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Abstract. Assessing the uncertainties of simulation resultsparameters used for simulating soil C and N trace gas emis-
of ecological models is becoming increasingly important, sions. This helped to improve the understanding of the be-
specifically if these models are used to estimate greenhoudeaviour of the complex LandscapeDNDC model while sim-
gas emissions on site to regional/national levels. Four genulating soil C and N turnover processes and associated C and
eral sources of uncertainty effect the outcome of processN soil-atmosphere exchange.

based models: (i) uncertainty of information used to initialise  In a final step the parameter distribution of the most sen-
and drive the model, (ii) uncertainty of model parameters de-sitive parameters determining soil-atmosphere C and N ex-
scribing specific ecosystem processes, (iii) uncertainty of thechange were used to obtain the parameter-induced uncer-
model structure, and (iv) accurateness of measurements (e.dainty of simulated NO, NO and CQ emissions. These were
soil-atmosphere greenhouse gas exchange) which are usedmpared to observational data of an calibration set (6yr)
for model testing and development. and an independent validation set of 4 yr.

The aim of our study was to assess the simulation un- The comparison showed that most of the annual observed
certainty of the process-based biogeochemical model Landtrace gas emissions were in the range of simulated values
scapeDNDC. For this we set up a Bayesian framework usingand were predicted with a high certainty (Root-mean-squared
a Markov Chain Monte Carlo (MCMC) method, to estimate error (RMSE) NO: 2.4 to 18.95gNh&d~1, N,O: 0.14 to
the joint model parameter distribution. Data for model test-21.12gNhald—1, CO,: 5.4 to 11.9kg C hatd—1). How-
ing, parameter estimation and uncertainty assessment wemver, LandscapeDNDC simulations were sometimes still lim-
taken from observations of soil fluxes of nitrous oxide@, ited to accurately predict observed seasonal variations in
nitric oxide (NO) and carbon dioxide (GDas observed over fluxes.

a 10yr period at the spruce site of thédiwald Forest, Ger-
many. By running four independent Markov Chains in paral-
lel with identical properties (except for the parameter start
values), an objective criteria for chain convergence devel-1 Introduction

oped byGelman et al(2003 could be used.

Our approach shows that by means of the joint parame-Trace gas emissions ¢, NO and CQ) from soils of terres-
ter distribution, we were able not only to limit the param- trial ecosystems are highly variable in space and time due to
eter space and specify the probability of parameter valuesthe interplay of climatic drivers (mainly rainfall and temper-
but also to assess the complex dependencies among modefure) and various ecosystem processes involved in C and N

transformation and associated production and consumption
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of trace gases. Therefore, quantification of the annual sinlexchange. The parameter distribution, which was estimated
or source strength of soil greenhouse gases (GHG) is stilhfter an objective multi-chain convergence check, was addi-
a challenge. For sound estimates at site scale, measuremerisnally tested on a validation dataset.

are labour and cost intensive since they should be carried LandscapeDNDC is a process-oriented biogeochemical
out at high temporal resolution covering full annual cycles model, which simulates the biosphere-atmosphere exchange
(Kiese et al.2005 Werner et al.2006. For that reason quan- of greenhouse gases on the basis of the simulation of all ma-
tification of soil GHG emission on regional/national scale jor ecosystem C and N cycling processkEads et al.2012
cannot solely depend on measurements, but needs to folloWerner et al.2012).

an integrated measuring and modelling approach. In recent We used a time series covering 10yr of soil-atmosphere
years, an increasing number of biogeochemical models weré&race gas fluxes as observed continuously in sub-daily time
tested on site scale and, after sound validation, were appliecesolution at the Eglwald spruce forest, Germany (e.g.

in a coupled GIS model approach for regionalisation of soil Butterbach-Bahl et gl2002 Wu et al, 2010 to assess the
GHG emissionsel Grosso et a).2006 Kesik et al, 2006 model parameter uncertainty of the LandscapeDNDC model.
Pathak et a).2005 Li et al., 2004 Salas et a).2007 Potter Results of the Bayesian calibration approach can be used
et al, 1996 Butterbach-Bahl et 312001, Kiese et al. 2005 to gain insights into the complex parameter dependencies, to
Werner et al.2007). This approach is in line with the IPCC identify weaknesses in process descriptions and to narrow the
recommendations and requirements to develop improved inrange of likely model parameter values, which finally reduces
ventories by use of biogeochemical models. However, thauncertainty of the simulation results.

so-called Tier 3 approach includes not only up-scaling of
GHG emissions, but also the obligation to perform uncer-
tainty quantification of the simulation results.

Uncertainty of model predictions can be classified into The LandscapeDNDC model applied in this study is
four categories: (i) uncertainty of information used to ini- a derivate of the DNDC model familj.{ et al., 1992 2000
tialise and drive the modeVfugt et al, 2008 Wikle, 2003, and was further developed from the MoBIiLE model frame-
(ii) uncertainty of model parameters (e.g., describing specificwork (Grote et al. 2009 2011). LandscapeDNDC incorpo-
ecosystem processed)r(gt et al, 2003, (i) uncertainty of  rates functions of DNDC (agricultural sites) and PnET-N-
the model structureRefsgaard et gl2006 and (iv) accu- DNDC/Forest-DNDC (forest sites), which were initially set
rateness of measurements (e.g., soil-atmosphere greenhouge to predict soil carbon and nitrogen biogeochemistry with
gas exchange), which are used for model improvement ana specific focus on the simulation of soil N trace gas emis-
development (e.gvan Oijen et al.2005. Uncertainty esti-  sions (i et al., 200Q Stange et al.200Q Butterbach-Bahl
mates in many modelling studies that investigate the soil-et al, 2001, Kiese et al. 2005 Kesik et al, 2005 Werner
atmosphere exchange of trace gases only cover the asse®t- al, 2007). LandscapeDNDC integrates different mod-
ment of uncertainty imposed by input data (eLg.et al., ules for describing soil environmental conditions (tempera-
2004 Werner et al. 2007 Winiwarter and Rypdal200%; ture, moisture, pH, nutrient availability and anaerobic vol-
Kiese et al. 2005. Due to the high complexity and large ume fractions), soil-chemistry integrating microbial C and N
number of model parameters, work focused less on uncerturnover processes (mineralisation, nitrification and denitri-
tainty related to model parameters as the computational defication) and associated C and N trace gas emissions (e.g.,
mand of complex models is high and often model adaptationdN,O, NO and CQ) as well as vegetation dynamidSrpote
are required to allow application of statistical methods. 2007). It also offers a flexible initialisation of vegetation and

The Bayesian approach was increasingly used to quansoil properties and efficient multi-site calculations that ease
tify model parameter uncertainty on simulation results of regional applications as well as sensitivity and uncertainty
process-based models in recent years. The Bayesian theorestudies Haas et a].2012).
was used for calibration and uncertainty assessment of pa- Each module includes parameters derived from physical
rameters of dynamic process-based forest models mainly foand chemical principals and laboratory measurements. In this
cusing on carbon turnovevgn Oijen et al.2005 Svensson  study, we focus on the analysis of parameter-induced uncer-
et al, 2008 Klemedtsson et gl2008 and more recently also tainty quantification stemming from the soil-chemistry mod-
for parameters involved in production, consumption, trans-ule describing all soil processes relevant for C and N trace
port and emissions of soil GHGs (elgehuger et al.2009. gas production, consumption and transport, being crucial for
To our knowledgeran Oijen et al(2011]) is the only study the simulation of soil-atmosphere GHG exchange. Here, we
so far comparing four process-based biogeochemical foreso not consider model parameters of other modules e.g., for
models within a Bayesian model comparison framework. Inplant growth and soil water cycling modules in order to re-
contrast to such a model inter-comparison, the aim of thisduce complexity and degrees of freedom and to increase the
study is to provide deeper insights into the individual param-efficiency of the calibration process. However, these modules
eter uncertainty and calibration of the model LandscapeD-were tested and calibrated in recent studies (€igse et al.
NDC and the subsequent uncertainty of simulated trace ga2011) and are run using default parameters.

2 Model description and model parameter selection

Biogeosciences, 9, 3983998 2012 www.biogeosciences.net/9/3983/2012/



K.-H. Rahn et al.: UQ of soil GHG emissions using LandscapeDNDC 3985

The soil-chemistry sub-module in total holds 67 pa- We initialised and ran the model with specific site in-
rameters, mostly describing biological kinetics of nutrient formation (soil, vegetation and climate) of thed¢iwald
turnover and transformation by growth and death of differentspruce forest to identify the most sensitive parameters of
types of microbes (e.qg., nitrifiers and denitrifiers). ParametelLandscapeDNDC affecting soil C and N fluxes. This ap-
values are generally derived from laboratory measurementproach does not require a comparison of simulated emission
and expert knowledge, if detailed information is not avail- to measurements, since the sensitivity analysis only focuses
able. This introduces different levels of uncertainty, which on parameter-induced changes of model output. Parameter

need to be quantified and requires calibration. sensitivities were calculated separately for the output vari-
The model parameters can only be estimated and optiables of soil NO, NO and CQ emissions, which finally re-
mised by an inverse calibration technique (¢fugt et al, sulted in three different parameter-ranking lists. We selected

2003, which compares model simulation output by us- the first 20 most influential parameters of any list, thereby
ing randomly selected model parameter vectors with meaconsidering the trade-off between over-parameterisation and
sured observations. The observational data used was colinder-representing significant processes. Due to close link-
lected at the Kglwald spruce forest, Germany, covering age of C and N cycling and in particular NO and®lemis-
the years 1994 to 199Papen and Butterbach-Ball999 sion there was a good overlap of the most sensitive param-
Gasche and Papeh999 and 2002 to 2003. The remaining eters. This led to a overall selection of 26 parameters (see
observation period (years 2004 to 2007) was used for vali-Tablel).
dation purpose and finally for assessing the prediction uncer- We regressed the stored model output (a) to all parameters
tainty. and (b) to the reduced parameter subset and compared the

Each parameter included into the uncertainty analysis addadjusted coefficient of determinatia®? of both linear re-
a new dimension in the parameter space. Therefore, compigressions (cfvan Oijen et al.201]) to evaluate, whether the
tational cost rises tremendously with the increasing numbereduced parameter set accounts for most of the models be-
of parameters while efficiency of the calibration technique haviour. The results show that for®® and CG more than
decreases. Furthermore, correlations among parameters b80 % and for NO 65 % of the models linear behaviour is
come more likely by increasing the number of parametersexplained by the subset of the parameters. We regard these
This subsequently leads to slower convergence rates (requirumbers to be sufficient for continuing the Bayesian cali-
ing additional iterations), as parameter vectors, which do nobration approach with the restricted parameter set and at the
comply with these relations, are less likely to be accepted bysame time assure a balance with calibration efficiency, which
the Bayesian algorithm (cf. Gilks et al., 1996). Additionally, will be reduced when introducing more parameters as already
a higher degree of freedom exist, i.e., parameter configurastated before. Following the selection of the most sensitive
tions producing similar outputs may not be unique. To avoidmodel parameters, the joint parameter distribution given the
these obstacles we used a sensitivity analyZdtélli, 2008 data was estimated by means of a Bayesian calibration. From
developed borris (1991 prior to the Bayesian calibration this distribution, parameter values can be sampled to perform
method. This helps to restrict the analysis to the most influ-simulation runs and finally address the frequency distribu-
ential parameters and to avoid over-fitting effects. tion of simulation results. See Fig for an illustration of the

The method introduced by Morris is an efficient tool for workflow.
parameter screening, since it can easily be implemented and
computational demands are lovaf Oijen et al.2011). The , L
method varies parameter values and finally produces a rank3 Bayesian calibration

ng of the model parameters based on their |mpa9t on chn a standard frequency approach the parameter value is not

simulated model output of C and N trace gas emissions an . .

soil moisture re_:garded as a random v_ar_lable. The _used parameter value is
| either the true value or it is not (sédlison, 1996. There-

This procedure divides each parameter range {inere ; . i -
n = 6) equidistant levels, starts with arandom parametervecfore’ a Bayesian approach is needethk 2005 van Oijen

tor using these levels and randomly changes one parametc%t al, 2005 Klemedtsson et 312008 Gelman et al.2003
after another to one of the other levels (1 iteration). Differ- einds et a.2008 Lehuger et al.2009 since it models the

. arameter vecto# as a random vector, which allows a di-
ences in model output are stored and used to rank the mod e - .
h S ; . rect quantification of the probability of a certain parameter
parameters according to their influence on the simulationout-~~ . 7"
.realisation/range.

put. Since the trajectpry of parameter changes per iteration is The probability density of a parameter val@iven the
randomly selectedh times (heren = 50), the method spans S
measuremenb (posterior) is:

the parameter space better than a “one-parameter-at-a-time
approach” (seélamby, 1994. The model parameters, which @|D). 1)
produce largest differences (i.e., having highest sensitivity on
the output variable), are regarded as the most influential ones.
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Table 1. Selected parameters being most influential for simulating soil-atmosphere trace gas fh@edl(and CQ) with LandscapeD-
NDC.

Parameter Description
D_N20 effective NO diffusion constant [fh~1]
D_NO effective NO diffusion constant [fih—1]
DRF scaling factor for decomposition rate constants of SOM
EFFAC partitioning of C@ and DOC production during microbial decomposition of organic matter
FNO3.U fraction of microbial N-uptake as (N§)
FRC factor regulating microbial death depending on the availability of very labile and
labile carbon
FTRANS factor regulating microbial nitrate immobilisation and direct re-mineralisation t§ NH
KCRB_L decomposition constant of labile dead microbial biomass
KHDC_L decomposition constant of labile humads
KHDC_R decomposition constant of recalcitrant humads
KM_02 factor regulating splitting of DOC and GQ@uring decomposition of SOM depending
on O, concentration
KMDC_DOC factor for half optimum content of doc in soil solution for denitrifier activity [kg Chia
KMDC_N factor for half optimum content of nitrogen in soil solution for denitrifier activity [kg Nfh
KMM _DOC factor regulating growth of microbes in dependency of DOC substrate
KMNO2 factor regulating N@ to NO3 conversion depending on N@oncentration during nitrification
KN20 loss rate of NO during nitrification
KNO loss rate of NO during nitrification
KRCL decomposition constant for labile litter pool
KRCR decomposition constant for recalcitrant litter pool
MICRRESP factor regulating Cproduction during microbial metabolism in dependency of microbial C/N ratio
NH4_DENIMAX  maximum fraction of NH; available for auto- and heterotrophic nitrification
PERTL fraction of labile litter, which can be reallocated into deeper soil layers
PERTR fraction of recalcitrant litter, which can be reallocated into deeper soil layers
PERTVL fraction of very labile litter, which can be reallocated into deeper soil layers
PSLSC depth dependent factor for reallocation of organic matter into deeper soil layers
SRB fraction of labile dead microbial biomass

By using Bayes theorem, the posterior is proportional towhich samples from the posterior distribution after conver-
the product of the likelihoog(D1]6) and the prior density gence of the chain (see next section for convergence criteria).

p(6): Although the applied LandscapeDNDC model was run
on daily time-step, for the Bayesian calibration, daily sim-
p(6|D) o p(D|0) - p(9). (2) ulated as well as measured trace gas fluxes were aggregated

The prior, describing the a priori knowledge on parameters [0 Weekly means in order to avoid that minor temporal lags
is determined by using literature data and biogeochemicaf1—2 days) between daily measured and simulated peak emis-
principles to address the most likely parameter value and t$i0nS penalise likelihood calculations. Using this approach
constrain the range of a parameter. We use an uninformeéS€€ alsvan Oijen etal.2011) we find a balance for increas-
prior (uniform distribution) ranging between provided min- INg acceptance-rates resulting in a more conservative estima-
ima and maxima for the given parameter as derived from exlion of the parameter uncertainties while still representing the
pert knowledge or laboratory and field experiments. The like-t€mporal dynamic of C and N trace gas emissions. Further-

lihood, the only unknown term, describes the probability of MOre, reduction of data by using weekly rather than daily
a data realisation for a particular parameter vector. fluxes, helps to prevent asymptotic collapse of the posterior

We assume the differench — M between datad and and an overreliance on the information of the ddtehpndit-

model M to be normal distributed, hence the likelihood is SIS €t & 2008. Although within the calibration procedure,
(van Oijen et al.2005: model performance evaluation was based on weekly aggre-

gated data the uncertainty quantification was done on a daily
simulation time step. We also tested Bayesian calibration
of parameters by using monthly aggregated data. However,

. . i . this resulted in a significant flattening of the daily simulated
Since this term cannot be solved analytically, a Metropolis al-

gorithm (Metropolis et al. 1953 generates a Markov chain,

_ (D=M®)?
e 22

p(D|6) = 3

Biogeosciences, 9, 3983998 2012 www.biogeosciences.net/9/3983/2012/
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Sensitivity Analysis
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- Boundary conditions (climate, soil, I
vegetation, ... )
I | LandscapeDNDC | 5]  Model Output I
I " omameters 1
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I (prior distribution) |
| — A — |
Markov Chain ob |
servations
| Monte Carlo (MCMC) |
- e e - V— — - - = = = = = = = = =
relational S
____| Database Parameters
(posterior distribution)
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| Uncertainty Quantification |
of GHG emissions |
I Model Input |
| e | | LandscapeDNDC | |  Wodel Output
> 20,000 Parameters |
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Fig. 1. Schematic view of the workflow for assessing the uncertainty of simulated soil GHG emissions while using LandscapeDNDC. After
reduction to influential parameters by means of a sensitivity analysis, the distribution of the model parameters was estimated using a Bayesiar
calibration. Subsequently, an uncertainty quantification of simulated emissions was carried out using 20 000 samples out of the 533 000 post
burn-in realisations of the parameter distribution stored in a relational database.

emission pattern which was not the case with the parameter To quantify convergencé&elman et al(2003 introduced

set of weekly aggregated data (F&).- the measure&? which compares the variances of each chain
In order to increase computation efficiency, we run the (within sequence variance, E4). to the joint variance of all

model in parallel for the six simulated calibration years on chains (between sequence variance,3q.

a High Performance Computing (HPC) Linux cluster.

1 m 5 5 1 n _ 9
o | o W= sk wheres? = ——— 3 (Y — ) 4)
3.1 Criteria to define convergence while using a j=1 i=1
multi-chain approach

m
n - -
As it is not possible to draw any statistical inference from the B = m—1 Z(‘ﬁ-j —9.)%
sampled parameter vectors if the Markov chain has not con- j=1

verged Gilks et al, 1996, we used four independent Markov - 1 - 13, .

chains (differing only in the individual parameter starting W1€"€V.j = ;Zwl’i’ V.= ;Z‘p‘/ : ®)
points) and tested for convergence at each iteration step. i=1 j=1

When convergence was reached (end of “burn in phase”), the R 1 &
previous parameter samples were discarded and all followind" the Process of convergence the meastiee |/ 2= + ;g
data were included in the further analysis. approaches from values1.0 to 1.0. AsR is not expected

www.biogeosciences.net/9/3983/2012/ Biogeosciences, 9, 33B&R-2012
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KMDC_N

EFFACin [0,1] EFFAC<0.5

03 04 05 06 07 08 0.9

EFFAC KRCL

Fig. 2. (A) Heat-map of 2-dimensional marginal distribution of EF- Fig. 3. Heat-map of 2-dimensional marginal distribution of KRCL
FAC and DRF (decomposition rate factor), the brighter the poly- (decomposition constant for labile litter pool) and KMDXC(fac-
gons, the higher the posterior valu®&) histogram of DRF using  tor for half optimum content of nitrogen in soil solution for den-
all values and histogram of DRF using only values of DRF, whereitrifier activity). Higher values of KRCL lead to a wider range of
EFFAC < 0.5. KMDC_N.

to reach exactly 1.0, a threshold of 1.2 is introduced as the} Estimating simulated soil GHG flux distributions
acceptance thresholéss et al.1999.

By using four chains, our implementation spreads theln a second step the posterior distribution of the 26 param-
model to 24 CPUs (4 chains6 separate simulation years) eters was used to quantify the uncertainty of LandscapeD-
using the Message Passing Interface (MPI). After 1000 it-NDC simulations for soil MO, NO and CQ emissions of
eration steps the Gelman/Rubin statistic was calculated anthe Hoglwald Forest spruce site (see Fi. For this, we
continuously updated until convergence (according ymf used a total of 20 000 posterior-parameter vectors (posterior-
chains. In our setup, burn-in of all parameters was completegamples) by selecting every 26th parameter vector out of
after 31 656 iteration steps. After a visual inspection of thethe 532000 posterior-parameter samples of the four chains
marginal distributions, we decided to continue the Markov (133 000 for each chain) until 20 000 parameters were taken.
chain, as one parameter (EFFAC) showed a bimodal distri\We, thereby, reduced dependencies between parameter vec-
bution for two chains, but only one mode for the remaining tors of consecutive iteration&éss et al. 1998 Toft et al,
chains. After additional 133 000 iterations the marginal pos-2007), which arose as each parameter vector of the poste-
terior distribution of EFFAC had the same shape for all four rior distribution had been taken dependent on its predecessor
chains. The Gelman Rubin Statistic was at the same time welfluring the calibration process.
below 1.1 for all parameters. Following the selection of the posterior-samples, we ex-

The acceptance-rates of the four chains ranged fronecuted LandscapeDNDC with the parameter realisations for
14.1% to 15.8 % (using a step-width of 0.04). These are reathe calibration set (years 1994 to 1997 and 2002 to 2003)
sonable values taking into account the large dataset (6 yr ond an independent validation dataset (years 2004 to 2007).
data in daily time resolution and 3 target variables (O As a result, we obtained distributions (including associated
and NO) and, therefore, a rather strict rejection step due taincertainty) of simulated soil 0, NO and CQ emissions.

a narrow-shaped posterioArthonditsis et al. 2008 Clark, The root-mean-squared error (RMSE) is used to quan-

2005 Rahn et al.2011). tify the difference between measurements and simulations.
Therefore, we defined the distance of measurements to the

3.2 Effective data storage distribution of the simulations as the minimum of the dis-

] ) _tances between the measurements and the two boundaries of
The study design and computational setup lead to substantighe credible interval or 0 whenever the measurement is within
amounts of data, which need to be efficiently handled withinihe range of the credible interval. The RMSE of the best sim-

subsequent data analysis. For that reason a interface to a relgrtion (RMSE@wap)) is calculated using the common def-
tional database was developed using Structured Query Lanpition.

guage (SQL) which warranted a concurrent access and high
data integrity.

Biogeosciences, 9, 3983998 2012 www.biogeosciences.net/9/3983/2012/
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Fig. 4. Four typical histograms of marginal parameter distributions. The coloured density lines of two right-skewed (KN20O: lossy@te of N
during nitrification and EFFAC: describing the partitioning of £&hd DOC production during microbial decomposition of organic matter),

a flat (KHDC.L: decomposition constant of labile humads pool) and a left-skewed distribution (KRCL: decomposition constant of labile
litter pool) were done by post burn-in samples of each individual chain, whereas the histograms are plotted using post burn-in samples of all

chains.

5 Results nally all sampled from the right-skewed distribution shown
in Fig. 4b. As a result, the convergence rate (time needed for
5.1 Posterior parameter distribution convergence to the posterior distribution), was low and con-

sequently the number of iterations was high.

An estimate for the posterior distribution of the 26 most Figure4c displays the posterior distribution of the param-

sensitive LandscapeDNDC parameters for simulation ofeter KHDCL. This parameter is the decomposition constant
soil N>O, NO and CQ emissions was obtained by using for the labile humads pool (death microbial biomass). For
Bayesian calibration technique and initial information on the this model parameter the posterior distribution is flat, i.e., all
likely range of the selected parameters. To illustrate commoryalues across the explored range are of similar probability.
features of the obtained marginal posterior distributions, weHere, the uncertainty of the initial parameter could not be
present a subset of four model parameters (Semragd Ta- reduced Significantly by the Bayesian calibration and only
ble2). For each marginal histogramy4.33000 post burn-in ~ values approaching zero are less likely than others.

chain steps were used. An example for a left-skewed distribution of a parameter is

In the first histogram (Figda) the marginal distribution of ~ given in Fig.4d, in this case of KRCL. KRCL is the decom-
the parameter KN20, the loss rate of® during nitrifica- ~ Position constant for the labile litter pool. Although there is
tion, is displayed. The prior parameter uncertainty (&= a tendency for higher values, smaller values can still occur
0.026) was reduced substantially (§&= 0.005) and the depending on the values of the other 25 parameters. In con-
most probable value of the right-skewed distribution is in clusion, the uncertainty of the parameter KRCL is reduced,
a narrow region between 0.002 and 0.008. however, not as much as compared to KN20.

After the first 30 000 iterations, the marginal distribution A correlation analysis for the 26 selected parameters re-
of the parameter EFFAC (describing the partitioning of,.CO Vealed for most pair-wise constellations no relevant corre-
and DOC production during microbial decomposition of or- lations. This might be due to the large number of sampling
ganic matter) showed a bimodal shape for two out of thePoints over the entire parameter space (see $jigHigher
four chains. However, after 165000 iterations the chains fi-correlations in absolute appeared only between KMNO2

www.biogeosciences.net/9/3983/2012/ Biogeosciences, 9, 33B&R-2012
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o measurements
- - - 99% cred. interval
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Fig. 5. Simulated fluxes (calibration set) versus measurements of NO,ad CQ fluxes at the spruce site of thedblwald forest in the
year 1997. The grey box highlights pulse emissions gONluring soil freeze-thaw events.

(Michaelis-Menten constant for No NOg conversion dur-  of their most likely values can narrow the range of likely val-

ing heterotrophic nitrification) and DIO (effective NO dif-  ues of other parameters.

fusion constant) with a correlation 6f0.71, and between The heat map presented in FI§).shows the relationship

EFFAC and FNO3U (fraction of microbial N-uptake as between KRCL and KMDN. While the correlation be-

NOg3) with a correlation of 0.51. All other correlations were tween the two parameters is low 0.06), one can see that

in the range 0f£0.40, most of them betweeh0.25 (Fig.8). lower values of KRCL restrict the range of KMDR to
However, that does not fully exclude any relationship be-lower values. To capture all dependencies (compareJig.

tween parameters, since they are often of nonlinear charwhen estimating the distribution of model simulations, it is

acter. Figure2 shows that limiting the values of EFFAC straightforward to use samples of the joint posterior param-

to values<0.5 leads to a more bell shaped distribution of eter distribution, as the whole structure of parameter depen-

the parameter DRF (scaling factor for decomposition ratedence is fully included.

constants of SOM) around the value 0.042 (correlation be-

tween EFFAC/DRE= 0.32). At the same time smaller values 5.2 Uncertainty quantification of soil-atmosphere gas

of FTRANS (factor regulating microbial nitrate immobilisa- emissions at Hglwald forest (1994 to 1997, 2002 to

tion and direct re-mineralisation to Nl FNO3 .U, KRCR 2003 and 2004 to 2007)

(decomposition constant for recalcitrant litter pool) and

KMM _DOC (Michaelis-Menten constant regulating growth 5.2.1 Calibration set

of microbes in dependency of DOC substrate) become more

likely, whereas for other parameters like MICRRESP (factorIn general, most of measured trace gas emissions,@f, N

regulating CQ production during microbial metabolism in NO and CQ are within or close to the range of the simu-

dependency of microbial C/N ratio), FRC (factor regulating lated 99 % credible interval (cfSilks et al, 1996 (see for

microbial death depending on the availability of very labile example Fig5. RMSE values for each year and each soil-

and labile carbon) and KN2O (loss rate of®lduring nitrifi- atmosphere flux are presented in Tad)leBased on the eval-

cation) higher values occur more often, thus, get more likely.uation criteria, LandscapeDNDC was able to correctly sim-

That also shows that restricting some parameters to a rangalate cumulative O and NO emissions in five and six out

of six years, respectively (see Tal8g In two out of three
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Fig. 6. Simulated fluxes (validation set) versus measurements of NO, &hd CQ fluxes at the spruce site of thedblwald forest in the
year 2006. The grey box highlights pulse emissions g®Nluring soil freeze-thaw events.

years, cumulative C&observations were located within the (e.g., RMSE(CI) reduced from 16.10 to 7.92 in 1996 and
simulated CQ ranges. Comparatively high NO emissions from 2.56 to 0.42 in 1997). Peak emissions ofON (>

(> 60gNhald=1) measured in the summers of 1996 and 10gNhad~1) in August 2002 could also not be repro-
2003, however, could not be reproduced by LandscapeDduced by the model, although the model could comprehend
NDC (model simulations underestimated fluxes in summerthe general increase of2® emissions in the beginning of
periods by at least 22 % and 33 %, respectively). August (up to 7gNhald1).

Seasonal dynamics of NO measurements were reproduced CO, emissions were underestimated by at least 19 % and
for the years 1994, 1997 and partly for 2002, which resulted7 % during August to November in 1995 and 1996. From
in low RMSE values for the credible interval (RMSE(CI): May to June 1997, they were overestimated by at least 25 %.
2.40 to 3.20gNhaltd—1) and when using the maximum Note that only 1004 C@®observations were used for calibra-
posterior parameter vectdtyap (RMSE@map): 6.66 to tion, compared to 1890 and 2075 values for NO an®ON
9.20gNha®d~1). Although in most of the remaining years Thus, CQ emissions were underweighted by a factor of ap-
the magnitude of measurements and simulations is similamprox. 0.5 in the calibration process.
the temporal dynamic could not always be clearly repro-
duced. 5.2.2 Validation set

N2O simulations especially suffer from the inability of
the actual LandscapeDNDC version to simulate freeze-To independently validate the behaviour of the parameter-
thaw pulse emissionsP@pen and Butterbach-Batl999 isation, we simulated soil-atmosphere trace gas emissions
Butterbach-Bahl et g1.2002 Wolf et al, 2010 in 1995, in Hoglwald for 2004 until 2007, i.e., for a time period,
1996, 1997 and 2003 (RMSE(CI): up to 16.10 gNhd™1). which has not been used for the calibration of LandscapeD-
Therefore, following simulation to measurement compar-NDC. The parameterisation of the model includes the same
isons of NO were restricted to periods being unaffected by posterior-samples that have been used to simulate the emis-
freeze-thaw events. Nevertheless, cumulative statistics anglions of the calibration set (1994 to 1997, 2002 to 2003) and
RMSE statistics can be compared with or without freeze-to visualise model uncertainty.
thaw events in Table8 and4. One can see that the RMSE  For the validation set, LandscapeDNDC produced com-
is strongly reduced when neglecting frost-thaw emissionsparable results as for the calibration set. Cumulative NO

www.biogeosciences.net/9/3983/2012/ Biogeosciences, 9, 33B&R-2012
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Fig. 7. Simulated fluxes (validation set) versus measurements of NO, &d CQ fluxes at the spruce site of thedblwald forest in the
year 2007.

emissions were covered by the 99 % credible interval in threecal model used for simulating soilJ®, NO and CQ fluxes
out of four simulated years and in three years with regard toat a spruce site of theddjlwald forest, Germany. The appli-
simulated NO emissions. Soil C®emissions could be re- cability of the illustrated method to complex ecological mod-
produced for all four years. High D fluxes in 2006 were els was also demonstrated in previous studies yamgQOijen
underestimated by at least 8 %. When excluding the freezeet al, 2005 Svensson et al2008 Klemedtsson et 312008
thaw event in 2006 the simulated and measured cumulatetehuger et a.2009.
N2O emissions were in the same range. The averaged RMSE Bayesian calibration reduced the prior uncertainty (by up
values of the validation set (0.91gNHad~1) were even to 82%) for 15 out of 26 parameters for simulating soil-
lower than the averaged RMSE values of the calibration seatmosphere exchange of C and N trace gases. For the remain-
(1.70gNhald-1). ing 11 parameters the calibration process achieved no signifi-
The large discrepancy between soil NO simulations andcant reduction in parameter uncertainty. The flat shape of the
measurements in 2006 (RMSE1895gNhald=1)is due distribution of these 11 parameters occurred because differ-
to underestimation of the simulated fluxes mainly in the veg-ent parameter constellations can lead to similar model output.
etation period (April to October by at least 33 %). The underlying reasons for that cannot be further specified,
Soil CO; fluxes were mainly overestimated by the model as the parameter space is 26-dimensional and small changes
in summer (e.g., 45% May to July 2005; 54 % June to Au-in high-sensitive parameters may be compensated by changes
gust 2006; 73% April to August 2007). Model deviations of (many or all) remaining parameters.
from measured soil C&Xluxes are also obvious during win- Correlations between parameters were hardly found since
tertime in 2005 and 2006 (see F&). only for two cases parameter correlation was significant
(51% and—71%). This is most likely due to the fact, that
interactions between parameters in a 26-dimensional param-
6 Discussion eter space are more complicated than linear relations between
only 2 parameters, which was shown exemplarily for the pa-
Our work shows that the Bayesian calibration approach camameters EFFAC and DRF. For some of the parameters (espe-
successfully be implemented to estimate the posterior paraneially for those with a flat marginal distribution) this finding
eter distribution of a complex sub-module of a biogeochemi-might also point to an overparametrisation of the model.
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Fig. 8. Correlations of all post burn-in parameter samples.
DRF| - The parameter distribution was estimated while running
D20 the model using the default parameter values for the remain-
EFFAC ing sub-modules (e.g., watercycle, plant growth). Hence, our
FNO3—lFJRC estimation neglects dependencies between parameters of the
FTRANS[HE ——" soilchemistry submodule and parameters of other submod-
KCRB_L" [0 § . L . .
KHDC L. | - ules. The posterior distribution is, thus, only estimated given
?SS’S&T‘ : - the default values of the remaining modules. Changing these
KMDC_N parameters and, therefore, the behaviour of the complex sys-
KMM_DOC( . tem will most likely change the distribution of the estimated
KM_O2 parameters. Nevertheless, due to the complexity of Land-
KNZ}?NG scapeDNDC including parameters of other modules would
KRIERLCR complicate and lengthen the approach tremendously. More
MICRRESP| additional parameters would increase the degrees of freedom
NH4-DEN"\F",/E>F§'TLF > and, thus, the number of iterations and time to fully explore
PERTRL | the parameter space. Even though we focused only on a sub-
N set of all model parameters our results show that parameter
~ SRB uncertainty could only be reduced for a subset of selected

Fig. 9.Heat-maps of pair-wise marginal distributions; brighter poly-
gons show higher posterior values.
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parameters. This may indicate model over-parameterisation
and Bayesian calibration can give valuable guidance which
parameters and module functions need to be focused on to
allow further model improvement.
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Table 2. Summary of marginal posterior parameter distribution and prior ranges (column 2). Posterior SD and skewness were estimated,
whereas the prior SD was analytically calculated.

Parameter Ranggor Ovap 95% cred. interval ~ Description  $for  SDpost ggg:s: Skewness
D_N20 [0.001,0.150]  3.34e03 [0.002, 0.144] right-skew. 0.043 0.045 1.00 0.636
D_NO [0.010,0.150] 4.84e02 [0.013, 0.145] right-skew. 0.040 0.041 1.00 0.326
DRF [5e-04, 0.055]  5.49e02 [0.022, 0.055] left-skew. 0.016 0.009 0.58 -0.564
EFFAC [0.282,0.955] 8.31e01 [0.287, 0.910] right-skew. 0.192 0.200 1.00 0.611
FNO3.U [0.375,1.000] 9.23e01 [0.405, 0.995] left-skew. 0.180 0.186 1.00 -0.846
FRC [0.010,0.400] 2.74€02 [0.013, 0.385] right-skew. 0.113 0.115 1.00 0.348
FTRANS [0.000,0.050]  3.53e02 [4.8e-04,0.048] right-skew. 0.014 0.015 1.00 0.526
KCRB_L [1.500, 4.000]  3.22¢00 [1.553, 3.932] flat 0.722 0.726 1.00 0.122
KHDC_L [0.001,0.030] 2.89e02 [0.002, 0.029] flat 0.008 0.008 0.99 -0.033
KHDC-R [0.001,0.015] 2.20e03 [0.001, 0.015] flat 0.004 0.004 1.00 -0.061
KM_02 [0.100,0.990] 1.13e01 [0.107, 0.950] right-skew. 0.257 0.261 1.00 0.500
KMDC_DOC [5e-04,0.025] 8.25e04 [0.001, 0.025] flat 0.007 0.007 1.00 0.114
KMDC_N [0.004,0.245] 5.53e02 [0.008, 0.214] right-skew. 0.070 0.055 0.79 1.217
KMM _DOC [le-04,0.009] 8.23e03 [3.2e-04, 0.009] flat 0.003 0.003 1.00 0.105
KMNO2 [0.002,0.075] 4.13e02 [0.014, 0.070] right-skew. 0.021 0.016 0.74 0.834
KN20 [5e—04,0.090] 1.01e02 [0.001, 0.019] right-skew. 0.026 0.005 0.18 2312
KNO [5e—04,0.025] 9.53e03 [0.001, 0.024] flat 0.007 0.007 1.00 -0.010
KRCL [0.010,0.900] 2.20e01 [0.056, 0.886] left-skew. 0.257 0.246 0.95 -0.289
KRCR [0.050,0.300] 2.65e01 [0.061, 0.297] left-skew. 0.072 0.071 0.98 —-0.568
MICRRESP [0.040,0.120] 5.06€2 [0.042, 0.118] flat 0.023 0.023 1.00 0.116
NH4_.DENIMAX  [0.700,0.980] 8.21e01 [0.705, 0.967] right-skew. 0.081 0.078 0.96 0.342
PERTL [2e-04, 7e-04] 6.38e-04 [2.6e-04, 7.4e-04] flat 1.4e-04 1l4e-4 0.99 0.008
PERTR [4e-05, 2e-04] 8.53e-05 [4.4e-05, 1.9e-04] flat 46e-05 4.6e5 1.00 0.038
PERTVL [5e-04,0.015] 9.16e03 [0.001, 0.015] flat 0.004 0.004 0.99 -0.024
PSLSC [0.003,0.030] 1.21e02 [0.004, 0.028] right-skew. 0.008 0.007 0.82 0.866
SRB [0.500,0.990] 5.43e01 [0.512,0.977] flat 0.141 0.142 1.00 0.058

By simultaneously calibrating soil 40, NO and CQ Hence, it took 165000 iterations per chain, which required
emissions, we use a multi-objective (here three objectives)n total approximately four months computation time. In par-
framework, so that e.g., a worsening of £6stimation can ticular for the parameter EFFAC running four independent
be compensated by an improvement in NO eoONestima-  chains in parallel, demonstrated to be a more reliable and
tion. Gathering additional data (e.g., from different forestsalso necessary procedure to guarantee proper sampling from
sites) may help to reduce uncertainty for these parameterghe posterior distribution.

However, multiple parameter solutions do not affect the pro- The knowledge of all complex parameter dependencies
cess of uncertainty estimation of soil-atmosphere gas fluxefelps to understand and improve the reliability of future
modelled by LandscapeDNDC, as the posterior parametemodel simulations and additionally to quantify the uncer-
solution is used (including all parameter constellations) totainty of the simulated gas fluxes {8, NO, CQ) associ-
generate the distribution of simulated emissions. ated with model parameter uncertainty. As we use samples

The large number of parameters chosen, the complexity ofrom the joint posterior distribution, we achieve more reli-
the LandscapeDNDC model (simulating the entire C, N andable uncertainty approximations of soil GHG exchange than
water fluxes of terrestrial ecosystems), as well as a narrowby simply using samples of each marginal parameter distri-
shaped posterior distribution as a result of a detailed datasddution.

(Arhonditsis et al. 2008 Rahn et al. 2012, Clark, 2005 As we simultaneously calibrated the model parameters
van Oijen et al.2011), reduces the acceptance-rate. Conse-with data for three soil trace gas fluxeso@® NO and CQ)
quently, slow convergence rates of the chains were observedpanning six observation years, the parameter calibration re-
While estimating parameter EFFAC (partitioning of £€&nd sults are a compromise for all years and the respective gas
DOC production during microbial decomposition of organic fluxes. Hence, better model simulation results are very likely
matter) two of the chains at first showed a bimodal shape, théo be obtained if single years or only one out of the three trace
remaining chains sampled distinctly different modes. There-gases would have been chosen. Since the model is just an ex-
fore, the number of required iterations to reach convergencgert representation of the “real world” one cannot expect that
was substantially higher compared to the other parametersimulation results and flux observations for all years and all
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Table 3. Summary of cumulated measured and simulated emissions of MO aNd CQ. Simulated fluxes were only cumulated if corre-
sponding periods with observations were available. Values in Brackets are calculated after freeze-thaw events.

Soil flux 1994 1995 1996 1997 2002 2003 Total 2004 2005 2006 2007  Total
NO No.ofdays 357 341 350 359 275 208 1890 162 322 263 263 1010
kgNhal] Minimum  3.86 3.98 3.60 3.62 2.95 2.24 1.43 3.19 2.15 2.70

00.005 6.10 5.48 492 5.85 461 3.49 2.11 4.72 3.57 4.35

Mean 8.14 7.25 6.65 7.98 6.09 491 3.14 6.43 5.27 5.82

St. dev 0.95 0.85 0.85 0.97 0.69 0.62 0.52 0.83 0.78 0.71

00.995 10.45 9.40 8.84 1028 781 6.37 4.45 8.50 7.07 7.57

Maximum  11.57  10.46 9.98 1146 8.63 7.76 5.12 9.42 7.92 8.29

Best 7.05 6.42 5.91 6.75 5.50 4.23 3585  2.46 5.49 4.25 495  17.16

Measured  6.23 8.16 8.69 6.98 4.24 6.73 41.03  3.62 5.46 8.64 438 2211
N,O No.ofdays 345 358 343 346 343 340 2075 296 343 264 294 1197
kgNhal] Minimum  0.32 0.29 0.25 0.29 0.29 0.23 0.20 0.27 0.23 0.22

00,005 0.40 0.39 0.32 0.36 0.36 0.30 0.26 0.33 0.29 0.28

Mean 0.82 0.76 0.66 0.75 0.72 0.73 0.63 0.67 0.63 0.59

St. dev 0.31 0.25 0.22 0.28 0.24 0.33 0.27 0.23 0.25 0.22

00.995 1.69 1.42 1.23 1.51 1.35 1.64 1.37 1.29 1.34 1.20

Maximum  2.23 1.78 1.60 1.82 1.64 1.97 1.66 1.58 1.69 1.49

Best 051 0.55(0.51) 0.55(0.38) 0.48(0.40) 0.54 0.41(0.34) 3.02(2.68) 0.37 0.45(0.37) 0.39(0.3) 0.39 1.60(1.43)

Measured  0.39 0.80(0.75) 2.90(0.89) 0.61(0.25) 0.65 0.36(0.21) 5.72(3.29) 0.16 0.97(0.74) 2.14(0.51) 0.47 3.74(1.88)
co, No. of days 287 355 362 1004 299 334 331 228 1192
[kgChal] Minimum 5019 4212 5782 4187 4925 4916 3442

00,005 6135 5263 6982 4984 6001 5023 4162

Mean 8073 7163 9166 6487 7937 7776 5504

St. dev 765 756 873 610 771 736 537

00.995 10048 9142 11452 8104 9954 9701 6917

Maximum 10660 9761 12174 8606 10584 10323 7364

Best 8133 7250 9282 24665 6570 8036 7852 5576 28035

Measured 10673 8813 7740 27226 5294 7332 7556 3913 24095

Table 4. Root-mean-squared error (RMSE) per year and soil-atmosphere gas-flux for the best simulation@RM3E4nd the distribu-
tion of the gas-flux simulations. The minimal distance to the 99 % credible intervals was used to calculate the RMSE of the distribution
(RMSE(CI)). Values in brackets are calculated using simulated emissions after freeze-thaw events.

Soil flux 1994 1995 1996 1997 2002 2003 2004 2005 2006 2007
NO No of days 357 341 350 359 275 208 162 322 263 263
[gNha1d-1] RMSE(CI) 2.40 4.54 9.42 2.86 3.20 15.27 6.44 8.26 18.95 5.34
RMSE@map) 6.66 11.68 15.92 9.20 7.94 22.66 12.46 14.45 28.32 11.57
N2O No of days 345 358 343 346 343 340 296 343 264 294

[gNhald=1] RMSE(CI) 021 0.86(0.83) 16.10(7.92) 2.56(0.42) 0.49 0.69(0.31) 0.40 3.47(0.50) 21.12(2.60) 0.14
RMSE@map) 0.53 1.82(1.77) 17.01(8.22) 3.12(0.77) 1.45 1.09(0.67) 0.83 4.19(2.17) 21.80(3.10) 1.06

COy No of days 287 355 362 299 334 331 228
[gChald~1] RMSE(CI) 9718 5977 5373 8571 9846 11849 11949
RMSE@mapP) 15344 9986 8989 11623 13106 15806 16 446

gases are in perfect agreement. However, the results shofweeze-thaw MO pulse emission events. Since up to now
that the LandscapeDNDC model is able to follow most of no frost-thaw process descriptions were implemented into
the dynamics as observed in field measurements and to ap-andscapeDNDC, the calibration procedure was not able to
proximate annual total emissions (see Ta)laith a certain  fit the model to these fluxes sufficiently. At thedglwald
accuracy (RMSE NO: 2.40to 18.95gNHai~1, N,O: 0.21  spruce site as well as in other temperate ecosystems exposed
to 21.12gNhald1, CO,: 5.4 to 11.9kgChald~1, Ta- to severe winter freezing periods, freeze-thagONfluxes
ble 4) not only for the years which were used for model cali- may dominate annual XD fluxes Papen and Butterbach-
bration but also for independent observation years. Bahl, 1999 Wolf et al, 2010, so that a failure to simulate
Lowest agreement between measured and simulated fluxe$,0 fluxes during freeze-thaw periods must lead to incor-
was obtained for BO. Most of the discrepancy is due to the rect annual flux estimates. However, the comparison @ N
inability of the current LandscapeDNDC version to simulate data excluding freeze-thaw periods reveal, that simulations

www.biogeosciences.net/9/3983/2012/ Biogeosciences, 9, 33B&R-2012
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of N2O fluxes by LandscapeDNDC are generally in the sameto inform experimentalists which parameters need attention

range as the measurements for both the calibration and thfer further investigation.

validation set. Nevertheless, due to the importance of freeze- The comparison of simulated soib®, NO and CQ emis-

thaw emissions for the annuab® budget there is an urgent sions to measured flux data over the six observation years

need to further develop and implement model algorithms de-used in the calibration process showed high agreement. The
scribing underlying processes of freeze-thaw basgd pro- same is true for independent validation data, including ob-
duction and emission in/from soils (e\yolf et al,, 2011). servations of four other years. Hence, we were able to quan-

Also with regard to soil NO and C£Xluxes we identified  tify the parameter-induced uncertainty of the total simulated
short-comes of the applied LandscapeDNDC. For exampleN2O, NO and CQ emission. However, further studies need
higher NO emissions in the summer period in 1995 and 19960 consider other uncertainties such as a model error in order
were systematically underestimated, while soil Cénis-  to estimate the total uncertainty of simulated soil fluxes of
sions tended to be overestimated in the end of spring andN>O, NO and CQ.

beginning of summer and underestimated in subsequent sum- In our study, freeze-thaw events could not be reproduced,

mer days. This points either towards insufficient process deas underlying processes are not included in the LandscapeD-

scriptions, which have already been suggested eaBitange = NDC version used in this study. Since these events can po-
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