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Abstract. Analyses of microbial communities from six 1 Introduction

water-flooding petroleum reservoirs at temperatures from 21

to 63°C by 16S rRNA gene clone libraries indicates the pres-Petroleum reservoirs represent extreme anaerobic environ-
ence of physiologically diverse and temperature-dependenfnents because of the temperature, pressure and salinity with
microorganisms in these subterrestrial ecosystems. In sanfnultiphase fluids of oil, gas and water. Microorganisms in
ples originating from high-temperature petroleum reservoirs Such subterranean ecosystems play an important role in en-
most of the archaeal sequences belong to thermophiles affiergy flow and nutrients cycling. The microbial activity, in
iated with members of the genefdermococcusMethan- ~ particular sulfidogenic prokaryotes not only cause issues
othermobacterand the ordefThermoplasmatalesvhereas ~ such as reservoir souring and corrosion of drilling equip-
bacterial sequences predominantly belong to the pRiyla ~ ment with BS produced, but potentially can also be used
micutes Thermotogaeand Thermodesulfobacteridn con-  to our advantage, e.g. microbial-enhanced energy recovery
trast to high-temperature petroleum reservoirs, microorgan{MEER) applications. Extraction of currently usable energy
isms belonging to théroteobacteria Methanobacteriales ~from marginal petroleum reservoirs by microbial conversion
andMethanomicrobialesvere the most encountered in sam- Of residual oil to methane (natural gas) has received renewed
ples collected from low-temperature petroleum reservoirs.attention in the past decade (Parkes, 1999; Suflita et al., 2004;
Canonical correspondence analysis (CCA) revealed that temfGieg et al., 2008; Jones et al., 2008; Wang et al., 2010, 2011;
perature, mineralization, ionic type as well as volatile fatty Gray etal., 2011; Mbadinga etal., 2011, 2012; Lietal., 2012;
acids showed correlation with the microbial community Zhou et al., 2012). Microorganisms with diverse physiolog-
structures, in particular members of tlérmicutes and ical and metabolic capabilities and phylogenetic affiliations
the genudvlethanothermobacteshowed positive correlation have been recovered from oil reservoirs by culture-dependent
with temperature and the concentration of acetate. Overalland culture-independent approaches since the first sulfate-
these data indicate the large occurrence of hydrogenotrophiteducing bacteria (SRB) was isolated from production wa-
methanogens in petroleum reservoirs and imply that acetatter of an oil reservoir (Bastin et al., 1926). Though isola-
metabolism via syntrophic oxidation may represent the mairfion efforts have identified numerous bacterial and archaeal

methanogenic pathway in high-temperature petroleum reserspecies that are capable of mediating various metabolic pro-
VOIrS. cesses occurring in oil fields, culture-independent 16S rRNA

genes and functional gene-based investigations have pro-
vided new information on the microbial community compo-
sition in such deep subsurface ecosystems (Li et al., 2010,
2011; Guan et al., 2012).
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Culture-independent surveys of high-temperature oilas well asthe Bal9 fault block in the Baolige oilfield (Huabei
reservoirs have been conducted on continental and offshor®il Field) are all located in the central part of Inner Mongo-
oilfields (Orphan et al., 2000, 2003; Li et al., 2006, 20074, b;lia, China. The distance between the two blocks is approx-
Nazina et al., 2006; Dahle et al., 2008). Bacterial sequencesnately 50 km. MGL oilfield has been water-flooded since
affiliated with Firmicutesare the most frequently detected 1989. Baolige oilfield has been water-flooded since 2001.
in these high-temperature oil reservoirs. In addition, mod-The depths of the two blocks’ horizons ranged from 800 m
erately thermophilic members of thHgacteroideteggenus  to 1500 m, with a temperature of 3758°C. The porosities
Anaerophagghave been identified in samples collected from of the reservoirs ranged from 17 to 25 %. The No. 7 and No. 6
the Troll oil formation in the North Sea. Methanogenic blocks are located in Kelamayi oilfield of Xinjiang. The two
archaea, including methylotrophic, acetoclastic as well ailfields are located in the Zhungeer Basin of northwestern
COp-reducing methanogens are the most common member€hina. The No. 7 block has been water-flooded for over 40 yr
in high-temperature oil reservoirs. Moreover, methanogeneand the No. 6 block for over 30yr. The depths of the two
sis from acetate driven by syntrophic acetate oxidation hadlocks horizons ranged from 480 m to 1088 m, with a typi-
been documented in high-temperature reservoir (Nazina etal low temperature of 24 32°C. The temperatures and the
al., 2006). mineralization of the six sampled petroleum reservoirs range

Compared with high-temperature oil reservoirs, only afrom 21 to63C and 1301 to 11 196 mgt, respectively, and
few 16S-based analyses of the microbial community in low-the pH of these production waters were neutral or slightly
temperature oil reservoirs have been reported. The bactealkaline. The characterization of the petroleum reservoirs
rial diversity in a low-temperature, low-salinity, non-water water sampled are listed in Table 1. In order to character-
flooded oil reservoir (Pelican lake oil field) in western ize the microbial community from the different temperature
Canada was extremely low with only one phylotype relatedpetroleum reservoir, these samples were grouped into two
to the genusArcobacter (¢-Proteobacterid (Grabowski et classes: high-temperature (4%3°C) and low-temperature
al., 2005). Several potentially metabolic active fermenta-(21~ 37°C).
tive and/or acetogenic microorganisms, sulfide-oxidizers and Ten liters of production water at wellhead were taken from
sulfate-reducers were identified from a low-temperature oileach of the six production oil wells from six petroleum reser-
reservoir in western Canada by 16S rRNA gene clones li-voirs. Samples were collected into sterile bottles to full ca-
brary analysis (Voordouw et al., 1996). pacity after discarding the initial oil/water mixture. The bot-

The distribution of different microbial community struc- tles were tightly sealed to avoid oxygen intrusion and im-
tures in petroleum reservoirs depends entirely on their adapmediately transported to the laboratory and filtered directly
tion to the in situ physical and chemical variables, includingto minimize the chance of community changes. During fil-
temperature, pH, and salinity. In this report, the distributiontration procedures, the residual oil was removed by heating
of the microbial community in production water of several the sample to 50C for 15min and by phase separation in
petroleum reservoirs at temperatures of 21, 32, 37, 45, 5& | sterilized separatory funnels. The water samples were fil-
and 63’ C was investigated by means of 16S rRNA gene li- tered through 0.22 um polycarbonate membranes (25 mm di-
brary analysis. Microbial community data were also corre-ameter; Millipore, Bedford, USA). The polycarbonate mem-
lated with environmental factors using canonical correspon-branes containing the cells were placed in a sterile centrifuge
dence analysis (CCA). tube containing sterile silica beads for beating to break the

cells. Genomic DNA was extracted by a method developed

previously in this laboratory (Li et al., 2007b).
2 Materials and methods

2.2 16S rRNA gene amplification and cloning
2.1 Collection of samples and nucleic acid extraction

16S rRNA genes were amplified by PCR using the
All microbial nucleic acid samples originated from oil reser- primers B27F [5>AGAGTTTGATCCTGGCTCAG-3 and
voir production waters sampled from six water-flooding oil- B1492R [3-TACGGYTACCTTGTTACGACTT-3] (Nazina
fields in China, namely Zhan 3 (S1) block of Shengli oilfield, et al., 2006) for bacteria, and the primers A21F-[5
Baolige oilfield (Ba 18, S2; and Ba 51 block, S3), the Meng- TTCCGGTTGATCCYGCCGGA-3 (De Long, 1992) and
gulin oilfield (S4), No. 7 (S5) and No. 6 (S6) blocks of Xin- A1041R [B-GGCCATGCACCWCCTCTC-3 (Kolganova
jiang Kelamayi oilfield. The Zhan 3 block of Shengli oilfield et al., 2002) for archaea. The final 50 pl reaction mixture vol-
is located in the Shandong province of China. This oilfield ume contained 2 pl of template DNA, 0.5 uM of each primer,
has been water-flooded for over 20 yr. The depths of the sam25 pl of 2x Mastermix (Promega, USA), 21 ul of nuclease-
pling horizons are about 1300 m with a temperature 6f®3  free water. Polymerase chain reaction cycles were performed
The porosity of the reservoir was 30 %, and air permeabilityon a Peltier thermal cycler (Bio-Rad, USA) as follows: af-
was 0.8 um 3. The viscosity of the crude oil was 1720 mPas. ter 5min of initial denaturation at &, nucleic acids were
The Menggulin (MGL) sandstone block in the MGL oilfield, amplified for 30 cycles (45 s of denaturation at°'@; 45 s of
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Table 1. Characterization of the water samples collected from different petroleum reservoirs. (Nd = not detected.)

S173-26 S2B18-43 S3B51-45 S4M17-10 S57222 S66190

Depth (m) ~ 1300 ~ 1490 ~ 1101 ~802 ~1088 ~480
Temp CC) 63 58 45 37 32 21
pH 7.1 7.2 7.2 7.2 7.1 7.0
Effective thickness (m) 4.2 5.0 5.2 14.4 15.7 18.4
Effective porosity (%) 30 17.3 22.2 24.7 174 20.5
Average permeabilityx 10~ 3unm?) 800 691 12.6 675.3 274 466
QOil viscosity (mPa.s) 1720 13.7 402 179.1 44.8 417
Water flooding operation (years) 22 10 4 22 46 38
Mineralization (mgt?1) 8425 2891 4091 1121 15728 4212
Cl—(mgl~1 3850 361 819 447 2000 3864
SO~ (mgl1 2244 12.1 32.4 6.8 7.7 124.8
PCé*(mg () 0.1 Nd Nd 0.08 Nd Nd
NO3 (mgl~1) Nd Nd Nd Nd 1.4 34.1
Nat(mgl—1) 3313 1629 1064 618.3 5399 4196
K*T(mgl~1 94.2 28.1 223 4.2 456 35.1
ca&t(mgl1 195.6 3.6 53.0 19.2 128.2 103.3
Mg2t(mgl~1) 46.1 1.4 17.6 0.15 64.0 44.7
MnZt(mgI—1) 0.3 Nd 0.1 Nd 0.4 0.3
Acetate (mgt?1) 32 856 57.9 5.3 6.97 344
Propionate (mgtl) 1.2 8.0 Nd Nd Nd Nd
Isobutyrate (mgt?l) Nd 13.8 Nd 9.8 Nd 32.7
Butyrate (mgt?1) 0.2 2.3 0.5 2.3 Nd Nd

annealing at 50C and 1 min of elongation at 7Z), fol- on the neighbor-joining algorithm (Saitou and Nei, 1987) us-
lowed by a final extension step at 72 for 20min. PCR  ing the MEGAS5 software (Tamura et al., 2011). Bootstrap
products were separated on 0.8%)/() agarose gel and analysis with 1000 replicates was applied to assign confi-
stained with ethidium bromide. The amplicons were cloneddence levels to the nodes in the trees.

into a pMD19-T Simple vector (Takara, Japan) according to

the manufacturer’s instructions. 2.4 Statistical analysis

The coverage of each clone library was calculated by the
equation CH1— (n1/N)] x 100, wheren is the number
Inserts of selected clones were amplified by PCR withof OTUs represented by only one clone and N is the to-
forward M13F (B-GTTTTCC CAGTCACGA-3) and the tal number of clones examined (Good, 1953). To examine
reverse M13R (BCAGGAAACAGCTATGAC-3) plasmid  the temperature distribution of microbial community in pro-
specific primer set. The sequencing was performed on amluction water of petroleum reservoir, 16S rRNA gene se-
ABI 377 sequencer (Dye Terminator Cycle Sequencingquences were analyzed with the online software UniFrac
Ready Reaction FS Kit; PE Applied Biosystems) using M13 (http://bmf2.colorado.edu/unifragalsing the principal coor-
universal sequencing primers. Obtained DNA sequenceslinates analysis (PCoA) as suggested previously (Lozupone
were checked for vectors by VecScreen Widget 1.0 softwareand Knight, 2005). Correlations between the microbial com-
before further analysis. Sequence data were aligned using th@unities and environmental factors were determined by the
NAST alignment algorithm (De Santis et al., 2006a) on the canonical correspondence analysis (CCA) using the software
Greengenes websitétfp://greengenes.Ibl.ghwvith clones  CANOCO (version 4.5, Microcomputer Power, Ithaca, NY,
having similarities of 98 % or above grouped into opera- USA) (ter Braak andmilauer, 2002).

tional taxonomic units (OTUs). The clones were homology-

searched using Ribosomal Database Project Il (Wang eR.5 Nucleotide sequence accession numbers

al., 2007). The nearest relatives of each OTU were identified

using the BLASTN network service (Altschul et al., 1997). Partial 16S rRNA gene sequences for Bacteria and Ar-
Chimeras were detected using Bellerophon, version 3 (Hubechaea obtained in this study were deposited in GenBank
et al., 2004; De Santis et al., 2006b) and removed from fur-database under accession numbers JQ433723-JQ433816 and
ther examination. Phylogenetic trees were constructed basetF754550-JF754565.

2.3 Sequencing and phylogenetic analysis
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3 Results high-temperature petroleum reservoir. The remaining bac-
terial phyla account for relative low abundance in the six
3.1 Diversity of microbial community in water-flooding petroleum reservoirs.
petroleum reservoirs The archaeal sequences were clustered within eleven phy-
logenetic groups (genus levelfethanocellaMethanosaeta
Six production water samples from six water-flooding MethanomethylovoransMethanolinea Methanocalculus
petroleum reservoirs with different temperatures were anaMethanoculleusMethanothermobacteMethanobacterium
lyzed by PCR amplification with bacterial and archaeal spe-ThermococcusHalogeometricunand Thermogymnomonas
cific primer sets. For the members in the domain bacteria, 93In the high-temperature oil reservoirs, most of the genera be-
226, 254, 80, 185 and 142 clones were randomly selectetbng to the thermophilic archaea. The sequences affiliated
from the libraries of production water samples S1, S2, S3with the genusThermococcuandMethanothermobactexc-
S4, S5 and S6, respectively. Of the total sequences screenedunt for a high percentage, 88.8 % of total archaeal clones
by MOTHUR software version 1.6, 5, 16, 10, 13, 30 and 31 with the genusThermococcusn S1 and all the archaeal
operational taxonomy units (OTUs) were obtained from S1,clones affiliated with the genidethanothermobacten S2.
S2, S3, S4, S5 and S6, respectively and classified into thirThe sequences related to the geMethanomethylovorans
teen different phylogenetic groups (phylum level) (Figs. 1, 2and accounting for 54.4% was only found in S3. The se-
and 3). The coverage of the clone library was 100 % for S1,quences affiliated with the genddethanolineawere de-
S2, S3 and S5, 96 % for S4 and 99 % for S6 from rarefactiontected in S4 with a high percentage (70%). The sequences
analysis . affiliated with the genudlethanobacteriunwere the most
For the members in the domain archaea, 125, 56, 79, 60, 2dbundant in low-temperature petroleum reservoirs, account-
and 33 clones were randomly selected from the libraries ofing for 79.2% in S5 and 66.7 % in S6.
production water samples S1, S2, S3, S4, S5 and S6, respec-
tively. Of the total sequences screened by MOTHUR soft-3.2 Microbial community classification of
ware version 1.6, 5, 1, 4, 2, 2 and 2 OTUs were obtained from water-flooding petroleum reservoirs
S1, S2, S3, S4, S5 and S6, respectively and classified into
eleven different phylogenetic groups (genus level) (Fig. 4).PCoA of bacterial and archaeal community structures car-
The coverage of the clone library was all 100 % except 98 %ried out by Unifrac based on the phylogenetic tree of 16S
for S1 from rarefaction analysis. rRNA gene sequences in the six investigated petroleum reser-
Bacterial and archaeal DNA sequences based on the pewoirs indicates that bacteria and archaea display high niche
centage representation of major phylum or genus in clonespecificity (Fig. 6). S5 and S6 were collected from low-
libraries from the six different temperature reservoirs aretemperature petroleum reservoirs grouped together, sharing
shown in Fig. 5. The bacterial sequences were clusteredimilar bacterial and archaeal community structures. Al-
within thirteen phylaProteobacteriga-, 8-, y -, 8-, ¢-), Fir- though S1 and S2 represented high-temperature petroleum
micutesBacteroidetesActinobacteriaChloroflexji Thermo-  reservoirs, neither bacteria nor archaea community structures
togag ThermodesulfobacterjaDeinococcus-Thermusnd  got grouped together because of a great difference in miner-
TM7. Compared with low-temperature reservoir, bacterialalization and the concentration of Clin addition, S2 and
sequences affiliated with the phylufirmicutes account  S3 got grouped together, sharing similar bacterial commu-
for the highest percentage in S2 (65.9%) and S3 (29.9 %hity structures in PCoA of bacterial classification, while S3
from high-temperature petroleum reservoir. In contrss; and S4 got grouped together, sharing similar archaeal com-
teobacteria (@-, 8-, y-, 8-, ¢-) account for the highest munity structures in PCoA of archaeal classification.
percentage in the S4, S5 and S6 from low-temperature
petroleum reservoirsz-Proteobacteriaincreased with the 3.3 Correlations of microbial communities with
decrease of petroleum reservoir temperature, but the per-  environmental factors
centage ofg-Proteobacteriadecreased with the reduction
of petroleum reservoir temperatugeProteobacterisshared  To find out the relationships between the distribution of
similar high percentage (3040 %) in the S4, S5 and S6 microbial communities and the environmental variables of
as well as in S2 (31.5%). However, it is surprising that the petroleum reservoirs, canonical correspondence anal-
all the bacterial sequences found in S1 affiliated with  ysis was conducted based on bacterial and archaeal 16S
Proteobacteria y -Proteobacteriawas also detected in S3 rRNA gene sequences and the major physiochemical param-
and S6 with 7.19% and 0.7 %, respectivelyProteobacteria  eters of the petroleum reservoirs (Table 1). The first two
were encountered in S2 and S5 accounting for 2.7 % andxes of the CCA analysis explained 69.9 % and 55.3 % of
5.1 %, respective\Bacteroidetesvas another frequently en- the total variance for the bacterial and archaeal communi-
countered phylum in low-temperature petroleum reservoirties, respectively (Fig. 7). The physiochemical parameters of
of S5 and S6 for 9.0% and 17.6 %, respectivdllermo-  petroleum reservoirs were divided to three groups to better
togae with higher percentage accounted for 19.5% in aanalyze the relationships. In the first group, the differences
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represents nucleotide changes per site. Sampling locations are as named in Table 1.
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Fig. 2. Phylogenetic tree of thEirmicutes16S rRNA gene phylotypes retrieved from six different petroleum reservoirs (shown in bold) and
closely related sequences from GenBank database. Alignments to related sequences (shown with accession number) were performed wit
MEGA 5 software. The topology of the tree was obtained with the neighbor-joining method. Bootstrap wvatu&8Qq0 replicates) of

75 % are reported. Scale bar represents nucleotide changes per site. Sampling locations are as named in Table 1.
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Fig. 3. Phylogenetic tree of théctinobacteria ThermodesulfobacterjarhermotogagDeinococcus-Thermu€£hloroflexj Bacteroidetes

and TM7 16S rRNA gene phylotypes retrieved from six different petroleum reservoirs (shown in bold) and closely related sequences from
GenBank database. Alignments to related sequences (shown with accession number) were performed with MEGA 5 software. The topology
of the tree was obtained with the neighbor-joining method. Bootstrap valued 000 replicates) ot 75 % are reported. Scale bar represents

nucleotide changes per site. Sampling locations are as named in Table 1.
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83 S4A clone: 21(18/60, JF754556)
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100 1 A eihanosaeta thermophila PT (CP000477) Methanosaeta
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‘ Uncultured Merthanobacteriaceae archaeon clone :ANB-217 (FI898358)
S2A clone:49 (56/56, JF754561)
100 | Uncultured archaeon clone Oi0-10 (AJ556426)
o8 ' Uncultured archaeon clone: NAK1-al (DQ867048)
S3A clone:84 (17/79, JF754557)
Methanothermobacter thermautotrophicus (T) clone: delta H (AY 196660)
SSA clone:S (19/24, JF754562)
Methanobacterium sp. (AI550159)
75 Uncultured archaeon clone: LLI-15 (AJ556376) Methanobacterinm
Uncultured Methanobacterium sp. clone: SWA4 (EU888013)
|SGA clone:8(22/33, JF754565)
9 S1A clone:73 (111/125, JF754552)
100 | Uncultured Thermococcus sp. clone: NRA14 (HHIM041915) Thermococcus
75" Thermococcus sibiricus (T) clone: MM739 (AJ238992)
Halosarcina pallida clone: BZ256 (HM185493) A
100 Uncultured haloarchaeon clone: A122 (EU328130) ~ Halogeometricum
S1A clone:102 (1/125, JF754551)
99 S1A clone:109 (3/125, JF754550)
99 Uncultured archaeon clone:7C08 (AY835423)
Uncultured Thermoplasmatales archaeon clone: GNA10F01 (EU731598)
100 S1A clone:47 (9/125, JE754553)
100 | Uncultured euryarchaeote clone: NS2 31E2 (EU722116)
75! Uncultured archaeon clone: GZK56 (AJ576232)
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Fig. 4. Phylogenetic tree of the archaeal 16S rRNA gene phylotypes retrieved from six different petroleum reservoirs (shown in bold) and
closely related sequences from GenBank database. Alignments to related sequences (shown with accession number) were performed wit
MEGA 4 software. The topology of the tree was obtained with the neighbor-joining method. Bootstrap watu&8d0 replicates) of

75 % are reported. Scale bar represents nucleotide changes per site. Sampling locations are as named in Table 1.

in the bacterial and archaeal community structures (Fig. 7AHalogeometricunand Thermogymnomongsorrelated pos-
and a) were related to temperature, mineralization, averitively with the temperature, others with the water-flooding
age permeability, oil viscosity, effective porosity, effective operation years, mineralization and effective thickness. In
thickness and water flooding operation years. The bactethe second group, the differences in the bacterial and ar-
rial phylogenic group ofFirmicutesand Thermotogaéhad  chaeal community structure (Fig. 7B and b) were related to
positive correlation with the temperature;Proteobacteria  differences in the concentration of GISC;~, PG}, NO3,

and Chloroflexi with the effective porosity and oil vis- Na', KT, C&t, Mg, and Mr#t. The bacterial phylogenic
cosity, others with the effective thickness and water-group of Bacteroidetesa-Proteobacteria Actinobacteria
flooding operation years; Most of the archaeal phylogeneticand Deinococcus-Thermushowed positive correlation with
groups Methanocella MethanosaetaMethanomethylovo-  the concentration of ND, B-Proteobacteriawith the con-
rans, Methanolinea MethanothermobacteThermococcus  centration of Ct, y-ProteobacterisandChloroflexiwith the
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Fig. 5. Relative proportion of bacterigA) and archaeaB) taxa from 16S rRNA gene sequence clone libraries constructed from DNA
extracted from production waters collected from oil reservoirs with temperatures 63, 58, 45, 37, 32°&hd2ainpling locations are as
named in Table 1.
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Fig. 6. PCoA ordination diagrams of the bactera) and archaegB) assemblages calculated with 16S rRNA gene sequences from produc-
tion water of petroleum reservoirs. Shown are the plots of the first two principal coordinate axes (P1 and P2) for PCoA and the distributions
of the bacterial and archaeal assemblages (designated with the sampling wells) in response to these axes.

concentration of SQT and P(j_;The archaeal phylogenetic Chloroflexi and others that had correlation with the con-
groups ofMethanosaetaThermococcusHalogeometricum  centration of isobutyrate; the archaeal phylogenetic groups
and Thermogymnomonamrrelated positively with the con-  of MethanomethylovoranMethanothermobacteMethano-
centration of S&, Methanocalculus Methanobacterium  lineaandMethanocelléhad positive correlation with the con-
and Methanoculleusvith the concentration of NO. In the  centration of butyrateMethanoculleuswith the concentra-
third group, the differences in the bacterial and archaeation of isobutyrate.

community structure (Fig. 7C and c) were related to dif-
ferences in the concentration of volatile fatty acid including
acetate, propionate, isobutyrate and butyrate. The bacteria
phylogenetic groups ofhermotogaehowed positive corre-
lation with the concentration of propionaféirmicuteswith
the concentration of acetate, except jofProteobacteria

Discussion

It has been widely accepted that the combination of tempera-
ture, salinity and pressure in subsurface petroleum reservoirs
drastically reduces microbial populations and metabolic

www.biogeosciences.net/9/4645/2012/ Biogeosciences, 9, #8E3-2012
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activity. The microbial population differs from one oil reser- methanogen (Hattori et al., 2000). The sequence types (S2
voir to another because of variations in their physicochemi-B clone: 210 and S3 B clone: 14) are most closely re-
cal, and geochemical entities. Physiologically diverse micro-lated toSyntrophothermus lipocalidua novel thermophilic,
bial assemblage of mesophilic to thermophilic and halophilicsyntrophic isobutyrate-oxidizing bacterium (Sekiguchi et
to hyperhalophilic microbes are distributed in such ecosys-al., 2000). According to the physicochemical data from
tems. Owing to having a high correlation between the depthproduction water samples and CCA analysis, the bacterial
and the temperature of petroleum reservoir, the best dependyroup Firmicutes showed higher values for acetate, propi-
able research may be to sample a single oil reservoir withonate, isobutyrate and butyrate (Fig. 7C), suggesting that
different depths to survey the effect of temperature on the miVFA (volatile fatty acid) components within the production
crobial community. Even if this method can effectively avoid water serve as their major carbon sources, and demon-
the interference of other environment factors on microbialstrated a higher support between the phylogenetic data and
communities except for temperature, nevertheless, the sanhe physicochemical measurements. Other sequence type
ple collection will undoubtedly face enormous challenges.within the phylum Firmicutes also had a greater propor-
In general, the oil layer is quite centralized in thickness, thetion in high-temperature reservoirs, such as sequence type
thickness of oil layer is no more than 200 m and the differ- (S3B clone: 98), most closely relatedFoasibacterspp., an
ence in temperature is less thet Sherefore, it is very diffi-  anaerobic, thiosulfate-reducing bacterium isolated from an
cult to sample the different temperature oil production wateroil-producing well (Ravot et al., 1999). It is not a typical
from a single oil reservoir. thermophilic microorganism with optimal growth tempera-

In order to compare the results of this study with ture at 37C, and such types of sequences were also found in
other related researches, the microbial community basetbw-temperature petroleum reservoirs, represented as (S6 B
on 16S rRNA gene sequencing surveys conducted on difelone: 70) with petroleum temperature at°Zl) CCA anal-
ferent temperature petroleum reservoirs from related refysis showed that the phyluffhermotogads another bac-
erences and this study were listed in Table 2. Obviously,terial group correlated positively with the temperature. The
in this study most of the thermophilic microorganisms sequence types (S2 B clone: 210 and S3 B clone: 14) are
including ThermococcusThermogymnomona®ethanoth-  most closely related tdhermotoga hypogeaa xylanolytic,
ermobacter Firmicutes and Thermotogaewere dominant, thermophilic, strictly anaerobic bacterium isolated from an
which are in line with other related high-temperature oil oil-producing well (Fardeau et al., 1997). Many thermophilic
reservoir research, such as the survey of the continentabacteria with optimum growth temperatures from 45 t680
Huabei oilfield in China, the Troll oil formation in the North have been isolated from oil fields (Beeder et al., 1995; Cayll
Sea and an offshore oilfield in Qinghuang, China. In the lowet al., 1995; Jeanthon et al., 1995; Ravot et al., 1995; Rees et
petroleum reservoir, the bacterial sequences affiliated withal., 1995; Fardeau et al., 1996; Nilsen et al., 1996; Fardeau
the phylumProteobacteriawere dominant; the same phe- et al., 1997). In this study, although S1, S2 and S3 represent
nomenon has also been observed in other low-temperaturdhermophilic temperature, not all of the bacterial sequences
reservoir studies in Schrader Bluff Formation of Alaska andbelonged to thermophilic microorganisms, especially bacte-
Pelican lake oil field. rial sequences affiliated witRseudomonaspp. within the

The bacterial sequences with close affiliation to mem-phylum y-Proteobacteriain S1 with temperature at 6&.
bers of the Firmicutes had the greatest proportion in It may be that microbial populations are greatly reduced in
high-temperature reservoirs. Dominant groups within thepetroleum reservoirs with the combination of high tempera-
Firmicutes were those of the familyPeptococcaceae ture, high mineralization and high concentration ofﬁSO
ThermoanaerobacteraceaeSyntrophomonadaceaelach- In addition, CCA analysis indicated that temperature
nospiraceae Erysipelotrichaceaeand Incertae Sedis Xll. exhibited the greatest influence on the archaeal community.
Members of these groups are thermophilic and obligateThe archaea identified from the petroleum reservoirs samples
anaerobic microorganisms. The sequence type (S2 B clonare overwhelmingly methanogens including methyltrophic
94) retrieved from oil reservoirs with temperature of&3in (Methanomethylovoraigs acetoclastic Nlethanosaetp
this study is most closely related Relotomaculum thermo- and CQ-reducing methanogens Méthanothermobac-
propionicum a member oClostridialesand a well described ter, Methanoculleus Methanobacteria Methanocalculus
thermophilic propionate-oxidizing anaerobic bacterium iso- MethanocellaandMethanolined, possibly being mesophilic
lated from an anaerobic sludge blanket reactor in Niigata,or thermophilic. In contrast, in sample S1 with the highest
Japan (Imachi et al., 2002). Such a microorganism was oncéemperature (63C), besidesMethanosaetg0.8 % of total
postulated to be associated with hydrocarbon-degradationlones), the majority of the clones were phylogenetically
(Abu Laban et al., 2009; Gieg et al., 2008). The sequenceelated to the genuShermococcu$88.8 % of total clones)
type (S2 B clone: 127) is most closely relatedTioerma-  and to the specie3. sibiricus (99 % sequence similarity)
cetogenium phaeumis a strictly anaerobic, thermophilic, (Fig. 4). Clones pertaining t@hermogymnomona®.6 %
syntrophic acetate-oxidizing bacterium, which can oxidize of total clones) andHalogeotricum(0.8 % of total clones)
acetate in co-culture with a thermophilic hydrogenotrophic were also detected, but to a lesser extent in sample S1. Most
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Table 2.16S rRNA gene sequencing surveys conducted in different temperature petroleum reservoirs.

This article Other research
Sample Temp Lineages detected Oil reservoir Temp Lineages detected Reference
®) site (°C)
S1 63 y-Proteobacteria Hubei oil 75 a, B, v, e-Proteobacteria Lietal.
Thermococcus field, China Firmicutes Actinobacteria (2006, 2007)
Thermogymnomonas ThermotogalesNitrospira,
Halogeotricum Methanobacteriales
Methanosaeta MethanococcalesMethanomicro-
biales Methanosarcinales
S2 58 Firmicutes Troll oil for- 70 Firmicutes y, 5-Proteobacteria Dahle et al.
Thermotogagw, B, y, mation, ThermotogalesSpirochetes (2008)
¢-Proteobacteria North sea BacteroidetesMethanococcus
Bacteroidetes Methanolobus
Methanothermobacter Thermococcus
S3 45 Firmicutes B, y, 8- Multiple oil 70 a, B, y, 8-Proteobacteria Orphan et al.
Proteobacteria fields, ~ BacteroidetesFirmicutes (2000)
Bacteroidetes Ther- California 75 Methanomicrobiales
modesulfobacteria Methanosarcinales
Methanomethylovorans Thermococcales
Methanothermobacter
Methanolinea
Methanoculleus
S4 37 «, B, y-Proteobacteria Qinghuang 65 Firmicutes Nitrospira, Thermoto- Lietal.
Firmicutes offshore gae «, B, y, e-Proteobacteria (2007)
Chloroflexi oil field, Methanobacteriales
Actinobacteria China MethanococcalesCrenarchaeota
Methanolinea
Methanocella
S5 32 o, B, Y, Schrader 27 Proteobacteria Firmicutes Syn- Pham et al.
e-Proteobacteria Bluff trophs®, WS6,Spirochaetes (2009)
Firmicutes Formation DeferribacteresBacteroidetes
Bacteroidetes of Alaska Chloroflexi Thermotogage Acti-
Actinobacteria nobacteria, OP11, OP9,
Methanobacterium Thermodesulfobacterja
Methanoculleus Methanosaeta
MethanoplanusMethanolobus
MethanocalculusMethanoculleus
S6 21 a, B, y-Proteobacteria Pelican lake 18 ¢-Proteobacteria Grabowski et
Bacteroidetes oil field ~ Methanomicrobiales al. (2005)
Firmicutes 20 Methanosarcinales

Actinobacteria
Methanobacterium
Methanocalculus

of the sequences assigned to £@ducing methanogens in  (Shestakova et al., 2011) as well as in methanogenic

the present investigation are in line with the view thatx€O alkanes degradation enrichment derived from production
reducing methanogens are the most commonly encounteregater of high-temperature oil reservoirs (Mbadinga et
in both cultivation and culture-independent studies of oilfield al., 2012). The high apparent abundance of thermophilic,
archaea (Head et al., 2010). Moreover, methanogenesis frommyntrophic acetate, propionate, isobutyrate and butyrate-
acetate driven via syntrophic acetate oxidation has beewxidizing Firmicutes as well as thermophilic C&reducing

documented to occur in high-temperature oil reservoirsmethanogens, coupled with the transiently high levels
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