the elevated CO2 level were consistent between the
present and those previous reports. Under the PAR alone
treatment and increased temperature (Fig. 2b), the cells
showed lower effective photosynthetic quantum yield under
the elevated CO2 levels, which also agrees with the previous
findings by Wu et al. (2010), with HC-grown cells having
higher inhibition of electron transport rate. However, when
shifted to the lowest (15◦C) or highest (25◦C) tempera-
ture levels, this trend disappeared (Fig. 2a and c). However,
Wu et al. (2010) reported that the NPQ for the HC-grown
cells was lower than the LC ones when the cells grown at
PAR intensities of 120 µmol m−2 s−1 were exposed to an ac-
tinic light of 840 µmol m−2s−1 within a time frame< 5 min.
In this work, HC-grown cells showed higher NPQ than the
LC-grown ones, with exposures of about 300 µmol m−2 s−1

(PAR) for over 50 min and performing the determinations

Fig. 6. Photosynthetic carbon fixation rates (in pg C cell−1 h−1) in
the LC- (white bars) and HC- (black bars) grown cells ofP. tri-
cornutumexposed to three radiation treatments – PAB (irradiated
above 295 nm), PA (irradiances above 320 nm) and P (irradiances
above 395 nm) – at 15, 20 and 25◦C. (A), (C) and(E) represent the
carbon fixation rate during the 60 min exposure, while(B), (D) and
(F) represent that during the 60 min recovery period. The bars rep-
resent the means (n = 3) and the vertical lines on top are the stan-
dard deviation. Lines above the histogram bars indicate significant
differences between LC and HC, and different letters indicate sig-
nificant differences among the radiation treatments within the HC-
or LC-grown cells within each panel.

with the actinic light of 300 µmol m−2 s−1. The exposure
time span might have accounted for part of this discrepancy
in NPQ between this work and the previous study (Wu et al.,
2010). In addition, since carbon concentration mechanisms
(CCMs) of this diatom become down-regulated under ele-
vated CO2 (Burkhardt et al., 2001; Wu et al., 2010; Hopkin-
son et al., 2011), and levels of light can modulate the effi-
ciency of CCMs (Bartual and Galvez, 2003; Raven, 2011;
Reinfelder, 2011), the cells grown at 70 (present work) and
120 µmol m−2 s−1 (Wu et al., 2010) levels would have differ-
ent levels of CCM operation efficiency or different levels of
energetics; so that may be why the discrepancy might have
occurred. In addition, NPQ under solar radiation (long ex-
posures of about 12 h) was remarkably stimulated under ele-
vated CO2 levels of 1000 µatm (Gao et al., 2012).

When exposed to UV, the HC-grown cells had a better
photochemical performance (i.e., smaller decrease of8PS II)

than those grown in LC conditions, with the ratio of8PS II
in HC- to that in the LC-grown cells> 1 (Fig. 2), indicat-
ing that UV and high CO2 synergistically raised the yield.
When the UV-induced inhibition of photosynthetic carbon
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Fig. 7.Inhibition of photosynthetic carbon fixation ofP. tricornutum
grown at ambient (LC, white bars) and elevated CO2 (HC, black
bars) concentrations due to UV-A(A) or UV-B (B) exposed to three
radiation treatments for 60 min at 15, 20 and 25◦C. The bars rep-
resent the means (n = 3), and the vertical lines on top are the stan-
dard deviation. Lines above the histogram bars indicate significant
difference between LC and HC, and different letters indicate signif-
icant differences among the temperature treatments within the HC-
or LC-grown cells.

fixation was examined (Fig. 7), obviously, the high CO2 level
acted to reduce the UV-B-induced inhibition of photosynthe-
sis, though the absolute photosynthetic carbon fixation rates
were higher under the PAR-alone treatments compared to
those with UV (Fig. 6). It has been previously found that
effects of climate change variables (temperature and UV)
were different according to the photosynthetic targets ex-
amined (Helbling et al., 2011), which could explain at least
part of the differences observed between LC and HC pre-
acclimated cells. Moreover, Wu et al. (2010) found forP.
tricornutumthat respiration was enhanced in the HC-grown
cells and that its carbon concentration mechanisms (CCMs)
were down-regulated. Photorespiration was also higher in
the HC-grown cells of this species (Gao et al., 2012). On
the other hand, high contribution of net CO2 uptake (about
two-thirds) to total inorganic carbon acquisition was reported
in P. tricornutum(Burkhardt et al., 2001; Hopkinson et al.,
2011). Together with the down-regulation of CCM (mean-
ing a lowered active uptake of inorganic carbon), enhance-
ment of mitochondrial- and photo-respiration could have led
to decreased photosynthetic carbon fixation due to the ad-
ditional carbon losses. The stimulated quantum yield in the
HC-grown cells appeared to be attributed to the extra carbon
loss, i.e., extra electron drainage due to enhanced photores-
piration, which provided a protective role.

The UV-induced inhibition of the effective photochemi-
cal quantum yield was inversely correlated with tempera-
ture. The ratios of repair to damage (r/k) decreased with
increasing NPQ (Fig. 4). Similarly, in the diatomsThalas-
siosira pseudonanaand Coscinodiscus radiates, when re-
pair and photoinactivation are balanced, NPQ induction is
small. NPQ induction increased under treatment conditions
where photoinactivation exceeded repair (Wu et al., 2012).
At the low temperature, the LC-grown cells showed higher
UV-induced inhibition of photochemical efficiency (Fig. 1),
and the recovery was slower (Fig. 5) compared with the HC-
grown ones. The “greenhouse” treatment resulted in a sig-
nificant (P< 0.05) decrease of UV-induced inhibition from
50–60 % to 27–36 %, of which UV-B accounted for about
8 % and 14 %, respectively. This trend appears to be sim-
ilar to the changes observed in photosynthetic carbon fix-
ation, as increase in its rates with increasing temperature
was higher in the HC- than in the LC-grown cells (Fig. 6a,
c and e), reflecting a synergistic effect ofpCO2 rise and
warming. This might be associated with enhanced activ-
ity of cellular enzymes and membrane fluidity, as they are
temperature-dependent (Allakhverdiev et al., 2008), and ac-
celerated molecular repair rates that usually increase with
temperature within a species’ thermal window (Conkling and
Drake, 1984; Gao et al., 2008). In the presence of UV-B,
NPQ in the LC-grown cells was lower than HC-grown ones,
especially under the lower temperature treatment (Fig. 4b).
Down-regulation of CCM might have aided to enhance NPQ
in the HC-grown cells due to the saved energy demand for
CO2 active uptake, which could lead to an additional light
stress (Gao et al., 2012). Activity and gene expression of Ru-
bisco in the diatomThalassiossira weissflogiiincreased with
increased temperature, and this might have partially coun-
teracted the UV-induced inhibition of photosynthetic carbon
fixation (Helbling et al., 2011). On the other hand, high lev-
els of UV can lead to degradation of periplasmic carbonic
anhydrase (CAe) (Wu and Gao, 2009), as well as Rubisco
and D1 protein (Bischof et al., 2002; Bouchard et al., 2005),
and increased temperature could have stimulated the repair of
the damaged molecules. The beneficial effects of increased
temperature on photosynthesis under UV stress have been
previously documented (Sobrino and Neale, 2007; Gao et
al., 2008; Halac et al., 2010; Helbling et al., 2011), show-
ing lower UV-induced inhibition or damages at higher tem-
peratures. Differential sensitivities to UV have been reported
in marine picoplankters when grown under elevated CO2
concentrations, withNannochloropsis gaditanahaving lower
sensitivity while Nannochloris atomusshowed neutral re-
sponse (Sobrino et al., 2005). For the diatomThalassiosira
pseudonana, when grown at elevated CO2 concentration, it
became more sensitive to UV (Sobrino et al., 2008). In the
present study, when the photosynthetic carbon fixation and
8PS II were compared, the UV-induced inhibition was lower
on the former than on the latter, and higher CO2 weakened
this inhibition. Regardless of the pre-acclimation CO2 levels,
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less inhibition caused by UV on carbon fixation might be
due to stimulation of the activity of CAe (Wu and Gao,
2009), which catalyzes the inter-conversion of bicarbonate
and CO2, therefore stimulating the uptake of CO2 during the
exposures. Additionally, the increase ofr/k with tempera-
ture was higher in the HC- than in the LC-grown cells, which
reflects enhanced repair in these cells, as UV-induced molec-
ular damage was independent of temperature (Ishigaki et al.,
1999).

In terms of ecological implications, future “greenhouse”
ocean with decreased thickness of the upper mixing layer
(enhanced stratification) may expose phytoplankton cells to
higher exposures of solar UV as well as PAR. For diatoms
like P. tricornutum, increased CO2 and seawater acidity
might counteract somehow the harm caused by UV-B. Since
UV-A results in negative effects on phytoplankton carbon
fixation under high solar radiation but positive ones under
reduced levels of solar radiation, playing a double-edged ef-
fect on phytoplankton (Gao et al., 2007b), its stimulating ef-
fects would be enlarged under ocean acidification conditions
(Chen and Gao, 2011). Thus, the net effects of UV, tem-
perature and CO2 will largely depend on the levels of so-
lar radiation to which the phytoplankton cells are exposed.
Consequently, mixing rates or mixing depth will explicitly
affect the combined effects of the above climate change
variables, as mixing exposes cells to fluctuating irradiances
which can affect the balance between photodamage and re-
pair of PS II. Increased NPQ, as found in this study, closely
related to the decreases (UV-related) of the ratio between re-
pair and damage rate (r/k) of PS II in P. tricornutum. The
increased seawater acidity must have stimulated photopro-
tective processes, thus, leading to higher NPQ, which was
especially pronounced in the presence of UV-B (Fig. 4). In-
creasing temperature, in some cold or temperate waters, may
help the species likeP. tricornutumto counteract negative
effects of UVR or ocean acidification-induced harm. On the
other hand, variable responses to combined effects of climate
change variables are expected in view of their diversities in
physiological pathways and ecological niches.
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