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Abstract. Assessing the uncertainties of simulation results
of ecological models is becoming increasingly important,
specifically if these models are used to estimate greenhouse
gas emissions on site to regional/national levels. Four gen-
eral sources of uncertainty effect the outcome of process-
based models: (i) uncertainty of information used to initialise
and drive the model, (ii) uncertainty of model parameters de-
scribing specific ecosystem processes, (iii) uncertainty of the
model structure, and (iv) accurateness of measurements (e.g.,
soil-atmosphere greenhouse gas exchange) which are used
for model testing and development.

The aim of our study was to assess the simulation un-
certainty of the process-based biogeochemical model Land-
scapeDNDC. For this we set up a Bayesian framework using
a Markov Chain Monte Carlo (MCMC) method, to estimate
the joint model parameter distribution. Data for model test-
ing, parameter estimation and uncertainty assessment were
taken from observations of soil fluxes of nitrous oxide (N2O),
nitric oxide (NO) and carbon dioxide (CO2) as observed over
a 10 yr period at the spruce site of the Höglwald Forest, Ger-
many. By running four independent Markov Chains in paral-
lel with identical properties (except for the parameter start
values), an objective criteria for chain convergence devel-
oped byGelman et al.(2003) could be used.

Our approach shows that by means of the joint parame-
ter distribution, we were able not only to limit the param-
eter space and specify the probability of parameter values,
but also to assess the complex dependencies among model

parameters used for simulating soil C and N trace gas emis-
sions. This helped to improve the understanding of the be-
haviour of the complex LandscapeDNDC model while sim-
ulating soil C and N turnover processes and associated C and
N soil-atmosphere exchange.

In a final step the parameter distribution of the most sen-
sitive parameters determining soil-atmosphere C and N ex-
change were used to obtain the parameter-induced uncer-
tainty of simulated N2O, NO and CO2 emissions. These were
compared to observational data of an calibration set (6 yr)
and an independent validation set of 4 yr.

The comparison showed that most of the annual observed
trace gas emissions were in the range of simulated values
and were predicted with a high certainty (Root-mean-squared
error (RMSE) NO: 2.4 to 18.95 g N ha−1 d−1, N2O: 0.14 to
21.12 g N ha−1 d−1, CO2: 5.4 to 11.9 kg C ha−1 d−1). How-
ever, LandscapeDNDC simulations were sometimes still lim-
ited to accurately predict observed seasonal variations in
fluxes.

1 Introduction

Trace gas emissions (N2O, NO and CO2) from soils of terres-
trial ecosystems are highly variable in space and time due to
the interplay of climatic drivers (mainly rainfall and temper-
ature) and various ecosystem processes involved in C and N
transformation and associated production and consumption
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of trace gases. Therefore, quantification of the annual sink
or source strength of soil greenhouse gases (GHG) is still
a challenge. For sound estimates at site scale, measurements
are labour and cost intensive since they should be carried
out at high temporal resolution covering full annual cycles
(Kiese et al., 2005; Werner et al., 2006). For that reason quan-
tification of soil GHG emission on regional/national scale
cannot solely depend on measurements, but needs to follow
an integrated measuring and modelling approach. In recent
years, an increasing number of biogeochemical models were
tested on site scale and, after sound validation, were applied
in a coupled GIS model approach for regionalisation of soil
GHG emissions (Del Grosso et al., 2006; Kesik et al., 2006;
Pathak et al., 2005; Li et al., 2004; Salas et al., 2007; Potter
et al., 1996; Butterbach-Bahl et al., 2001; Kiese et al., 2005;
Werner et al., 2007). This approach is in line with the IPCC
recommendations and requirements to develop improved in-
ventories by use of biogeochemical models. However, the
so-called Tier 3 approach includes not only up-scaling of
GHG emissions, but also the obligation to perform uncer-
tainty quantification of the simulation results.

Uncertainty of model predictions can be classified into
four categories: (i) uncertainty of information used to ini-
tialise and drive the model (Vrugt et al., 2008; Wikle, 2003),
(ii) uncertainty of model parameters (e.g., describing specific
ecosystem processes) (Vrugt et al., 2003), (iii) uncertainty of
the model structure (Refsgaard et al., 2006) and (iv) accu-
rateness of measurements (e.g., soil-atmosphere greenhouse
gas exchange), which are used for model improvement and
development (e.g.van Oijen et al., 2005). Uncertainty esti-
mates in many modelling studies that investigate the soil-
atmosphere exchange of trace gases only cover the assess-
ment of uncertainty imposed by input data (e.g.Li et al.,
2004; Werner et al., 2007; Winiwarter and Rypdal, 2001;
Kiese et al., 2005). Due to the high complexity and large
number of model parameters, work focused less on uncer-
tainty related to model parameters as the computational de-
mand of complex models is high and often model adaptations
are required to allow application of statistical methods.

The Bayesian approach was increasingly used to quan-
tify model parameter uncertainty on simulation results of
process-based models in recent years. The Bayesian theorem
was used for calibration and uncertainty assessment of pa-
rameters of dynamic process-based forest models mainly fo-
cusing on carbon turnover (van Oijen et al., 2005; Svensson
et al., 2008; Klemedtsson et al., 2008) and more recently also
for parameters involved in production, consumption, trans-
port and emissions of soil GHGs (e.g.Lehuger et al., 2009).
To our knowledgevan Oijen et al.(2011) is the only study
so far comparing four process-based biogeochemical forest
models within a Bayesian model comparison framework. In
contrast to such a model inter-comparison, the aim of this
study is to provide deeper insights into the individual param-
eter uncertainty and calibration of the model LandscapeD-
NDC and the subsequent uncertainty of simulated trace gas

exchange. The parameter distribution, which was estimated
after an objective multi-chain convergence check, was addi-
tionally tested on a validation dataset.

LandscapeDNDC is a process-oriented biogeochemical
model, which simulates the biosphere-atmosphere exchange
of greenhouse gases on the basis of the simulation of all ma-
jor ecosystem C and N cycling processes (Haas et al., 2012;
Werner et al., 2012).

We used a time series covering 10 yr of soil-atmosphere
trace gas fluxes as observed continuously in sub-daily time
resolution at the Ḧoglwald spruce forest, Germany (e.g.
Butterbach-Bahl et al., 2002; Wu et al., 2010) to assess the
model parameter uncertainty of the LandscapeDNDC model.

Results of the Bayesian calibration approach can be used
to gain insights into the complex parameter dependencies, to
identify weaknesses in process descriptions and to narrow the
range of likely model parameter values, which finally reduces
uncertainty of the simulation results.

2 Model description and model parameter selection

The LandscapeDNDC model applied in this study is
a derivate of the DNDC model family (Li et al., 1992, 2000)
and was further developed from the MoBiLE model frame-
work (Grote et al., 2009, 2011). LandscapeDNDC incorpo-
rates functions of DNDC (agricultural sites) and PnET-N-
DNDC/Forest-DNDC (forest sites), which were initially set
up to predict soil carbon and nitrogen biogeochemistry with
a specific focus on the simulation of soil N trace gas emis-
sions (Li et al., 2000; Stange et al., 2000; Butterbach-Bahl
et al., 2001; Kiese et al., 2005; Kesik et al., 2005; Werner
et al., 2007). LandscapeDNDC integrates different mod-
ules for describing soil environmental conditions (tempera-
ture, moisture, pH, nutrient availability and anaerobic vol-
ume fractions), soil-chemistry integrating microbial C and N
turnover processes (mineralisation, nitrification and denitri-
fication) and associated C and N trace gas emissions (e.g.,
N2O, NO and CO2) as well as vegetation dynamics (Grote,
2007). It also offers a flexible initialisation of vegetation and
soil properties and efficient multi-site calculations that ease
regional applications as well as sensitivity and uncertainty
studies (Haas et al., 2012).

Each module includes parameters derived from physical
and chemical principals and laboratory measurements. In this
study, we focus on the analysis of parameter-induced uncer-
tainty quantification stemming from the soil-chemistry mod-
ule describing all soil processes relevant for C and N trace
gas production, consumption and transport, being crucial for
the simulation of soil-atmosphere GHG exchange. Here, we
do not consider model parameters of other modules e.g., for
plant growth and soil water cycling modules in order to re-
duce complexity and degrees of freedom and to increase the
efficiency of the calibration process. However, these modules
were tested and calibrated in recent studies (e.g.Kiese et al.,
2011) and are run using default parameters.
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The soil-chemistry sub-module in total holds 67 pa-
rameters, mostly describing biological kinetics of nutrient
turnover and transformation by growth and death of different
types of microbes (e.g., nitrifiers and denitrifiers). Parameter
values are generally derived from laboratory measurements
and expert knowledge, if detailed information is not avail-
able. This introduces different levels of uncertainty, which
need to be quantified and requires calibration.

The model parameters can only be estimated and opti-
mised by an inverse calibration technique (cf.Vrugt et al.,
2003), which compares model simulation output by us-
ing randomly selected model parameter vectors with mea-
sured observations. The observational data used was col-
lected at the Ḧoglwald spruce forest, Germany, covering
the years 1994 to 1997 (Papen and Butterbach-Bahl, 1999;
Gasche and Papen, 1999) and 2002 to 2003. The remaining
observation period (years 2004 to 2007) was used for vali-
dation purpose and finally for assessing the prediction uncer-
tainty.

Each parameter included into the uncertainty analysis adds
a new dimension in the parameter space. Therefore, compu-
tational cost rises tremendously with the increasing number
of parameters while efficiency of the calibration technique
decreases. Furthermore, correlations among parameters be-
come more likely by increasing the number of parameters.
This subsequently leads to slower convergence rates (requir-
ing additional iterations), as parameter vectors, which do not
comply with these relations, are less likely to be accepted by
the Bayesian algorithm (cf. Gilks et al., 1996). Additionally,
a higher degree of freedom exist, i.e., parameter configura-
tions producing similar outputs may not be unique. To avoid
these obstacles we used a sensitivity analysis (Saltelli, 2008)
developed byMorris (1991) prior to the Bayesian calibration
method. This helps to restrict the analysis to the most influ-
ential parameters and to avoid over-fitting effects.

The method introduced by Morris is an efficient tool for
parameter screening, since it can easily be implemented and
computational demands are low (van Oijen et al., 2011). The
method varies parameter values and finally produces a rank-
ing of the model parameters based on their impact on the
simulated model output of C and N trace gas emissions and
soil moisture.

This procedure divides each parameter range inn (here
n= 6) equidistant levels, starts with a random parameter vec-
tor using these levels and randomly changes one parameter
after another to one of the other levels (1 iteration). Differ-
ences in model output are stored and used to rank the model
parameters according to their influence on the simulation out-
put. Since the trajectory of parameter changes per iteration is
randomly selectedm times (herem= 50), the method spans
the parameter space better than a “one-parameter-at-a-time
approach” (seeHamby, 1994). The model parameters, which
produce largest differences (i.e., having highest sensitivity on
the output variable), are regarded as the most influential ones.

We initialised and ran the model with specific site in-
formation (soil, vegetation and climate) of the Höglwald
spruce forest to identify the most sensitive parameters of
LandscapeDNDC affecting soil C and N fluxes. This ap-
proach does not require a comparison of simulated emission
to measurements, since the sensitivity analysis only focuses
on parameter-induced changes of model output. Parameter
sensitivities were calculated separately for the output vari-
ables of soil N2O, NO and CO2 emissions, which finally re-
sulted in three different parameter-ranking lists. We selected
the first 20 most influential parameters of any list, thereby
considering the trade-off between over-parameterisation and
under-representing significant processes. Due to close link-
age of C and N cycling and in particular NO and N2O emis-
sion there was a good overlap of the most sensitive param-
eters. This led to a overall selection of 26 parameters (see
Table1).

We regressed the stored model output (a) to all parameters
and (b) to the reduced parameter subset and compared the
adjusted coefficient of determination̄R2 of both linear re-
gressions (cf.van Oijen et al., 2011) to evaluate, whether the
reduced parameter set accounts for most of the models be-
haviour. The results show that for N2O and CO2 more than
90 % and for NO 65 % of the models linear behaviour is
explained by the subset of the parameters. We regard these
numbers to be sufficient for continuing the Bayesian cali-
bration approach with the restricted parameter set and at the
same time assure a balance with calibration efficiency, which
will be reduced when introducing more parameters as already
stated before. Following the selection of the most sensitive
model parameters, the joint parameter distribution given the
data was estimated by means of a Bayesian calibration. From
this distribution, parameter values can be sampled to perform
simulation runs and finally address the frequency distribu-
tion of simulation results. See Fig.1 for an illustration of the
workflow.

3 Bayesian calibration

In a standard frequency approach the parameter value is not
regarded as a random variable. The used parameter value is
either the true value or it is not (seeEllison, 1996). There-
fore, a Bayesian approach is needed (Clark, 2005; van Oijen
et al., 2005; Klemedtsson et al., 2008; Gelman et al., 2003;
Reinds et al., 2008; Lehuger et al., 2009) since it models the
parameter vectorθ as a random vector, which allows a di-
rect quantification of the probability of a certain parameter
realisation/range.

The probability density of a parameter valueθ given the
measurementD (posterior) is:

p(θ |D) . (1)
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Table 1.Selected parameters being most influential for simulating soil-atmosphere trace gas fluxes (N2O, NO and CO2) with LandscapeD-
NDC.

Parameter Description

D N2O effective N2O diffusion constant [m2h−1]
D NO effective NO diffusion constant [m2h−1]
DRF scaling factor for decomposition rate constants of SOM
EFFAC partitioning of CO2 and DOC production during microbial decomposition of organic matter
FNO3 U fraction of microbial N-uptake as (NO3)
FRC factor regulating microbial death depending on the availability of very labile and

labile carbon
FTRANS factor regulating microbial nitrate immobilisation and direct re-mineralisation to NH4
KCRB L decomposition constant of labile dead microbial biomass
KHDC L decomposition constant of labile humads
KHDC R decomposition constant of recalcitrant humads
KM O2 factor regulating splitting of DOC and CO2 during decomposition of SOM depending

on O2 concentration
KMDC DOC factor for half optimum content of doc in soil solution for denitrifier activity [kgCha−1]
KMDC N factor for half optimum content of nitrogen in soil solution for denitrifier activity [kgNha−1]
KMM DOC factor regulating growth of microbes in dependency of DOC substrate
KMNO2 factor regulating NO2 to NO3 conversion depending on NO2 concentration during nitrification
KN2O loss rate of N2O during nitrification
KNO loss rate of NO during nitrification
KRCL decomposition constant for labile litter pool
KRCR decomposition constant for recalcitrant litter pool
MICRRESP factor regulating CO2 production during microbial metabolism in dependency of microbial C/N ratio
NH4 DENIMAX maximum fraction of NH4 available for auto- and heterotrophic nitrification
PERTL fraction of labile litter, which can be reallocated into deeper soil layers
PERTR fraction of recalcitrant litter, which can be reallocated into deeper soil layers
PERTVL fraction of very labile litter, which can be reallocated into deeper soil layers
PSL SC depth dependent factor for reallocation of organic matter into deeper soil layers
SRB fraction of labile dead microbial biomass

By using Bayes theorem, the posterior is proportional to
the product of the likelihoodp(D|θ) and the prior density
p(θ):

p(θ |D)∝ p(D|θ) ·p(θ). (2)

The prior, describing the a priori knowledge on parameters,
is determined by using literature data and biogeochemical
principles to address the most likely parameter value and to
constrain the range of a parameter. We use an uninformed
prior (uniform distribution) ranging between provided min-
ima and maxima for the given parameter as derived from ex-
pert knowledge or laboratory and field experiments. The like-
lihood, the only unknown term, describes the probability of
a data realisation for a particular parameter vector.

We assume the differenceD−M between dataD and
modelM to be normal distributed, hence the likelihood is
(van Oijen et al., 2005):

p(D|θ)=
1

√
2πσ

e
−
(D−M(θ))2

2σ2 (3)

Since this term cannot be solved analytically, a Metropolis al-
gorithm (Metropolis et al., 1953) generates a Markov chain,

which samples from the posterior distribution after conver-
gence of the chain (see next section for convergence criteria).

Although the applied LandscapeDNDC model was run
on daily time-step, for the Bayesian calibration, daily sim-
ulated as well as measured trace gas fluxes were aggregated
to weekly means in order to avoid that minor temporal lags
(1–2 days) between daily measured and simulated peak emis-
sions penalise likelihood calculations. Using this approach
(see alsovan Oijen et al., 2011) we find a balance for increas-
ing acceptance-rates resulting in a more conservative estima-
tion of the parameter uncertainties while still representing the
temporal dynamic of C and N trace gas emissions. Further-
more, reduction of data by using weekly rather than daily
fluxes, helps to prevent asymptotic collapse of the posterior
and an overreliance on the information of the data (Arhondit-
sis et al., 2008). Although within the calibration procedure,
model performance evaluation was based on weekly aggre-
gated data the uncertainty quantification was done on a daily
simulation time step. We also tested Bayesian calibration
of parameters by using monthly aggregated data. However,
this resulted in a significant flattening of the daily simulated
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Fig. 1. Schematic view of the workflow for assessing the uncertainty of simulated soil GHG emissions while using LandscapeDNDC. After
reduction to influential parameters by means of a sensitivity analysis, the distribution of the model parameters was estimated using a Bayesian
calibration. Subsequently, an uncertainty quantification of simulated emissions was carried out using 20 000 samples out of the 533 000 post
burn-in realisations of the parameter distribution stored in a relational database.

emission pattern which was not the case with the parameter
set of weekly aggregated data (Fig.6).

In order to increase computation efficiency, we run the
model in parallel for the six simulated calibration years on
a High Performance Computing (HPC) Linux cluster.

3.1 Criteria to define convergence while using a
multi-chain approach

As it is not possible to draw any statistical inference from the
sampled parameter vectors if the Markov chain has not con-
verged (Gilks et al., 1996), we used four independent Markov
chains (differing only in the individual parameter starting
points) and tested for convergence at each iteration step.
When convergence was reached (end of “burn in phase”), the
previous parameter samples were discarded and all following
data were included in the further analysis.

To quantify convergence,Gelman et al.(2003) introduced
the measurêR which compares the variances of each chain
(within sequence variance, Eq.4) to the joint variance of all
chains (between sequence variance, Eq.5)

W =
1

m

m∑
j=1

s2
j , wheres2

j =
1

n− 1

n∑
i=1

(ψi,j − ψ̄.j )
2 (4)

B =
n

m− 1

m∑
j=1

(ψ̄.j − ψ̄..)
2,

whereψ̄.j =
1

n

n∑
i=1

ψij , ψ̄.. =
1

m

m∑
j=1

ψ̄.j . (5)

In the process of convergence the measureR̂ =

√
n−1
n

+
B
nW

approaches from values>1.0 to 1.0. AsR̂ is not expected
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Fig. 2. (A) Heat-map of 2-dimensional marginal distribution of EF-
FAC and DRF (decomposition rate factor), the brighter the poly-
gons, the higher the posterior value.(B) histogram of DRF using
all values and histogram of DRF using only values of DRF, where
EFFAC< 0.5.

to reach exactly 1.0, a threshold of 1.2 is introduced as the
acceptance threshold (Kass et al., 1998).

By using four chains, our implementation spreads the
model to 24 CPUs (4 chains× 6 separate simulation years)
using the Message Passing Interface (MPI). After 1000 it-
eration steps the Gelman/Rubin statistic was calculated and
continuously updated until convergence (according toR̂) of
chains. In our setup, burn-in of all parameters was completed
after 31 656 iteration steps. After a visual inspection of the
marginal distributions, we decided to continue the Markov
chain, as one parameter (EFFAC) showed a bimodal distri-
bution for two chains, but only one mode for the remaining
chains. After additional 133 000 iterations the marginal pos-
terior distribution of EFFAC had the same shape for all four
chains. The Gelman Rubin Statistic was at the same time well
below 1.1 for all parameters.

The acceptance-rates of the four chains ranged from
14.1 % to 15.8 % (using a step-width of 0.04). These are rea-
sonable values taking into account the large dataset (6 yr of
data in daily time resolution and 3 target variables: CO2, N2O
and NO) and, therefore, a rather strict rejection step due to
a narrow-shaped posterior (Arhonditsis et al., 2008; Clark,
2005; Rahn et al., 2011).

3.2 Effective data storage

The study design and computational setup lead to substantial
amounts of data, which need to be efficiently handled within
subsequent data analysis. For that reason a interface to a rela-
tional database was developed using Structured Query Lan-
guage (SQL) which warranted a concurrent access and high
data integrity.

0.0 0.2 0.4 0.6 0.8
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_N

Fig. 3. Heat-map of 2-dimensional marginal distribution of KRCL
(decomposition constant for labile litter pool) and KMDCN (fac-
tor for half optimum content of nitrogen in soil solution for den-
itrifier activity). Higher values of KRCL lead to a wider range of
KMDC N.

4 Estimating simulated soil GHG flux distributions

In a second step the posterior distribution of the 26 param-
eters was used to quantify the uncertainty of LandscapeD-
NDC simulations for soil N2O, NO and CO2 emissions of
the Höglwald Forest spruce site (see Fig.1). For this, we
used a total of 20 000 posterior-parameter vectors (posterior-
samples) by selecting every 26th parameter vector out of
the 532 000 posterior-parameter samples of the four chains
(133 000 for each chain) until 20 000 parameters were taken.
We, thereby, reduced dependencies between parameter vec-
tors of consecutive iterations (Kass et al., 1998; Toft et al.,
2007), which arose as each parameter vector of the poste-
rior distribution had been taken dependent on its predecessor
during the calibration process.

Following the selection of the posterior-samples, we ex-
ecuted LandscapeDNDC with the parameter realisations for
the calibration set (years 1994 to 1997 and 2002 to 2003)
and an independent validation dataset (years 2004 to 2007).
As a result, we obtained distributions (including associated
uncertainty) of simulated soil N2O, NO and CO2 emissions.

The root-mean-squared error (RMSE) is used to quan-
tify the difference between measurements and simulations.
Therefore, we defined the distance of measurements to the
distribution of the simulations as the minimum of the dis-
tances between the measurements and the two boundaries of
the credible interval or 0 whenever the measurement is within
the range of the credible interval. The RMSE of the best sim-
ulation (RMSE(θMAP)) is calculated using the common def-
inition.
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Fig. 4.Four typical histograms of marginal parameter distributions. The coloured density lines of two right-skewed (KN2O: loss rate of N2O
during nitrification and EFFAC: describing the partitioning of CO2 and DOC production during microbial decomposition of organic matter),
a flat (KHDC L: decomposition constant of labile humads pool) and a left-skewed distribution (KRCL: decomposition constant of labile
litter pool) were done by post burn-in samples of each individual chain, whereas the histograms are plotted using post burn-in samples of all
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5 Results

5.1 Posterior parameter distribution

An estimate for the posterior distribution of the 26 most
sensitive LandscapeDNDC parameters for simulation of
soil N2O, NO and CO2 emissions was obtained by using
Bayesian calibration technique and initial information on the
likely range of the selected parameters. To illustrate common
features of the obtained marginal posterior distributions, we
present a subset of four model parameters (see Fig.4 and Ta-
ble2). For each marginal histogram, 4×133000 post burn-in
chain steps were used.

In the first histogram (Fig.4a) the marginal distribution of
the parameter KN2O, the loss rate of N2O during nitrifica-
tion, is displayed. The prior parameter uncertainty (SDprior =

0.026) was reduced substantially (SDpost= 0.005) and the
most probable value of the right-skewed distribution is in
a narrow region between 0.002 and 0.008.

After the first 30 000 iterations, the marginal distribution
of the parameter EFFAC (describing the partitioning of CO2
and DOC production during microbial decomposition of or-
ganic matter) showed a bimodal shape for two out of the
four chains. However, after 165 000 iterations the chains fi-

nally all sampled from the right-skewed distribution shown
in Fig. 4b. As a result, the convergence rate (time needed for
convergence to the posterior distribution), was low and con-
sequently the number of iterations was high.

Figure4c displays the posterior distribution of the param-
eter KHDCL. This parameter is the decomposition constant
for the labile humads pool (death microbial biomass). For
this model parameter the posterior distribution is flat, i.e., all
values across the explored range are of similar probability.
Here, the uncertainty of the initial parameter could not be
reduced significantly by the Bayesian calibration and only
values approaching zero are less likely than others.

An example for a left-skewed distribution of a parameter is
given in Fig.4d, in this case of KRCL. KRCL is the decom-
position constant for the labile litter pool. Although there is
a tendency for higher values, smaller values can still occur
depending on the values of the other 25 parameters. In con-
clusion, the uncertainty of the parameter KRCL is reduced,
however, not as much as compared to KN2O.

A correlation analysis for the 26 selected parameters re-
vealed for most pair-wise constellations no relevant corre-
lations. This might be due to the large number of sampling
points over the entire parameter space (see Fig.9). Higher
correlations in absolute appeared only between KMNO2
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Fig. 5. Simulated fluxes (calibration set) versus measurements of NO, N2O and CO2 fluxes at the spruce site of the Höglwald forest in the
year 1997. The grey box highlights pulse emissions of N2O during soil freeze-thaw events.

(Michaelis-Menten constant for NO2 to NO3 conversion dur-
ing heterotrophic nitrification) and DNO (effective NO dif-
fusion constant) with a correlation of−0.71, and between
EFFAC and FNO3U (fraction of microbial N-uptake as
NO3) with a correlation of 0.51. All other correlations were
in the range of±0.40, most of them between±0.25 (Fig.8).

However, that does not fully exclude any relationship be-
tween parameters, since they are often of nonlinear char-
acter. Figure2 shows that limiting the values of EFFAC
to values<0.5 leads to a more bell shaped distribution of
the parameter DRF (scaling factor for decomposition rate
constants of SOM) around the value 0.042 (correlation be-
tween EFFAC/DRF= 0.32). At the same time smaller values
of FTRANS (factor regulating microbial nitrate immobilisa-
tion and direct re-mineralisation to NH4), FNO3 U, KRCR
(decomposition constant for recalcitrant litter pool) and
KMM DOC (Michaelis-Menten constant regulating growth
of microbes in dependency of DOC substrate) become more
likely, whereas for other parameters like MICRRESP (factor
regulating CO2 production during microbial metabolism in
dependency of microbial C/N ratio), FRC (factor regulating
microbial death depending on the availability of very labile
and labile carbon) and KN2O (loss rate of N2O during nitrifi-
cation) higher values occur more often, thus, get more likely.
That also shows that restricting some parameters to a range

of their most likely values can narrow the range of likely val-
ues of other parameters.

The heat map presented in Fig.3, shows the relationship
between KRCL and KMDCN. While the correlation be-
tween the two parameters is low (= 0.06), one can see that
lower values of KRCL restrict the range of KMDCN to
lower values. To capture all dependencies (compare Fig.9)
when estimating the distribution of model simulations, it is
straightforward to use samples of the joint posterior param-
eter distribution, as the whole structure of parameter depen-
dence is fully included.

5.2 Uncertainty quantification of soil-atmosphere gas
emissions at Ḧoglwald forest (1994 to 1997, 2002 to
2003 and 2004 to 2007)

5.2.1 Calibration set

In general, most of measured trace gas emissions of N2O,
NO and CO2 are within or close to the range of the simu-
lated 99 % credible interval (cf.Gilks et al., 1996) (see for
example Fig.5. RMSE values for each year and each soil-
atmosphere flux are presented in Table4). Based on the eval-
uation criteria, LandscapeDNDC was able to correctly sim-
ulate cumulative N2O and NO emissions in five and six out
of six years, respectively (see Table3). In two out of three
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Fig. 6. Simulated fluxes (validation set) versus measurements of NO, N2O and CO2 fluxes at the spruce site of the Höglwald forest in the
year 2006. The grey box highlights pulse emissions of N2O during soil freeze-thaw events.

years, cumulative CO2 observations were located within the
simulated CO2 ranges. Comparatively high NO emissions
(> 60gNha−1d−1) measured in the summers of 1996 and
2003, however, could not be reproduced by LandscapeD-
NDC (model simulations underestimated fluxes in summer
periods by at least 22 % and 33 %, respectively).

Seasonal dynamics of NO measurements were reproduced
for the years 1994, 1997 and partly for 2002, which resulted
in low RMSE values for the credible interval (RMSE(CI):
2.40 to 3.20 gNha−1d−1) and when using the maximum
posterior parameter vectorθMAP (RMSE(θMAP): 6.66 to
9.20 gNha−1d−1). Although in most of the remaining years
the magnitude of measurements and simulations is similar,
the temporal dynamic could not always be clearly repro-
duced.

N2O simulations especially suffer from the inability of
the actual LandscapeDNDC version to simulate freeze-
thaw pulse emissions (Papen and Butterbach-Bahl, 1999;
Butterbach-Bahl et al., 2002; Wolf et al., 2010) in 1995,
1996, 1997 and 2003 (RMSE(CI): up to 16.10 gNha−1d−1).
Therefore, following simulation to measurement compar-
isons of N2O were restricted to periods being unaffected by
freeze-thaw events. Nevertheless, cumulative statistics and
RMSE statistics can be compared with or without freeze-
thaw events in Tables3 and4. One can see that the RMSE
is strongly reduced when neglecting frost-thaw emissions

(e.g., RMSE(CI) reduced from 16.10 to 7.92 in 1996 and
from 2.56 to 0.42 in 1997). Peak emissions of N2O (>
10gNha−1d−1) in August 2002 could also not be repro-
duced by the model, although the model could comprehend
the general increase of N2O emissions in the beginning of
August (up to 7 gNha−1d−1).

CO2 emissions were underestimated by at least 19 % and
7 % during August to November in 1995 and 1996. From
May to June 1997, they were overestimated by at least 25 %.
Note that only 1004 CO2 observations were used for calibra-
tion, compared to 1890 and 2075 values for NO and N2O.
Thus, CO2 emissions were underweighted by a factor of ap-
prox. 0.5 in the calibration process.

5.2.2 Validation set

To independently validate the behaviour of the parameter-
isation, we simulated soil-atmosphere trace gas emissions
in Höglwald for 2004 until 2007, i.e., for a time period,
which has not been used for the calibration of LandscapeD-
NDC. The parameterisation of the model includes the same
posterior-samples that have been used to simulate the emis-
sions of the calibration set (1994 to 1997, 2002 to 2003) and
to visualise model uncertainty.

For the validation set, LandscapeDNDC produced com-
parable results as for the calibration set. Cumulative NO
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Fig. 7. Simulated fluxes (validation set) versus measurements of NO, N2O and CO2 fluxes at the spruce site of the Höglwald forest in the
year 2007.

emissions were covered by the 99 % credible interval in three
out of four simulated years and in three years with regard to
simulated N2O emissions. Soil CO2 emissions could be re-
produced for all four years. High N2O fluxes in 2006 were
underestimated by at least 8 %. When excluding the freeze-
thaw event in 2006 the simulated and measured cumulated
N2O emissions were in the same range. The averaged RMSE
values of the validation set (0.91 gNha−1d−1) were even
lower than the averaged RMSE values of the calibration set
(1.70 gNha−1d−1).

The large discrepancy between soil NO simulations and
measurements in 2006 (RMSE= 18.95gNha−1d−1) is due
to underestimation of the simulated fluxes mainly in the veg-
etation period (April to October by at least 33 %).

Soil CO2 fluxes were mainly overestimated by the model
in summer (e.g., 45 % May to July 2005; 54 % June to Au-
gust 2006; 73 % April to August 2007). Model deviations
from measured soil CO2 fluxes are also obvious during win-
tertime in 2005 and 2006 (see Fig.6).

6 Discussion

Our work shows that the Bayesian calibration approach can
successfully be implemented to estimate the posterior param-
eter distribution of a complex sub-module of a biogeochemi-

cal model used for simulating soil N2O, NO and CO2 fluxes
at a spruce site of the Ḧoglwald forest, Germany. The appli-
cability of the illustrated method to complex ecological mod-
els was also demonstrated in previous studies (e.g.van Oijen
et al., 2005; Svensson et al., 2008; Klemedtsson et al., 2008;
Lehuger et al., 2009).

Bayesian calibration reduced the prior uncertainty (by up
to 82 %) for 15 out of 26 parameters for simulating soil-
atmosphere exchange of C and N trace gases. For the remain-
ing 11 parameters the calibration process achieved no signifi-
cant reduction in parameter uncertainty. The flat shape of the
distribution of these 11 parameters occurred because differ-
ent parameter constellations can lead to similar model output.
The underlying reasons for that cannot be further specified,
as the parameter space is 26-dimensional and small changes
in high-sensitive parameters may be compensated by changes
of (many or all) remaining parameters.

Correlations between parameters were hardly found since
only for two cases parameter correlation was significant
(51 % and−71 %). This is most likely due to the fact, that
interactions between parameters in a 26-dimensional param-
eter space are more complicated than linear relations between
only 2 parameters, which was shown exemplarily for the pa-
rameters EFFAC and DRF. For some of the parameters (espe-
cially for those with a flat marginal distribution) this finding
might also point to an overparametrisation of the model.
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Fig. 8.Correlations of all post burn-in parameter samples.

Fig. 9.Heat-maps of pair-wise marginal distributions; brighter poly-
gons show higher posterior values.

The parameter distribution was estimated while running
the model using the default parameter values for the remain-
ing sub-modules (e.g., watercycle, plant growth). Hence, our
estimation neglects dependencies between parameters of the
soilchemistry submodule and parameters of other submod-
ules. The posterior distribution is, thus, only estimated given
the default values of the remaining modules. Changing these
parameters and, therefore, the behaviour of the complex sys-
tem will most likely change the distribution of the estimated
parameters. Nevertheless, due to the complexity of Land-
scapeDNDC including parameters of other modules would
complicate and lengthen the approach tremendously. More
additional parameters would increase the degrees of freedom
and, thus, the number of iterations and time to fully explore
the parameter space. Even though we focused only on a sub-
set of all model parameters our results show that parameter
uncertainty could only be reduced for a subset of selected
parameters. This may indicate model over-parameterisation
and Bayesian calibration can give valuable guidance which
parameters and module functions need to be focused on to
allow further model improvement.
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Table 2. Summary of marginal posterior parameter distribution and prior ranges (column 2). Posterior SD and skewness were estimated,
whereas the prior SD was analytically calculated.

Parameter Rangeprior θMAP 95 % cred. interval Description SDprior SDpost
SDpost
SDprior

Skewness

D N2O [0.001, 0.150] 3.34e−03 [0.002, 0.144] right-skew. 0.043 0.045 1.00 0.636
D NO [0.010, 0.150] 4.84e−02 [0.013, 0.145] right-skew. 0.040 0.041 1.00 0.326
DRF [5e-04, 0.055] 5.49e−02 [0.022, 0.055] left-skew. 0.016 0.009 0.58 −0.564
EFFAC [0.282, 0.955] 8.31e−01 [0.287, 0.910] right-skew. 0.192 0.200 1.00 0.611
FNO3 U [0.375, 1.000] 9.23e−01 [0.405, 0.995] left-skew. 0.180 0.186 1.00 −0.846
FRC [0.010, 0.400] 2.74e−02 [0.013, 0.385] right-skew. 0.113 0.115 1.00 0.348
FTRANS [0.000, 0.050] 3.53e−02 [4.8e−04,0.048] right-skew. 0.014 0.015 1.00 0.526
KCRB L [1.500, 4.000] 3.22e+00 [1.553, 3.932] flat 0.722 0.726 1.00 0.122
KHDC L [0.001, 0.030] 2.89e−02 [0.002, 0.029] flat 0.008 0.008 0.99 −0.033
KHDC R [0.001, 0.015] 2.20e−03 [0.001, 0.015] flat 0.004 0.004 1.00 −0.061
KM O2 [0.100, 0.990] 1.13e−01 [0.107, 0.950] right-skew. 0.257 0.261 1.00 0.500
KMDC DOC [5e−04, 0.025] 8.25e−04 [0.001, 0.025] flat 0.007 0.007 1.00 0.114
KMDC N [0.004, 0.245] 5.53e−02 [0.008, 0.214] right-skew. 0.070 0.055 0.79 1.217
KMM DOC [1e−04, 0.009] 8.23e−03 [3.2e−04, 0.009] flat 0.003 0.003 1.00 0.105
KMNO2 [0.002, 0.075] 4.13e−02 [0.014, 0.070] right-skew. 0.021 0.016 0.74 0.834
KN2O [5e−04, 0.090] 1.01e−02 [0.001, 0.019] right-skew. 0.026 0.005 0.18 2.312
KNO [5e−04, 0.025] 9.53e−03 [0.001, 0.024] flat 0.007 0.007 1.00 −0.010
KRCL [0.010, 0.900] 2.20e−01 [0.056, 0.886] left-skew. 0.257 0.246 0.95 −0.289
KRCR [0.050, 0.300] 2.65e−01 [0.061, 0.297] left-skew. 0.072 0.071 0.98 −0.568
MICRRESP [0.040, 0.120] 5.06e−02 [0.042, 0.118] flat 0.023 0.023 1.00 0.116
NH4 DENIMAX [0.700, 0.980] 8.21e−01 [0.705, 0.967] right-skew. 0.081 0.078 0.96 0.342
PERTL [2e−04, 7e−04] 6.38e−04 [2.6e−04, 7.4e−04] flat 1.4e−04 1.4e−4 0.99 0.008
PERTR [4e−05, 2e−04] 8.53e−05 [4.4e−05, 1.9e−04] flat 4.6e−05 4.6e−5 1.00 0.038
PERTVL [5e−04, 0.015] 9.16e−03 [0.001, 0.015] flat 0.004 0.004 0.99 −0.024
PSL SC [0.003, 0.030] 1.21e−02 [0.004, 0.028] right-skew. 0.008 0.007 0.82 0.866
SRB [0.500, 0.990] 5.43e−01 [0.512, 0.977] flat 0.141 0.142 1.00 0.058

By simultaneously calibrating soil N2O, NO and CO2
emissions, we use a multi-objective (here three objectives)
framework, so that e.g., a worsening of CO2 estimation can
be compensated by an improvement in NO or N2O estima-
tion. Gathering additional data (e.g., from different forests
sites) may help to reduce uncertainty for these parameters.
However, multiple parameter solutions do not affect the pro-
cess of uncertainty estimation of soil-atmosphere gas fluxes
modelled by LandscapeDNDC, as the posterior parameter
solution is used (including all parameter constellations) to
generate the distribution of simulated emissions.

The large number of parameters chosen, the complexity of
the LandscapeDNDC model (simulating the entire C, N and
water fluxes of terrestrial ecosystems), as well as a narrow
shaped posterior distribution as a result of a detailed dataset
(Arhonditsis et al., 2008; Rahn et al., 2011; Clark, 2005;
van Oijen et al., 2011), reduces the acceptance-rate. Conse-
quently, slow convergence rates of the chains were observed.
While estimating parameter EFFAC (partitioning of CO2 and
DOC production during microbial decomposition of organic
matter) two of the chains at first showed a bimodal shape, the
remaining chains sampled distinctly different modes. There-
fore, the number of required iterations to reach convergence
was substantially higher compared to the other parameters.

Hence, it took 165 000 iterations per chain, which required
in total approximately four months computation time. In par-
ticular for the parameter EFFAC running four independent
chains in parallel, demonstrated to be a more reliable and
also necessary procedure to guarantee proper sampling from
the posterior distribution.

The knowledge of all complex parameter dependencies
helps to understand and improve the reliability of future
model simulations and additionally to quantify the uncer-
tainty of the simulated gas fluxes (N2O, NO, CO2) associ-
ated with model parameter uncertainty. As we use samples
from the joint posterior distribution, we achieve more reli-
able uncertainty approximations of soil GHG exchange than
by simply using samples of each marginal parameter distri-
bution.

As we simultaneously calibrated the model parameters
with data for three soil trace gas fluxes (N2O, NO and CO2)
spanning six observation years, the parameter calibration re-
sults are a compromise for all years and the respective gas
fluxes. Hence, better model simulation results are very likely
to be obtained if single years or only one out of the three trace
gases would have been chosen. Since the model is just an ex-
pert representation of the “real world” one cannot expect that
simulation results and flux observations for all years and all

Biogeosciences, 9, 3983–3998, 2012 www.biogeosciences.net/9/3983/2012/
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Table 3.Summary of cumulated measured and simulated emissions of NO, N2O and CO2. Simulated fluxes were only cumulated if corre-
sponding periods with observations were available. Values in Brackets are calculated after freeze-thaw events.

Soil flux 1994 1995 1996 1997 2002 2003 Total 2004 2005 2006 2007 Total

NO No. of days 357 341 350 359 275 208 1890 162 322 263 263 1010
[kgNha−1

] Minimum 3.86 3.98 3.60 3.62 2.95 2.24 1.43 3.19 2.15 2.70
Q0.005 6.10 5.48 4.92 5.85 4.61 3.49 2.11 4.72 3.57 4.35
Mean 8.14 7.25 6.65 7.98 6.09 4.91 3.14 6.43 5.27 5.82
St. dev 0.95 0.85 0.85 0.97 0.69 0.62 0.52 0.83 0.78 0.71
Q0.995 10.45 9.40 8.84 10.28 7.81 6.37 4.45 8.50 7.07 7.57
Maximum 11.57 10.46 9.98 11.46 8.63 7.76 5.12 9.42 7.92 8.29
Best 7.05 6.42 5.91 6.75 5.50 4.23 35.85 2.46 5.49 4.25 4.95 17.16
Measured 6.23 8.16 8.69 6.98 4.24 6.73 41.03 3.62 5.46 8.64 4.38 22.11

N2O No. of days 345 358 343 346 343 340 2075 296 343 264 294 1197
[kgNha−1

] Minimum 0.32 0.29 0.25 0.29 0.29 0.23 0.20 0.27 0.23 0.22
Q0.005 0.40 0.39 0.32 0.36 0.36 0.30 0.26 0.33 0.29 0.28
Mean 0.82 0.76 0.66 0.75 0.72 0.73 0.63 0.67 0.63 0.59
St. dev 0.31 0.25 0.22 0.28 0.24 0.33 0.27 0.23 0.25 0.22
Q0.995 1.69 1.42 1.23 1.51 1.35 1.64 1.37 1.29 1.34 1.20
Maximum 2.23 1.78 1.60 1.82 1.64 1.97 1.66 1.58 1.69 1.49
Best 0.51 0.55(0.51) 0.55(0.38) 0.48(0.40) 0.54 0.41(0.34) 3.02(2.68) 0.37 0.45(0.37) 0.39(0.3) 0.39 1.60(1.43)
Measured 0.39 0.80(0.75) 2.90(0.89) 0.61(0.25) 0.65 0.36(0.21) 5.72(3.29) 0.16 0.97(0.74) 2.14(0.51) 0.47 3.74(1.88)

CO2 No. of days 287 355 362 1004 299 334 331 228 1192
[kgCha−1

] Minimum 5019 4212 5782 4187 4925 4916 3442
Q0.005 6135 5263 6982 4984 6001 5923 4162
Mean 8073 7163 9166 6487 7937 7776 5504
St. dev 765 756 873 610 771 736 537
Q0.995 10 048 9142 11 452 8104 9954 9701 6917
Maximum 10 660 9761 12 174 8606 10 584 10 323 7364
Best 8133 7250 9282 24 665 6570 8036 7852 5576 28 035
Measured 10 673 8813 7740 27 226 5294 7332 7556 3913 24 095

Table 4. Root-mean-squared error (RMSE) per year and soil-atmosphere gas-flux for the best simulation (RMSE(θMAP)) and the distribu-
tion of the gas-flux simulations. The minimal distance to the 99 % credible intervals was used to calculate the RMSE of the distribution
(RMSE(CI)). Values in brackets are calculated using simulated emissions after freeze-thaw events.

Soil flux 1994 1995 1996 1997 2002 2003 2004 2005 2006 2007

NO No of days 357 341 350 359 275 208 162 322 263 263
[gNha−1d−1

] RMSE(CI) 2.40 4.54 9.42 2.86 3.20 15.27 6.44 8.26 18.95 5.34
RMSE(θMAP) 6.66 11.68 15.92 9.20 7.94 22.66 12.46 14.45 28.32 11.57

N2O No of days 345 358 343 346 343 340 296 343 264 294
[gNha−1d−1

] RMSE(CI) 0.21 0.86(0.83) 16.10(7.92) 2.56(0.42) 0.49 0.69(0.31) 0.40 3.47(0.50) 21.12(2.60) 0.14
RMSE(θMAP) 0.53 1.82(1.77) 17.01(8.22) 3.12(0.77) 1.45 1.09(0.67) 0.83 4.19(2.17) 21.80(3.10) 1.06

CO2 No of days 287 355 362 299 334 331 228
[gCha−1d−1

] RMSE(CI) 9718 5977 5373 8571 9846 11 849 11 949
RMSE(θMAP) 15 344 9986 8989 11 623 13 106 15 806 16 446

gases are in perfect agreement. However, the results show
that the LandscapeDNDC model is able to follow most of
the dynamics as observed in field measurements and to ap-
proximate annual total emissions (see Table3) with a certain
accuracy (RMSE NO: 2.40 to 18.95 gNha−1d−1, N2O: 0.21
to 21.12 gNha−1d−1, CO2: 5.4 to 11.9 kgCha−1d−1, Ta-
ble4) not only for the years which were used for model cali-
bration but also for independent observation years.

Lowest agreement between measured and simulated fluxes
was obtained for N2O. Most of the discrepancy is due to the
inability of the current LandscapeDNDC version to simulate

freeze-thaw N2O pulse emission events. Since up to now
no frost-thaw process descriptions were implemented into
LandscapeDNDC, the calibration procedure was not able to
fit the model to these fluxes sufficiently. At the Höglwald
spruce site as well as in other temperate ecosystems exposed
to severe winter freezing periods, freeze-thaw N2O fluxes
may dominate annual N2O fluxes (Papen and Butterbach-
Bahl, 1999; Wolf et al., 2010), so that a failure to simulate
N2O fluxes during freeze-thaw periods must lead to incor-
rect annual flux estimates. However, the comparison of N2O
data excluding freeze-thaw periods reveal, that simulations
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of N2O fluxes by LandscapeDNDC are generally in the same
range as the measurements for both the calibration and the
validation set. Nevertheless, due to the importance of freeze-
thaw emissions for the annual N2O budget there is an urgent
need to further develop and implement model algorithms de-
scribing underlying processes of freeze-thaw based N2O pro-
duction and emission in/from soils (e.g.Wolf et al., 2011).

Also with regard to soil NO and CO2 fluxes we identified
short-comes of the applied LandscapeDNDC. For example,
higher NO emissions in the summer period in 1995 and 1996
were systematically underestimated, while soil CO2 emis-
sions tended to be overestimated in the end of spring and
beginning of summer and underestimated in subsequent sum-
mer days. This points either towards insufficient process de-
scriptions, which have already been suggested earlier (Stange
et al., 2000), or to problems with model initialisation. We
limited the calibration procedure to a subset of 26 most in-
fluential parameters describing C and N turnover and pro-
duction, consumption and emission processes of N2O, NO
and CO2 in soils. To allow a more time efficient calibration,
we excluded parameters describing soil water and vegetation
dynamics. Nevertheless, the above-mentioned failures to ac-
curately describe soil NO and CO2 fluxes for all seasons
point towards the necessity to recheck simulated soil water
and vegetation dynamics in LandscapeDNDC.

However, in total the measurements of the calibration and
the validation set were covered reasonably well, in particu-
lar if we consider that not all sources of errors (i.e., struc-
tural model error, input data error) were included. In order
to achieve improved approximations of the uncertainty of
N2O, NO and CO2 emissions, a stochastic error term could
be included in future research, e.g., by setting up a hier-
archical Bayesian framework, to account for model miss-
specifications (Rahn et al., 2011; Arhonditsis et al., 2008).

7 Conclusions

Following the identification of the 26 most sensitive param-
eters out of the total set of 67 parameters used in the sub-
module soil-chemistry, describing soil emission of N2O, NO
and CO2 in the biogeochemical model LandscapeDNDC, we
successfully implemented a Bayesian calibration to estimate
the joint posterior distribution of the most influential model
parameters. To ensure that the posterior distribution of pa-
rameters was assessed, we used a multi-chain approach and
tested for convergence of the Markov chain by the objective
criteria developed byGelman et al.(2003). In contrast to the
a priori assumption of a uniform distribution of parameter
values over a given range the posterior parameter distribution
showed a more distinct pattern, including all complex param-
eter dependencies. Bayesian calibration reduced the prior un-
certainty (by up to 82 %) of 15 out of 26 parameters. This
knowledge of the posterior probability distribution is of out-
standing importance to guide future model development, e.g.,

to inform experimentalists which parameters need attention
for further investigation.

The comparison of simulated soil N2O, NO and CO2 emis-
sions to measured flux data over the six observation years
used in the calibration process showed high agreement. The
same is true for independent validation data, including ob-
servations of four other years. Hence, we were able to quan-
tify the parameter-induced uncertainty of the total simulated
N2O, NO and CO2 emission. However, further studies need
to consider other uncertainties such as a model error in order
to estimate the total uncertainty of simulated soil fluxes of
N2O, NO and CO2.

In our study, freeze-thaw events could not be reproduced,
as underlying processes are not included in the LandscapeD-
NDC version used in this study. Since these events can po-
tentially have a strong impact on the total annual soil N2O
emission, future model development and implementation of
freeze-thaw algorithms is intended.
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Bahl, K., Damm, M., Duyzer, J., Horváth, L., Kiese, R.,
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