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Abstract. We assessed the global terrestrial budget of
methane (CH4) by using a process-based biogeochemical
model (VISIT) and inventory data for components of the
budget that were not included in the model. Emissions from
wetlands, paddy fields, biomass burning, and plants, as well
as oxidative consumption by upland soils, were simulated by
the model. Emissions from ruminant livestock and termites
were evaluated by using an inventory approach. These CH4
flows were estimated for each of the model’s 0.5◦

×0.5◦ grid
cells from 1901 to 2009, while accounting for atmospheric
composition, meteorological factors, and land-use changes.
Estimation uncertainties were examined through ensemble
simulations using different parameterization schemes and in-
put data (e.g., different wetland maps and emission factors).
From 1996 to 2005, the average global terrestrial CH4 budget
was estimated on the basis of 1152 simulations, and terres-
trial ecosystems were found to be a net source of 308.3±

20.7 Tg CH4 yr−1. Wetland and livestock ruminant emis-
sions were the primary sources. The results of our simula-
tions indicate that sources and sinks are distributed highly
heterogeneously over the Earth’s land surface. Seasonal and
interannual variability in the terrestrial budget was also as-
sessed. The trend of increasing net emission from terrestrial
sources and its relationship with temperature variability im-
ply that terrestrial CH4 feedbacks will play an increasingly
important role as a result of future climatic change.

1 Introduction

Biogeochemical feedbacks within the terrestrial biosphere
in response to climatic change occur through the flows of
trace gases, and especially greenhouse gases (GHGs, partic-
ularly CO2, CH4, and N2O). These exchanges with the atmo-
sphere play a unique role in the Earth–atmosphere system,

and have therefore attracted considerable attention (Arneth
et al., 2010). After CO2, CH4 is the second-most-important
GHG except water vapor in accounting for past increases in
atmospheric radiative forcing (IPCC, 2007). Various biogeo-
chemical processes control the global CH4 budget, including
anthropogenic factors such as emissions from the fossil fuel
industry, landfills, livestock ruminants, biomass burning, and
rice cultivation. However, because of the complexity and het-
erogeneity of CH4-related processes, there remains a wide
range of uncertainty in our understanding of the global CH4
budget and its variability (e.g., Matthews and Fung, 1987;
Hein et al., 1997; Bousquet et al., 2006).

Terrestrial ecosystems are key components in the Earth–
atmosphere system. In terms of the global CH4 cycle, the
terrestrial ecosystem budget is highly uncertain because (1)
sources and sinks are heterogeneously distributed over the
land surface, (2) wetlands and animals (i.e., livestock rumi-
nants and termites) both produce substantial CH4 emissions,
and (1) human impacts have severely altered the biogeo-
chemical processes related to atmosphere–ecosystem CH4
exchange. Wetland ecosystems may represent the largest
sources of anaerobic CH4 production and emission, but a
consistent value for the total flux from these ecosystems
has not been obtained: recent estimates range from 100 to
230 Tg CH4 yr−1 (IPCC, 2007). Also, aerobic emissions of
CH4 from plants (Keppler et al., 2006) may prove to be sub-
stantial sources of CH4; Martinson et al. (2010) discovered
a new source at about 1.2 Tg CH4 yr−1 from tank bromeliads
in neotropical forests. These newly discovered phenomena
and the wide range of estimated values show the immaturity
of our understanding of the global CH4 budget. In addition,
many observations have indicated that the rate of increase of
atmospheric CH4 concentrations is temporally variable, with
high incremental rates during the 1980s and markedly lower
rates from the 1990s to the early 2000s (Dlugokencky et al.,
1994, 2011). Our inability to reliably specify how much of
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this variability is attributable to changes in terrestrial source
and sink strengths may limit our ability to predict changes
and discuss options for mitigating future climate change.

Modeling of terrestrial CH4-related processes is also im-
mature, because the production and consumption processes
are complicated and occur heterogeneously in space and
time. Low concentrations and small fluxes of CH4 make it
difficult to obtain the gas exchange data required for model
development and validation. Several empirical models have
been developed to evaluate CH4 exchange by wetlands on
the basis of observed data (e.g., Christensen and Cox, 1995;
Cao et al., 1996; Walter and Heimann, 2000; Zhang et al.,
2002; Zhuang et al., 2004; Petrescu et al., 2010; Ringeval et
al., 2010; Tian et al., 2010; Wania et al., 2010; Riley et al.,
2011). For example, Wania et al. (2010) developed a mecha-
nistic model (LPJ-WHyMe) of CH4 emission from northern
peat-lands that included regulatory hydrological processes.
Ringeval et al. (2010) assessed climate–CH4 feedback by us-
ing a process-based wetland CH4 emission model coupled
with a dynamic vegetation model (ORCHIDEE). However,
it is still difficult to mechanistically model the effects of the
soil’s chemical and physical environments (e.g., temperature,
redox potential) and biological regulation (e.g., substrate lim-
itations, microbial functional composition). Many process-
based wetland models have adopted a multi-layer approach
(which incurs high computational costs), because the water-
table depth strongly influences CH4 production and con-
sumption rates. Estimation of CH4 budgets in wetlands and
seasonally flooded areas (e.g., inundation during rice cultiva-
tion) is important to evaluate CH4 emission at broad scales,
but it requires precise topographic and hydrological informa-
tion. In addition, it is generally difficult to simulate human-
driven processes such as irrigation, drainage, and crop and
livestock farming, even on the basis of empirical data. De-
velopment and refinement of models that simulate CH4 ex-
change are therefore urgent issues in research to elucidate
global GHG cycles.

The objectives of our study were (1) to estimate the CH4
budget of terrestrial ecosystems at a global scale by using a
process-based model for processes that are reasonably well
understood and inventory data for components of the bud-
get that were not included in the model, and (2) to discuss
the range of estimation uncertainty by using multiple input
datasets and calculation (modeling) schemes. We focused
on the CH4 budget of terrestrial ecosystem compartments
such as the vegetation, soil, and animals in both natural and
human-managed areas. However, we did not consider most
other anthropogenic point sources, such as fossil fuel extrac-
tion and use, mining, and landfills, because the model that
we used focuses on natural and agricultural ecosystems.

2 Data and methods

We evaluated the global CH4 budget of terrestrial ecosys-
tems by using a process-based terrestrial biogeochemical
model (VISIT) and inventory data from 1901 to 2009
(Fig. 1). The estimates were performed at a spatial resolution
of 0.5◦

×0.5◦ latitude and longitude. The terrestrial model
simulated CH4 emissions from wetlands and paddy fields,
oxidation by upland soils, emission from biomass burning,
termite and livestock emissions, and plant aerobic produc-
tion. Estimation uncertainty was assessed by using differ-
ent calculation schemes for wetland emissions, upland ox-
idation, and plant aerobic production, as well as different
emission factor values.

2.1 Description of the VISIT terrestrial
biogeochemical model

2.1.1 Model overview

VISIT (the Vegetation Integrative SImulator for Trace gases)
is a process-based terrestrial ecosystem model (Inatomi et al.,
2010; Ito, 2010). We used VISIT in this study to estimate
biogeochemical CH4 exchange fluxes (Fig. 1). Because this
model focuses on natural and agricultural ecosystems, we
did not simulate anthropogenic (urban and industrial) emis-
sions. Processes driven by animals (i.e., by livestock rumi-
nant and termite emissions) were not explicitly included in
the model; in this study, these fluxes were evaluated sepa-
rately by using inventory data (see Sect. 2.2). The model was
developed from a simple carbon cycle model (Sim-CYCLE;
Ito and Oikawa, 2002), in which atmosphere–ecosystem ex-
change of CO2 (photosynthesis, respiration, and decompo-
sition) and intra-ecosystem carbon dynamics (e.g., allocation
of photosynthate, litterfall, humus formation) were simulated
by using ecophysiological submodels. Carbon dynamics are
captured by using a box-flow system, which incorporates the
following plant and soil carbon pools (i.e., “boxes”): leaves,
stems, roots, litter, and humus. VISIT was developed on the
basis of Sim-CYCLE by including a nitrogen cycle scheme
and additional trace-gas exchange schemes (i.e., CH4 pro-
duction and oxidation, biomass burning, emission of bio-
genic volatile organic compounds).

The model has been validated through comparisons with
a variety of observational data at different scales. For exam-
ple, comparison of the carbon dynamics at 17 sites around
the world showed that the model successfully captured the
productivity, biomass and soil carbon stocks of ecosystems
ranging from tropical rain forests to arctic tundra (Ito and
Oikawa, 2002). The net budget of GHGs (CO2, CH4, and
N2O) in deciduous broad-leaved forest was compared with
chamber measurements, and the model was able to capture
the observed source/sink patterns (Inatomi et al., 2010). In
validation of the estimated CH4 emission from inundated sur-
faces, the model estimated fluxes from a paddy field in Japan
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Fig. 1. Schematic diagram of process used to evaluate the terrestrial CH4 budget using the VISIT model.

(Inatomi and Ito, unpublished data) and from natural wet-
lands in West Siberia (Sasakawa et al., 2010). Ecosystem-
scale carbon budgets were compared with those observed
using the eddy-covariance method, mainly at Asian sites,
but the results again demonstrated the model’s validity (Ito,
2008, 2010). The model has been applied in various global-
scale studies, such as the analysis of interannual variability
in CO2 budgets (Ito and Oikawa, 2000), off-line future pro-
jections (Ito, 2005), coupling with a climate model (Kato et
al., 2009), linkage with remote-sensing data (Hazarika et al.,
2005), and climate data evaluation (Saito et al., 2011).

2.1.2 A bulk scheme for evaluating CH4 emission from
wetlands and paddy fields

Cao et al. (1996) developed a simple process-based scheme
for describing CH4 emission from wetlands, in which the
total (i.e., bulk ecosystem-scale) exchange of CH4 is eval-
uated as the difference between CH4 production and oxida-
tion rates. Therefore, the scheme is not intended to simulate
fine-scale CH4 dynamics such as the vertical profile of soil
CH4 concentration and diffusion, but is instead designed to
evaluate large-scale CH4 budgets by using the least possible
amount of data. The CH4 production rate (P ) is obtained as
follows:

P = DS·FP·f (WTP) ·f (TEM) (1)

where DS is the decomposition rate of soil organic matter
(simulated in the carbon cycle scheme), FP is the propor-
tion of the decomposed organic carbon that is transformed
into CH4 (a constant average value= 0.5), andf (WTP) and
f (TEM) are scalar coefficients that account for regulation by
the water table position (WTP) and temperature (TEM). Cao

et al. (1996) used exponential functions to evaluate the en-
vironmental effects on CH4 production. The CH4 oxidation
rate (O) in inundated wetlands is evaluated as follows:

O = P ·(0.60+0.30· [GPP/GPPmax]) (2)

where GPP is the gross primary production (simulated in
the carbon cycle scheme) and GPPmax is the seasonal maxi-
mum GPP. The parameters derived from VISIT’s carbon cy-
cle scheme (DS, GPP, and GPPmax) are updated annually.

2.1.3 A multi-layer scheme for CH4 emission from
wetlands and paddy fields

Walter and Heimann (2000) developed a mechanistic scheme
for CH4 emission from wetlands. Different CH4 produc-
tion and transport processes were explicitly considered in this
scheme. Here, belowground processes were simulated by us-
ing a one-dimensional multi-layer system, in which the soil
from the surface to a depth of 1 m was divided into 50 layers,
each 2 cm thick. Temporal and vertical variations in CH4
concentration in the air (CCH4) are expressed by using the
continuity equation:

∂

∂t
CCH4 (t,z)

= −
∂

∂t
DF(t,z)+EB(t,z)+PT(t,z)+P (t,z)+O(t,z) (3)

wheret andz denote time and depth, respectively, DF is the
diffusive flux, EB is the ebullition flux to the atmosphere, PT
is the plant-mediated (i.e., through aerenchyma) CH4 flux,
andP andO are CH4 production and oxidation, respectively,
at timet and depthz. CH4 production (P ) is calculated for
soil layers below the water table as follows:
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P (t,z) = P0 ·forg(z) ·fin(t) ·f (T ) ·Q
(T (t,z)−Tmean)/10
10 (4)

where P0 is a rate constant specific to each biome type,
forg(z) andfin(t) represent the effect of substrate availability
from soil organic matter and plant roots, respectively;f (T )

is a step-wise function of the effect of freezing on CH4 pro-
duction (i.e.,f (T ) = 0 at temperatures below freezing, and
f (T ) = 1 at higher temperatures);Q10 is a parameter that
defines the temperature responsiveness of the processes (i.e.,
the change per 10◦C temperature change); andTmean(in ◦C)
is the annual mean temperature. CH4 oxidation (O) is calcu-
lated for soil layers above the water table, as follows:

O(t,z) = −
Vmax·CCH4 (t,z)

Km+CCH4 (t,z)
Q

(T (t,z)−Tmean)/10
10 (5)

whereVmax is the maximum rate (20 µmol L−1 h−1) andKm
is the Michaelis-Menten coefficient (5 µmol L−1). The diffu-
sive flux (DF) is calculated by using Fick’s first law:

DF(t,z) = −D(z)
∂

∂t
CCH4 (t,z) (6)

whereD is the diffusion coefficient, which is a function of
the soil’s coarse pore fraction. As a boundary condition,
CCH4 values at the bottom and top + 4 cm of the soil are as-
sumed to be zero and equal to the atmospheric concentra-
tion, respectively. The model assumes that CH4 emission by
ebullition (EB) occurs when CCH4 exceeds a threshold. Be-
cause this scheme is applied only to the wetland fraction of
a cell in the model, we chose a threshold value for a vege-
tated land surface (500 µmol L−1; the model’s default value).
Plant-mediated flux (PT) occurs within the rooting depth, and
the model accounts for the vertical distribution of roots and
the plant’s growth stage. The total flux (i.e., the summation
of DF, EB, and PT) at the land surface represents the net CH4
budget of the atmosphere.

2.1.4 CH4 oxidation by upland soils (Potter et al.,
1996): algorithm 1

In this scheme, CH4 uptake by soil microbial oxidation (OX)
in upland (i.e., non-saturated) soils is calculated on the basis
of Fick’s first law:

OX = D
1CCH4

1z
(7)

whereD is the diffusivity coefficient and1CCH4/1z is the
CH4 concentration gradient as a function of depth in the soil
(z). Diffusivity (D) is a function of the soil temperature and
water content:

D = D0 ·(0.9734+0.0055T ) ·f (SW) (8)

whereD0 is the diffusivity of CH4 in air at 5◦C (0.194 cm−2

s−1), T is the soil temperature (◦C), andf (SW) is a scalar
coefficient function of soil water content (SW) that accounts
for the difference between intra- and inter-aggregate pore

spaces. Volumetric soil water content was simulated in the
VISIT hydrology scheme and used to estimate the water vol-
umes contained in the intra- and inter-aggregate pore spaces.
Originally, Potter et al. (1996) assumed that the CH4 concen-
tration gradient was constant, at 0.04 ppmv cm−1, for global
applications. In the present study, we multiplied the gradient
by the ratio ofCCH4 to the base concentration (1.2 ppmv) to
account for the influence of atmospheric CH4 accumulation.

2.1.5 CH4 oxidation by upland soils (Ridgwell et al.,
1999): algorithm 2

In this scheme, upland CH4 consumption (OX) is also esti-
mated by using Fick’s first law (Eq. 7). However, although
diffusivity (D) also varies with temperature (T ) and soil wa-
ter content (SW), it is adjusted on the basis of the character-
istics of the pore space:

D = D0 ·(1+0.0055T ) ·

[
TP4/3 ·

(
AFP

TP

)1.5+3/b
]

(9)

whereD0 is the diffusivity of CH4 in free air, TP is the total
pore volume, AFP is the air-filled pore volume, andb is a
parameter specific to the soil texture (Saxton et al., 1986). In
this scheme, microbial oxidation activity is also considered
by using the following equation:

OX = kd ·CCH4 (z) (10)

where kd represents oxidation activity andCCH4(z) is the
CH4 concentration in the soil air at depthz. The activity,
kd , is an empirical function:

kd = k0 ·f (N) ·f (SW) ·f (T ) (11)

wherek0 is the base oxidation rate (0.00087 s−1) andf (N),
f (SW), andf (T ) are coefficients of scalar functions that in-
dicate the regulation of oxidation by the nitrogen input in
croplands and by soil water and temperature, respectively.
In this study, the scheme was separately applied to natu-
ral ecosystems (f (N) = 1.0) and cropland (f (N) = 0.25),
and then the estimated fluxes were weighted by the areal
fractions of these two types of land use in each cell of the
grid. Also in this scheme, the CH4 concentration gradient
was originally assumed by Ridgwell et al. to be constant at
0.04 ppmv cm−1, but we modified the gradient to account for
the increase in atmospheric CH4 over time.

2.1.6 CH4 oxidation by upland soils (Del Grosso et al.,
2000): algorithm 3

Using the US Trace Gas Network dataset, Del Grosso et
al. (2000) proposed a general model of CH4 consumption in
upland soils; the model consisted of two sub-models. The
following equation is used for the soils of grasslands and
coniferous and tropical forests, and for agricultural soils:
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OX = OXmax·f (W,FC) ·f (T ,Dopt) ·f (Ag,Dopt) (12)

where OXmax is the maximum CH4 oxidation rate (a func-
tion of optimal diffusivity) andf (W , FC),f (T , Dopt), and
f (Ag, Dopt) are scalar coefficients representing the regula-
tion of CH4 oxidation by soil water content (W ), the opti-
mum diffusion coefficient (Dopt), and soil temperature (T ).
A second equation is used for deciduous forests:

OX = OXmax·f (WFPS) ·f (T ) (13)

where WFPS is the water-filled pore space, which is derived
from the soil water content estimated by the VISIT hydrol-
ogy scheme and based on soil physical properties (i.e., soil
bulk density and solid phase density). This approach as-
sumed that OX decreases moderately with increasing WFPS
and increases linearly with increasing temperature.

2.1.7 CH4 oxidation by upland soils
(Curry, 2007): algorithm 4

Curry (2007) modified the mechanistic scheme of Ridgwell
et al. (1999) by introducing an advanced scalar coefficient
for the regulation exerted by soil water on microbial oxida-
tion activity (i.e.,f (SW) in Eq. 11). In this scheme, the soil
regulation coefficient is calculated from the soil water poten-
tial, which in turn is calculated from the volumetric soil wa-
ter content and is more sensitive under dry conditions (Curry,
2007). Also, the temperature dependence,f (T ), at subzero
temperatures was modified on the basis of observations. In
this scheme, the effect of atmospheric CH4 concentration is
explicitly included on the basis of the assumption that most
of the CH4 consumption occurs in the upper soil above a
depth of 10 cm.

2.1.8 Emission from biomass burning

The emission from biomass burning (BB, g CH4 m−2 yr−1)

is evaluated in the model by using a generic equation devel-
oped by Seiler and Crutzen (1980):

BB = BEF·BAF · FL ·BE·BF (14)

where BEF is an emission factor that is specific to each gas
and biome, BAF is the burnt area fraction (i.e., the propor-
tion of each cell that burned in the model), FL is the fuel
load (dry-matter storage estimated by the carbon cycle model
in VISIT), and BE and BF are the burning efficiency and
burned fraction, each of which is a specific parameter for
each biome type. We used the BEF values of Andreae and
Merlet (2001) and van der Werf et al. (2010) in this analy-
sis: 6.8 to 9.0 g CH4 (kg dry matter)−1 for tropical forests
and 2.2 to 2.3 g CH4 (kg dry matter)−1 for grasslands. BAF
is estimated by using the parameterization by Thonicke et
al. (2001):

BAF = s ×exp(
s −1

0.45·(s −1)3
+2.83·(s −1)2+2.96·(s −1)+1.04

)
(15)

wheres is the fraction of the length of the fire season ex-
pressed as a proportion of the total year; this fraction is
affected by the fuel load (with a threshold fuel load of
>200 g dry-matter m−2 required to sustain combustion) and
the fuel moisture content. We derived the fuel load and mois-
ture content from the carbon cycle and from hydrological
schemes, respectively.

2.1.9 Plant aerobic emission

Methane emission by plants under aerobic conditions (VE)
was evaluated by using the emission factor of Keppler
et al. (2006) and the up-scaling methods proposed by
Kirschbaum et al. (2006).

Leaf-mass-based up-scaling:

VEmass= SL·WL · [DL ·VEFsun+(24−DL)VEFdark] (16)

where SL is the growing season length, WL is leaf mass (de-
rived from the carbon cycle model in VISIT), and DL is day
length. The emission factors for living leaves (VEFsun under
sunny conditions and VEFdark under dark conditions) were
assumed to be 374 and 119 ng (g dry matter)−1 h−1, respec-
tively (Keppler et al., 2006).

Photosynthesis-based up-scaling:

VEphoto= 2·

(
16

12

)
·
NPP

r

(
1+

24−DL

DL
·
VEFdark

VEFsun

)
(17)

where NPP is net primary production (model estimation) and
r is a unit conversion coefficient. These two estimates are ex-
pected to indicate the range of uncertainty due to the choice
of up-scaling methods.

2.2 Inventory-based estimation of CH4 emissions

2.2.1 Emissions from livestock ruminants

Emissions from major livestock ruminants (water buffalo,
cattle, goats, pigs, and sheep) were estimated on the basis of
inventory data for animal density (number per unit area) and
specific emission factors (i.e., CH4 emission per individual).
The global distribution of livestock was derived from the
Gridded Livestock of the World 2007 data (http://www.fao.
org/AG/againfo/resources/en/glw/home.html) compiled by
the Food and Agriculture Organization (FAO), of the United
Nations. These data show the contemporary animal density
at a 0.05◦ × 0.05◦ resolution; we assumed that the data pro-
vided a baseline in 2005. Temporal changes in livestock
density were estimated from two inventory datasets: the
FAOSTAT data compiled by the FAO (http://faostat.fao.org/)
and the HYDE global land-use and emission data (Klein
Goldewijk et al., 2011). The FAOSTAT dataset provides
country-based livestock data from 1961 to 2009 (with a 1-yr
time step), and the HYDE dataset provides region-based
data from 1890 to 1990 (with a 10-yr time step). These
country- and region-based data were assigned to each of the
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0.5◦
× 0.5◦ grids by using the national boundary data in the

Gridded Livestock of the World 2007 dataset. For the HYDE
data, 1-yr step values were obtained from the 10-yr step data
by means of linear interpolation. Emission factors were de-
rived from the work of Crutzen et al. (1986) and Lerner et
al. (1988). Note that emission factors were specific to each
livestock species but were assumed to be constant for a given
species throughout the world. To account for estimation un-
certainty, we conducted simulations using the upper- and
lower-bound values of the emission factors.

2.2.2 Emissions from termites

CH4 emission from termites, which live in symbiosis with
methanogenic protozoa in their guts, is a non-trivial source
from the terrestrial biosphere. We estimated termite CH4
emissions by using the simple up-scaling method of Fung
et al. (1991), in which biome-specific termite biomass den-
sity and emission factors were assumed. The average termite
biomass densities were obtained from the work of Fraser et
al. (1986): 5.6 g m−2 for tropical forests, 3.0 g m−2 for tem-
perate forests, 4.5 g m−2 for savanna, and 7.8 g m−2 for cul-
tivated land. We assumed that termites were absent in boreal
forests. Emission factors were also obtained from the work
of Fraser et al. (1986): they ranged from 1.0 mg CH4 kg-
termite−1 h−1 in deserts to 8.0 mg CH4 kg-termite−1 h−1 in
savannas.

2.3 Global simulation and analyses

The VISIT simulations were conducted by using a
0.5◦

× 0.5◦ grid mesh for the period from 1901 to 2009; we
focus here on the outputs between 1960 and 2005. The simu-
lations were driven by time-series data for atmospheric GHG
concentrations, climate, and land-use changes. The historical
time-series for atmospheric CH4 concentration was derived
from ice-core and ground-based measurements (Etheridge et
al., 1998; Robertson et al., 2001); it showed that the aver-
age CH4 concentration increased from 978 ppbv in 1900 to
1227 ppbv in 1960 and then to 1850 ppbv in 2005. Climate
data (air temperature, cloudiness, precipitation, and humid-
ity) for each grid cell were derived from the CRU TS3.1
dataset (Mitchell and Jones, 2005). Historical land cover (the
fractions of cropland and pasture) was derived from Hurtt et
al. (2006), who also provided a matrix of land-use change
(e.g., gross conversion from primary forest to cropland). Soil
properties (clay/sand composition and bulk density) were de-
rived from a global dataset from the International Satellite
Land Surface Climatology Project Initiative II (Hall et al.,
2006). For each grid cell, a spin-up simulation was con-
ducted for 300 to 4000 yr under the atmospheric conditions
that existed in 1900, until the simulation reached an equi-
librium state for the net carbon budget. Note that dynamic
feedback from the terrestrial biogeochemical cycle to the at-
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Fig. 2. Global maps of the distribution of(a) natural wetlands and
(b) paddy fields that were used in the baseline simulation. The wet-
land extent was derived from the Global Lake and Wetland Database
(Lehner and D̈oll, 2004), and the paddy field extent was derived
from the MODIS-based estimation for Asia (Takeuchi and Yasuoka,
2006; 10◦ S to 50◦ N, 65◦ to 150◦ E) and data by Monfreda et
al. (2008) for other areas.

mospheric GHG concentration and climate system was not
considered; that is, we conducted an off-line experiment.

Uncertainty in the estimated terrestrial CH4 budget was
evaluated on the basis of alternative calculations by using
different assumptions and different estimation schemes.

Two datasets for the distribution of inundated wetlands
were used (Fig. 2a): those of Matthews and Fung (1987)
and Lehner and D̈oll (2004). When using the former dataset,
the annual mean inundation fraction was used. In the lat-
ter case, the seasonal change in the inundated fraction was
derived from satellite data (SSM/I; Prigent et al., 2007) and
combined with the wetland map of Lehner and Döll (2004).
For conducting long-term simulations, average distributions
of inundated wetlands (i.e., no interannual variability) were
used throughout the simulation period.

Two datasets of paddy field distribution were used
(Fig. 2b): a global map produced by Monfreda et al. (2008)
and the Monsoon Asia map produced by the Institute of In-
dustrial Sciences, University of Tokyo (Takeuchi and Ya-
suoka, 2006). The former is based on statistical inventory
data, and the latter is based on MODIS image analysis.

Two schemes of wetland and paddy field CH4 emission
were used: those of Cao et al. (1996) and Walter and
Heimann (2000). The scheme by Cao et al. (1996) was ap-
plied only to the wetlands from Lehner and Döll (2004),
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Table 1. Comparison of components of the global CH4 budget for terrestrial ecosystem (Tg CH4 yr−1) between the different simulations in
this study and estimates from previous studies.

Hein et Wuebbles and Scheehle et Wang et Mikaloff Fletcher Chen and Patra et
This study (mean± s.d. [IAV]) al. (1997) Hayhoe (2002) al. (2002) al. (2004) et al. (2004) Prinn (2005) al. (2009)

Base year 1996–2005 1983–1989 – 1990 1994 2004 1996–2001 2000

Sources WH (1)1 WH (2)1 Cao (1)1 Cao (2)1

Wetlands 169.6±6.4 192.0±8.2 172.5±4.6 231 100 – 176 231 145 153.3
Paddy fields 44.9±1.0 43.0±1.1 38.2±1.4 30.8±1.1 83 60 31 57 54 112 39.4

Low est. High est.

Biomass burning 15.8±1.8 18.0±2.1 43 52 14 41 88 43 59.8
Plant emission 8.9±0.2 15.4±0.4 – – – – – – –
Livestock ruminants4 64.9±0.4 95.2±0.6 92 81 76 83 91 1892 119.33

Termites 14.7±0.01 27.1±0.04 – 20 – 20 29 23 20.5

Sink Algorithm5

Upland soil oxidation 1 2 3 4

32.5±0.7 35.1±0.9 24.6±0.2 33.3±0.8 26 30 – 34 30 – –

1 Using Walter-Heimann and Cao et al. schemes with (1) wetland map by Lehner and Döll (2004) and paddy field map by Monfreda et al. (2008) and (2) wetland map by Matthews
and Fung (1987) and Asian paddie field map by Takeuchi and Yasuoka (2006).
2 Including emissions from landfills and wastes.
3 Including anthropogenic fire emission.
4 Estimation on the basis of inventory and geographical map data.
5 Algorithm 1: Potter et al. (1996), 2: Ridgwell et al. (1999), 3: Del Grosso et al. (2000), 4: Curry (2007).

resulting in three estimates for paddy fields and four esti-
mates for natural wetlands.

Four schemes for CH4 oxidation in upland soils were used:
those of Potter et al. (1996), Ridgwell et al. (1999), Del
Grosso et al. (2000), and Curry (2007).

Two up-scaling schemes for plant aerobic CH4 emission
by Kirschbaum et al. (2006) were used: a photosynthesis-
based scheme and a biomass-based scheme. In addition, we
considered the case of no plant emission (i.e., a third set
of estimates), because a general consensus has not yet been
reached over the significance of this process (e.g., Bloom et
al., 2010).

Two sets of emission factors (i.e., lower-end and higher-
end values within the plausible range) from biomass burning
were used for each biome.

Two sets of termite density and CH4 emission factors (sim-
ilarly, lower-end and higher-end values) were used.

Two sets of livestock emission factors (similarly, lower-
end and higher-end values) were used.

On the basis of this summary, we obtained 1152 differ-
ent combinations of calculation methods and parameter val-
ues for the net terrestrial CH4 budget, assuming that each
flow was independent. We expected that the distribution of
the total budget produced by these simulations would reveal
the range of estimation uncertainties caused by variability in
the base data and evaluation schemes. Note that other po-
tentially important sources of uncertainties such as parame-
ter values and prognostic inundation estimation were not as-
sessed in this study. To facilitate our analysis and discussion,
we chose the following “baseline” estimation as the stan-
dard for comparison: the CH4 emission scheme of Walter
and Heimann (2000), the oxidation scheme of Curry (2007),

the wetland map by Lehner and Döll (2004), and the paddy
field map of Monfreda et al. (2008). For other emissions, we
chose the average of the lowest and highest emission factors
in the baseline estimation.

3 Results and discussion

3.1 Global annual budget

We estimated components of the global terrestrial CH4 bud-
get by using the model and inventory data; Table 1 sum-
marizes the results. From 1996 to 2005, natural wetlands
accounted for the largest terrestrial CH4 source, producing
170 to 192 Tg CH4 yr−1 for the range of wetland data and
emission calculation schemes that we considered; these val-
ues were within the range of values estimated in previous
studies (Table 1). Paddy fields were also a considerable
source, with values ranging from 31 to 45 Tg CH4 yr−1. The
paddy field emission was comparable to that in previous stud-
ies (Table 1) but slightly higher than a recent inventory-
based estimate of 25.6 Tg CH4 yr−1 in 2000 (Yan et al.,
2009). Also, our estimates are comparable to a recent es-
timate of 34 to 67 Tg CH4 yr−1 (Neef et al., 2010) that was
constrained on the basis of historical observations of the sta-
ble isotope ratio of atmospheric CH4. The estimated CH4
emission from biomass burning, 16 to 18 Tg CH4 yr−1, fell
within the range of previous studies, but was close to the
lower end of those values. Plant emissions ranged from 9
to 15 Tg CH4 yr−1; this is lower than the value estimated by
Keppler et al. (2006) but still represents a moderate source
in vegetated areas. Through the inventory-based estimation,
we found that livestock ruminants were the second-largest
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Figure 3 (A. Ito)
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Fig. 3. Frequency distribution for the 1152 estimates of terrestrial
CH4 budget (= wetland emission [4 estimates] + paddy field emis-
sion [3] + ruminant emission [2] + termite emission [2] + biomass
burning emission [2] + plant aerobic emission [3; = 2 estimates +
null (no emission)] – oxidation in upland soils [4]) estimated by
using different input data and parameterization schemes. Table 1
presents the detailed results of these simulations. The thick black
line shows a normal distribution fitted to the data.

terrestrial CH4 source, with values ranging from 65 to
95 Tg CH4 yr−1, and that termites were also a considerable
source, with values ranging from 15 to 27 Tg CH4 yr−1. Both
sets of values were within the range of previous reports, al-
though the lower value for termites was lower than the pre-
viously reported values. On the other hand, upland soils
were estimated to act as a strong sink, with values rang-
ing from 25 to 35 Tg CH4 yr−1, depending on the oxida-
tion estimation scheme that was chosen. Again, these val-
ues were within the range reported in previous studies. For
example, Spahni et al. (2011) estimated global soil CH4 up-
take as 28 Tg CH4 yr−1 using the LPJ-WHyMe model; Riley
et al. (2011) estimated uptake as 31 Tg CH4 yr−1 using the
CLM4Me model with the model’s default parameters; and
Neef et al. (2010) estimated uptake as 28 to 30 Tg CH4 yr−1

on the basis of stable isotope analysis.
The estimated global CH4 budget was consistent with

those in previous studies, with intermediate total source and
sink values, 340 and 30 Tg CH4 yr−1, respectively, obtained
in this study. We plotted a frequency distribution for the esti-
mated total CH4 budget (Fig. 3): the budget averaged 308.3±

20.7 Tg CH4 yr−1 (mean± standard deviation; min. 253 to
max. 359 Tg CH4 yr−1), excluding emissions from landfill,
wastes, and wild animals, and anthropogenic combustion.
A key uncertainty found in this study is associated with the
available wetland and inundation maps, on the basis of esti-
mates differed by more than 20 Tg CH4 yr−1 (Table 1). This

Figure 4 (A. Ito)
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Fig. 4. Global map of the estimated CH4 emission from the wet-
lands and paddy fields shown in Fig. 2.

difference suggests that it is important to accurately delineate
the locations of wetlands so that we can more accurately esti-
mate their contribution to global CH4 emissions. This finding
is consistent with those of a sensitivity analysis by Petrescu
et al. (2010) using four wetland maps. In addition, the exis-
tence or absence of plant aerobic CH4 emissions affected the
net budget, especially in densely vegetated areas; the mean
value of 12.2 Tg CH4 yr−1 was nearly 4 % of the mean total
budget (Fig. 3). However, the actual range of estimation un-
certainty may be even larger, because the present study did
not fully explore uncertainties in sensitive parameters val-
ues and predicted changes in wetland extent in response to
global climate change, which can span a wide range (e.g.,
Riley et al., 2011). Furthermore, weighting of specific fluxes
on the basis of agreement with observational data may refine
the estimated probabilistic distribution of the terrestrial CH4
budget.

3.2 Spatial pattern of sources and sinks

As expected from the distribution of wetlands and paddy
fields, northern wetlands (e.g., in North America and West
Siberia) and Asian paddy fields were strong sources of CH4
with values as high as 8 g CH4 m−2 yr−1 (Fig. 4). Tropical
wetlands and river flood plains (e.g., Amazonia, the Pantanal,
and the Mississippi delta) were also substantial emission
sources. High rates of emission from livestock ruminants (to
a maximum of around 4 g CH4 m−2 yr−1) were found in parts
of South Asia, East Asia, Europe, South America, and east
Africa, where large numbers of livestock are raised (Fig. 5a).
The CH4 sources from wetlands and livestock ruminants ex-
hibited high spatial heterogeneity, with certain localized ar-
eas representing “hot spots”. Emissions from termites oc-
curred mainly in the subtropical areas of Australia, Africa,
and South America (Fig. 5b). The maximum estimated area-
based emission rate (∼0.5 g CH4 m−2 yr−1) was low com-
pared with wetland and livestock ruminant emissions (<10 %
of the corresponding maxima), but the wide area of termite
habitat caused termites to be a substantial net CH4 source.
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Figure 5 (A. Ito)
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Fig. 5. Global maps of the estimated CH4 emission from(a) live-
stock ruminants (water buffalo, cattle, goats, pigs, and sheep) and
(b) termites.

In terms of upland soil oxidation, the four schemes es-
timated comparable total uptakes (25 to 35 Tg CH4 yr−1;
Table 1), but with different spatial distributions. Potter et
al.’s (1996) scheme estimated higher oxidation rates in tropi-
cal and temperate regions, but with weaker overall geograph-
ical contrasts (Fig. 6a). Ridgwell et al.’s (1999) scheme esti-
mated higher rates in tropical and subtropical areas, includ-
ing in several dry regions (e.g., Middle East, Central Amer-
ica, South America, and Australia; Fig. 6b). In this case,
latitudinal contrasts were stronger. Del Grosso et al.’s (2000)
scheme estimated clear contrasts between deciduous forests
and other types of ecosystems (Fig. 6c), because it assumed
that the thick litter layer at the surfaces of deciduous forests
would have higher CH4 oxidation capacity. Correspond-
ingly, arid regions, which typically have a thinner litter layer,
showed lower oxidation rates. Curry’s (2007) scheme pro-
duced results similar to those of Ridgwell et al. (because it is
a revised version of their scheme), but revealed clearer con-
trasts between humid and dry ecosystems (Fig. 6d).

3.3 Temporal variability

Seasonal changes in the terrestrial CH4 budget were most
evident at northern latitudes (42◦ N to 68◦ N; Fig. 7 for the
baseline simulation), where a vast area of northern wetland
actively emits CH4 during the summer growing period. At

lower latitudes, tropical wetlands and paddy fields made
these areas a net CH4 source throughout the year. At other
latitudes, small net sinks occurred as a result of upland ox-
idation, except where emissions from termites and livestock
ruminants were significant (Fig. 5).

The global terrestrial CH4 budget and its components
changed from 1900 to the present (Fig. 8 for the baseline sim-
ulation). Wetland and paddy field emissions were affected by
meteorological conditions, leading to stochastic interannual
variability (IAV). Because of expansion of the area covered
by paddy fields in Asia, paddy field emissions increased from
24 Tg CH4 yr−1 in the early 1900s to 45 Tg CH4 yr−1 in the
2000s. Note that fertilizer applications in paddy fields, which
may decrease CH4 emission (Kai et al., 2011), were not
fully accounted for in the present study. Emission from live-
stock ruminants increased from 35 Tg CH4 yr−1 in the early
1900s to 80 Tg CH4 yr−1 in the 2000s; this inventory-based
estimate contains little stochastic variability because it de-
pends on human, rather than environmental, factors. Among
livestock, the temporal increment was largely attributable to
increased cattle emission, from 22 Tg CH4 yr−1 in the early
1900s to 60 Tg CH4 yr−1 in the 2000s. In contrast, emission
from water buffalo peaked at 14 Tg CH4 yr−1 in the 1950s
and declined to 8 Tg CH4 yr−1 in the 2000s. The estimated
termite emission, using either the high or low emission fac-
tors, slowly decreased to less than 1 Tg CH4 yr−1 during the
experimental period as a result of land-use conversion from
natural vegetation to cropland or pasture. Plant aerobic emis-
sion increased gradually in parallel with increased photosyn-
thetic productivity and leaf mass as a result of the CO2 fertil-
ization effect. Biomass burning emission showed substantial
IAV due to variations in fuel and moisture conditions, but
it did not show a clear linear trend. CH4 oxidation by up-
land soils increased, mainly as a result of the increased CH4
gradient between the atmosphere and the soil air space that
resulted from using Curry’s (2007) scheme.

The global relationship between annual mean temperature
and terrestrial net CH4 exchange (Fig. 9 for the baseline sim-
ulation) showed a significant weak to moderately strong lin-
ear relationship (R2

= 0.38, P < 0.01). On the basis of the
results of this regression, net terrestrial CH4 emission has
increased at a rate of 41.6 Tg CH4 yr−1 per 1◦C of warm-
ing, suggesting the existence of a positive biogeochemical
feedback in response to climatic warming (and partly in re-
sponse to historical land-use change in parallel with temper-
ature change). On the basis of the 100-yr Global Warming
Potential for CH4 (=25; IPCC, 2007), this responsiveness of
the CH4 budget corresponded to an increase of 283 Tg C yr−1

in the climate–carbon (CO2) cycle feedback. As implied by
a study using an Earth System model (Gedney et al., 2004),
the interaction between climate and the methane cycle can
exert a positive feedback as a result of human-induced cli-
mate change. The feedback would be accelerated by addi-
tional emissions from permafrost melting and methane hy-
drates (O’Connor et al., 2010).
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4 Conclusions

In this study, we simulated the global terrestrial CH4 bud-
get by using the VISIT model, and we accounted for un-
certainties among the different estimation and parameter-
ization schemes; the result was a mean net emission of
308±21 Tg CH4 yr−1. The coefficient of variation (the stan-
dard deviation divided by the mean), 6.7 %, was smaller
than that of the global CO2 budget, which equaled 15 %
in a recent meta-analysis of net primary production (Ito,
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Figure 9 (A. Ito)
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Fig. 9. Relationship between annual global mean land temperature
and estimated net terrestrial CH4 budget in the baseline simulation.

2011). The estimated flows and the total budget were both
comparable to the results of previous studies based on inven-
tories, biogeochemical models, and atmospheric inversion
models (Table 1). The contemporary natural source value of
220 Tg CH4 yr−1 in our study was comparable to the range
of 145 to 260 Tg CH4 yr−1 in previous studies (IPCC, 2007).
However, it should be noted that several sources were not ac-
counted for in our study, namely emissions from wastes and
landfills, mining, wild ruminants, and anthropogenic com-
bustion. Modeling these ancillary sources is difficult, so an
alternative inventory-based appraisal would be required. In
terms of the estimation uncertainty, additional differences
among estimates could be produced by using different cli-
mate datasets (e.g., Ito and Sasai, 2006).

We simulated the global terrestrial CH4 budget to discuss
the unique roles of various components of the terrestrial bio-
sphere in determining the global budget. The spatial pattern
and temporal variability of the simulated CH4 fluxes have im-
plications for efforts to interpret the characteristic variability
in these studies. Figure 10 presents the estimated anomaly
in the terrestrial CH4 budget (compared with the baseline
simulation in Fig. 8), which represents the deviation of the
value in a given year compared with the 1981–2000 average
value, and compares this anomaly with the atmospheric CH4
growth rate at the Mauna Loa and South Pole observatories
monitored by the US National Oceanic and Atmospheric Ad-
ministration (Dlugokencky et al., 1994, 2011). It is apparent
that the amplitude of interannual variability in the estimated
net terrestrial CH4 budget was smaller than that in the ob-
served atmospheric CH4 accumulation, and that the varia-
tions in the terrestrial budget therefore might not fully ex-
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Fig. 10. Temporal change in the anomalies (defined as the devi-
ation from the 1981–2000 average value, represented by the hor-
izontal line at 0) in the annual global terrestrial CH4 budget es-
timated by using the VISIT model and inventory data. Values
represent the means and the minimum–maximum range in the
1152 estimates based on the different combinations of input data
and different calculation and parameterization schemes. The or-
ange and light blue lines show the changes in atmospheric CH4
at the Mauna Loa and South Pole observatories (data from the
NOAA/ESRL/GMD dataset; Dlugokencky et al., 1994, 2011).
Note: 1 ppbv = 2.123 Tg CH4-C.

plain the decrease in the CH4 increment that was observed
from the 1990s to the 2000s (Bousquet et al., 2006; Dlugo-
kencky et al., 2011). This suggests that other factors such as
temporal variability in inundated areas, chemical reactions in
the atmosphere, anthropogenic emissions, and troposphere–
stratosphere exchanges may contribute substantially to the
temporal variability in the atmospheric CH4 accumulation
rate. For example, Kai et al. (2011) suggested that decreased
CH4 emission from paddy fields due to fertilizer application
accounted for about half of the slowdown of atmospheric
CH4 accumulation. In contrast, Hodson et al. (2011) sug-
gested that repeated El Niño events during this period were
a contributing factor to the stabilization of atmospheric CH4,
suggesting that further investigations will be required to es-
tablish an overview of the decadal-scale CH4 variation. On
the other hand, several anomalies in the estimated terrestrial
budget coincided with atmospheric anomalies (e.g., a rapid
deceleration in the growth rate of CH4 in 1992 and an accel-
eration in 1998), suggesting dominant impacts by the terres-
trial biosphere during some periods.

It is difficult to constrain and validate large-scale mod-
els because observation-based estimates of CH4 emissions
at these scales are very uncertain. Indeed, the model used
in this study has been compared only with a limited num-
ber of chamber measurements (e.g., Inatomi et al., 2010).
Recent progress in micrometeorological techniques has en-
abled CH4 flux measurement at an ecosystem scale using
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the eddy-covariance method (McDermitt et al., 2011). Al-
though there remain several methodological difficulties with
this method (e.g., correcting for atmospheric stability and ad-
vection), this new methodology will enable us to use more
data to constrain biogeochemical models and reduce esti-
mation uncertainty. In parallel, appropriate up-scaling algo-
rithms from a point to a regional scale should be developed,
because spatial heterogeneity in CH4-related processes such
as wetland hydrology, animal distribution, and fire regime,
should affect broad-scale evaluations of CH4 budget, even
using process-based models.

Furthermore, recent satellite remote-sensing methods may
soon permit measurements of atmospheric CH4 at a global
scale. For example, the SCIAMACHY sensor on the EN-
VISAT satellite is being used to observe atmospheric trace
gases, including CH4, and the data are being used as in-
puts for atmospheric inversion models to estimate surface
fluxes (Bergamaschi et al., 2009). More and more satel-
lite data will be available to estimate the global CH4 bud-
get, including those from Japan’s Greenhouse gas Observing
SATellite (GOSAT; Yoshida et al., 2011). In the near future,
model-based estimates such as those described in this paper,
will be compared with satellite observations for validation.
Because the top-down approach observes total surface ex-
change, including not only land ecosystem fluxes but also an-
thropogenic and freshwater sources (Bastviken et al., 2011),
separation pf the overall values into specific components be-
comes another issue. Recent progress in measurement of
the stable isotope ratios in atmospheric CH4 (e.g., Lassey et
al., 2011) and data-model fusion with the goal of optimiz-
ing estimates (e.g., Neef et al., 2010; Riley et al., 2011) may
allow more precise assessments of each flux. Also, cross-
comparison of model-estimated surface fluxes with atmo-
spheric transport models (e.g., TransCom-CH4 by Patra et
al., 2011) would effectively reveal the accuracy and uncer-
tainty in the present global CH4 budget. As more and better
data become available, model studies will become an increas-
ingly important tool for analyzing the mechanisms underly-
ing the global budget and for predicting future budgets under
climate change.
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