
Biogeosciences, 9, 4607–4620, 2012
www.biogeosciences.net/9/4607/2012/
doi:10.5194/bg-9-4607-2012
© Author(s) 2012. CC Attribution 3.0 License.

Biogeosciences

Bioerosion by microbial euendoliths in benthic foraminifera from
heavy metal-polluted coastal environments of Portovesme
(south-western Sardinia, Italy)

A. Cherchi1, C. Buosi1, P. Zuddas2, and G. De Giudici1
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2Institut des Sciences de la Terre de Paris, Université Pierre et Marie Curie, Paris-Sorbonne, place Jussieu 4,
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Abstract. A monitoring survey of the coastal area facing
the industrial area of Portoscuso-Portovesme (south-western
Sardinia, Italy) revealed intense bioerosional processes. Ben-
thic foraminifera collected at the same depth (about 2 m)
but at different distances from the pollution source show ex-
tensive microbial infestation, anomalous Mg/Ca molar ra-
tios and high levels of heavy metals in the shell associated
with a decrease in foraminifera richness, population density
and biodiversity with the presence of morphologically ab-
normal specimens. We found that carbonate dissolution in-
duced by euendoliths is selective, depending on the Mg con-
tent and morpho-structural types of foraminiferal taxa. This
study provides evidences for a connection between heavy
metal dispersion, decrease in pH of the sea-water and bio-
erosional processes on foraminifera.

1 Introduction

Boring microflora, constituted by cyanobacteria, algae and
fungi may colonise carbonate substrates of both dead and
living tissues of carbonate organisms (Tribollet, 2008). Bor-
ing is evident in carbonate organisms from the Mesoprotero-
zoic (Zhang and Golubic, 1987) to the present day as a con-
sequence of environmental conditions (Hallock, 2005). Mi-
crobial euendoliths have been described in coral reefs, mol-
luscs, thalli of red algae (e.g. Golubic et al., 1975; Perkins
and Tsentas, 1976; Budd and Perkins, 1980; Glaub, 1994,
2004; Chazottes et al., 1995, 2002; Le Campion-Alsumard

et al., 1995; Vogel et al., 2000; Tribollet and Payri, 2001;
Ghirardelli, 2002; Golubic and Schneider, 2003; Tribollet
and Golubic, 2005; Tribollet, 2008; Tribollet et al., 2009),
in coastal eroded limestones (Schneider and Torunski, 1983;
Radtke et al., 1996), in carbonate grains (Tudhope and Risk,
1985; Al-Thukair and Golubic, 1991; Al-Thukair, 1999), as
well in oil polluted marine environments (Campbell, 1983;
Al-Thukair, 2002; Al-Thukair et al. 2007) and heavy-metal
polluted lagoons (Succi et al., 2010).

Microborings are major agents of bioerosion dissolving
large quantities of calcium carbonate with a potential in
buffering seawater pH, which leads to new questions on the
effects of environmental factors such as eutrophication and
atmospheric CO2 increase on ocean composition evolution
(Tribollet, 2008). On the other hand, present-day geochemi-
cal models predict that the saturation state of surface ocean
water with respect to carbonate minerals should decline dur-
ing the twenty-first century. As a result calcareous organ-
isms may have difficulties to calcify, leading to production
of weaker skeletons and greater vulnerability to bioerosion.
Organisms utilizing the more soluble form of CaCO3 (arago-
nite or high-Mg calcite) would be more adversely affected by
elevatedpCO2 than those utilizing the less soluble low-Mg
calcite (Morse, 1983; Morse et al., 2007).

Investigations on microborings in foraminifera are docu-
mented in a small body of literature (Perkins and Halsey,
1971; Alexanderson, 1972; Golubic et al., 1984; Peebles and
Lewis, 1988; Shroba, 1993; Freiwald, 1995; Perry, 1998;
Nielsen et al., 2003; Crevison and Hallock, 2007) and open a
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debate that needs to be developed. Benthic foraminifera se-
creting calcium carbonate shells are considered to be very
sensitive to the environmental conditions of the host sea wa-
ter (e.g. Boyle, 1981; Wefer et al., 1999; Lea, 2004; Munsel
et al., 2010). Species distribution and population densities of
foraminifera are in fact used for pollution monitoring (Alve,
1991, 1995; Yanko et al., 1994, 1999; Debenay et al., 2001,
2005; Coccioni et al., 2003, 2005; Armynot du Châtelet et
al., 2004; Cherchi et al., 2009; Frontalini et al., 2009; Ro-
mano et al., 2009; Frontalini and Coccioni, 2011; Denoyelle
et al., 2012; Foster et al., 2012). Hallock (2000a, b) suggested
that climatic change including increasing atmospheric CO2
and stratospheric ozone depletion may be the cause of bor-
ings developing on carbonate organisms. Indeed, effects of
elevatedpCO2 on coral reef bio-erosion have been observed
and explained through a mechanism of carbonate dissolution
in a more acidic ocean (Tribollet et al., 2009). The activity
of boring microflora can result in differential bioerosion de-
pending on bothpCO2 partial pressure (Tribollet et al., 2009)
and Mg/Ca ratio of the foraminifera tests (Peebles and Lewis,
1988; Bentov and Erez, 2005).

The aim of our study is to investigate the effects of mi-
crobioerosion on benthic foraminifera and trace element dy-
namics in a known coastal industrial site polluted by heavy
metals and industrial release of CO2 (Schintu and Degetto,
1999). Field studies in the coastal area neighbouring the in-
dustrial complex of Portoscuso-Portovesme (Southern Sar-
dinia, Italy, Fig. 1) show that the presence of high levels of
heavy metals results in an increase in bioerosional processes
on foraminifera by boring microflora. The stressed environ-
mental conditions in this area have been highlighted in Cher-
chi et al. (2009) through an analysis of the biotic indices
of foraminifera tests (Dominance, Shannon–Weaver, Simp-
son, Evenness, Menhinick, Margalef, Equitability, Fisher-
α, Berger-Parker and Q-mode Cluster Analyses – Ward
Method) in this polluted environment.

2 Environmental setting

The study area is characterised by a relatively confined shal-
low shelf, which slopes gently to deeper water environments
(Fig. 1). Bottom sediments comprise sandy submarine beach
(Pleistocene-Holocene in age), while Oligo-Miocene calc-
alkaline volcanics crop out north of the sampling area. This
south-western coast of Sardinia has been under major an-
thropogenic pressure since the 1960s, when the Portoscuso-
Portovesme district began to develop and expand its activ-
ities. The Portovesme Harbour, built in 1870 to ship ores
(zinc blend, galena and pyrite) from the historical mines of
the Sulcis-Iglesiente district, received major inputs from in-
dustrial discharge until a few decades ago. Chemical analy-
sis of marine sediments from 4 cores collected in the harbour
of Portovesme facing the industrial complex revealed in the
upper 2 cm high concentrations of Hg (up to 50 mg kg−1),
Cd (up to 120 mg kg−1), Pb (up to 20 mg kg−1) and Zn (up

Fig. 1. Study area, location of sampling stations (Porto Pauleddu
– NP, Porto Paglietto – PP, La Caletta – LC, Portovesme – PV,
Punta S’Aliga – PA) and industrial complex of Portoscuso (SW Sar-
dinia). 1. Submarine beach (grain size mean 0.13–0.1 mm). 2. Sub-
marine beach (grain size mean 0.18–2.00 mm). 3. Alluvial deposits
(Pleistocene–Holocene). 4. Volcanics (Oligo–Miocene). 5. Seabot-
tom slope (%) from shoreline to 5 m isobath. 6. Longshore drift. 7.
Sampling stations. 8. Red mud dumps. 9. Chimneys. 10. Lead-zinc
smelter. 11. Electric power plant (1, 2, 5, 6 from Di Gregorio et al.,
1996; modified).

to 70 mg kg−1) were found. Metal concentration decreases
with an increase in distance between the sampling station and
the industrial effluent discharge point (Schintu and Degetto,
1999). This large industrial development had a considerable
environmental impact, such that this industrial district has
been declared an environmental hazard (D.P.C.M. – Prime
Ministerial decree, 23 April 1993) because of the several
“danger centres” recognised (Agenzia Regionale per la Pro-
tezione dell’ambiente della Sardegna – ARPAS, 2007).

Emissions into the atmosphere and all of the surrounding
environments have been estimated annually at 65 000 tons
of SOx , 4000 tons of dust, 10 tons of Pb and 100 tons of Fe
(Gazzetta Ufficiale Italiana, 1993). The large electric power
stations and the numerous chimneys produce also significant
amounts of CO2 (Schintu and Degetto, 1999; Bettini and
Zanin, 2002). The industrial complex, developed on an al-
luvial plain near the sea, includes factories producing alu-
minium from bauxite and a lead-zinc smelter producing Pb,
Zn, Cd, H2SO4 and Hg from Pb and Zn mixed sulphides. A
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Fig. 2.SEM images of surface bioerosion of porcelanaceous imper-
forate foraminifera.(A) Tubular wavy tunnels parallel to substrate
in Pseudotriloculina rotunda(d’Orbigny) exhibiting a rectangular
ramification belonging toOrthogonum(cf. Form 1 in Wisshak et
al., 2005).(B) Invasive infestation of microborings concentrated
along the sutures of the chamber walls producing large galleries
frequently occupied by pennate diatoms (arrow) inQuinqueloculina
sp.(C) Dense boring pattern made up of fungal filaments developed
in Triloculina cf. marioniSchlumberger.(D) Colony of rod–shaped
cryptoendolithic bacteria made into previous holes of larger diame-
ter in the wall surface ofAdelosinasp.(E) Tubular borings, 4–5 µm
in diameter, running parallel to surface of the test and penetrating
into the wall ofQuinqueloculina ungerianad’Orbigny.(F) Enlarge-
ment of(E).

large dump of red muds (seawater-neutralised bauxite refin-
ery residues) is located near the coast.

3 Material and methods

Sixteen surface sediment samples, coming from an area
about 12 km2, were collected in the inner shelf facing the in-
dustrial complex of Portoscuso-Portovesme where seawater
is less than 2 m deep. Four stations (PP – Porto Paglietto, LC
– La Caletta, PV – Portovesme, PA – Punta S’Aliga, Fig. 1)
were sampled in summer. Sampled sediments came from the
upper 1–2 cm below the water column. The water tempera-
ture ranged between 27.7◦C and 30.6◦C. Temperature, pH,
and Eh were measured for both the seawater and pore wa-
ter of the sediments in every sampling station. Blank sam-
ples were also collected for comparison purposes at the same
bathymetry and temperature from an unpolluted coastal area
(NP – Portopauleddu, Fig. 1). Benthic foraminifera assem-
blages and their biodiversity indices, as well the geochemical
characterisation of the investigated area, was the aim of our

Fig. 3. SEM images of surface bioerosion of hyaline perforate
foraminifera. (A) Rosalina bradyiCushman (umbilical side) ex-
hibiting indeterminable filaments and, at right, two bunches of radi-
ating tunnels (cf.Fascichnus). (B) Polymorphinasp. (oblique side
view) showing filaments of indeterminable borings in the whole
test. (C) Detail of Ammonia tepida(Cushman) spiral side inten-
sively bored by long filaments of fungal hyphae with reproductive
organs (cf.Saccomorpha clava). (D) Elphidium crispum(Linnaeus)
showing in dorsal view a boring pattern of curved thin tunnels (1–
2 µm in diameter) belonging to cf.Scolecia filosa, goings towards
the primary pores of the foraminifer.(E) Densely ramified boring
pattern ofIchnoreticulina elegans, characterised by dichotomous
branching goings into the primary pores ofE. crispum. (F) Invasive
colonies of indeterminable microborings (most likely bacteria, pos-
sibly cyanobacteria) around and into primary pores ofE. crispum
(arrows) producing a lateral enlargement of these until two–three
contiguous pores join (cf. Freiwald, 1995; Fig. 4).(G) Boring sys-
tem developed among contiguous pores ofE. crispum, characterised
by large tunnels (arrows).(H) Enlargement of(G) showing large
microbial overprint going into the pore and its transition from unis-
eriate(u) to biseriate(b) cell arrangements, belonging toFascich-
nus.

earlier paper, in order to assess the foraminiferal response to
heavy metal pollution (Cherchi et al., 2009).

A cluster of four subsamples of constant volume (50 cm3)
from every station (PP, LC, PV, PA) was collected to study
foraminifera assemblages used as environmental bioindica-
tors. In laboratory, 16 subsamples were stained with Rose
Bengal (Walton, 1952) to differentiate living from dead spec-
imens. Samples were then washed through a set of nested
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sieves (63, 125, 180, 250 µm). Foraminifera from 5 cc of the
> 125 µm size fraction (a – medium grained) and 5 cc of
the < 125 µm size fraction (b – fine-grained) were picked,
counted and classified.

Considering the very low number (1–4 %) of living indi-
viduals in the polluted environments (mainly at the PV and
PA stations), total benthic foraminifera assemblages (dead
and living) were used for statistical purposes, providing a
larger database (Scott and Medioli, 1980; Samir and El-
Din, 2001; Fatela and Taborda, 2002; Armynot du Châtelet
et al., 2004; Debenay and Guiral, 2006; Frezza and Car-
boni, 2009). Total assemblages are almost identical statisti-
cally and only diverge when the living/total becomes large
(Murray, 1976, 1991) and biotic indices do not show signifi-
cant differences between living and dead populations (Yanko
et al., 1994). Occurrence of iron-oxy-hydroxides in bottom
sediments, pyritized infaunal benthic foraminfera and fram-
boidal pyrite in the tests from the polluted sampling stations
were occasionally found indicating reducing conditions.

Environmental scanning electron microscopy (ESEM) im-
ages allow recognition of an extensive infestation by mi-
crobial communities in the calcareous foraminiferal tests.
The bioerosional process on foraminiferal tests was anal-
ysed via ESEM (QUANTA 200, FEI, Hillsboro, Oregon, and
partly with EVOLS15, ZEISS). The epoxy resin casts of
foraminifera were made at Erlangen University (Germany).
Samples were gold coated before imaging, for analysis of
both external surface and on epoxy-resin cast (Golubic et
al., 1970, 1983; Wisshak et al., 2008). From ESEM images,
microbial filaments and boreholes on the external surfaces
have been compared with positive epoxy resin casts, and
measured. To estimate quantitatively the impact of the mi-
crobial borings on the foraminifera and the selective bioero-
sion on high-Mg and low-Mg foraminiferal tests, 300 indi-
viduals were picked randomly from the fraction> 63 µm of
each sample and were observed with a scanning electron mi-
croscope. A total of 1200 foraminifera was examined. The
bioerosional features on several morpho-structural taxa have
been quantitatively calculated. The percentage of calcareous
dissolution in foraminifera, distinguishing between high-Mg
and low-Mg tests, has been compared with heavy metal val-
ues both in foraminiferal tests and the sediments, the pH of
pore waters and richness of specimens.

Seawater was collected at the water-sediment interface of
the 4 polluted stations and at the reference pollution-free
station. After sampling seawater was rapidly filtered in situ
through a 0.4 µm pore-size polycarbonate filter with an all-
plastic filtration assembly. Samples for cation analysis were
acidified with HNO3 suprapure acid to pH around 3. At each
sampling site, temperature, pH, and Eh were measured for
both seawater and sediment porewater. The Eh was measured
by platinum electrode and the value was corrected against
Zobell’s solution (Nordstrom, 1977). The electrode used for
pH potentiometric determination was calibrated against three
NIST-traceable buffer solutions (pH= 4.01, 7.00, 9.00 at

298 K). Reproducibility of pH calibrations, carried out be-
fore and after measurements of a single solution, was better
than 0.005 pH unit. However because of problems inherent to
the use of glass electrodes calibrated using NIST buffers in
strong electrolyte solutions (see Dickson and Goyet, 1994),
this measurement was only used to verify the solution elec-
trochemical difference between the different sampled sta-
tions.

Anions were determined by ion chromatography (IC
Dionex DX-120) and cations by ICP-AES (ARL-3520B) or
ICP-MS (Perkin Elmer DRC-e). Because of the complex sea-
water matrix, the standard addition method, was employed
for the trace element determination (Cd, Pb and Zn) (Danzer
and Currie, 1998; Cidu, 1999). The method validation was
verified by applying the same conditions to the CASS-3
coastal seawater reference material. Samples and CASS-3
were diluted five times with a 1 % ultrapure HNO3 solution
before sample spiking. Accuracy and precision were esti-
mated at 10 % or better using the standard reference solu-
tion and random duplicate samples. The limit of quantifica-
tion (10σ value of blank solution response over time) was,
respectively 0.01 µg l−1 for Cd, 0.6 µg l−1 for Pb and 0.1 for
Zn. The ionic balance was always in the order of ±8 %.

For digestion of samples with porcelanaceous
foraminiferal tests, two portions of each sample were
washed with ultrapure water (MilliQ®) by mechanical
agitation in order to remove detrital grains. The samples
were dried, accurately weighed and digested by slow heating
in a temperature bath at 30◦C in a Teflon beaker with 3 ml
of ultrapure HNO3 (67 %). Solutions were diluted to 10 ml
with ultrapure water in volumetric flasks, and transferred
to new HD-polyethylene bottles for storage (Jarvis, 1992).
Metals were determined by ICP-AES and ICP-MS.

Field Emission Gun SEM (FEG-SEM) is a scanning elec-
tron microscope with a high-energy beam of electrons in a
raster scan pattern producing information about surface to-
pography and composition. The Quanta 200 FEG Environ-
mental Scanning Electron Microscope (ESEM) uses a field-
emission gun (FEG) electron source in an exceptionally high
chamber pressure environment. It combines the advantages
of nanometer resolution to high signal to noise ratio in both
regular high vacuum and environmental (wet) modes. EDX
Analysis stands for energy-dispersive X-ray analysis; it is
sometimes referred to as EDS or EDAX. EDX analysis al-
lows identification of the elemental composition of the spec-
imen, or an area of interest thereof. The EDX analysis system
works as an integrated feature of a scanning electron micro-
scope (SEM), and can not operate on its own without the
latter.

Biogeosciences, 9, 4607–4620, 2012 www.biogeosciences.net/9/4607/2012/
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Table 1. Distribution on microborings at different sampling stations (PP, LC, PV and PA, see Fig. 1), taken from porcelanaceous (Po) and
hyaline (Hy) foraminiferal substrates and their relative abundance (++ very common,+ common,= rare).

PP LC PV PA
Foraminifera substrata Po Hy Po Hy Po Hy Po Hy

Borings Trace-makers

Eurigonum nodosum Mastigocoleus testarum X X X X XX X
Schmidt Lagerhein (cyanophyte)
Fascichnuscf dactylus Hyella caespitosaBornet X XX X XX X
(Radtke) and Flahault (cyanophyte)
Scolecia filosa Plectonema terebrans X X X XX X X X
Radtke Bornet and Flahault (cyanophyte)
Scolecia meandria “vermicular borings” X
Radtke (Zeff and Perkins, 1979) (cyanophyte)
cf. Planobola macrogota cyanobacterium cf. X X X
Schmidt alga cf.
cf. Cavernula pediculata Gomontia polyrhiza X X X
Radtke (Lagerhein) Bornet and

Flahault (chlorophyte)
Ichnoreticulina elegans Ostreobium quekettii XX XX X X X
(Radtke) Bornet and

Flahault (chlorophyte)
Rhopalia catenata Phaeophila dendroides = X X
Radtke Cronan (chlorophyte)
Orthogonum fusiferum Ostracoblabe implexa X X X
Radtke Bornet and Flahault (fungus)
Orthogonum lineareGlaub cf. fungus = XX X X X
Orthogonumisp. (Form 1 X
in Wisshak et al., 2005)
Saccomorpha clava Dodgella priscus = X = XX X XX X
Radtke Zebrowski (fungus)

Coccoid bacteria XX X X

4 Results and discussion

4.1 Bioerosion features

The presence of microboring traces and cavities on sampled
benthic foraminifera has been recognised using ESEM im-
ages of both surface tests and epoxy resin casts. Identified
taxa, reported in Table 1, provide evidence of traces and cav-
ities produced by phototrophic (cyanobacteria, chlorophyta)
and heterotrophic (fungi) organisms. In Figs. 2 to 6, we illus-
trate evidence of several endolithic traces of microbial bor-
ings with morphological differences. Details of borings will
be described according to the different observational tech-
niques: wall surfaces and epoxy resin casts.

Test surfaces of the porcelanaceous miliolids present the
heaviest bioerosion features under the form of microbial
clusters. Endolithic traces have morphological differences re-
lated to biodiversity and to mode of life of the boring mi-
crobial organisms. Infestation is characterised by thin indi-
vidual tunnels, occasionally bifurcated, bag-shaped cavities
and branching patterns composed by rhizoidal and short gal-
leries radiating laterally from the central area. This branch-

ing pattern shows similarities withFascichnusisp. (Fig. 7a,
b). From ESEM images of the traces on external surfaces of
foraminiferal tests, our observations show that the taxa af-
fected by higher bioerosion belong to the high-Mg porce-
lanaceous group (Suborder Miliolina) and, among these, to
the genusQuinqueloculinawhich exhibits heavy microbial
bioerosion. Figure 8 shows that inQuinqueloculinasp. the
Mg content at the bottom of a boring is one order of magni-
tude lower compared to the unaltered shell surface, suggest-
ing chemical reorganisation of the carbonate mineral compo-
sition through a dissolution-precipitation process.

In several specimens the infestation is concentrated along
the sutures of the chamber walls providing more easily a nu-
trient source (Fig. 2b). A heavy infestation by diversified
microborings in the test ofTriloculina has been recorded
(Fig. 2c). Radiating traces are developed parallel to the
whole surface of foraminifers, in both porcelanaceous and
hyaline types (Fig. 3 a,g,h and Fig. 7b), as previously ob-
served by Glaub (2004) for “Fasciculusisp. 2”. Lined rod-
shaped bacteria are sometimes visible on the later chambers
of Adelosinaamong their weakly developed striae. These
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Fig. 4.SEM images of porcelanaceous foraminifera resin casts.(A)
Chamber-wall of miliolid densely bored byEurigonum nodosum
and globularSaccomorpha clava.(B) E. nodosumwith diagnostic
lateral heterocysts (arrows) inside the thick chamber wall of mili-
olid. (C) Dense assemblage of euendolithic borings in miliolid test.
(D) Enlargement of(C) showingE. nodosumwith diagnostic hete-
rocysts.(E) Pavement ofSaccomorpha clavainto miliolid chamber
wall. (F) Colony of Scolecia meandriain miliolid chamber wall.
(G) Microbial pavement in miliolid chamber wall exhibitingScole-
cia filosa, E. nodosumand fungal sack-shaped cavities.(H) Diver-
sified ichnotraces belonging toS. clava, cf. Planobola macrogota
and Ichnoreticulina elegansin miliolid test. (I) Dense colonies of
E. nodosumin miliolid test. (J) Colonies ofE. nodosuminside the
thick chamber wall of miliolid.

cryptoendoliths bacteria (sensu Golubic et al., 1981) can go
into pre-existing holes, characterised by a larger diameter,
clearly bored previously by another larger boring organism
(Fig. 2d). Hyaline perforated tests (e.g.Elphidium crispum)
frequently exhibit well-organised systems of microborings
belonging to Ichnoreticulina eleganssurrounding and di-
rected to pores (Fig. 3e). Bacteria infestation can produce ter-
atological modifications as observed inE. crispum(Fig. 3f)
where bacteria colonies induce lateral enlargement of pri-

Fig. 5. SEM images of hyaline foraminifera resin casts.(A)
Euendoliths (arrows) inside the skeletal structure ofElphidium
crispum (Linnaeus). (B) Enlargement of(A) showing indeter-
minable filaments.(C) and (D) Saccomorpha clavaand indeter-
minable cyanobacteria boring skeletal structure ofE. crispum. (E)
Enlargement of(D) showing spherical cavities of cf.Planobola
macrogotaand sack-shaped cavity of cf.Cavernula. (F) E. crispum
(vertical section) showing indeterminable filamentous (arrows) in
the complex skeletal pattern.(G) Enlargement of(F) showing fil-
aments inside the skeletal of the foraminifera.(H) E. crispum
(oblique section).(I) Enlargement of(H) showing tunnels (arrows)
of borings in skeletal structures.

mary pores with enlargement of contiguous pores (cf. Frei-
wald, 1995, inCibicides lobatulus). Superficial traces made
by endolithic boring communities can completely cover the
walls (Fig. 3a–c).

Several specimens ofE. crispumshow a boring pattern
made of curved tunnels of 1–2 µm in diameter. Tunnels, after
long runs, go towards the primary pores showing a compara-
ble behaviour toI . elegansand they are tentatively attributed
to Scolecia filosa. Infestation producing the primary pore
connection may be related to possible CO2 bioavailability

Biogeosciences, 9, 4607–4620, 2012 www.biogeosciences.net/9/4607/2012/
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Fig. 6. SEM images of hyaline foraminifera resin casts.(A) Tri-
partite gallery of underteminable boring (cf.Orthogonumsp.) and
globular-shape cavities in skeletal structure ofAmmonia beccarii
(Linnaeus).(B) Ichnoreticulina elegansin Ammoniasp.(C) Euen-
doliths inside the peripherical wall chambers ofAmmonia tepida
(Cushman).(D) Colony ofEurigonum nodosumin Ammoniasp.(E)
Pavement of spherical cavities in the finely perforate test ofPoly-
morphinasp. (F) and (G) Enlargement of(D) showing spherical
cavities of cf.Planobola macrogotaand sack-shaped cavities of cf.
Cavernulasurrounded by foraminiferal tubules.

for phototrophic organisms from the respiratory activity of
the heterotrophic host.

Epoxy resin casts reveal rich microbial communities,
fairly diversified, both in porcelanaceous and hyaline tests
(Table 1). Analysis of resin casts reveals euendoliths belong-
ing to phototrophic (chlorophyta, cyanobacteria) and het-
erotrophic (fungi) organisms boring both porcelanaceous and
hyaline foraminifera. The wider and thicker walls of mili-
olids provide a protected niche for the growth of euendoliths,
as shown in Fig. 4. In porcelanaceous tests, dense pavements
of well-developed colonies of cyanobacteria and fungal spo-
rangial cavities are very common. The presence of organic
films inside the skeleton structure of these foraminifera pro-
vides a source of food.

The ichnological interpretation of the euendoliths inside
the imperforate porcelanaceous tests is easier than for those
inside the perforate hyaline hosts. The very complex inter-
nal architecture of the taxa belonging to the families Elphidi-
idae and Rotaliidae sometimes makes it difficult to distin-
guish euendoliths from foraminifera ultrastructures (Figs. 5
and 6). Even if the ichnological attribution of the euendoliths

Table 2.Seawater composition at the four sampling stations.

PP LC PV PA

pH 8.23 8.21 8.13 7.91
Eh V 0.35 0.36 0.34 0.37
T ◦C 27.7 27.9 29.6 30.6
Ca mol l−1 0.011 0.012 0.011 0.011
Mg mol l−1 0.058 0.059 0.057 0.058
K mol l−1 0.012 0.012 0.012 0.012
Na mol l−1 0.480 0.482 0.472 0.483
SO4 mol l−1 0.037 0.040 0.043 0.037
CI mol l−1 0.604 0.592 0.564 0.564
HCO3 mol l−1 0.002 0.002 0.002 0.002
Br mol l−1 0.001 0.001 0.001 0.001
Ba mol l−1 0.053 0.052 0.058 0.076
Cd mol l−1 0.002 0.002 0.002 0.004
Li mol l−1 19.882 20.602 19.882 20.314
Mo mol l−1 0.125 0.136 0.125 0.125
Pb mol l−1 0.010 0.014 0.016 0.016
Sr mol l−1 91.589 93.460 93.232 94.122
Zn mol l−1 0.061 0.076 0.061 0.076

in the hyaline perforate taxa is generally uncertain, their pres-
ence in the fine skeletal structure indicates that microbial
colonies can use foraminiferal canal-systems to penetrate in-
side the test, and subsequently to develop boring activity in
the foraminiferal skeleton.

Our study shows that microbioerosion affects porcelana-
ceous (high-Mg) imperforate miliolids (Adelosina, Pseu-
dotriloculina, QuinqueloculinaandTriloculina) and penero-
plids as well as hyaline (low-Mg) perforate foraminifera
(Ammonia, Elphidium, Lobatula, Rosalina) (Fig. 9). Porce-
lanaceous miliolids (QuinqueloculinaandTriloculina spp.)
exhibit higher percentages of bioerosional features in PA sta-
tion (28.72 %) and in PV station (21.75 %) while hyalineLo-
batula lobatulaand Elphidium crispumreveal higher val-
ues of microbial infestation in PA (16.89 %) and LC sta-
tions (15.02 %), respectively. In particular,Elphidium tests
show well-developed colonies ofIchnoreticulina eleganssur-
rounding and directed to primary pores. The clorophyceans
in our samples seem to be more frequent in less polluted
sediments (LC). Figure 10a and b show that the number
of infested tests is 2 times higher in porcelanaceous com-
pared to hyalines foraminifera and that the proportion of
infested tests is 2–3 times higher in the lowest pH condi-
tions. Bioerosion in hyaline specimens increases from 19.9 %
(PP) to 59.7 % (PA), whereas in a porcelanaceous forms it
increases from 35.1 % (PP) to 80.3 % (PA). Our observations
demonstrate that taxa affected by higher bioerosion belong to
the high-Mg porcelanaceous group (Suborder Miliolina), es-
pecially Quinqueloculina. Infestation is often concentrated
along the chamber wall sutures where nutrient material is
high (Fig. 2b). Diversified microborings on an infested test
of Triloculina are illustrated in Fig. 2c.
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Fig. 7. SEM images of porcelanaceous foraminifera.(A) Quinqueloculinacf. berthelotianad’Orbigny intensively bored by euendoliths
(black arrows) among which are colonies ofFascichnuscf. dactylus. (B) Enlargement of (A) exhibiting a well-developed colony ofF.
cf. dactyluscharacterised by tunnels radiating from a central area.(C) Enlargement of(A) showing dome-shaped cavity of cf.Cavernula
pediculatawith rhizoidal appendages, Zn biomineralised.(D) EDX analysis of dome-shaped cavity of cf.Cavernula pediculata.

4.2 Environmental conditions and bioerosion

Seawater composition from four sampled stations is given in
Table 2. As previously reported porcelanaceous foraminiferal
tests, known to be high-Mg foraminifera, are more infested
by bioerosion than hyaline forms. We found that Mg/Ca mo-
lar ratio of porcelanaceous infested tests is between 0.09 and
0.13, while in foraminiferal tests collected from an unpol-
luted site (NP) without an apparent sign of bioerosion have
a Mg/Ca value of 0.01 (Fig. 10c). Since Mg/Ca molar ratio
of benthic foraminifera is normally assumed to be between
0.0005 and 0.01 mol mol−1 (Lea, 1999; Toler et al., 2001;
Toyofuku and Kitazato, 2005), we propose that conditions of
environmental stress may influence the amount of Mg incor-
porated during the foraminifera’s growth. Our results are in
agreement with the experimental investigation on Mg intra-
shell reactions of Bentov and Erez (2005) and which are at-
tributed to a kinetic mechanism played by the carbonate ions
in the calcite growth by Lopez et al. (2009). Porcelanaceous
foraminiferal tests from the anthropogenically polluted la-
goon of Santa Gilla (Frontalini et al., 2009) have a similar
Mg/Ca ratio (0.11 mol mol−1) which is greater than that col-
lected at station NP, confirming the influence of the stressed
environment on the Mg/Ca ratio of these biominerals.

Figure 10d shows that the amount of Cd, Zn and Pb in-
corporated in the bioinfested shells in PP, LC, PV and PA is
higher compared to the pollution-free NP station. We found
that the amount of heavy metals incorporated in the infested
tests is higher when the proportion of infested tests is higher.

The process of bioerosion in calcareous skeletal struc-
tures can be regarded differently in high-Mg porcelanaceous
imperforate tests and low-Mg bilamellar hyaline perforate
tests and can also be related to the decrease of seawater pH
(Fig. 10b). The porcelanaceous wall consists of a thick layer
of high-Mg calcite needles with relatively large interstices
filled with organic matter. Needles are randomly arranged
and coated inside by an inner organic lining and outside by
the outer organic layer (Towe and Cifelli, 1967; Hemleben
et al., 1986; Debenay et al., 2000a). The common infesta-
tion of euendoliths in porcelanaceous tests rather than in hya-
line tests can also be related to the thick calcite layer of the
porcelanaceous wall, allowing an adequate erosional space
for their growth. The perforate foraminifera are characterised
by structures of greater complexity (chamber-partitions, shell
cavities, canal systems) compared with those of the porce-
lanaceous group. In the bilamellar hyaline perforate group,
the wall comprises carbonate layers separated by an organic
median layer (Towe and Cifelli, 1967; Hansen and Reiss,
1971; Hottinger, 1978, 2000; Hansen, 1999; Debenay et al.,
2000b). Our data show that increasing heavy metal concen-
trations in the sediments corresponds to an increase of mi-
crobial infestation, reaching a peak at the more polluted sites
(PV and PA; Fig. 10e).
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Fig. 8.SEM FEG images of porcelanaceous foraminifera (Quinque-
loculinasp.). EDX analysis shows that Mg content at the bottom of
boring(A) is significantly lower than on unaltered shell surface(B).

The observed high level of microboring infestation is re-
lated to the anomalous mechanism of bio-mineral construc-
tion in the presence of a high level of heavy metals. In these
heavily polluted environments, euendolithic bioerosion de-
velops in small shells of the biocarbonate substrates such
as calcareous foraminifera. Microbial organisms need the
development of a trophic strategy related to the decrease
of micrograzers (mainly benthic foraminifera). According
to Mojtahid et al. (2011) some foraminifera species, such
asHaynesina germanica, Ammonia beccariiand the single-
chambered speciesPsammophagasp., consume and digest
large quantities of bacteria. The estimated grazing rates
of these three intertidal species were comparable:∼ 3.2 ng
Cind−1 h−1 (∼ 16 000 bacterial cells ind−1 h−1) for low
bacterial concentration (∼ 43× 106 cells) and∼ 5.7 ng C
ind−1 h−1 (∼ 28 000 bacterial cells ind−1 h−1) for higher
bacterial concentration (∼ 86× 106 cells). Biotic indices
(Faunal Density, Species Richness, Dominance, Shannon-
Weaver, Simpson, Evenness, Menhinick, Margalef, Equi-
tability, Fisher-α, Berger-Parker; Cherchi et al., 2009) per-
formed on foraminiferal assemblages show an abrupt de-
crease with increasing heavy metal fluxes (Fig. 10a, d).
Optical observations reveal an high number of abnormal
and small specimens in accordance with an increase of in-
dustrial pollution. Morphological abnormalities, which are
commonly found in tests from pollution-stressed benthic
foraminiferal populations, may be related to incorporation of

Fig. 9. Occurrence of bioerosion given in percent in selected taxa
belonging to porcelanaceous (high-Mg) imperforate miliolids and
peneroplids (*) and hyaline (low-Mg) perforate foraminifera (Am-
monia, Elphidium, Lobatula, Rosalina) from sampling stations (PP,
LC, PV, PA).

higher concentrations of Mg and other elements from seawa-
ter into their tests (Yanko et al., 1994, 1998).

In the sandy beach part of the study area, limestone out-
crops are lacking and bottom sediment is made of quartz
grains. Anomalous concentrations of euendolithic commu-
nities in shallow polluted waters, question the capacity of
intensive industrial activity to produce extreme environmen-
tal conditions in restricted local areas only. Mine waste con-
taining toxic concentrations of heavy metals (Fe, Al, Cu, Zn,
Cd, Pb, Ni, Co and Cr) discharged into aquatic systems may
produce degradation of water quality and aquatic life (Nord-
strom, 2011). Our study reveals that peculiar environments
affected by heavy metal fluxes from industrial processing are
not biologically dead as they are teeming with microbes, in-
cluding bacteria, archaea, fungi and algae.

Global scale geochemical models that predict the carbon-
ate saturation state of the surface waters in the twenty-first
century suggest that calcareous organisms may have diffi-
culty calcifying, leading to production of weaker skeletons
and greater vulnerability to erosion. We estimated thepCO2
partial pressure at equilibrium with the sampled seawater (by
pH and alkalinity) using the Millero and Scheiber (1982) ion
pairing model to estimate activity coefficients and found val-
ues between 3–5 times higher than the average for the open
sea nearby. This study of biomineralisation confirms that, at
least in shallow waters, high-Mg carbonates are altered faster
compared to low-Mg carbonates (Fig. 10b), confirming that
organisms using the more soluble forms of CaCO3 (aragonite
and high-Mg calcite) are more adversely affected by higher
pCO2. Our results are in agreement with earlier laboratory
experiments (Morse, 1983; Morse et al., 2007) where it was
predicted that dissolution of various benthic marine organ-
isms may increase under natural higherpCO2 partial pres-
sure (Ries et al., 2009).
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Fig. 10. Occurrence of bioerosion given in percent in microbially infested foraminiferal tests from Portoscuso coastal environments.(A)
Correlation between infested foraminifera percentages and total number of foraminiferal tests.(B) Correlation between porcelanaceous
high-Mg and hyaline low-Mg tests and sea water pH.(C) Mg/Ca ratio in foraminiferal tests increases in more highly polluted sites.(D)
Cd/Ca, Pb/Ca and Zn/Ca ratio in foraminiferal tests increase in more highly polluted sites.(E) Increase of heavy metal values in sediments
corresponds to increase in microbial infestation.

5 Summary and conclusions

In our study, samples were collected at the same depth (about
2 m) from shallow sediments affected by serious industrial
contamination in the coastal environments of Portoscuso-
Portovesme. In this area, foraminiferal shells have a high
content of heavy metals and are actively infested by micro-
borings. As far as we know, these infested foraminiferal com-
munities provide a state-of-the-art dataset for the understand-
ing of bioerosional processes in foraminiferal hosts in pol-
luted environments.

The results show (i) microbioerosion is higher in high-Mg
foraminiferal tests compared to the low-Mg tests, (ii) the role
of foraminiferal skeletal architecture in the boring process,

(iii) the abundance of euendoliths is favoured by the effect of
greater concentrations of heavy metals, especially Zn, as an
inorganic nutrient.

We interpret that in the shallow water and low hydro-
dynamic conditions of the Portoscuso-Portovesme lagoon,
the heavy metals leached from mine tailings and industrial
discharge are not immediately dispersed in the sea water
and, thus, foraminifera can concentrate heavy metals in their
shells. This takes place in a complex biomineralisation pro-
cess. In agreement with geochemical models and previous
literature, we found that high-Mg carbonate shells dissolve
faster and are deeply infested by microborings. While geo-
chemical models already predict that CO2 increase is affect-
ing biogenic carbonate reservoirs, this study demonstrates
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A. Cherchi et al.: Bioerosion by microbial euendoliths in benthic foraminifera 4617

that the heavy metal dispersion process can contribute to
global CO2 change via a complex ecological process.
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