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Abstract. We assessed the global terrestrial budget ofand have therefore attracted considerable attention (Arneth
methane (ChH) by using a process-based biogeochemicalet al., 2010). After CQ, CH, is the second-most-important
model (VISIT) and inventory data for components of the GHG except water vapor in accounting for past increases in
budget that were not included in the model. Emissions fromatmospheric radiative forcing (IPCC, 2007). Various biogeo-
wetlands, paddy fields, biomass burning, and plants, as welthemical processes control the global {iidget, including
as oxidative consumption by upland soils, were simulated byanthropogenic factors such as emissions from the fossil fuel
the model. Emissions from ruminant livestock and termitesindustry, landfills, livestock ruminants, biomass burning, and
were evaluated by using an inventory approach. Thesg CHrice cultivation. However, because of the complexity and het-
flows were estimated for each of the model's°0<®.5° grid erogeneity of Clj-related processes, there remains a wide
cells from 1901 to 2009, while accounting for atmospheric range of uncertainty in our understanding of the global,CH
composition, meteorological factors, and land-use changedudget and its variability (e.g., Matthews and Fung, 1987,
Estimation uncertainties were examined through ensemblélein et al., 1997; Bousquet et al., 2006).
simulations using different parameterization schemes and in- Terrestrial ecosystems are key components in the Earth—
put data (e.g., different wetland maps and emission factors)atmosphere system. In terms of the globalsGiycle, the
From 1996 to 2005, the average global terrestriah Gttdget  terrestrial ecosystem budget is highly uncertain because (1)
was estimated on the basis of 1152 simulations, and terressources and sinks are heterogeneously distributed over the
trial ecosystems were found to be a net source of 388.3 land surface, (2) wetlands and animals (i.e., livestock rumi-
20.7 Tg CHyr~!. Wetland and livestock ruminant emis- nants and termites) both produce substantia} €Hissions,
sions were the primary sources. The results of our simulaand (1) human impacts have severely altered the biogeo-
tions indicate that sources and sinks are distributed highlychemical processes related to atmosphere—ecosystem CH
heterogeneously over the Earth’s land surface. Seasonal arekchange. Wetland ecosystems may represent the largest
interannual variability in the terrestrial budget was also as-sources of anaerobic GHproduction and emission, but a
sessed. The trend of increasing net emission from terrestriatonsistent value for the total flux from these ecosystems
sources and its relationship with temperature variability im-has not been obtained: recent estimates range from 100 to
ply that terrestrial Clj feedbacks will play an increasingly 230TgCH,yr— (IPCC, 2007). Also, aerobic emissions of
important role as a result of future climatic change. CHg4 from plants (Keppler et al., 2006) may prove to be sub-
stantial sources of CH Martinson et al. (2010) discovered
a new source at about 1.2 Tg G~ from tank bromeliads
in neotropical forests. These newly discovered phenomena
1 Introduction and the wide range of estimated values show the immaturity
of our understanding of the global Glbudget. In addition,
Biogeochemical feedbacks within the terrestrial biospheremany observations have indicated that the rate of increase of
in response to climatic change occur through the flows ofatmospheric Chiconcentrations is temporally variable, with
trace gases, and especially greenhouse gases (GHGs, partligh incremental rates during the 1980s and markedly lower
ularly COp, CHg, and NO). These exchanges with the atmo- rates from the 1990s to the early 2000s (Dlugokencky et al.,
sphere play a unique role in the Earth—atmosphere systeni, 994, 2011). Our inability to reliably specify how much of
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this variability is attributable to changes in terrestrial source2 Data and methods
and sink strengths may limit our ability to predict changes
and discuss options for mitigating future climate change. = We evaluated the global GHoudget of terrestrial ecosys-
Modeling of terrestrial Chtrelated processes is also im- tems by using a process-based terrestrial biogeochemical
mature, because the production and consumption processesodel (VISIT) and inventory data from 1901 to 2009
are complicated and occur heterogeneously in space an(Fig. 1). The estimates were performed at a spatial resolution
time. Low concentrations and small fluxes of £hhake it of 0.5° x 0.5° latitude and longitude. The terrestrial model
difficult to obtain the gas exchange data required for modelsimulated CH emissions from wetlands and paddy fields,
development and validation. Several empirical models haveoxidation by upland soils, emission from biomass burning,
been developed to evaluate gldxchange by wetlands on termite and livestock emissions, and plant aerobic produc-
the basis of observed data (e.g., Christensen and Cox, 199%pn. Estimation uncertainty was assessed by using differ-
Cao et al., 1996; Walter and Heimann, 2000; Zhang et al.ent calculation schemes for wetland emissions, upland ox-
2002; Zhuang et al., 2004; Petrescu et al., 2010; Ringeval etation, and plant aerobic production, as well as different
al., 2010; Tian et al., 2010; Wania et al., 2010; Riley et al., emission factor values.
2011). For example, Wania et al. (2010) developed a mecha-
nistic model (LPJ-WHyMe) of Chlemission from northern 2.1 Description of the VISIT terrestrial
peat-lands that included regulatory hydrological processes. biogeochemical model
Ringeval et al. (2010) assessed climatex@¢dback by us-
ing a process-based wetland £Emission model coupled 2.1.1 Model overview
with a dynamic vegetation model (ORCHIDEE). However,
it is still difficult to mechanistically model the effects of the VISIT (the Vegetation Integrative Simulator for Trace gases)
soil's chemical and physical environments (e.g., temperatureis a process-based terrestrial ecosystem model (Inatomi et al.,
redox potential) and biological regulation (e.g., substrate lim-2010; Ito, 2010). We used VISIT in this study to estimate
itations, microbial functional composition). Many process- biogeochemical Cklexchange fluxes (Fig. 1). Because this
based wetland models have adopted a multi-layer approactodel focuses on natural and agricultural ecosystems, we
(which incurs high computational costs), because the waterdid not simulate anthropogenic (urban and industrial) emis-
table depth strongly influences GHbroduction and con- sions. Processes driven by animals (i.e., by livestock rumi-
sumption rates. Estimation of GHbudgets in wetlands and nant and termite emissions) were not explicitly included in
seasonally flooded areas (e.g., inundation during rice cultivathe model; in this study, these fluxes were evaluated sepa-
tion) is important to evaluate CHemission at broad scales, rately by using inventory data (see Sect. 2.2). The model was
but it requires precise topographic and hydrological informa-developed from a simple carbon cycle model (Sim-CYCLE;
tion. In addition, it is generally difficult to simulate human- Ito and Oikawa, 2002), in which atmosphere—ecosystem ex-
driven processes such as irrigation, drainage, and crop anchange of CQ (photosynthesis, respiration, and decompo-
livestock farming, even on the basis of empirical data. De-sition) and intra-ecosystem carbon dynamics (e.g., allocation
velopment and refinement of models that simulate; @k of photosynthate, litterfall, humus formation) were simulated
change are therefore urgent issues in research to elucidatey using ecophysiological submodels. Carbon dynamics are
global GHG cycles. captured by using a box-flow system, which incorporates the
The objectives of our study were (1) to estimate thesCH following plant and soil carbon pools (i.e., “boxes”): leaves,
budget of terrestrial ecosystems at a global scale by using atems, roots, litter, and humus. VISIT was developed on the
process-based model for processes that are reasonably wélasis of Sim-CYCLE by including a nitrogen cycle scheme
understood and inventory data for components of the budand additional trace-gas exchange schemes (i.e4, [@bF
get that were not included in the model, and (2) to discusgduction and oxidation, biomass burning, emission of bio-
the range of estimation uncertainty by using multiple input genic volatile organic compounds).
datasets and calculation (modeling) schemes. We focused The model has been validated through comparisons with
on the CH budget of terrestrial ecosystem compartmentsa variety of observational data at different scales. For exam-
such as the vegetation, soil, and animals in both natural angle, comparison of the carbon dynamics at 17 sites around
human-managed areas. However, we did not consider moshe world showed that the model successfully captured the
other anthropogenic point sources, such as fossil fuel extracproductivity, biomass and soil carbon stocks of ecosystems
tion and use, mining, and landfills, because the model thatanging from tropical rain forests to arctic tundra (Ito and
we used focuses on natural and agricultural ecosystems. Oikawa, 2002). The net budget of GHGs (&@H,, and
N20) in deciduous broad-leaved forest was compared with
chamber measurements, and the model was able to capture
the observed source/sink patterns (Inatomi et al., 2010). In
validation of the estimated CHemission from inundated sur-
faces, the model estimated fluxes from a paddy field in Japan
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Fig. 1. Schematic diagram of process used to evaluate the terrestrigh@get using the VISIT model.

(Inatomi and Ito, unpublished data) and from natural wet-et al. (1996) used exponential functions to evaluate the en-
lands in West Siberia (Sasakawa et al., 2010). Ecosystemvironmental effects on ClHproduction. The Chll oxidation
scale carbon budgets were compared with those observedte (O) in inundated wetlands is evaluated as follows:

using the eddy-covariance method, mainly at Asian sites,

but the results again demonstrated the model’s validity (Ito,O = P (0.60+0.30-[GPF/GPRnax) @)

2008, 2019). The model has beeq app!ied in various Qlob‘?‘IWhere GPP is the gross primary production (simulated in
scale studies, such as the analysis of interannual var|ab|llt¥he carbon cycle scheme) and GRRIs the seasonal maxi-

in CO, budgets (Ito and Oikawa, 2000), off-line future pro- o, GPP. The parameters derived from VISIT's carbon cy-

jections (Ito, 2005), coupling with a climate model (Kato et ¢je scheme (DS, GPP, and GRR) are updated annually.
al., 2009), linkage with remote-sensing data (Hazarika et al.,

2005), and climate data evaluation (Saito et al., 2011). 2.1.3 A multi-layer scheme for CH; emission from

. . wetlands and paddy fields
2.1.2 A bulk scheme for evaluating CH emission from

wetlands and paddy fields Walter and Heimann (2000) developed a mechanistic scheme
) for CH4 emission from wetlands. Different GHoroduc-
Cao et al. (1996) developed a simple process-based schemg, and transport processes were explicitly considered in this
for describing CH emission from wetlands, in which the  gcheme. Here, belowground processes were simulated by us-
total (i.e., bulk ecosystem-scale) exchange ofs@teval-  jnq 5 one-dimensional multi-layer system, in which the soil
uated as the difference between £pfoduction and oxida-  ¢om the surface to a depth of 1 m was divided into 50 layers,
tion rates. Therefore, the scheme is not intended to smulatgach 2 cm thick. Temporal and vertical variations in CH

fine-scale CH dynamics §uch_ as the \_/e_rtical profile_of soil concentration in the airGcy,) are expressed by using the
CH4 concentration and diffusion, but is instead designed tocontinuity equation:

evaluate large-scale GHbudgets by using the least possible

amount of data. The CHproduction rate P) is obtained as 9
. —Cch,(7,2)
follows: ot
d
P =DS-FP- f(WTP)- f(TEM) (1) =73 PFEIFEBCO+PTED+PED+0G) (3)

where DS is the decomposition rate of soil organic matterwherer andz denote time and depth, respectively, DF is the
(simulated in the carbon cycle scheme), FP is the proporﬂ'ﬁus've flux, EB is the ebullition flux to the atmosphere, PT
tion of the decomposed organic carbon that is transformeds the plant-mediated (i.e., through aerenchymay, @kix,
into CHs (a constant average value0.5), andf(WTP) and anle andO are CH, production an.d OX|d§tlon, respectively,
f(TEM) are scalar coefficients that account for regulation by @t times and depthe. CH, production @) is calculated for
the water table position (WTP) and temperature (TEM). CaoSCil layers below the water table as follows:
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P(t,2)=Po- forg(2)- fin(@®)- f(T)- Q%(”Z)_Tmewlo 4) spaces. Volumetric soil water content was simulated in the
VISIT hydrology scheme and used to estimate the water vol-

where Py is a rate constant specific to each biome type,umes contained in the intra- and inter-aggregate pore spaces.

forg(z) and fin (1) represent the effect of substrate availability Qriginally, Potter et al. (1996) assumed that the;@8incen-

from soil organic matter and plant roots, respectively7)  tration gradient was constant, at 0.04 ppmv-énfor global

is a step-wise function of the effect of freezing on Opto-  applications. In the present study, we multiplied the gradient

duction (i.e.,f(T) =0 at temperatures below freezing, and by the ratio ofCc, to the base concentration (1.2 ppmv) to

f(T)=1 at higher temperatures@1o is a parameter that account for the influence of atmospheric £atcumulation.
defines the temperature responsiveness of the processes (i.e.,

the change per 1 temperature change); afigiean(in °C) 2.1.5 CH, oxidation by upland soils (Ridgwell et al.,
is the annual mean temperature. bxidation (O) is calcu- 1999): algorithm 2

lated for soil layers above the water table, as follows:
In this scheme, upland GHonsumption (OX) is also esti-

0(t,7)= _ Vmax-Cem, (#,2) %U’U—Tmeaﬂ/lo (5) mated by using Fick’s first law (Eq. 7). However, although
Km+Cch, (t,2) diffusivity (D) also varies with temperatur@Y and soil wa-
ter content (SW), it is adjusted on the basis of the character-

whereVimax is the maximum rate (20 pmotit h—1) and K, istics of the pore space:

is the Michaelis-Menten coefficient (5 pmotL). The diffu-
sive flux (DF) is calculated by using Fick’s first law: AFP\ 15+3/b

, D = Dy (14-0.00557) - [TP4/3~ ($> } )
DF(.2) = =D (2) 5-Cery (1.2) (6)
_ o o o ) where Dy is the diffusivity of CH; in free air, TP is the total
Wherep is the diffusion coe_fﬂment, which is a functlon_ Qf pore volume, AFP is the air-filled pore volume, ahds a
the soil's coarse pore fraction. As a boundary condition, narameter specific to the soil texture (Saxton et al., 1986). In

Ccn, values at the bottom and top +4 cm of the soil are as-thjs scheme, microbial oxidation activity is also considered
sumed to be zero and equal to the atmospheric concentrasy ysing the following equation:

tion, respectively. The model assumes thay@rhission by

ebullition (EB) occurs when &, exceeds a threshold. Be- OX=kq-CcH,(z) (10)
cause this scheme is applied only to the wetland fraction of N - .
a cell in the model, we chose a threshold value for a vegewherekd repres_entg omdaﬂo_n z_;\ctlwty antcr, (2) IS t_he
tated land surface (500 pmott; the model’s default value). CH‘.‘ concentra}tlon N the §0|I air at depth The activity,
Plant-mediated flux (PT) occurs within the rooting depth, andkd’ is an empirical function:

the model accounts for the vertical distribution of roots and, — 4. £ (N)- £(SW)- £(T) (11)
the plant’s growth stage. The total flux (i.e., the summation

of DF, EB, and PT) at the land surface represents the ngt CHWhereky is the base oxidation rate (0.000872sand f (N),

budget of the atmosphere. f(SW), andf (T) are coefficients of scalar functions that in-
dicate the regulation of oxidation by the nitrogen input in
2.1.4 CH oxidation by upland soils (Potter et al., croplands and by soil water and temperature, respectively.
1996): algorithm 1 In this study, the scheme was separately applied to natu-

) o _ o ral ecosystemsf{(N) = 1.0) and cropland f(N) = 0.25),
In this scheme, Ciduptake by soil microbial oxidation (OX) = and then the estimated fluxes were weighted by the areal
in upland (i.e., non-saturated) soils is calculated on the basigactions of these two types of land use in each cell of the

of Fick's first law: grid. Also in this scheme, the GHconcentration gradient
ACcH4 was originally assumed by Ridgwell et al. to be constant at
OX=D @) 0.04 ppmv cm!, but we modified the gradient to account for

Az
. e - i the increase in atmospheric @Hdver time.
whereD is the diffusivity coefficient and\Ccn,/Az is the P G

CHj, concentration gradient as a function of depth inthe soil2 1 6  CH;, oxidation by upland soils (Del Grosso et al.,
(z). Diffusivity (D) is a function of the soil temperature and 2000): algorithm 3
water content:

Using the US Trace Gas Network dataset, Del Grosso et
D = Do-(0.9734+0.00537") - f (SW) (8) al. (2000) proposed a general model of Stdbnsumption in
whereDy is the diffusivity of CHy in air at 5°C (0.194 cn2 upland soils; the model consisted of two sub-models. The
s71), T is the soil temperatur€C), and £(SW) is a scalar ~ following equation is used for the soils of grasslands and
coefficient function of soil water content (SW) that accounts coniferous and tropical forests, and for agricultural soils:
for the difference between intra- and inter-aggregate pore
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OX = OXmax: f(W,FC)- f(T, Dopp) - f(Ag, Dopt) (12) wheres is the fraction of the length of the fire season ex-

pressed as a proportion of the total year; this fraction is
affected by the fuel load (with a threshold fuel load of

>200 g dry-matter m? required to sustain combustion) and

the fuel moisture content. We derived the fuel load and mois-
ture content from the carbon cycle and from hydrological
schemes, respectively.

where OXnax is the maximum CH oxidation rate (a func-
tion of optimal diffusivity) andf (W, FC), f(T', Dopy), and
f(A,, Dopy) are scalar coefficients representing the regula-
tion of CHy oxidation by soil water contentik(), the opti-
mum diffusion coefficient Dopy), and soil temperaturel|).

A second equation is used for deciduous forests:

OX = OXmax- f(WFPS - £(T) (13) 2.1.9 Plant aerobic emission

where WFP.S is the water—filled_pore space, which is derivedyjathane emission by plants under aerobic conditions (VE)
from the soil water content estimated by the VISIT hydrol- was evaluated by using the emission factor of Keppler

ogy scheme and based on soil physical properties (i.e., soj; 4. (2006) and the up-scaling methods proposed by
bulk density and solid phase density). This approach asyi-schbaum et al. (2006).

sumed that OX decreases moderately with increasing WFPS | o4t mass-based up-scaling:

and increases linearly with increasing temperature.

VEmass= SL-WL -[DL - VEFgyn+ (24— DL)VEFy 16
2.1.7 CH, oxidation by upland soils mass [ s akl - (16)

(Curry, 2007): algorithm 4 where SL is the growing season length, WL is leaf mass (de-
rived from the carbon cycle model in VISIT), and DL is day
Curry (2007) modified the mechanistic scheme of Ridgwell length. The emission factors for living leaves (\dgFunder
et al. (1999) by introducing an advanced scalar coefficientsunny conditions and VEf& under dark conditions) were
for the regulation exerted by soil water on microbial oxida- assumed to be 374 and 119 ng (g dry matteh~1, respec-
tion activity (i.e., f(SW) in Eg. 11). In this scheme, the soil tively (Keppler et al., 2006).

regulation coefficient is calculated from the soil water poten-  Photosynthesis-based up-scaling:
tial, which in turn is calculated from the volumetric soil wa-

ter content and is more sensitive under dry conditions (Curry,vEphot0= 9. (E) . NPP(1 24—-DL . VEFdark> (17)
2007). Also, the temperature dependeng€l), at subzero 12 DL  VEFsun
temperatures was modified on the basis of observations.

this scheme, the effect of atmospheric £¢bncentration is
explicitly included on the basis of the assumption that most
of the CH; consumption occurs in the upper soil above a
depth of 10cm.

Ir\}vhere NPP is net primary production (model estimation) and
r is a unit conversion coefficient. These two estimates are ex-
pected to indicate the range of uncertainty due to the choice
of up-scaling methods.

2.1.8 Emission from biomass burming 2.2 Inventory-based estimation of CH emissions

The emission from biomass burning (BB, g £hi—2 yr—1) 2.2.1 Emissions from livestock ruminants

is evaluated in the model by using a generic equation deve'Emissions from major livestock ruminants (water buffalo,

oped by Seiler and Crutzen (1980): cattle, goats, pigs, and sheep) were estimated on the basis of
BB =BEF-BAF- FL-BE-BF (14) inventory data for animal density (number per unit area) and
where BEF is an emission factor that is specific to each gagrzicg'lgsg'Z?S'?r?bfli?é?lrsog"I?\;’eg}:cn;'ﬁ;;n dpeerri\/lgg“;lr(z)l:l?lihe
and biome, BAF is the burnt area fraction (i.e., the propor- 4 4c 1"/ i esiock of the World 2007 datht(p:/ww.fao.

tion of each cell that burned in the model), FL is the fuel _ .
load (dry-matter storage estimated by the carbon cycle mode rg/AG/againio/resources/en/ghw/home. itnompiled by

in VISIT), and BE and BF are the burning efficiency and T“et.Food ?Ed Agcr;ctultu:]e Ort%amzattlon (FAQ), of Fhe lu;'ted.t
burned fraction, each of which is a specific parameter for ations. ‘These data snow the contemporary animal density

each biome type. We used the BEF values of Andreae an t a 0.08 x 0.053 resolution; we assumed that the data pro-

Merlet (2001) and van der Werf et al. (2010) in this analy- \élded.ta basellnet_ln fo(;)i Tetmporal chtangeds ;n “\:e_St?ﬁk
sis: 6.8 to 9.0g Cll (kg dry matter)! for tropical forests ensity were estimated from two inventory datasets. fine

and 2.2 to 2.3 Chi(kg dry matter)! for grasslands. BAF FAOSTAT data compiled by the FAOh{tp://faostat.fao.ory/

. ; : o . nd the HYDE global land-use and emission data (Klein
is estimated by using the parameterization by Thonicke e{éoldewijk et al., 2011). The FAOSTAT dataset provides

al. (2001): country-based livestock data from 1961 to 2009 (with a 1-yr

BAF =5 xexp time step), and the HYDE dataset provides region-based
s—1 data from 1890 to 1990 (with a 10-yr time step). These

<0_45, (s—1)342.83 (s—1)2+2.96- (s — 1) +1_04> (15) country- and region-based data were assigned to each of the

www.biogeosciences.net/9/759/2012/ Biogeosciences, 9, 7632012
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0.5° x 0.5° grids by using the national boundary data in the (a) Fraction of wetlands
Gridded Livestock of the World 2007 dataset. Forthe HYDE oo
data, 1-yr step values were obtained from the 10-yr step data
by means of linear interpolation. Emission factors were de-

rived from the work of Crutzen et al. (1986) and Lerner et *™
al. (1988). Note that emission factors were specific to each
livestock species but were assumed to be constant for a given
species throughout the world. To account for estimation un-

certainty, we conducted simulations using the upper- and e
lower-bound values of the emission factors. o e o ” o e

60°N

30°S

(b) Fraction of paddy fields

90°N

2.2.2 Emissions from termites 60°N

CH4 emission from termites, which live in symbiosis with
methanogenic protozoa in their guts, is a non-trivial source  ”
from the terrestrial biosphere. We estimated termite; CH
emissions by using the simple up-scaling method of Fung
et al. (1991), in which biome-specific termite biomass den-  *Sew 20w sow o 60'E T20E  e0E
sity and emission factors were assumed. The average termite Land fraction NIRRT .
biomass densities were obtained from the work of Fraser et

. 2 -
al. (1986): 5.6 g m? for tropical forests, 3.0 g for tem- Fig. 2. Global maps of the distribution ¢&) natural wetlands and

perate forests, 4.5 g for savanna, and 7.8 g™ for cul- (p) paddy fields that were used in the baseline simulation. The wet-
tivated land. We assumed that termites were absent in boregind extent was derived from the Global Lake and Wetland Database

forests. Emission factors were also obtained from the work(Lehner and Bll, 2004), and the paddy field extent was derived
of Fraser et al. (1986): they ranged from 1.0 mg &4- from the MODIS-based estimation for Asia (Takeuchi and Yasuoka,
termite 1 h~1 in deserts to 8.0 mg Cikg-termite Th~1in ~ 2006; 10S to 50 N, 65 to 150° E) and data by Monfreda et
savannas. al. (2008) for other areas.

30°S

2.3 Global simulation and analyses ) . .
mospheric GHG concentration and climate system was not

. . . considered; that is, we conducted an off-line experiment.
The VISIT simulations were conducted by using P

0.5° x 0.5° grid mesh for the period from 1901 to 2009; we Uncertainty in the gstimated terrestrial Q:Iquget was
focus here on the outputs between 1960 and 2005. The Simlja_yaluated on the. basis of glternauve _calcglatlons by using
lations were driven by time-series data for atmospheric GHGd'ﬁerem assumptions and.dn‘fere'nt estlrpatmn schemes.
concentrations, climate, and land-use changes. The historical TWO datasets for the distribution of inundated wetlands
time-series for atmospheric GHoncentration was derived Were used (Fig. 2a): those of Matthews and Fung (1987)
from ice-core and ground-based measurements (Etheridge &1d Lehner and Bll (2004). When using the former dataset,
al., 1998; Robertson et al., 2001); it showed that the aver{h® annual mean inundation fraction was used. In the lat-
age CH concentration increased from 978 ppbv in 1900 to t€r case, the seaspnal change in the. inundated fraction was
1227 ppbv in 1960 and then to 1850 ppbv in 2005. Climatede”Ve_d from_ satellite data (SSM/I; Prigent et ﬁ\l., 2007) and
data (air temperature, cloudiness, precipitation, and humid¢ombined with the wetland map of Lehner andll{2004).

ity) for each grid cell were derived from the CRU TS3.1 For conducting Iong—term S|mulgt|0ns, average d|§Fr|but|ons
dataset (Mitchell and Jones, 2005). Historical land cover (the?f inundated wetlands (i.e., no interannual variability) were
fractions of cropland and pasture) was derived from Hurtt etuSed throughout the simulation period.

al. (2006), who also provided a matrix of land-use change Two datasets of paddy field distribution were used
(e.g., gross conversion from primary forest to cropland). Soil(Fig- 2b): a global map produced by Monfreda et al. (2008)
properties (clay/sand composition and bulk density) were deand the Monsoon Asia map produced by the Institute of In-
rived from a global dataset from the International Satellite dustrial Sciences, University of Tokyo (Takeuchi and Ya-
Land Surface Climatology Project Initiative Il (Hall et al., suoka, 2006). The former is based on statistical inventory
2006). For each grid cell, a spin-up simulation was con-data, and the latter is based on MODIS image analysis.
ducted for 300 to 4000 yr under the atmospheric conditions Two schemes of wetland and paddy field £emission
that existed in 1900, until the simulation reached an equi-were used: those of Cao et al. (1996) and Walter and
librium state for the net carbon budget. Note that dynamicHeimann (2000). The scheme by Cao et al. (1996) was ap-
feedback from the terrestrial biogeochemical cycle to the atplied only to the wetlands from Lehner andID (2004),
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Table 1. Comparison of components of the global £blidget for terrestrial ecosystem (Tg gt —1) between the different simulations in
this study and estimates from previous studies.

Hein et Wuebbles and  Scheehle et Wang et  Mikaloff Fletcher Chen and Patra et
This study (meag: s.d. [IAV]) al. (1997) Hayhoe (2002) al. (2002) al. (2004) etal. (2004) Prinn (2005) al. (2009)
Base year 1996-2005 1983-1989 - 1990 1994 2004 1996-2001 2000
Sources WH (B WH (2)t Cao (1} cao (2}
Wetlands 16%+6.4 1920+82 1725+46 231 100 - 176 231 145 153.3
Paddy fields 49+1.0 430+1.1 382+14 308+1.1 83 60 31 57 54 112 39.4
Low est. High est.
Biomass burning 18+18 180+21 43 52 14 41 88 43 59.8
Plant emission 8+02 154404 - - - - - — —
Livestock ruminans ~ 649+04  952+0.6 92 81 76 83 91 18 1103
Termites 1474001 271+0.04 — 20 - 20 29 23 20.5
Sink Algorithn?
Upland soil oxidation 1 2 3 4
325+0.7 351+09 246+0.2 333+08 26 30 - 34 30 - -

1 Using Walter-Heimann and Cao et al. schemes with (1) wetland map by Lehnerséi@@4) and paddy field map by Monfreda et al. (2008) and (2) wetland map by Matthews
and Fung (1987) and Asian paddie field map by Takeuchi and Yasuoka (2006).

2 Including emissions from landfills and wastes.

3 Including anthropogenic fire emission.

4 Estimation on the basis of inventory and geographical map data.

5 Algorithm 1: Potter et al. (1996), 2: Ridgwell et al. (1999), 3: Del Grosso et al. (2000), 4: Curry (2007).

resulting in three estimates for paddy fields and four esti-the wetland map by Lehner andD(2004), and the paddy
mates for natural wetlands. field map of Monfreda et al. (2008). For other emissions, we
Four schemes for Ckbxidation in upland soils were used: chose the average of the lowest and highest emission factors
those of Potter et al. (1996), Ridgwell et al. (1999), Del in the baseline estimation.
Grosso et al. (2000), and Curry (2007).
Two up-scaling schemes for plant aerobic £éission ) ,
by Kirschbaum et al. (2006) were used: a photosynthesisS Results and discussion
based scheme and a biomass-based scheme. In addition, \ge1 Global annual budaet
considered the case of no plant emission (i.e., a third set” 9
of estimates), because a general consensus has not yet b
reached over the significance of this process (e.g., Bloom e@et by using the model and inventory data: Table 1 sum-
al., 2010). marizes the results. From 1996 to 2005, natural wetlands

Two sets of emission factors (i.e., lower-end and higher-5.cqynted for the largest terrestrial £8burce, producing
end values within the plausible range) from biomass burning; 7q to 192 Tg CHyr—1 for the range of wetland data and

SR estimated components of the global terrestrial Gbd-

were used for each biome. emission calculation schemes that we considered; these val-
Two sets of termite density and Glemission factors (sim-  yes were within the range of values estimated in previous

ilarly, lower-end and higher-end values) were used. studies (Table 1). Paddy fields were also a considerable
Two sets of livestock emission factors (similarly, lower- source, with values ranging from 31 to 45 Tg QH~1. The

end and higher-end values) were used. paddy field emission was comparable to that in previous stud-

On the basis of this summary, we obtained 1152 differ-ies (Table 1) but slightly higher than a recent inventory-
ent combinations of calculation methods and parameter valbased estimate of 25.6 Tg Glr—1 in 2000 (Yan et al.,
ues for the net terrestrial GHoudget, assuming that each 2009). Also, our estimates are comparable to a recent es-
flow was independent. We expected that the distribution oftimate of 34 to 67 Tg Chlyr— (Neef et al., 2010) that was
the total budget produced by these simulations would reveatonstrained on the basis of historical observations of the sta-
the range of estimation uncertainties caused by variability inble isotope ratio of atmospheric GH The estimated CH
the base data and evaluation schemes. Note that other pemission from biomass burning, 16 to 18 Tg S, fell
tentially important sources of uncertainties such as paramewithin the range of previous studies, but was close to the
ter values and prognostic inundation estimation were not aslower end of those values. Plant emissions ranged from 9
sessed in this study. To facilitate our analysis and discussiortp 15 Tg CH, yr—1; this is lower than the value estimated by
we chose the following “baseline” estimation as the stan-Keppler et al. (2006) but still represents a moderate source
dard for comparison: the CHemission scheme of Walter in vegetated areas. Through the inventory-based estimation,
and Heimann (2000), the oxidation scheme of Curry (2007),we found that livestock ruminants were the second-largest
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Fig. 4. Global map of the estimated GHemission from the wet-
lands and paddy fields shown in Fig. 2.
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Net terrestrial CHa budget (Tg CHa yr—1) difference suggests that it is important to accurately delineate
the locations of wetlands so that we can more accurately esti-

Fig. 3. Frequency distribution for the 1152 estimates of terrestrial Mate their contribution to global Gfemissions. This finding
CH, budget (= wetland emission [4 estimates] + paddy field emis-iS consistent with those of a sensitivity analysis by Petrescu
sion [3] + ruminant emission [2] + termite emission [2] + biomass €t al. (2010) using four wetland maps. In addition, the exis-
burning emission [2] + plant aerobic emission [3; = 2 estimates +tence or absence of plant aerobic f#¢hissions affected the
null (no emission)] — oxidation in upland soils [4]) estimated by net budget, especially in densely vegetated areas; the mean
using different input data and parameterization schemes. Table Yalue of 12.2 Tg CHyr—! was nearly 4 % of the mean total
presents the detailed .res.ults. of t.hese simulations. The thick blaCIE)udget (Fig. 3). However, the actual range of estimation un-
line shows a normal distribution fitted to the data. certainty may be even larger, because the present study did
not fully explore uncertainties in sensitive parameters val-
ues and predicted changes in wetland extent in response to
1 : . global climate change, which can span a wide range (e.g.,
95Tg Chyyr™, and that termites were also a conS|derabIeR"ey etal., 2011). Furthermore, weighting of specific fluxes

. . -1
sotjrcef, Wllth values rantgr]]|_ngt;rom 15t0 2f7 g Dﬂ ' BOﬂ; Ion the basis of agreement with observational data may refine
Sels ofvalues were within the r{ange Of Previous reports, ali,q atimated probabilistic distribution of the terrestrial.CH
though the lower value for termites was lower than the pre-

. . budget.
viously reported values. On the other hand, upland soils ucge

were estimated to act as a strong sink, with values rangs 2  gpatial pattern of sources and sinks
ing from 25 to 35TgCHyr—!, depending on the oxida-
tion estimation scheme that was chosen. Again, these valas expected from the distribution of wetlands and paddy
ues were within the range reported in previous studies. Fofields, northern wetlands (e.g., in North America and West
example, Spahni et al. (2011) estimated global soik@p-  Siberia) and Asian paddy fields were strong sources aof CH
take as 28 Tg Chiyr—* using the LPJ-WHyMe model; Riley  with values as high as 8 g GHh~2yr—1 (Fig. 4). Tropical
et al. (2011) estimated uptake as 31 Tg#* using the  wetlands and river flood plains (e.g., Amazonia, the Pantanal,
CLM4Me model with the model's default parameters; and and the Mississippi delta) were also substantial emission
Neef et al. (2010) estimated uptake as 28 to 30 Tg@H'  sources. High rates of emission from livestock ruminants (to
on the basis of stable isotope analysis. amaximum of around 4 g CHn—2yr—1) were found in parts
The estimated global CHbudget was consistent with of South Asia, East Asia, Europe, South America, and east
those in previous studies, with intermediate total source andhfrica, where large numbers of livestock are raised (Fig. 5a).
sink values, 340 and 30 Tg Gitr—1, respectively, obtained The CH, sources from wetlands and livestock ruminants ex-
in this study. We plotted a frequency distribution for the esti- hibited high spatial heterogeneity, with certain localized ar-
mated total CH budget (Fig. 3): the budget averaged 3B eas representing “hot spots”. Emissions from termites oc-
20.7 TgCHyyr~! (mean+ standard deviation; min. 253 to curred mainly in the subtropical areas of Australia, Africa,
max. 359 Tg CHyr—1), excluding emissions from landfill, and South America (Fig. 5b). The maximum estimated area-
wastes, and wild animals, and anthropogenic combustionbased emission rate~0.5g CH;m=2yr—1) was low com-
A key uncertainty found in this study is associated with the pared with wetland and livestock ruminant emission@ %
available wetland and inundation maps, on the basis of estief the corresponding maxima), but the wide area of termite
mates differed by more than 20 Tg G#—1 (Table 1). This  habitat caused termites to be a substantial net €iirce.

terrestrial CH source, with values ranging from 65 to
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() Emission from livestock ruminants lower latitudes, tropical wetlands and paddy fields made
SO°N ) these areas a net GHKource throughout the year. At other
; ) latitudes, small net sinks occurred as a result of upland ox-
idation, except where emissions from termites and livestock
ruminants were significant (Fig. 5).

The global terrestrial ClH budget and its components
changed from 1900 to the present (Fig. 8 for the baseline sim-
ulation). Wetland and paddy field emissions were affected by
meteorological conditions, leading to stochastic interannual

60°S
180°W 120°W

CH emission u m : : - variability (IAV). Because of expansion of the area covered

(@CHamZyr=) 00 1.0 20 30 4.0 by paddy fields in Asia, paddy field emissions increased from
24TgCHyyr—1in the early 1900s to 45 TgCHyr—1 in the

oo () Emission from termites 2000s. Note that fertilizer applications in paddy fields, which

may decrease CHemission (Kai et al., 2011), were not
fully accounted for in the present study. Emission from live-
stock ruminants increased from 35 Tg @A~ in the early
1900s to 80 Tg Chlyr—1 in the 2000s; this inventory-based
estimate contains little stochastic variability because it de-
pends on human, rather than environmental, factors. Among
livestock, the temporal increment was largely attributable to
increased cattle emission, from 22 Tg 1 in the early
1900s to 60 Tg Chlyr—1 in the 2000s. In contrast, emission
from water buffalo peaked at 14 Tg Ghir—! in the 1950s
and declined to 8 Tg Ciyr—1 in the 2000s. The estimated
Fig. 5. Global maps of the estimated Gt¢mission from(a) live-  termite emission, using either the high or low emission fac-
stock ru_minants (water buffalo, cattle, goats, pigs, and sheep) an?ors, slowly decreased to less than 1 Tg# L during the
(b) termites. experimental period as a result of land-use conversion from
natural vegetation to cropland or pasture. Plant aerobic emis-
sion increased gradually in parallel with increased photosyn-
In terms of upland soil oxidation, the four schemes es-thetic productivity and leaf mass as a result of the, @il -
timated comparable total uptakes (25 to 35 Tg@H1; ization effect. Biomass burning emission showed substantial
Table 1), but with different spatial distributions. Potter et IAV due to variations in fuel and moisture conditions, but
al.’s (1996) scheme estimated higher oxidation rates in tropiit did not show a clear linear trend. GHbxidation by up-
cal and temperate regions, but with weaker overall geographland soils increased, mainly as a result of the increasegl CH
ical contrasts (Fig. 6a). Ridgwell et al.'s (1999) scheme esti-gradient between the atmosphere and the soil air space that
mated higher rates in tropical and subtropical areas, includfesulted from using Curry’s (2007) scheme.
ing in several dry regions (e.g., Middle East, Central Amer- The global relationship between annual mean temperature
ica, South America, and Australia; Fig. 6b). In this case,and terrestrial net CiHexchange (Fig. 9 for the baseline sim-
latitudinal contrasts were stronger. Del Grosso et al.'s (2000ulation) showed a significant weak to moderately strong lin-
scheme estimated clear contrasts between deciduous forestar relationship £2 = 0.38, P < 0.01). On the basis of the
and other types of ecosystems (Fig. 6¢), because it assumedsults of this regression, net terrestrial £émission has
that the thick litter layer at the surfaces of deciduous forestsncreased at a rate of 41.6 Tg g per1°C of warm-
would have higher CH oxidation capacity. Correspond- ing, suggesting the existence of a positive biogeochemical
ingly, arid regions, which typically have a thinner litter layer, feedback in response to climatic warming (and partly in re-
showed lower oxidation rates. Curry’s (2007) scheme pro-sponse to historical land-use change in parallel with temper-
duced results similar to those of Ridgwell et al. (because it isature change). On the basis of the 100-yr Global Warming
a revised version of their scheme), but revealed clearer conPotential for CH (=25; IPCC, 2007), this responsiveness of

60°S
180°W 120°W 60°W

CHy4 emission
(@CHam=2yr=") 00

trasts between humid and dry ecosystems (Fig. 6d). the CH, budget corresponded to an increase of 283 TgC yr
in the climate—carbon (C£) cycle feedback. As implied by
3.3 Temporal variability a study using an Earth System model (Gedney et al., 2004),

the interaction between climate and the methane cycle can
Seasonal changes in the terrestrial Jbidget were most  exert a positive feedback as a result of human-induced cli-
evident at northern latitudes (4R to 68 N; Fig. 7 for the = mate change. The feedback would be accelerated by addi-
baseline simulation), where a vast area of northern wetlandional emissions from permafrost melting and methane hy-
actively emits CH during the summer growing period. At drates (O’Connor et al., 2010).
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Fig. 6. Global maps of the estimated rates of £bkidation by upland soils using different calculation methods and parameterizgt@ns:
Potter et al. (1996)b) Ridgwell et al. (1999)(c) Del Grosso et al. (2000), ar{d) Curry (2007). Note that the same data were used for solil
water content and temperature in each of the four simulations.
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4 Conclusions

Fig. 7. Seasonal and_lat_ltudlnal dlstrl_butlon pf t_he terr_estrlaI4CH In this study, we simulated the global terrestrial £bud-
budget (= wetland emission + paddy field emission + biomass burn- .
; Ay S . . get by using the VISIT model, and we accounted for un-
ing emission — upland soil oxidation) in the baseline experiment

(1996-2005). certainties among the different estimation and parameter-
ization schemes; the result was a mean net emission of

308+ 21 Tg CHyyr—1. The coefficient of variation (the stan-

dard deviation divided by the mean), 6.7 %, was smaller

than that of the global C®budget, which equaled 15 %

in a recent meta-analysis of net primary production (lto,
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Annual mean temperature (°C) izontal line at 0) in the annual global terrestrial £Hudget es-

timated by using the VISIT model and inventory data. Values
represent the means and the minimum-maximum range in the
Fig. 9. Relationship between annual global mean land temperature| 152 estimates based on the different combinations of input data
and estimated net terrestrial GlHudget in the baseline simulation. and different calculation and parameterization schemes. The or-
ange and light blue lines show the changes in atmospherig CH
at the Mauna Loa and South Pole observatories (data from the
2011). The estimated flows and the total budget were botfNOAA/ESRL/IGMD dataset; Dlugokencky et al., 1994, 2011).
comparable to the results of previous studies based on inver¥ote: 1ppbv=2.123Tg CHC.
tories, biogeochemical models, and atmospheric inversion
models (Table 1). The contemporary natural source value of
220 TgCH,yr1 in our study was comparable to the range plain the decrease in the Ghhcrement that was observed
of 145 to 260 Tg CHyr—1 in previous studies (IPCC, 2007). from the 1990s to the 2000s (Bousquet et al., 2006; Dlugo-
However, it should be noted that several sources were not ad«encky et al., 2011). This suggests that other factors such as
counted for in our study, namely emissions from wastes andemporal variability in inundated areas, chemical reactions in
landfills, mining, wild ruminants, and anthropogenic com- the atmosphere, anthropogenic emissions, and troposphere—
bustion. Modeling these ancillary sources is difficult, so anstratosphere exchanges may contribute substantially to the
alternative inventory-based appraisal would be required. Irtemporal variability in the atmospheric GHiccumulation
terms of the estimation uncertainty, additional differencesrate. For example, Kai et al. (2011) suggested that decreased
among estimates could be produced by using different cli-CH4 emission from paddy fields due to fertilizer application
mate datasets (e.g., Ito and Sasai, 2006). accounted for about half of the slowdown of atmospheric
We simulated the global terrestrial GHudget to discuss CH4 accumulation. In contrast, Hodson et al. (2011) sug-
the unique roles of various components of the terrestrial bio-9ested that repeated EliM events during this period were
sphere in determining the global budget. The spatial patterr® contributing factor to the stabilization of atmospheric,CH
and temporal variability of the simulated GHuxes have im- ~ Suggesting that further investigations will be required to es-
plications for efforts to interpret the characteristic variability tablish an overview of the decadal-scale QOtriation. On
in these studies. Figure 10 presents the estimated anomaﬁﬁe other hand, several anomalies in the estimated terrestrial
in the terrestrial Cll budget (compared with the baseline budget coincided with atmospheric anomalies (e.g., a rapid
simulation in Fig. 8), which represents the deviation of the deceleration in the growth rate of Gh 1992 and an accel-
value in a given year compared with the 1981-2000 averag@ration in 1998), suggesting dominant impacts by the terres-
value, and compares this anomaly with the atmospherig CH trial biosphere during some periods.
growth rate at the Mauna Loa and South Pole observatories It is difficult to constrain and validate large-scale mod-
monitored by the US National Oceanic and Atmospheric Ad-els because observation-based estimates of €hissions
ministration (Dlugokencky et al., 1994, 2011). It is apparentat these scales are very uncertain. Indeed, the model used
that the amplitude of interannual variability in the estimatedin this study has been compared only with a limited num-
net terrestrial Chj budget was smaller than that in the ob- ber of chamber measurements (e.g., Inatomi et al., 2010).
served atmospheric GHaccumulation, and that the varia- Recent progress in micrometeorological techniques has en-
tions in the terrestrial budget therefore might not fully ex- abled CH flux measurement at an ecosystem scale using
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