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Supplement A – Inversion setup and inputs  
 
A.1  Atmospheric CO2 data and boundary conditions 
 
A.1.1 CO2 mixing ratio data processing and filtering 
 

After preliminary data filtering to exclude low-quality flags and other obvious errors or 

anomalous spikes in the data, continuous measurements from all towers were averaged to a 

three-hourly timescale for use in the inversions.  Aircraft data were included for measurements 

below 4000m in altitude, where the strongest influence from surface CO2 fluxes on the 

continent is expected (Gerbig et al., 2003a).   

With a perfect transport model, it would be possible to use all available well-calibrated 

CO2 measurement data in an inversion to help improve the atmospheric constraint on flux 

estimates.  In fact, inversions using synthetic data,  and assuming perfect transport, yield better 

flux estimates with more defined spatial features as measurements are added throughout the 

day and night (Mueller, 2011).  However, including measurements during times of the day that 

are subject to systematic transport model errors can lead to biased flux estimates, and 

potentially misleading scientific conclusions (Lin and Gerbig, 2005; Prather et al., 2008).   

Following previous inversion studies (e.g. Peters et al., 2007; Schuh et al., 2010; 

Göckede et al., 2010b), we therefore rely primarily on afternoon CO2 measurements when 

vertical convective mixing is strongest, and the height of the PBL is generally well-represented 

by WRF-STILT (Zhao et al., 2009).  Specifically, 3-hourly averages centered at 1 and 4pm were 

included year-round for all towers, as well as some morning and evening data (3-hourly 

averages centered at 10am and 7pm) during the height of the growing season when the air 

should also be well-mixed due to longer day lengths.  Also, following data selection criteria for 

the CarbonTracker system (Peters et al., 2007), some night-time data (3-hourly averages 



centered on 1 and 4am) were included for the two tall towers (LEF and WKT, Table 1), where 

towers sample the residual mixed layer representative of CO2 fluxes from the previous day.   

Finally, some of the flask and aircraft data collected on the Pacific coast were excluded, 

given that a substantial misfit was found at these sites between measured CO2 mixing ratios 

and bottom-up fluxes transported forward to the measurement locations.  This may be due to 

difficulties in modeling coastal transport (Riley et al., 2005), or the coarse resolution of WRF-

STILT in these locations (i.e. 40km) relative to the scale of meteorological phenomena 

(Ahmadov et al., 2009). 

In addition to systematic transport model errors, using observed continuous CO2 

measurements in a regional inversion is subject to other challenges.  First, instruments are 

subject to failure, creating gaps in the concentration record for some towers.  For example, at 

Harvard Forest, 45% of the potential measurements are missing for the year, particularly in the 

early part of the year, while at Moody, Texas, observations are missing for January, August, and 

most of September.  Other shorter data gaps occur throughout the year for all towers.   

Second, some of the variability in the measurements is due to very local influences 

(Gerbig et al., 2009) that cannot be resolved by the transport model, the driving meteorological 

data, or the flux estimation grid, leading to representation errors in the inversion.  These data 

should ideally be excluded, although there is no perfect method for identifying purely local 

influence.  Therefore, with the exception of filtering out extreme events that appear to be 

plumes from nearby point sources (i.e. short-term increases >30 ppm over background air), this 

study did not attempt to filter the data for local variability before averaging to the 3-hourly 

resolution.  This decision also leverages the fact that the WRF-STILT model, by simulating 

transport at relatively high spatiotemporal resolution in a Lagrangian framework, should be 

better able to resolve local influences relative to coarse-grid Eulerian models (Rastigejev et al., 

2010).   

Third, measurements are influenced by both land and oceanic fluxes, although oceanic 

flux locations were not explicitly estimated in this study.  This is an issue particularly for coastal 

locations, where mixing with ocean air can dilute the influence of land fluxes, thereby 

potentially yielding misleading land flux estimates if this is not taken into account in the 



inversion framework.  Therefore, filtering was applied to exclude measurements with primary 

sensitivity to ocean fluxes (defined as greater than 90% of the total sensitivity coming from 

ocean regions, or an integrated land footprint less than 0.5 ppm/(µmol m-2s-1)).   

After all data filters were applied, the number of data points included in the inversion 

per tower, accounting for data gaps, is shown with other tower information in Table A1.  In 

addition, Figure A1 shows a 2-week moving average of 1pm measurements at all nine 

continuous measurement locations throughout the year, after subtracting the influence of the 

boundary conditions and fossil fuel emissions. 

 

Table A1:  Measurement locations, along with other identifying characteristics of the sites and 

data included in the inversion.  The first 9 locations in the table have continuous data, while the 

last two represent flask and aircraft measurements from multiple locations across the 

continent.   

Measurement 
site code 

Site name 
Site latitude/ 

longitude 

Altitude 
above ground 

level (m) 

Night-time 
data 

included 

Number of 
observations  

for  year 

LEF 
Park Falls, 
Wisconsin 

45.93N, 90.27W 396 
1 and 4 am 
year-round 

1500 

WKT Moody, Texas 31.32N, 97.33W 457 
1 and 4 am 
year-round 

959 

SBL 
Sable Island, 
Nova Scotia 

43.93N, 60.02W 25 None 663 

BRW Barrow, Alaska 71.32N, 156.60W 10 None 248 

ARM 
Norman, 

Oklahoma 
36.62N, 97.50W 60 None 879 

HFM 
Harvard Forest, 
Massachusetts 

42.54N, 72.17W 30 None 558 

AMT Argyle, Maine 45.03N, 68.68W 107 None 795 

FRD 
Fraserdale, 

Ontario 
49.84N, 81.52W 40 None 878 

CDL 
Candle Lake, 

Saskatchewan 
53.99N, 105.12W 30 None 927 

FLA 
Flask samples 
from 6 sites 

See Figure 1 0 to 4 None 153 

AIR 
Aircraft vertical 
profiles from 15 

sites 
See Figure 1 139 to 3999 None 943 



 

Figure A1:  2-week moving averages of CO2 mixing ratio observations (3-hourly averages 

centered on 1pm local time) for 9 continuous measurement towers in 2004.  The combined 

influence of fossil fuel emissions and the continental boundary conditions on the observations 

was subtracted, such that the residuals shown here represent only the influence of biospheric 

fluxes on the observations.  Minor gaps were smoothed with linear interpolation, whereas gaps 

longer than 5 days were removed from the time series.  The 2-week moving averages are 

centered on the dates shown in the x-axis. 

 

 

A.1.2 Boundary conditions 
 

The empirical (EMP) North American boundary condition dataset is similar to the 

boundary condition developed by Gerbig et al. (2003b), and nominally represents a time-

varying curtain (latitude, longitude, altitude) of atmospheric CO2 mixing ratios through the 

middle of the Pacific Ocean.  This curtain was created by extrapolating un-polluted surface and 

aircraft measurements of CO2 from the NOAA-ESRL Cooperative Air Sampling Network (Tans & 

Conway, 2005) in both space and time, in a manner similar to other GLOBALVIEW data products 

(Masarie & Tans, 1995; GLOBALVIEW-CO2).  This boundary condition is strictly valid only for air 



masses reaching the continent from the West.  Relatively little air enters the study area from 

the East, and given that the dominant outflow from North America is to the East, un-polluted 

aircraft measurements of CO2, which are representative of background air, are lacking over the 

Atlantic.  Across the northern and southern boundaries, available data suggest that longitudinal 

gradients are likely to be small.   

The CarbonTracker (CT) boundary conditions represent gridded 4-dimensional (i.e. 

latitude, longitude, altitude and time) modeled CO2 concentrations from the CarbonTracker 

data assimilation system (Peters et al., 2007, 2010a).  Therefore, in contrast to the EMP dataset, 

the CT boundary conditions contain both longitudinal and synoptic variability.  However, these 

modeled CO2 concentrations are subject to biases in the inferred global fluxes resulting from 

the data assimilation system.  In fact, the EMP boundary condition dataset was developed in 

response to known seasonal biases in the CT CO2 fields, particularly during the Northern 

hemisphere growing season, for measurement locations upwind of North America (Peters et al., 

2010b).   

Due to these biases in CT, there is a systematic offset between the two boundary 

condition datasets, with the influence at the observational sites from the EMP dataset on 

average about 0.5 ppm lower than the values from CT, with this offset somewhat higher during 

the growing season.  Figure A2 shows a 2-week moving average of the offset by continuous 

measurement location throughout the year.   

 

  



Figure A2:  Two-week moving averages of the offset between the EMP and CT boundary 

condition CO2 time series at the 9 continuous measurement towers in 2004.  The 2-week 

moving averages are centered on the dates shown in the x-axis. 

 

 
A.2 – Atmospheric transport model 
 
A.2.1 STILT 

The Lagrangian particle dispersion model (LPDM) employed in this work is the Stochastic 

Time Inverted Lagrangian Transport (STILT) model, run in the time-reversed (receptor-oriented) 

mode. The STILT model is based on the HYSPLIT model (Draxler and Hess, 1998) and has been 

developed specifically for inverse greenhouse gas flux estimates (Lin et al., 2003; Nehrkorn et 

al., 2010).  Recent examples of its application at continental and regional scales are given by 

Kort et al. (2008, 2010), Zhao et al. (2009), Gourdji et al. (2010), and Göckede et al. (2010b). As 

in all LPDMs, atmospheric dispersion in STILT is simulated by tracking a large set of tracer 

particles, with each particle transported by mean winds obtained from a meteorological model 

as well as an unresolved, turbulent (subgrid) velocity component computed using the 

parameterizations of Hanna (1982).  The inclusion of both the mean and stochastic wind 



components (whose interactions are the basic cause of dispersion in the atmosphere) sets the 

LPDM approach apart from conventional trajectory models that employ mean winds only, and 

thus cannot properly simulate dispersion or surface interactions (Stohl, 1998; Stohl et al., 2003; 

Uliasz and Pielke, 1990; Uliasz, 1994). The LPDM approach prevents particle tracks from 

intersecting the surface for numerical reasons (e.g., a strong descent forcing a particle to a level 

below the surface) as is common in trajectory models. Instead, the turbulent winds invoked by 

the LPDM ensure that particles travel through the planetary boundary layer (PBL) in a physically 

reasonable way. 

In this application, the STILT model transports ensembles of 500 particles backwards in 

time 10 days from each of a set of receptor points (in this case, from a set of towers at 3-hourly 

resolution) using the input meteorological data.  For each receptor, we calculate the response 

of the target gas concentration at the receptor point to surface sources (“footprint”), in units of 

ppmv/(mol m-2 s-1). The footprint, which represents the adjoint of the transport field, is 

calculated by counting the number of particles in a surface-influenced region (defined as a 

fraction of the estimated PBL height) for a given time period spent in the region (for details, see 

Lin et al., (2003)).  When multiplied by an a priori field of surface flux, the footprint gives the 

associated contribution to the mixing ratio measured at the receptor. 

The STILT model has undergone a number of upgrades, most recently a merger with 

parts of the latest HYSPLIT code, resulting in improved handling of nested fields. The model is 

being developed by a worldwide consortium, with the most up-to-date software and 

information available at www.stilt-model.org.  

 

A.2.2 Meteorological Input 

For the inversions described in this paper, the STILT model has been driven by 

meteorological fields from a version of the WRF model (Skamarock and Klemp, 2008) 

customized for STILT and other transport models (Nehrkorn et al., 2010).  In particular, these 

WRF outputs include convective mass fluxes that are used directly in the STILT dispersion 

calculations, and time-averaged mass fluxes (rather than instantaneous advective velocities) are 

used to drive STILT, which results in good mass conservation (a critical consideration for inverse 

http://www.stilt-model.org/


flux estimates).  We have employed version 2.2 of WRF (www.wrf-model.org) over a domain 

covering North America, with two nested 10- and 40-km grids, as shown in Figure 1 in the full 

manuscript.  NARR fields have been used for initial and lateral boundary conditions and for 

analysis nudging of WRF.  To prevent drift of the WRF forecasts from the analyses, forecasts 

were reinitialized every 24 hours (at 00 UTC).  Forecasts were run out to 30 hours, but only 

hours 7-30 from each forecast were used to avoid spin-up effects during the first 6 hours from 

each forecast.  Model fields were output hourly and archived in the native WRF netcdf format.  

For use in the STILT model, a subset of model fields was archived in the (compressed) ARL 

format, at a substantial savings in storage. 

A summary of numerical and physics options used in these runs is given in Table A2. 

  

http://www.wrf-model.org/


Table A2: Numeric and physics options for WRF runs. 

Option Description 

Land-surface Noah land-surface model with Monin-Obukhov surface layer (Ek et al., 2003) 

PBL package Yonsei University (YSU) scheme (Hong et al., 2006) 

LW radiation RRTM (Mlawer et al., 1997) 

SW radiation Goddard (Chou and Suarez, 1994) 

Microphysics Lin et al. (1983); Chen and Sun (2002) 

Convection Grell & Devenyi (2002)  

Nesting One-way 

Nudging u,v,T,q at all levels above PBL, every 3 hours, 1 hour relaxation time 

Time stepping 3rd order Runge-Kutta; 4 short time steps per long time step 

Advection 5th order horizontal, 3rd order vertical 

positive definite advection for moisture and scalars 

Diffusion 2nd order horizontal diffusion using Smagorinsky first-order closure 

Damping No upper level or vertical velocity damping; default values for divergence 

and external model damping 

 

 
A.3 – Branch and Bound variable selection method 
 

The Bayes Information Criterion (BIC) is a criterion-based variable selection method, 

allowing for the comparison of all possible combinations of a superset of auxiliary variables 

(Ward, 2008).  The original BIC equations from Schwarz (1978) were modified for a 

geostatistical setup with correlated residuals by Mueller et al., (2010), and were further 

updated here to be compatible with an inverse modeling formulation using the atmospheric 

measurements.  After these modifications, the criterion that must be minimized for the BIC 

approach can be expressed as: 



 

      | |  [  (         (         )         ) ]     ( )  (A1) 

 

where         , n is the number of observations, p represents the number of covariates 

included within a given model ( ), and all other variables are as described in Appendix A.  Given 

that comparing all possible models (2p) quickly becomes computationally expensive and 

perhaps infeasible for large supersets of variables, the BIC was implemented with a Branch-and-

Bound algorithm (Land and Doig, 1960) to help make the problem computationally tractable.  

This algorithm avoids unnecessary matrix multiplications by eliminating model “branches” as it 

runs that cannot possibly contain the “best” model (Yadav et al., in review).     

 

  



Supplement B – Supplementary tables and figures 
 

Table B1:  Correlation coefficients among  ̂ uncertainties for variables included in the NARR 

inversion with the EMP boundary conditions. 

 Evapo-
transpiration 

Precipitation 
rate 

Specific 
humidity 

Air Temperature (@ 
2m) 

Evapotranspiration 1.00 --- --- --- 

Precipitation rate 0.18 1.00 --- --- 

Specific humidity -0.14 -0.28 1.00 --- 

Air temperature (@2m) -0.13 -0.07 -0.76 1.00 

 

 

Figure B1:  Contribution of auxiliary variables and stochastic component to the best estimates 

of flux in the GIM/ NARR inversion with EMP boundary conditions in April 2004 (see equation 5 

in Gourdji et al., 2010).   

 

 


