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Abstract. We describe the Chipalamawamba Beds, early to
middle Holocene deposits at the southern margin of long-
lived Lake Malawi. The beds are exposed because of down-
cutting of the upper Shire River. The Chipalamawamba sed-
iments are medium to coarse, yellow to brown sands de-
posited in lenses varying in horizontal extent from a few
meters to several hundreds of meters. Four units are rec-
ognized; the first three mainly contain lacustrine sediments
deposited during lake high stands about 10.6–9.7 cal ka BP
(Unit 1), 7.6–6.5 cal ka BP (Unit 2) and 5.9–5.3 cal ka BP
(Unit 3). Sediments of Unit 4 overlay Units 1 to 3, are
coarser and display regular foresets and oblique-bedding,
suggesting deposition in riverine environments after instal-
lation of the Shire River (∼ 5.5–5.0 ka BP). Freshwater mol-
lusk assemblages and bioturbation regularly occur in the la-
custrine sediments, but are largely absent from Unit 4. Di-
verse and often contradicting hypotheses on the lake levels
of Lake Malawi have been proposed for the early and middle
Holocene. The Chipalamawamba Beds allow straightforward
recognition of water levels and provide strong evidence for
oscillating lake levels during this period, rather than contin-
uous high or low levels. Sedimentation rates have been high
and individual shell beds have typically been deposited dur-
ing a few decades. Because the Chipalamawamba Beds con-
tain a sequence of mollusk assemblages with intervals be-
tween subsequent shell beds ranging from a century to a few
millennia, they enable paleontological analysis of the fauna
with an unusually high temporal resolution. That some mol-
lusk lineages inhabiting Lake Malawi are in the early stages
of diversification and radiation increases the paleobiological
relevance of these beds.

1 Introduction

In this paper we describe a sedimentary sequence in the Man-
gochi Province of Malawi that was deposited in long-lived
Lake Malawi during the early to middle Holocene. These
sediments were first visited for scientific purposes in 1992
by Albrecht Gorthner as collaborator of the paleontolog-
ical and paleoanthropological Hominid Corridor Research
Project under the direction of Friedemann Schrenk. Although
Gorthner touched upon the beds in the scientific literature
(Gorthner, 1994), hardly any information he collected during
his single day of fieldwork in the area was published, apart
from an abbreviated overview of the freshwater mollusk fos-
sils. A preliminary draft on some stratigraphic and sedimen-
tological aspects of the beds was composed, but never pub-
lished (A. Gorthner, personal communication, 2012).

We visited the region again in 2008 and in 2010, during
which we dug new trenches, found additional outcrops and
collected sufficient data on the sediments as well as their fos-
sil content for a detailed description of the stratigraphy of
the beds, their depositional paleoenvironment and paleoecol-
ogy. Moreover, we outline some paleolimnological implica-
tions of the data collected and indicate the potential these
sediments offer to study organismal diversification events in
long-lived Lake Malawi.

1.1 General setting

The strata that we newly describe as the Chipalamawamba
Beds crop out some 10 km south of Lake Malawi along the
shores of the upper Shire River, just north of the shallow
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Lake Malombe located farther south (Fig. 1). The main out-
crops are located on the western shore nearby the fishing vil-
lages Chipalamawamba and Kwitambo at the eroding side of
a bend in the Shire River, but also on the eastern bank of the
next curve in the river farther upstream, nearby the poorly
accessible village of Kazembe. Currently no other outcrops
have been discovered along the upper Shire River, but the
beds may cover a wider geographical area, as suggested by
the topography and bathymetry of the Malawi Basin in the
south (Scholz and Rosendahl, 1988). We encountered sed-
iments and mollusks belonging to Chipalamawamba strata
nearby a graveyard of Chipalamawamba,∼ 600 m inland and
north of the village centre (Fig. 1c). On the central plaza,
sediments were brought to the surface recently (2009) dur-
ing the construction of a new water hole, but they appear
to have been discarded and hence were not available for ex-
amination. However, the old, southerly water hole exposed
sediments of the Chipalamawamba Beds. These findings in-
dicate that the sediments directly beneath the modern soil on
which Chipalamawamba and the southward village Kwita-
mbo are built belong to the Chipalamawamba Beds. On
a broader geographical scale, Gorthner (unpublished data)
suggested that very similar outcrops were present nearby
Palm Beach, however, upon prospecting his locality no such
outcrops have been identified there. Crossley and Davison-
Hirschmann (1982) reported several Holocene beach ridges
along the western shores of Lake Malawi, some of which cor-
respond to the high lake level phases that resulted in the de-
position of the Chipalamawamba Beds, but for most of these
beach ridges dates are not available and quite a few of them
apparently were deposited in the last 2 ka. All of these beach
ridges are of similar height or topographically lower than the
outcrops along the upper Shire River. However, none of the
other early to middle Holocene deposits known has a depo-
sitional continuity and paleobiological relevance comparable
to the Chipalamawamba Beds.

Our descriptions of the Chipalamawamba Beds here are
based on detailed studies of the main sections on the west-
ern shore of the Shire River along Chipalamawamba and
Kwitambo. These outcrops cover a horizontal distance of
∼ 1200 m, and crop out from the water level up to∼ 5.0 m
higher. On the eastern shore of the Shire at Kazembe, out-
crops are present over a distance of∼ 170 m and have a
smaller vertical elevation (from the water level up to∼ 3.0 m
above it). These latter outcrops are not treated in detail
here because no sections were made through them and their
stratigraphy has not been studied as extensively.

2 Material and methods

2.1 Field methods

During fieldwork in 2008 we mainly aimed to collect fos-
sils from outcrops and to characterize the depositional en-

vironments under which fossil-bearing strata were formed.
Because of the considerable lateral variation observed in the
beds, it soon became clear that the data collected during this
short visit were insufficient to study fossil material in chrono-
logical sequence using time series analyses. Therefore, we
decided to undertake a more intensive field campaign in 2010
to elucidate the stratigraphy, to characterize the sedimentol-
ogy and to elaborate our sampling of fossil material.

We dug step-like trenches through the Chipalamawamba
Beds to enable detailed stratigraphical and sedimentologi-
cal descriptions and to measure and record the characteris-
tics of individual beds. Some images of the exposures and
trenches are provided in Fig. 2. For each section a lithos-
tratigraphic profile was constructed. Due to the proximity of
the highly populated villages and the regular visits people
make to the waterside, we dug trenches at dawn, fully docu-
mented and sampled them over the day to close them again
before dark. Vertical positions of trench steps and bedding
planes were measured with an accuracy of∼ 1 cm relative
to the water level of the river (∼ 473–474 m a.s.l.). For this
we used baseline nails, a theodolite (Sokkisha C3E, 22× op-
tical magnification; accuracy∼ 0.001 gon) and beacon. The
water level was observed to fluctuate up to∼ 5 cm during
the day and sometimes even more depending on wind stress.
We kept a constant baseline by marking the water level with
nails at each locality and comparing the positions of nails
and the water level at previously established stations at the
time of creating a baseline for a new locality. With this proce-
dure 1 cm in accuracy may have been lost additionally. Given
the relatively small distances between theodolite and beacon
(< 50 m) no correction for the curvature of the earth was re-
quired. At each baseline nail GPS coordinates were taken
with a Garmin GPS III Plus to allow calculation of distances
between individual profiles. Sometimes, distances between
trenches and/or outcrops were directly measured using tape
measure or with the theodolite and beacon. Comparison of
GPS-based measurements with these latter methods suggests
distances between subsequent trenches are recorded with an
accuracy of∼ 2 m.

Stratigraphical profiles were drawn on a 1/10 scale and
include information on grain size, sorting, sediment color,
sedimentary structures, the fossil content of the beds and
the nature of the stratigraphical contacts. Granulometry was
determined by visual comparison with a grain chart (Kry-
nine, 1948) at 10× magnification; colors were determined
using the revised Standard Soil Color Charts (Oyoma and
Takehara, 1967). Every 5 cm, magnetic susceptibility (MS)
was measured using a ZH instruments SM-30 meter at the
shady side of the profile. The accuracy is 1× 10−7 SI units
and measurements were performed with double calibration
in the air (before and after). Each measurement was repeated
three times, but if differences were larger than 0.40× 10−4

SI units, 2 additional measurements were taken. As MS is
temperature-dependent, temperatures were measured for ev-
ery step in the trench. However, because limited fluctuations
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Fig. 1. (A) Lake Malawi with inflowing rivers illustrating the small catchment of the Malawi Basin.(B) The Mangochi region between Lake
Malawi and Lake Malombe; the study area in the grey rectangle is enlarged in(C). (C) Outcrops nearby Chipalamawamba, Kwitambo and
Kazembe with their locality codes. G indicates Chipalamawamba sediments dug up by locals at the graveyard.

in temperature were measured during MS measurements, no
temperature correction was needed. Sediment samples were
taken every 5 or 10 cm with tubes of∼ 3 cm3 for later sedi-
mentological analyses in the lab. At locality L1 a continuous
sediment profile was taken as well, but as this method proved
suboptimal (and highly time-consuming) in the loosely ag-
gregated sandy sediments at Chipalamawamba, it was not
performed for other trenches.

Shell beds, when present, were sampled individually in a
qualitative and/or quantitative way (by weighing the sam-
ple and subsequently sieving it using mesh sizes of 2 mm
and 710 µm). Taphonomic features were recorded. A few
poorly preserved and/or scattered shell beds were not sam-
pled, though their position is indicated in the profile draw-
ings, with summary indications as to their content. In situ
samples of fossils were collected during the digging of the
trenches only if the exact stratigraphical position could be
established. However, fossils of uncertain positions were
screened and when they displayed interesting or unusual
features, they were bagged as ex situ. Otherwise, material
was only collected during the cleaning and profile-drawing
phases. Quantitative samples were sieved after dark and pro-
files were re-drawn and correlated with earlier profiles. If re-

quired or desirable, additional semi-trenches were dug the
next day to verify physical correlations or other aspects that
proved ambiguous in the re-drawing phase.

2.2 Lab methods

2.2.1 Sedimentology and stratigraphy

Re-drawn sediment profiles were digitized primarily using
SedLog v2.1.4. (Zervas et al., 2009), after which the result
was imported in Adobe Illustrator CS5 to make the initial
digitization result more condensed and accurate, e.g., by ex-
panding the available set of stratigraphical contacts in Sed-
Log, by not just indicating the fossil content of a bed, but
placing symbols at their exact vertical position of occurrence
in the profile, and by designing swatches that indicate mini-
mal and maximal grain sizes, and therefore the degree of sort-
ing in a sediment layer. Also, MS measurements were com-
piled and plotted in profiles using Excel. These values were
compared on a profile to profile base (not shown). Google
Earth was also used to prepare the figures.

To create overview figures, digitized individual profiles
were downsized and compiled in two graphs, one for the
northern and one for the southern part of the outcrops on
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Fig. 2.Outcrop pictures: rocky outcrop of locality L8B in 2008(A) and 2010(B), showing that since 2008 considerable erosion took place in
the basal part of the outcrop;(C) outcrops at L9B overlain by modern soil;(D) outcrops at L8A showing that eroded sediments of the modern
soil cover up most of the Chipalamawamba Beds;(E) section through the middleMelanoidesshell bed at L1 (the bed from which samples
10-089, 10-095 and 10-025Q in Fig. 5 were taken);(F) trench at L5, with shell beds mainly occurring near the base (slightly above and below
the little blackboard to the right of the trench);(G) trench at L9A, with the modern soil at the top (upper 2.5 steps) being distinctively darker
in color, students are measuring magnetic susceptibility and sediment samples were taken earlier;(H) lower section of L12 (∼ 0.0–0.9 m
above water level), showing the coarser sediments of Unit 4 with numerous foresets. Little blackboard, people and equipment for scale. The
asterisk (*) in(A) indicates the position from which(B) was photographed and vice versa.

the western shore of the Shire River. Subsequently, correla-
tions were synthesized and information on erosional phases
was added. Several arguments for correlations exist; some
are based on observed physical continuation of beds, other
correlations are based on geographical proximity and simi-
larities in the mollusk composition of fossil assemblages and
the taphonomy of the shell beds, others are deduced by sim-
ilarities in grain size, sediment color and peaks in the MS
values, and finally some correlations are based on ages as
measured via radiocarbon dating. The symbols used and the
diverse types of correlations made in these overview figures
are summarized in Fig. 3.

2.2.2 Radiocarbon dating

Radiocarbon dates were performed on fossil freshwater mol-
lusks. Therefore, calibration requires taking account of the
reservoir effect in mollusk shells caused by sources of fos-
sil carbon in the Malawi Basin. Dating sub-recent bulk or-
ganic material, Brown et al. (2007) found a reservoir ef-
fect of ∼ 400 yr. This corresponds well to the offset of
∼ 450 yr obtained by comparison of dates on bulk organic
material and varve counting ages of Holocene sediments
(Barry, 2001). However, comparisons between bulk organic
material and woody material (mid-Holocene) or charcoal
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Fig. 3. Legend to the symbols and the diverse types of correlations
between profiles used in Figs. 4 and 5.

(Last Glacial Maximum) suggest a larger effect of reworked
carbon (770± 100 and 680± 110 yr; Barry et al., 2002).
Because the origin of bulk organic material is obscure, it
is difficult to interpret the obtained differences. Brown et
al. (2007) adopted a constant reservoir effect of 450 yr dur-
ing the Holocene. Their assumption that the reservoir effect
remained fairly constant over the Holocene seems reasonable
given the geological brevity, the limited tectonic changes
in the Malawi Basin over this period, and the long flush-
ing times of the lake (∼ 750 yr; Bootsma and Hecky, 1993).
However, as the reservoir effect in bulk organic material can
hardly be related to those recorded in other sources of dat-
able material, we dated an early 20th century shell from
Lake Malawi to allow calibration of our other radiocarbon
dates. This specimen was obtained from the Royal Museum
for Central Africa (Tervuren, Belgium; MRAC 58430, Be-
quaert 1927). Calibrations were performed using the “Fair-
banks 0107” calibration curve (Fairbanks et al., 2005).

2.2.3 Fossils

The content of most fossil samples (98 %) has been identified
to the lowest possible taxonomic rank. Freshwater mollusks
are overwhelmingly dominant and we identified these using
Mandahl-Barth (1972) and Brown (1994). Identifications and
specimen counts were compiled in an excel database.

3 Results

3.1 Sedimentological characteristics

In total, 20 large trenches and 10 smaller trenches (L6C &
D, L8C, L9B & C, L10C, L14B, L15B-D) were made. The
smaller ones were necessary to investigate the lateral conti-
nuity of stratigraphic contacts (locations indicated in Fig. 1).
General sedimentological and stratigraphical overviews of

the Chipalamawamba Beds are presented in Fig. 4 for the
northern part and in Fig. 5 for the southern part. Most beds
contain medium, coarse and very coarse sandy sediments that
regularly contain larger granules, i.e. pebbles with diameters
of 3–9 mm and very occasionally up to 20–25 mm. Overall,
sediments have been deposited rapidly (see below) in mod-
erate to high energy environments. A few beds with large
granules and rolled shells reflect very high energy condi-
tions. The color of the sediments ranges from yellowish for
the more typical lacustrine beds (frequently 2,5 Y 7/3 light
YE, 2,5 Y 8/3 pale YE, 2,5 Y 6/3 dull YE or even 2,5 Y
6/2 (greyish) YE) to somewhat darker brown/dull yellow-
orange sediments in beds that seem often (but not always)
to have been deposited in environments with slightly more
energy (frequently 10 YR 5/4-7/3 dull YE BR or dull YE
OR). The modern soil overlying the Chipalamawamba Beds
is always easily recognizable, mainly by its darker color (10
YR 3/2 (brownish) BL; see e.g., Fig. 2c and g) and its higher
magnetic susceptibility (on average∼ 0.13× 10−3 SI) than
the Chipalamawamba sediments (on average∼ 0.05× 10−3

SI). Noteworthy is that beds just below the modern soil
were always darker brown or dull yellow-orange and that
more yellowish sediments were dominant in L15 and pro-
files north of it, whereas profiles farther south had often rel-
atively darker orange/brown sediments. Paleo-river gullies
are recognizable by their infill with uniformly coarse and
dull yellow-orange/dull yellow-brown (mainly 10 YR 7/3-
7/4) sediments that generally lack fossils. They often display
oblique bedding and foresets (e.g., Fig. 2h). Elsewhere fore-
sets and oblique bedding is more occasionally present and
often associated with bioturbation, fossil remains and con-
cretions.

3.2 Radiocarbon dating

In total 23 dates have been obtained on fossil freshwater mol-
lusk shells from the Chipalamawamba Beds (Table 1). One
date was obtained by Gorthner (1994) and although we have
approximate information as to what shell bed yielded the ma-
terial, we have no information on the lab and dating codes,
if and how he calibrated the date and whether he attempted
to account for the reservoir effect. Therefore, we report his
result here, but leave it untouched for all other purposes.
We performed the remaining 22 dates on shells that have a
well-constrained stratigraphic position. All results are inter-
nally consistent and are reported in Table 1 together with the
date obtained on a modern shell for calibration. This mod-
ern shell with an age of 25 a BP yielded a radiocarbon age
of 190± 3014C a BP, suggesting that the reservoir effect in
mollusks is∼ 175 yr, hence substantially smaller than that
recorded in bulk organic material.
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Table 1. Radiocarbon dating results for 23 fossil mollusk samples from the Chipalamawamba Beds and one modern shell. Dating of this
modern shell (Dating number 1) resulted in a reservoir effect of∼ 175 yr, which has been used to calibrate the other dates from radiocarbon
to calendar age. All MLW-BVB-08 (2008) and MLW-BVB-10 (2010) sample codes are linked to specific shell horizons in Figs. 4 and 5,
except for 10-078 and 10-080, which were obtained from outcrops on the eastern shore near Kazembe.

Dating# Lab# Sample# Material 14C age (BP) Calendar age (BP)

1 Beta-316041 MRAC-58430 Chambardiashell 190± 30 25
2 Poz-31571 MLW-BVB-08-SH5 Aspathariashell 6240± 40 6918± 53
3 Poz-31573 MLW-BVB-08-SH4 Coelaturashell 6675± 35 7420± 24
4 Poz-31574 MLW-BVB-08-SH1 Coelaturashell 9090± 50 10 081± 109
5 Poz-30524 MLW-BVB-08-SH0 Lanistesshell 5290± 40 5874± 52
6 Poz-30525 AG-2.8.92-8.205 (eq. 08-SH7)Melanoidesshells 4795± 35 5348± 57
7 Poz-42241 MLW-BVB-10-099 Coelaturashell 6400± 35 7149± 54
8 Poz-42242 MLW-BVB-10-091 Chambardiashell 6050± 35 6688± 36
9 Poz-42243 MLW-BVB-10-028 Coelaturashell 6760± 60 7478± 48

10 Poz-42244 MLW-BVB-10-035 Lanistesshell 6300± 40 6996± 62
11 Poz-42246 MLW-BVB-10-038B Coelaturashell 6040± 35 6678± 36
12 Poz-42247 MLW-BVB-10-050A Corbiculashell 6560± 35 7308± 42
13 Poz-42248 MLW-BVB-10-052B Coelaturashell 6790± 40 7501± 38
14 Poz-42249 MLW-BVB-10-053 Coelaturashell 6980± 40 7642± 32
15 Poz-42250 MLW-BVB-10-058 Coelaturashell 6080± 40 6718± 44
16 Poz-42251 MLW-BVB-10-057A Coelaturashell 6185± 35 6847± 51
17 Poz-42256 MLW-BVB-10-054 Coelaturashell 9550± 50 10 594± 63
18 Poz-42257 MLW-BVB-10-065 Coelaturashell 6200± 40 6867± 56
19 Poz-42258 MLW-BVB-10-077 Coelaturashell 9580± 50 10 630± 66
20 Poz-42259 MLW-BVB-10-075 Coelaturashell 6200± 40 6867± 56
21 Poz-42261 MLW-BVB-10-086 Coelaturashell 6190± 40 6853± 56
22 Poz-42262 MLW-BVB-10-080 Coelaturashell 8910± 50 9695± 93
23 Beta-316041 MLW-BVB-10-078 Coelaturashell 5880± 30 6479± 36
24 Gorthner Sample 10 (AG-2.8.92-10) bivalve shell 5845± 85

3.3 Fossil content

Including replicates, 163 samples of fossil material were
obtained during the fieldwork campaigns in 2008 (17) and
2010 (146). Most of these fossils belong to freshwater mol-
lusks, but fish bones and occasionally isolated mammal or
bird remains have also been obtained. The fossil assemblages
testify to the exclusively aquatic setting in which the Chipala-
mawamba Beds were deposited. The content of all but three
of these samples has been fully identified and counted. In
total this results in 34 215 specimens being processed, leav-
ing about 10 000–15 000 more specimens yet to be han-
dled (mainly belonging to the gastropod genusMelanoides).
However, even though not all material has been processed,
it was possible to make preliminary comparisons of samples
and their mollusk assemblages. Table 2 provides an overview
of the fossil finds in comparison to the modern fauna. It in-
dicates that two mollusk genera currently present in Lake
Malawi have not been recovered as fossils, whereas three
genera present in the fossil record are not currently con-
sidered to occur in Lake Malawi. The diverse fossil assem-
blages in Units 1 to 3 testify to the lacustrine nature of the
deposits. Detailed discussions on mollusk diversity through
time is beyond the scope of this paper, but very characteristic

assemblages could be distinguished in a few cases and al-
lowed correlations between profiles. Because some mollusk
genera display considerable morphological change over the
Holocene, some characteristics of fossil taxa enabled us to
attribute shell beds to a particular stratigraphic unit. This as-
pect will be discussed below.

3.4 Stratigraphy

The Chipalamawamba Beds consist of four units separated
from one another by erosional contacts, which unfortunately
are not always easy to recognize in the field. They are over-
lain by modern soil. The bedding is usually nearly horizon-
tal, often dipping slightly towards the north, but due to the
lenticular nature of the beds, variation occurs and dips to the
south have been observed as well. Below, we describe these
four units from bottom to top and have delineated, to the ex-
tent possible, the four major units in the grain size column of
the profiles in Figs. 4 and 5. Magnetic susceptibility by itself
did not allow discerning the units of the Chipalamawamba
Beds because the variation within a bed is usually similar to
or greater than that between beds. As MS properties are not
characteristic for the individual units, they are not discussed
below and peaks in MS values are used for correlation only in
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Table 2. Fossil finds in the units of the Chipalamawamba Beds compared to the modern mollusk fauna of the Malawi Basin (updated
from Mandahl-Barth, 1972). Numbers indicate how many morphospecies are recognized per genus; one asterisk (*) marks the number of
morphs after inclusion of fossil material collected by A. Gorthner; two (**) indicates that deep-water species are included. Mollusk finds not
identifiable to genus level were excluded. Doubtful occurrences in the Malawi Basin are flagged with question marks, vc= very common,
c= common, uc= uncommon, r= rare, a= absent.

Taxon Unit 1 Unit 2 Unit 3 Unit 4 Modern

Gastropoda Caenogastropoda
Bellamya 1, c 1, c 1, c a 4**
Lanistes 2, c 3 (4*), c 3, uc a 5**
Gabbiella 1, c 1, c 1, c a 1
Melanoides 8, vc 8, vc 8, vc a 9

Gastropoda Heterobranchia
Anisus a a a a 1
Biomphalaria 1, r a a a 1?
Bulinus 2, c 3, c 3, c a 4
Ferrissia a 1, r a a 0
Gyraulus a a a a 1
Segmentorbis/Lentorbis a 1, r a a 0

Bivalvia Heterodonta (Veneroida)
Pisidium 1, uc 1, uc a a 2
Sphaerium a 1, r a a 0
Corbicula 1, c 1, c 1, c a 1

Bivalvia Heterodonta (Unionoida)
Coelatura 2, c 2, c 1, c a 2 (3?)
Mutela 1, r 1, r a a 1
Chambardia 1, r 1, r a a 1(2?)

Vertebrata
fish bones/teeth r r r r –
reptile teeth r r a a –
bird bones a r a a –
mammal bones/teeth a r a a –

cases of correspondence with independent sedimentological
evidence.

We describe the stratigraphy in informal terminology
(beds and units instead of formations and members) because
of uncertainties in the geographic (and cartographic) extent
beyond Chipalamawamba, Kwitambo and Kazembe, because
of the difficulties experienced in identifying some of the
erosional contacts between the units, and because the base
of the Chipalamawamba Beds and the (horizontal and verti-
cal) extension of the paleo-river gullies remain unknown.

3.4.1 Unit 1

Unit 1 is the lowermost unit and dates back to 10.6–
9.7 cal ka BP. Its contact with the underlying unit was not
observed; the upper boundary is an erosional contact with
Unit 2. Unit 1 has an observed thickness of 1.0 m, but is
thicker as its base was not observed. Sediments are gener-
ally poorly sorted; they contain both fine and coarse sand
and often include larger granules (e.g., in the top shell bed of

the unit). Bioturbation and oblique stratification sometimes
occur.

The unit is present in profile L15 and all profiles north of
it; it probably even extends south of L15 in profiles 7A and
7B. South of L7B, Unit 1 is eroded by a major paleo-gully.
The youngest sediments of this unit thus far known are recog-
nized at Kazembe. Fossil mollusk assemblages are very com-
mon in Unit 1 and can easily be discerned from those of other
units by the dominantMelanoidescf. polymorphamorpho-
type (Fig. 6a–c) and the abundantM. cf. nyassana(Fig. 6d).
These morphotypes have a medium to strong shoulder, a high
apex and are smooth (not tuberculated).

3.4.2 Unit 2

Sediments belonging to this unit were deposited some 7.6–
6.5 cal ka BP. The lower boundary is an erosional unconfor-
mity topping Unit 1. While the sediments that contain this
erosional unconformity are well-recognized, e.g., by oblique
stratification, it is difficult to pinpoint the erosional surface
that is responsible for the main time gap between deposition
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Fig. 6. Melanoidesspecimens from the Chipalamawamba Beds.
The first two rows represent material from Unit 1, with much
weaker ornamentation than specimens from Units 2 and 3 (lower
two rows). In Unit 1,M. cf. polymorpha(A–C) is very abundant,
and M. cf. nyassana(D) occurs regularly too. Specimens ofM.
pupiformis(E) and ofM. cf. turritispira (F–J) are not that abun-
dant and more weakly ornamented than these taxa are in Units 2
and 3. The more strongly ornamentedM. cf. turritispira (I–J) are
rare in Unit 1.M. cf. polymorpha(K) , initially common in Unit 2, is
becoming rarer (∼ 5 % of allMelanoides) higher up, and even more
so in Unit 3;M. cf. nyassanais rare (< 1 %) in Units 2 and 3.M.

cf. turritispira is more strongly ornamented in Unit 2(L–N) and 3
(S) than in Unit 1, as isM. cf. pupiformis(Unit 2: O–R; Unit 3: T).
Strongly ornamentedM. cf. turritispira specimens are more abun-
dant in Unit 3 than in Unit 2, but specimens of Unit 3 are generally
more poorly preserved than those of Unit 2. Scale bar is 5 mm.

of sediments of Unit 1 and Unit 2. Unit 2 has an average
thickness of about 1.0 m in the north (L10–L7A), but in L6
it reaches a thickness of 2.0 m, diminishing again in thick-
ness towards the south (L4), where it remains about 1.3 m
thick. There is hence a lot of lateral variation and at the same
elevation substantial differences in ages exist laterally. Sev-
eral local diastems and evidence for short erosional phases
have been recorded in Unit 2, as evidenced by a minor gully
a few meters wide that we observed between L6A and L6B.
Overall, the sediments of Unit 2 are well-sorted and very yel-
lowish; shell beds are relatively abundant and typically occur
in the coarser-grained, often darker colored beds.

Unit 2 has the widest geographical distribution within
the Chipalamawamba Beds. It occurs in all profiles on
the western shore, except for those taken in the two main
paleo-gullies. Its youngest strata occur at Kazembe. The
Melanoidescommunity in shell beds of Unit 2 is dominated
by a medium to strongly tuberculatedM. cf. turritispira mor-
photype (Fig. 6l–n), which is about the same size as theM.

cf. polymorphamorphotype in Unit 1 and is very closely
related to it (Mandahl-Barth, 1972; Genner et al., 2007).
M. cf. pupiformishas evolved strongly sculptured shells too
(Fig. 6o–r).

3.4.3 Unit 3

Radiocarbon dating on mollusk shells from sediments of
Unit 3 resulted in ages of∼ 5.9–5.3 cal ka BP. More dates are
required to elucidate whether these sediments have been de-
posited during one or two transgressions. Currently, different
ages have been obtained from geographically separated out-
crops. It has been more difficult to trace the main erosional
surface(s) between Units 2 and 3, compared to the one be-
tween Units 1 and 2, but the white layers between Units 2
and 3 in Figs. 4 and 5 identify the sediments that may contain
such surface(s). The upper boundary of Unit 3 is a conspic-
uous erosional contact with sediments belonging to Unit 4.
In several localities Unit 3 is directly overlain by the mod-
ern soil. Like the sediments of Unit 2, those of Unit 3 are cut
off by two major paleo-gullies. In the northern part Unit 3
reaches a thickness of 0.6 m, and it has the same thickness
in the southern part of the area except for between L5 and
L13, where the thickness is 2.0 m. The sediments of Unit 3
strongly resemble these of Unit 2. They are relatively fine-
grained and well-sorted, often dull yellow-orange sands. In
shell beds, the sediments are on average coarser. The top
of Unit 3 consists of well-sorted, fine-grained, dull yellow-
orange sands that are very poor in or devoid of fossils, ex-
cept for scattered fish bones, and abundant bioturbation in
the northern part.

Overall, Unit 3 occurs more patchily than Unit 2 and
the outcrops north of the major paleo-gully and south of it
have somewhat different characteristics. As mentioned and
as supported by differences in shell bed composition, they
may represent two separate transgressions. Shell beds are
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rarer in Unit 3 than in Units 1 and 2, however, sediments
of Unit 3 in localities L1 and L2 contain many dispersed
shells in addition to a few thick shell beds that contain abun-
dant material of a relatively smallMelanoidescf. turritispira-
like morphotype (Fig. 6s) and a somewhat less abundantM.

cf. pupiformis(Fig. 6t). In contrast,BellamyaandLanistes
are more frequent in the northern deposits of Unit 3, where
Melanoidesis rare. TheM. cf. turritispira morphotype that
dominates the southern deposits of Unit 3 is very similar to
the one in Unit 2. No conspicuous morphological features
have been observed that allow discerning the mollusk com-
munities from Unit 2 and 3 based on intrinsic faunistic prop-
erties, though material of Unit 2 is generally better preserved.
This is probably the reason why the fragile heterobranch gas-
tropods of Unit 2 are lacking from Unit 3.

3.4.4 Unit 4

The age of deposits belonging to Unit 4 has not been estab-
lished via absolute dating as for Units 1 to 3, but these sedi-
ments were deposited after deposition of Unit 3 and presum-
ably before the Shire River was fully installed as outflow of
Lake Malawi∼ 5.5–5.0 ka BP (Ricketts and Johnson, 1996).
The lower boundary of Unit 4 consists of erosional unconfor-
mities with sediments belonging to Units 1 to 3. In profiles
L3, L5, and L8A the direct erosional contact between Units 3
and 4 has been observed, but in other profiles this contact
is more difficult to pinpoint. Unit 4 is overlain by the mod-
ern soil. Unit 4 ranges in thickness from several decimeters
(L8A, L3) up to more than 2.5 m (L11, L12). Unit 4 consists
of coarse-grained and poorly-sorted, dull yellow-orange/dull
yellow-brown sands (sometimes including fine gravel) that
rarely contain fossil material. As mentioned, the limited fos-
sil finds have not been dated (and actually may represent
reworked material). Unit 4 sediments show a compact sed-
imentation with only minor changes in grain sizes related
to weak fining or coarsening up cycles. These sands have
been deposited in higher energy environments than the other
units of the Chipalamawamba Beds as is evidenced by regu-
lar oblique bedding and foresets (Fig. 2h).

Most sediments we studied of this unit were deposited in
the main paleo-gully, which occurs between profiles L6A and
L7A but extends beyond L7A up to L8A, is several hundreds
of meters wide (in total perhaps up to 500 m) and literally
divides the fossil-bearing Units 1 to 3 on the western shore
into a northern (north of L7A) and a southern (south of L6A)
area. The second paleo-gully between L3 and L5, which also
was filled up by sediments of Unit 4, is smaller (60–130 m
wide) and separates the southern area into two subareas (L3
& 4 vs. L1, 2, 5, 6 and 13). The first bed below the modern
soil in profile L9A is perhaps attributable to Unit 4 too. No
fossils have been obtained from deposits of Unit 4, except
for a single and potentially reworked shell fragment and a
few fishbone fragments.

4 Discussion

4.1 Paleoenvironmental context

Units 1 to 3 of the Chipalamawamba Beds consist predomi-
nantly of lake beds. The characteristics of the fossil assem-
blages (Table 2), the sedimentological properties of the beds
and their broad geographical extent all suggest these units
have been deposited mainly in shallow lacustrine conditions.
Paludal circumstances may have prevailed occasionally, as
is currently the case at the southern tip of Lake Malawi
and at the margins of Lake Malombe. Deposition in palu-
dal circumstances, evidenced by root casts, differences in the
mollusk fauna and in some cases by the presence of a finer
fraction in the sediments, remained geographically localized
and restricted in time. The three lower units of the Chipala-
mawamba Beds hence represent three major phases of high
stand of Lake Malawi, separated from one another by regres-
sive phases, during which erosion of previously deposited
lake sediments occurred. Within units, minor diastems (in-
cluding intermediate erosional events) have been recognized
also. The fourth and uppermost unit represents a different,
higher energy environment. Its deposition took place shortly
after that of Unit 3 and coincides with the development of the
Shire River as the outlet of Lake Malawi. During this period,
some existing paleo-river gullies that originated in the intro-
ductory phase of Unit 4, perhaps with precursors from the
regressive phase between Units 2 and 3, filled with sediment
as the Shire River formed its main riverbed and other deltaic
paleo-gullies became defunct. This could have occurred very
quickly from the moment throughflow diminished in the de-
funct paleo-gullies as the channel now known as the Shire
River increased its discharge and cut its course through the
lacustrine deposits. When the Shire River cut sufficiently
deep for floods outside the riverbed to have become rare,
the modern soil started developing on top of the Chipala-
mawamba sediments in the river banks. For reference, dur-
ing our 2010 field campaign the bottom of the Shire River
in the centre of the channel was∼ 10 m below the water
level and traces of the annual high water stands from the last
decades were detected in sediments up to∼ 1 m above the
water level, but not higher. As mentioned, the current water
level was∼ 473–474 m a.s.l., which corresponds well with
previous measurements (Bootsma and Hecky, 2003).

The rate of sedimentation appears generally to have been
high for the Chipalamawamba Beds. Sediments of Unit 2,
for example, have typically been deposited very rapidly with
intermediate diastems, e.g., all Unit 2 sediments in profile
L7B (∼ 1.0 m) have been deposited in roughly 200 yr be-
tween∼ 7.6–7.4 cal ka BP, whereas the 1.3 m of sediments
in L4 appears to have been deposited in 500 yr (∼ 7.5–
7.0 cal ka BP). About 1.3 m of Unit 2 in profile L8B was
deposited in 150 yr between 6.9–6.7 ka BP. Assuming con-
stant sedimentation, this suggests deposition rates of∼ 0.50,
0.26 and 0.87 m per century, respectively. In Unit 1, 1.1 m
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of sediments was deposited in L8B and L9A over 500 yr
(∼ 10.6–10.1 cal ka BP), suggesting∼ 0.22 m per century un-
der the same assumption. Sedimentation rates are hard to es-
timate for Unit 3, because of more limited age control and
the possibility that these sediments reflect not one but two
high stand phases. Rapid sedimentation is also suspected in
Unit 4. The high energy environments in which deposition
occurred and the narrow time window in between deposi-
tion of Unit 3 and the moment the Shire River became fully
operational hint towards rates potentially even higher than
the maximal estimates for Unit 2. Apart from the rapid de-
position of units, the spread in radiocarbon dates indicates
that individual shell beds were deposited quickly too. The
oldest shell bed in Unit 1 has been dated to 9550± 50 and
9580± 5014C yr; another shell bed from Unit 2 was dated
to 6200± 40, 6200± 40, and elsewhere to 6185± 3514C yr;
laterally equivalent shell bed extensions in the south were
dated to 6040± 35 and 6050± 3514C yr. Dating information
hence strongly suggests individual shell beds to have been
deposited over periods as short as a few decades.

Unit 1 was predominantly deposited in shallow lacustrine
conditions (0 to 3 m of depth), with relatively strong wave
action. Apart from the poorly sorted sediments, which con-
tain a very coarse sand fraction, shell bed taphonomy sup-
ports this suggestion. Shells are abundant, but are regularly
fragmented or broken, and some post-mortem transportation
may have occurred. The top shell bed in this unit is a good
example of this; it contains mainly rolled hinge fragments of
bivalves and columellar fragments of gastropods. That Unit 1
only occurs in the northern deposits of the Chipalamawamba
Beds could be explained in two ways. First, the earliest
Holocene transgressive phase may have been less extensive
than the later ones. Taking into account the bathymetry of
Lake Malawi (Scholz and Rosendahl, 1988), the more exten-
sive a transgressive phase, the farther south deposits would
extend. As such, sediments deposited during less extensive
high stands may only be recognizable in the north. This argu-
ment based on bathymetry also implies that erosion would be
strongest in the south, as deposits in the south would gener-
ally surface earlier and longer than deposits in the north. The
second explanation is that Unit 1 was also deposited farther
south, but that southern deposits were eroded by the main
paleo-gully. However, this last scenario cannot account for
the absence of Unit 1 in deposits south of the main paleo-
gully, and both explanations may have contributed to the
present observations.

Unit 2 contains a larger fraction of fine sediments in the
north, and towards the south, coarser grained and poorly
sorted sediments become more abundant. In general, we ob-
served that sediments lower in Unit 2 are generally coarser
and less well-sorted than higher ones, and shell beds are
deposited in relatively coarse sand. Even those shell beds
sandwiched between finer-grained sediments normally con-
tain coarser-grained sands. In layers of finer-grained sedi-
ments, dispersed shells regularly occur and the few shell beds

that are deposited in fine-grained material do not show com-
positional differences from shell beds deposited in coarser-
grained sediments. However, in contrast to the high energy
shell accumulations preserved in Unit 1, those associated
with coarse and relatively poorly sorted sediments in Unit 2
contain shells that are very well preserved. Bivalve speci-
mens often display umbonal sculpture, the early teleoconchs
of gastropods are usually intact and a rich community of
heterobranch gastropods with fragile shells is present. This
suggests that conditions during the lifetime of these animals
and at the time of burial were calm enough to prevent shell
abrasion and corrosion, and that burial occurred with suffi-
cient rapidity to prevent abrasion in post-mortem transport.
Whereas deposition may have taken place in rather shallow
waters (∼ 0–3 m), many of the shells in Unit 2 probably be-
longed to animals that lived well below the surf zone, i.e.,
in waters of∼ 3–5 m, potentially deeper. Personal observa-
tions on living adult mollusks from shallower waters suggest
that abrasion and corrosion of the teleoconch or the umbonal
sculpture would have been unavoidable in shallow habitats.
The diverse heterobranch assemblage, moreover, suggests
the presence of abundant macrophytes near the site of de-
position.

The sediments of Unit 3 document the last major high
stand of the lake and are very similar to those of Unit 2, how-
ever on average, they are darker in color. The erosional un-
conformity between Units 2 and 3 is more difficult to discern
than the one between Units 1 and 2, probably because the
hiatus was much shorter (∼ 600 yr compared to∼ 2000 yr).
Most deposits consist predominantly of fine-grained sands,
but as in Unit 2 the sediments in shell beds are usually coarser
than those in beds without shells. Outside the area between
L1 and L2, however, shell beds are very rare in Unit 3. The
fact that deposits of Unit 3 are scattered is probably due to
erosion caused by the developing outflow shortly after the
sediments were laid down. This erosion was probably patchy
and rather widespread.

Unit 4 contains strata from the latest phase in the de-
position of the Chipalamawamba Beds, and likely accumu-
lated when the Shire River became functional. Sediments of
Unit 4 have not been dated, but their stratigraphical posi-
tion in combination with current estimates on the origin of
the Shire River would imply Unit 4 was deposited rapidly.
Also the sedimentological properties of deposits belonging
to Unit 4 and their bearing on the depositional environments
support fast deposition. Sediments of Unit 4 represent true
riverine deposits that were formed when high lake levels of
Lake Malawi resulted in substantial water discharge in the
south. Coarse-grained sediments were deposited where pre-
vious river branches and paleo-gullies created accommoda-
tion space. As mentioned, these gullies filled up fast, poten-
tially aided by decreasing discharge (and currents) via these
channels when the channel now known as the Shire River ex-
panded and increased its capacity to become the single out-
flow of Lake Malawi. While some gullies were filled with
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the coarse sediments belonging to Unit 4, the overall balance
during this phase was perhaps more towards the side of ero-
sion, and substantial parts of the older units of the Chipala-
mawamba Beds were eroded just before and during the pe-
riod in which Unit 4 was deposited.

4.2 Current erosion of the Chipalamawamba Beds

Some outcrops of the Chipalamawamba Beds underwent a
substantial amount of change between our fieldwork in 2008
and 2010 (compare e.g., Fig. 2a and b). Besides erosion at the
water level by the Shire River, the increasing human popula-
tion causes considerable additional erosion. People frequent
the waterside for multiple basic needs. Moreover, fishermen
are known to have engaged in digging out complete shell
beds at or just below the waterline because towing over these
fossil shell beds causes substantial damage to their fishing
nets. This, in combination with the fact that most beds are
strongly lenticular can result in future changes in the indi-
vidual thickness of sediment layers and in the presence of
fossil-bearing outcrops.

4.3 Paleolimnological inferences on lake levels

Hypotheses on late Quaternary lake levels of Lake Malawi
are widely discussed in scientific literature, partly because
the timing of its low and high stands appears out of phase
with those from African lakes farther north (e.g., Finney et
al., 1996; Gasse, 2000; Johnson et al., 2002; Filippi and
Talbot, 2005) and secondly because the climatic history
of the basin during the Holocene, particularly in the early
Holocene, has not been resolved (Castañeda et al., 2007).
For example, low lake levels (100–150 m below present
levels) were suggested for Lake Malawi during the early
Holocene (10.0–6.0 ka BP) based on geochemical data from
core sediments, diatom communities (Finney and Johnson,
1991; Finney et al., 1996), and from seismic features (Scholz
and Finney, 1994). Similarly, vegetation records suggest that
conditions were generally more arid 11.6–7.7 ka BP than at
present (Meadows, 1984; DeBusk, 1998; Castañeda et al.,
2007, 2009). Geochemical analyses of endogenic calcite sug-
gest drying events between 9.0 and 8.5 ka BP, between 8.5
and 7.5 ka BP and between 7.2 and 6.5 ka BP (Ricketts and
Johnson, 1996). Analyses of organic matter in sediment cores
provides evidence for a much shorter duration (∼ 2 ka) of the
terminal Pleistocene–early Holocene low stand, with rising
water levels∼ 10.5 to 10.0 ka BP, resulting in high lake lev-
els ∼ 8.0 ka BP (Filippi and Talbot, 2005). The scenario of
high lake levels in the early and middle Holocene is gen-
erally supported by records of periphytic diatoms (Johnson
et al., 2002). Records of planktonic diatoms support high or
intermediate levels during much of the early Holocene, with
short-lived regressions at 10.6 and 8.5–8.2 ka BP and a some-
what remarkable transgression 7.5–6.6 ka BP (Gasse et al.,
2002). Finally, it is puzzling that several proxies from Lake

Malawi suggest low lake levels and aridity when the nearby
Lake Rukwa experienced humid conditions from 12.1 to
5.5 ka BP (Haberyan, 1987; Vincens et al., 2005), with paleo-
shorelines during that interval at least temporarily reaching
levels∼ 200 m above the present day lake level (Delvaux et
al., 1998). Also Lake Massoko, a volcanic crater lake in the
Rungwe Highlands, experienced relatively wet conditions in
this period (Barker et al., 2003).

After 6.0 ka BP lake levels in the Malawi Basin would
have remained high and more stable than between 10.0 and
6.0 ka BP (Finney and Johnson, 1991; Finney et al., 1996;
Ricketts and Johnson, 1996; Castañeda et al., 2007), with the
onset of an open-basin regime when the Shire River became
functional about 5.5–5.0 ka BP (Ricketts and Johnson, 1996).
Indeed, productivity in the lake appears to have been en-
hanced because of stronger winds and/or wetter climatic con-
ditions (Johnson et al., 2002). Similarly, terrestrial vegetation
records suggest wetter conditions and decreased seasonal-
ity from ∼ 7.0 until ∼ 2.5 ka BP (Meadows, 1984; Debusk,
1998; Castãneda et al., 2009). The timing of the highest con-
tribution of C3 vegetation (4.9 ka BP; Castañeda et al., 2007,
2009) appears to coincide roughly with the end of endorheic
conditions. After 2.5 ka BP, the vegetation indicates increas-
ingly drier conditions again (Castañeda et al., 2009) and brief
low stands have been reported for this period (Owen et al.,
1990; Finney and Johnson, 1991). Planktonic diatoms, how-
ever, hint to generally lower lake levels over the last 4 ka BP
than in the early Holocene (Gasse et al., 2002). Aridifica-
tion would have started already from 5.5 ka BP in the Rukwa
Basin (Vincens et al., 2005) and from∼ 4.5 ka BP for Lake
Massoko (Barker et al., 2003).

Our work in the Chipalamawamba Beds provides strong
evidence for three periods of high lake levels in the early and
middle Holocene. Contrasting the above mentioned sources,
we rely solely on our age model, not on the interpretation
of lake-level proxies. A first transgressive phase occurred
10.6–9.7 ka BP, a second one with more or less continu-
ously high lake levels 7.6–6.5 ka BP and a third one 5.9–
5.3 ka BP. These data corroborate the 9.0–8.5 ka BP and the
8.5–7.5 ka BP drying events of Ricketts and Johnson (1996)
as well as their estimate for the onset of open-basin con-
ditions (∼ 5.5–5.0 ka BP). However, our data are in conflict
with the 7.2–6.5 ka BP drying event of Ricketts and John-
son (1996), because a substantial part of the widespread de-
posits of Unit 2 were deposited during this period. Our data
correspond well to the wet periods 7.5 and 5.3 ka BP and the
aridity ∼ 8.2 and 6.4 ka BP reported by Barker et al. (2007),
except for their claim of aridity at 10.0 ka BP. Findings from
the Chipalamawamba Beds are also in correspondence with
the regressions between 8.5–8.2 ka BP and the transgression
between 7.5–6.6 ka BP reported by Gasse et al. (2002) based
on planktonic diatoms, but they contradict these authors’
short-lived regression at 10.6 ka BP. Note that the periods in-
dicated for high lake level phases above give conservative
estimates for the end of high-water phases. High lake levels
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may have prevailed for quite a bit longer, and significant
amounts of the upper lake sediments deposited during high
water stands may have been eroded during subsequent ero-
sional phases. Therefore, we cannot contradict that lake lev-
els were high 9.0 ka BP (Barker et al., 2007) or 8.0 ka BP (Fil-
ippi and Talbot, 2005), even though this would imply that all
sediments deposited after 9.7 ka BP would have been eroded
in intermittent erosional phases or in the period between 8.0
and 7.6 ka BP. The magnitude of lake level drops in between
high-water phases remains speculative. Lake Malawi’s water
budget over 25 yr (1954–1980) indicated that∼ 60 % of the
water input derives from rainfall directly on the lake’s surface
and that∼ 82 % of the water leaving the lake evaporates from
that same surface (Owen et al., 1990). Lake Malawi water
levels are hence very susceptible to climatic changes, as was
documented from recently obtained sediment cores (Scholz
et al., 2007; Cohen et al., 2007). However, drops in lake level
over the Holocene were presumably more moderate than the
one during the Last Glacial Maximum when lake levels were
∼ 75–100 m below the current level (Konecky et al., 2011),
which is corroborated by shoreline elevation constraints in
core sediments (Cohen et al., 2007). Hence, a reasonable es-
timate for lake level drops during the early Holocene low
stands would be on the order of ten to several tens of me-
ters. In any case, the Chipalamawamba Beds clearly indicate
that, at least periodically and regularly, Lake Malawi attained
high lake levels in the early and middle Holocene, i.e., up to
5 m higher than at present. Although our data do not provide
information on the magnitude of lake level drops during pe-
riods of low stands, they provide unambiguous evidence for
oscillating lake levels and contrast with previous hypotheses
of rather continuous high (Johnson et al., 2002) or low lake
level phases (Finney and Johnson, 1991; Finney et al., 1996).

4.4 Paleobiological relevance

Mollusk assemblages are abundant in the Chipalamawamba
Beds and material is in general very well preserved and
can be retrieved relatively easily from the matrix. As men-
tioned above, time averaging in shell beds appears to be lim-
ited and fossil assemblages probably reflect living popula-
tions to a great extent, which facilitates paleoecological and
evolutionary studies. Moreover, considerable morphological
changes have occurred in the mollusk communities since de-
position of the early Holocene fossil beds (e.g., changes in
ornamentation inMelanoides, see Fig. 6; Van Bocxlaer and
Schultheiß, 2010), and lineage splitting has putatively taken
place (Van Bocxlaer, 2005). Indeed, diversification is ongo-
ing in some of the taxa concerned, e.g.,Lanistesand Bel-
lamya (Schultheiß et al., 2009, 2011), and indications ex-
ist that explosive speciation occurred in some of the mono-
phyletic, endemic mollusk clades of Lake Malawi (i.e., sev-
eral more or less simultaneous lineage splits occur over a
short period, coinciding with morphological differentiation,
so that the phylogenetic relationships of the descendants are

represented by a hard polytomy). These clades were sampled
in the fossil beds. Therefore, the Chipalamawamba Beds of-
fer a unique opportunity to complement neontological stud-
ies on the extant fauna (e.g., Genner et al., 2007; Schultheiß
et al., 2009, 2011) with paleobiological studies of morpho-
logical evolution, diversification and divergence in fossil
“populations” over time. Such complementary work is rarely
possible for modern organismal radiations and it is particu-
larly relevant in cases where morphological traits observed
on the fossil material can be unambiguously related to the
anatomical and life-history traits that supposedly led to the
divergence of the modern taxa. Our stratigraphic and pale-
oenvironmental studies on the Chipalamawamba Beds more-
over reveal a remarkable potential for high resolution paleon-
tological time series analyses (100s to a few 1000s of years
between subsequent beds; Table 1). These efforts may allow
a narrowing of the “epistemological gap” between neonto-
logical and paleontological approaches to the study of or-
ganismal evolution (e.g., Kemp, 1999; Reznick and Ricklefs,
2009).
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