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Abstract

The carbon burial in vegetated sediments, ignored in past assessments of carbon burial
in the ocean, was evaluated using a bottom-up approach derived from upscaling a com-
pilation of published individual estimates of carbon burial in vegetated habitats (sea-
grass meadows, salt marshes and mangrove forests) to the global level and a top-down5

approach derived from considerations of global sediment balance and a compilation of
the organic carbon content of vegeatated sediments. Up-scaling of individual burial es-
timates values yielded a total carbon burial in vegetated habitats of 111 Tg C y−1. The
total burial in unvegetated sediments was estimated to be 126 Tg C y−1, resulting in a
bottom-up estimate of total burial in the ocean of 244 Tg C y−1, two-fold higher than esti-10

mates of oceanic carbon burial that presently enter global carbon budgets. The organic
carbon concentrations in vegetated marine sediments exceeds by 2 to 10-fold those in
shelf/deltaic sediments. Top-down recalculation of ocean sediment budgets to account
for these, previously neglected, organic-rich sediments, yields a top-down carbon burial
estimate of 197 Tg C y−1, with vegetated coastal habitats contributing about 50%. Even15

though vegetated carbon burial contribute about half of the total carbon burial in the
ocean, burial represents a small fraction of the net production of these ecosystems,
estimated at about 3031 Tg C y−1, suggesting that bulk of the benthic NEP must sup-
port excess respiration in other compartments, such as unvegetated sediments and the
coastal pelagic compartment. The total excess organic carbon available to be exported20

to the ocean is estimated at between 769 to 3177 Tg C y−1, the bulk of which must be
respired in the open ocean. Widespread loss of vegetated coastal habitats must have
reduced carbon burial in the ocean by about 30 Tg Cy−1, identifying the destruction of
these ecosystems as an important loss of CO2 sink capacity in the biosphere.
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1. Introduction

Oceanic carbon fluxes are believed to be dominated by microorganismal activity, as
bacteria and microalgae are the dominant source of primary production and respiration
in the ocean (e.g. Duarte and Cebrián, 1996; del Giorgio and Duarte, 2002). Marine
ecosystems also include macrophyte-dominated communities, hereafter referred to as5

marine vegetation, in the coastal domain, including macroalgae, dominant in rocky
shore, estuarine environments and coral reefs, and angiosperms, which are dominant
in intertidal systems (mangroves in tropical regions and saltmarshes in temperate ones)
and seagrasses growing in sandy, and occasionally rocky sediments along the world’s
coasts (e.g. Alongi, 1998). Although vegetated habitats are acknowledged to be of10

major importance to sustain marine biodiversity (e.g. Duarte, 2001; Alongi, 2002), they
are neglected from present accounts of the global ocean carbon cycle. The neglect of
marine vegetation is possibly a consequence of the limited extent of marine vegetation,
which cover only <2% of the ocean surface (Duarte and Cebrián, 1996). Moreover, the
area covered by marine vegetation is rapidly declining, as the area covered by seagrass15

meadows, mangrove forests and saltamarshes has declined significantly over the past
decades (Valiela et al., 2001; Duarte, 2002; Alongi, 2002; Green and Short, 2003;
Brevik and Homburg, 2004; Duarte et al., 2005).

However, previous analyses of the carbon cycling in ecosystems dominated by ma-
rine vegetation suggest that these may be important, as their global respiration is about20

7 to 8 Pg C y−1 (Middelburg et al., 2004) and, yet, they may account for an important
fraction of carbon storage in the ocean (Duarte and Cebrián, 1996; Jennerjahn and
Ittekkot, 2002; Chmura et al., 2003). Further, analyses of the carbon budgets of ma-
rine vegetation communities suggest that they export significant amounts of organic
carbon to adjacent ecosystems and also store vasts amounts of organic carbon in the25

sediments (Duarte and Cebrián, 1996; Jennerjahn and Ittekkot, 2002; Chmura et al.,
2003; Brevik and Homburg, 2004). Moreover, their high burial rates can be sustained
over millennia (Mateo et al., 1997; Brevik and Homburg, 2004). Marine vegetation
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turns over very slowly (Smith, 1981), as it is often dominated by long-lived organisms
such as mangroves (decades, Tomlinson, 1994) and seagrasses (years to decades,
Hemminga and Duarte, 2000), so that despite contributing only 10% of the primary
production of the ocean (Smith, 1981; Duarte and Cebrián, 1996), marine vegetation
holds a significant fraction of the autotrophic biomass therein (Smith, 1981). The view5

that the reduced extent of marine vegetation relative to the size of the ocean renders
them irrelevant to global cycles can be, therefore, challenged (Smith, 1981).

Here we assess the role of marine vegetation in carbon fluxes in the coastal ocean
and the consequences of the widespread destruction of these habitats for the marine
organic carbon cycle. We first estimate carbon burial in vegetated habitats following10

two approaches, a bottom-up approach derived from upscaling individual estimates
of carbon burial in vegetated habitats to the global level, and a top-down approach
derived from considerations of the global sediment balance (Berner, 1982). We then
construct a carbon budget for the coastal ocean, including carbon burial, respiration
(from Middelburg et al., 2004), and gross primary production (from Duarte and Cebrián,15

1996), and examine, using mass balance considerations, the possible organic export
from vegetated habitats to the open ocean and the impact of destruction of marginal
coastal habitats where marine vegetation dominates on the carbon budget of the global
ocean.

2. Burial20

We searched the published literature for estimates of carbon burial in vegetated habi-
tats to derive estimates of average carbon burial of these communities. Because of
the skewed nature of the resulting data sets, the geometric mean was used to charac-
terise the central tendency of carbon burial in these communities (Table 1). Whereas
the coverage of estimates of organic carbon burial is reasonable (N>25) for both man-25

groves and salt marshes, that for other communities is small, as only 5 estimates were
available for seagrass meadows (Table 1). The data compiled identified mangroves
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and salt marshes as important sites for carbon burial, at rates twice as high as those
for seagrass meadows (Fig. 1, Table 1). Up-scaling of individual burial estimates to the
global scale yields a total carbon burial in vegetated habitats of 111 Tg C y−1 (Table 1).
This estimate is remarkably close to the estimate of carbon storage rates in vegetated
habitats of 131 Tg C y−1 derived in the past by up-scaling carbon budgets for marine5

vegetation communities compiled (Table 1, Duarte and Cebrián 1996), therefore pro-
viding confidence on the robustness of these estimates.

The agreement between bottom-up approaches based on direct burial estimates
with those derived from carbon budgets for the vegetation implies that a significant,
although variable, proportion of the carbon buried should be of autochthonous origin,10

which is consistent with published evidence suggesting a significant contribution of
autochthonous organic carbon in salt marsh (Ember et al., 1997; Middelburg et al.,
1997b) mangrove (Jennerjahn and Ittekkot, 2002; Bouillon et al., 2004; Kennedy et al.,
2004) and seagrass (Gacia et al., 2002; Kennedy et al., 2004; Holmer et al., 2004)
sediments. Present estimates of the carbon burial in the ocean, as components of the15

global carbon budget (126–160 Tg y−1, Berner, 1982; Hedges and Keil, 1995; IPPC,
2001), ignore vegetated coastal habitats and must, therefore, be revised upwards.

The estimate of burial in the ocean that enters present global carbon budgets is, how-
ever, derived from top-down considerations of the total sediment budget of the ocean
(Berner, 1982) and cannot, therefore, be readily compared to the bottom-up estimates20

used above. Hence, we also estimated the contribution of unvegetated sediments in
estuaries and shelf and deltaic environments. The data set on direct estimates of burial
in estuarine (Heip et al., 1995; Widdows et al., 2004) and shelf sediments (Middelburg
et al., 1997a) encompassed a total of 39 observations, with geometric average rates
in these environments about one third of those for vegetated habitats (Fig. 1, Table 1).25

Up-scaling burial in these environments to the global scale is, however, not trivial as
the estimates of burial in these dynamic environments are biased towards depositional
basins (Middelburg et al., 1997a). We therefore, following assessments of the extent of
shelf depositional basins (de Haas et al., 2002), assumed that these basins represent
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only 10% of the shelf area (Table 1). The corresponding geometric estimates of burial
in unvegetated estuarine and shelf sediments amounts, when scaled to this area, to
81 and 45 Tg C y−1, respectively (Table 1). The total burial in unvegetated sediments
(126 Tg C y−1) is very similar to Berner’s 130 Tg C y−1 estimate for deltaic-shelf sedi-
ments and somewhat below the Hedges and Keil (1995) revised estimate of burial in5

the coastal ocean (160 Tg C y−1). The resulting bottom-up estimate of total burial in
the ocean adds to 244 Tg C y−1 (Table 1), which is two-fold higher than estimates of
oceanic carbon burial that presently enter global carbon budgets and implies, there-
fore, that the ocean is, because of the major – but previously neglected – contribution
of vegetated habitats, a greater carbon sink than hitherto acknowledged. These cal-10

culations indicate that vegetated marine habitats, which only cover <2% of the ocean
surface, contribute close to half of the carbon burial in the coastal and global, ocean at
present (Table 1).

The significance and consequences of the major deviation between the Berner
(1982) estimates and that derived using a bottom-up approach here for our under-15

standing of the global carbon cycle implies that the basis for this difference must be
identified. The Berner (1982) calculation is based on a global sediment input of 18 000
Tg y−1 to the ocean, assuming that 700 Tg is deposited in deep ocean basins and that
all of the remaining materials are deposited in the coastal ocean, i.e. in deltaic-shelf
environments. Based on an organic carbon content of 0.75%, he derived a coastal20

organic carbon burial of 130 Tg C y−1. Whereas the total sediment input to the ocean
is a reasonably well-constrained figure (20 000 Tg, Milliman and Syvitski, 1992; Hay,
1998), top-down estimates of organic carbon burial depend on where the sedimen-
tation occurs because carbon contents differ (Berner, 1982; Hedges and Keil, 1995).
Berner (1982) used an organic carbon content of 0.75% that is representative of the25

shelf and deltaic sediments, where the deposition was supposed to occur. Hedges
and Keil (1995) argued that two-third of the river particulate accumulated in deltaic
sediment with an organic content of 0.7% and one-third in shelf and upper slope sedi-
ment with 1.5% organic carbon and revised the burial estimate upward to 160 Tg C y−1.
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These studies ignore the carbon-rich deposits of marine vegetated systems. Indeed, a
compilation of organic carbon concentrations in vegetated marine sediments indicates
that these are particularly high for mangroves and salt marshes, holding, 2 to 10-fold
greater concentrations than shelf and deltaic sediment do (Fig. 2, Table 2). Conse-
quently, the top-down estimate of burial in the ocean can be corrected, using a similar5

approach to that of Berner (1982). By combining the bottom-up estimates for carbon
burial in vegetated sediments and deep-sea sediments with estimates of their organic
carbon content, we can derive sediment accumulation in these habitats. The differ-
ence between particle delivery to the ocean and the sum of vegetated and deep-sea
sedimentation can then be attributed to unvegetated coastal deposition. These calcu-10

lations indicate that 26% of the sediment accumulate in vegetated systems and only
about 8% in the deep-sea, the remaining 65% accumulates in estuaries, deltaic, shelf
and upper slope environments. Following Berner (1982) we combined a conservative
organic carbon content of 0.75% for unvegetated coastal sediments with a sediment
accumulation rate of about 13000 Tg and derived an unvegetated coastal burial rate15

of 79 Tg C y−1, somewhat lower than the sum of estuarine and shelf carbon burial re-
ported in Table 1 (126 Tg C y−1). The total top-down carbon burial estimate obtained
was then 197 Tg C y−1 (Table 2), reasonably close to that of 244 Tg C y−1 (Table 1) de-
rived from the bottom-up approach described above, with vegetated coastal habitats
contributing about 50% in both approaches (Tables 1, 2). Hence, the conclusion that20

organic carbon burial in the ocean exceeds the estimate of burial in the ocean that
enters present global carbon budgets almost by a factor two is, as supported both by
bottom-up and top-down approaches, a robust one.

3. Metabolism of vegetated habitats and the organic carbon budget of the
ocean25

Estimates of respiration (R) in vegetated habitats have been recently compiled us-
ing a dual top-down and bottom-up approach as done here (Middelburg et al., 2004).
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The resulting estimate of R in vegetated habitats was 5310 Tg C y−1, with a partic-
ularly high contribution by macroalgae (Table 3). This is in contrast with respiration
in other oceanic habitats, which is dominated by bacteria (del Giorgio and Williams,
2004). The gross primary production (GPP) rates of vegetated habitats are quite high
(Duarte and Cebrián 1996) yielding, when scaled to the global extent of these com-5

munities, a GPP of 8342 Tg C y−1. These estimates yield a positive metabolic balance
(NCP=GPP−R>0) for vegetated habitats estimated at about 3031 Tg C y−1 (Table 3),
where macroalgae, seagrass beds and salt marshes are the dominant contributors to
excess production. These values need be increased by the GPP and R of benthic
unvegetated and estuarine systems, which are net heterotrophic at the global scale10

(Table 3), to yield a NCP for benthic coastal communities of 2661 Tg C y−1 (Table 3).
The excess production of the benthic compartment has two possible fates, to be

stored in sediments contributing to burial therein or to be exported for use in the pelagic
compartment. As the total organic carbon burial rate in the coastal ocean is well below
the calculated NCP figure, it follows that the bulk (>94%, as some of the buried material15

is of terrestrial origin), of the benthic NEP must either be exported to the open ocean or
support respiration in the pelagic compartment. The pelagic compartment of coastal
ecosystems is often heterotrophic (Smith and Hollibaugh, 1983; Duarte et al., 2004;
Lucea et al., 2004), and a NEP range for the pelagic coastal ocean of –2304 Tg C y−1

to 104 Tg C y−1 has been proposed (Robinson and Williams, 2004). The excess benthic20

NEP that must be exported to support respiration in the global ocean can be calculated
as,

Export = Benthic NCP + Terrestrial inputs – Burial + Pelagic coastal NEP,

which provided a terrestrial input of organic carbon of 650 Tg C y−1 (Duarte and Cebrián
1996), yields an organic carbon export from the coastal to the open ocean ranging be-25

tween 769 to 3177 Tg C y−1, with this range depending on the uncertainty about the
pelagic coastal NEP (Fig. 3). The estimated coastal export of 769 to 3177 Tg C y−1 is
then available to be used – or buried – in the open ocean. As burial in the open ocean
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is estimated at a much lower figure of 6 Tg C y−1 (Table 1), it follows that essentially all
of the organic carbon received from the coastal ocean must be respired in the open
ocean. This export, which is of the same order as the inputs necessary to balance
the calculated net heterotrophy of the open ocean (Duarte and Agust́ı, 1998), would
contribute, as proposed in the past (Duarte et al., 1999), to drive the open ocean to5

a net heterotrophic status (Duarte and Agust́ı, 1998; del Giorgio and Duarte, 2002).
Most past estimates of the organic export from the coastal to the open ocean are be-
low the figure above (Liu et al., 2002; Ducklow and McCallister, 2004), likely because
these estimates neglected, again, the contribution of vegetated habitats. Indeed, more
encompasing accounts (del Giorgio and Duarte, 2002) cover the range of export esti-10

mates derived above.

4. Destruction of marine vegetated habitats and oceanic carbon burial

The preceding analysis portrays vegetated marine habitats as critical sites for carbon
burial, production and respiration as well as to subsidise the metabolism of the open
ocean. Mangrove and seagrass habitats are, however, experiencing widespread de-15

struction due to multiple causes, involving logging, land reclamation and deforestation
for mangroves (Valiela et al., 2001; Alongi, 2002), eutrophication, siltation and coast-
line alteration for seagrasses (c.f. Duarte, 2002; Short and Green, 2003; Duarte et al.,
2005) and coastal erosion, filling, dyking, and conversion to aquaculture ponds for salt
marshes (Adam, 2002; Brevik and Homburg, 2004). The rates of habitat destruction20

for these communities are mounting, with about 35% to 50% of the world mangrove
area destroyed, mostly since World War II (Valiela et al., 2001; Alongi, 2002), and an
estimated loss of 18% of the documented seagrass area over the last two decades
(Green and Short, 2003), which is likely to be an underestimate due to poor coverage
for some areas. These losses conform seagrass meadows and mangrove forests as25

some of the world’s most threatened habitats, with multi-decadal average annual rates
of decline of 2% y−1 for mangroves (Valiela et al., 1998) and >1% y−1 for seagrasses,
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(Duarte, 2002; Duarte et al., 2005, Short and Green, 2003).
Whereas the calculations of the important role of these habitats in carbon burial in

the ocean were based on the estimated extant area they cover (Table 1), the great rates
of decline these habitat experience suggests that their role in carbon burial in the ocean
should have been far larger than that calculated at present. An estimate of the historical5

carbon burial in the coastal zone can be calculated, using the two approaches derived
above. The bottom-up calculation (Table 1), assumes rates similar to those presently
observed extended to an undisturbed area covered my mangroves and seagrass of
0.25 1012 m2 and 0.5−0.6 1012 m2 (Duarte and Cebrián, 1996; Green and Short, 2003),
respectively. These calculations derived a carbon burial in vegetated carbon burials10

previous to anthropogenic disturbance of 140 Tg Cy−1, or 25% higher than the present
estimate. This estimate represents an underestimate, as it does not consider losses
of salt-marshes (e.g. Adam, 2002; Brevik and Homburg, 2004), for which no global
estimate is currently available. The top-down rationale provided above suggests that
this loss would correspond to the difference in carbon content of the sediment being15

buried (Berner, 1982). A difference of 1% C corresponds to a loss in organic carbon
burial capacity due to loss of vegetated habitat of about 30 to 50 Tg C y−1, or 13 to
25% of the present burial in the global ocean. Although these losses are sizeable,
they cannot be resolved through budgetary exercises such as those used here, which
involve uncertainties about the global burial figures in excess of the 25% estimate.20

The decline in coastal burial derived from the loss of vegetated habitats is com-
pounded with the reduced delivery of terrestrial sediments to the ocean from increased
sediment retention in reservoirs, which have been estimated to reduce global sediment
delivery to the oceans by about 30% (Vörösmarty et al., 2003). Together, these fac-
tors suggest a possible loss of carbon burial in the ocean of as much as 50% of the25

pre-disturbance rate.
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5. Conclusions

The results presented confirm that vegetated coastal habitats, including seagrass
meadows, mangrove forests and salt marshes are hot spots for carbon burial in the
ocean. The significant of mangrove and salt-marshes has been recently raised on
the basis of bottom-up approaches (Jennerjahn and Ittekkot, 2002; Chmura et al.,5

2003), and an important role of vegetated habitats had been suggested on the basis
of community carbon budgets (Duarte and Cebrián, 1996). Here we show that use of
bottom-up scaling of direct burial estimates, community carbon budgets, and top-down
examinations that consider, for the first time, the enhanced organic carbon concen-
tration of vegetated coastal sediments converge to estimate organic carbon burial in10

the coastal ocean at 210–244 Tg C y−1, almost twice as high as that presently consid-
ered in drawing the global carbon budget (IPCC, 2001). This discrepancy is due to the
neglect in previous assessments of vegetated coastal habitats, which despite encom-
passing <2% of the ocean surface contribute close to half of the carbon burial in the
coastal and global ocean at present. Hence, our analysis identifies vegetated coastal15

habitats as important, but previously neglected, sites for CO2 sequestration. However,
even this upward revised estimate of organic carbon burial can not accommodate for
the removal of anthropogenic carbon dioxide from the atmosphere (Berner, 1992).

Our assessment depicts, in agreement with previous assessments (e.g. Duarte and
Cebrián, 1996; Gattuso et al., 1998), vegetated coastal habitats to be net autotrophic20

ecosystems. Despite the important size of organic carbon burial in these habitats, our
results suggest that only 5% of our estimated 2661 Tg C y−1excess production (NCP)
of benthic coastal habitats meet a fate in burial. The bulk of the net production of vege-
tated coastal habitats, is exported at a rate estimated at between 769 to 3177 Tg C y−1,
to partially support the high respiratory requirements of open ocean ecosystems (del25

Giorgio and Duarte, 2002; Aŕıstegui et al., 2004), helping explain the tendency of un-
productive oceanic ecosystems to be net heterotrophic (Duarte et al., 1998, 1999; del
Giorgio et al., 2002).
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The important role of vegetated coastal habitats in the ocean carbon budget is, how-
ever, eroded by the high losses experienced by these ecosystems, where between 1/3
and 1/2 of the original area covered of seagrass meadows and mangrove forests and
a large, but unknown fraction of the global salt marsh cover have been lost by anthro-
pogenic destruction of these habitat. More than 25% of the CO2 sink capacity of these5

ecosystems has been lost, and their capacity to support the metabolism of open ocean
ecosystems must have declined accordingly. Besides the large impact on biodiversity,
these losses represent an important loss of CO2 sink capacity. The important conse-
quences of the destruction of marine vegetated habitats on the oceanic carbon budget
adds to the dramatic consequences these losses have on local biodiversity (Adam,10

2002; Alongi, 2002; Duarte, 2002) to conform an environmental crisis that requires
immediate attention.
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Table 1. Estimates of organic carbon burial rates in vegetated areas, derived from the geo-
metric mean of a compilation of published reports of organic carbon burial and their relative
contribution to burial in the coastal ocean and the global ocean. The estimates derived are
compared to those derived from community mass balances (M. B.), derived from correcting the
estimates in Duarte and Cebrián (1996) for the revised area covered by the different communi-
ties used here.

19

Table 1.  Estimates of organic carbon burial rates in vegetated areas, derived from the geometric mean of a compilation of published reports of

organic carbon burial and their relative contribution to burial in the coastal ocean and the global ocean. The estimates derived are compared to

those derived from community mass balances (M.B.), derived from correcting the estimates in Duarte and Cebrián (1996) for the revised area

covered by the different communities used here.

Notes: 1. Area covered from Valiela et al. (2001), organic burial data from Chmura et al., 2003; 2. Area covered from Woodwell et al. (1973),
organic burial data from Chmura et al., 2003; 3. Area covered calculated from original extent of seagrass and reported fraction relative long-term
decline rates (Green and Short 2003; Duarte et al. 2005), organic burial data from Gacia et al., 2002, Romero et al. 1994, Mateo et al., 1997, 2005
and Barron et al., 2004; 4. Area covered from Costanza et al. (1997), organic burial data from Heip et al. (1995) and Widdows et al. (2004); 5.
Area covered from Costanza et al. (1997) assuming that depositional areas cover 10 % of the shelf area, organic burial data from Middelburg et
al. (1997a); 6. Berner (1982).

Component Area g C m-2 y-1 Tg y-1 Tg y-1

1012 m2
N M.B. Notes

Vegetated habitats
Mangroves 0.2 139.0 23.6 27 17.0 1
Salt Marsh 0.4 151.0 60.4 96 70.0 2
Seagrass 0.3 83.0 27.4 5 44.0 3

Total vegetated habitats 111.4 131.0
Depositional areas

Estuaries 1.8 45.0 81.0 24 4
Shelf 26.6 17.0 45.2 15 5

Total coastal burial 237.6
% vegetated habitats 46.9

Deep sea burial 6.0 6
Total oceanic burial 243.6

% vegetated habitats 45.7
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Table 2. The average percent organic carbon (Corg,%) of vegetated and unvegetated sedi-
ments in the coastal ocean and the estimate of the organic carbon burial resulting from burial
of the sediment load of 20 000 Tg y−1 (Milliman and Syvitski, 1992; Hay, 1998) entering the
coastal ocean in these habitats.

20

Table 2. The average percent organic carbon (Corg, %) of vegetated and unvegetated sediments in the coastal ocean and the estimate of the

organic carbon burial resulting from burial of the sediment load of 20,000 Tg y-1 (Milliman and Syvitski, 1992; Hay, 1998) entering the coastal

ocean in these habitats.

Notes: 1: Organic carbon contents from Chmura et al. (2003); 2: Organic carbon contents from Chmura et al. (2003); 3: Organic carbon contents

estimated based on Gacia et al., 2002, Holmer et al., 2004, Kennedy et al., 2004, Duarte et al., 2004 and unpublished data. 4. Organic carbon

content of 0.75 % is assumed and sediment burial is calculated by difference; 5: Organic carbon content is assumed (e.g. see Berner, 1982).

Burial Tg 

C y-1
Corg 
(%) Tg sediment % sediment %C-burial Notes

Vegetated habitats
Mangroves 23.6 8.5 278 1.4 12.0 1
Salt Marsh 60.4 5.4 1119 5.6 30.7 2
Seagrass 27.4 0.7 3914 19.6 13.9 3

Total vegetated habitats 111.4 5310 26.6 56.7

Depositional areas 79.1 0.75 13190 65.9 40.3 4

Total coastal burial 190.5 18500 92.5 96.9

Deep sea burial 6.0 0.4 1500 7.5 3.1 5
Total oceanic burial 196.5 20000
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Table 3. The metabolic balance of the benthic coastal communities, as represented by the
respiration rates (R, average and global values from Middelburg et al., 2004), gross primary
production (GPP), computed using average values from net primary production and autotrophic
respiration estimates in Duarte and Cebrián (1996), upscaled to the global coastal ocean using
the surface areas covered by the communities reported Table 1, and Duarte and Cebrián (1996)
for macroalgae and microphytobenthos; and the net community production (GPP–R) for these
ecosystems.

21

Table 3.  The metabolic balance of the benthic coastal communities, as represented by the respiration rates (R, average and global values from

Middelburg et al. 2004), gross primary production (GPP), computed using average values from net primary production and autotrophic

respiration estimates in Duarte and Cebrián (1996), upscaled to the global coastal ocean using the surface areas covered by the communities

reported Table 1, and Duarte and Cebrián (1996) for macroalgae and microphytobenthos; and the net community production (GPP – R) for these

ecosystems.

Component Area R Global R GPP Global GPP NCP Global NCP
1012 m2 g C m-2 y-1 Tg y-1 g C m-2 y-1 Tg y-1 g C m-2 y-1 Tg y-1

Vegetated habitats
Mangroves 0.2 1866 373 2087 417 221 44
Salt Marsh 0.4 2010 804 3595 1438 1585 634
Seagrass 0.3 692 228 1903 628 1211 400
Macroalgae 1.4 2116 2962 3702 5183 1587 2221
Coral Reefs 0.6 1572 943 1126 676 -446 -268

Total vegetated habitats 5310 8342 3031
Unvegetated sediments 23.9 83 1992 67.9 1622 -15 -370

Global benthic coastal ocean 7302 9964 2661
% vegetated habitats 73 83.7
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Fig. 1. Average (±SE) carbon burial rates in different coastal ecosystems. Data sources in
Table 1.
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Fig. 2. Frequency distribition of organic carbon content in salt marsh, mangrove and seagrass
sediments. Data sources in Table 2.
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Fig. 3. Summary of the organic carbon budget of the global coastal ocean, NCP = Net com-
munity production, GPP = Gross Primary Production, R = Respiration.
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