1	Supplemental material for "A total quasi-steady-state					
2	formulation of substrate uptake kinetics in complex					
3	networks and an example application to microbial litter					
4	decomposition"					
5						
6	J. Y. Tang and W. J. Riley					
7	Earth Science Division, Lawrence Berkeley National Laboratory (LBL), Berkeley, CA,					
8	United States					
9						
10						
11	Correspondence to: J. Y. Tang (jinyuntang@lbl.gov)					
12						
13						
14						
15						
10						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						

1 S1. Derivation Eq. (A6-b)

2 Substituting Eq. (A4) into Eq. (12) and taking the zero order approximation 3 $E_{k,0} = E_{k,T}$, yields

$$E_{k,1} + \sum_{l=1}^{l=l} C_{lk,1} = 0$$
(S1-1)

5 Dividing Eq. (S1-1) by $K_{S,ik}$ and taking the summation for $k = 1, \dots, J$, we obtain:

6
$$\sum_{k=1}^{k=J} \frac{E_{k,1}}{K_{S,ik}} = -\sum_{k=1,l=1}^{k=J,l=I} \frac{C_{lk,1}}{K_{S,ik}}$$
(S1-2)

7 Similarly, from Eqs. (A4) and (10), one has

8
$$\sum_{k=1}^{k=l} \frac{S_{k,1}}{K_{S,kj}} = -\sum_{k=1,l=1}^{k=l,l=1} \frac{C_{kl,1}}{K_{S,kj}}$$
(S1-3)

9 Substitution of Eq. (S1-2) and (S1-3) into Eq. (A5-b) leads to

10
$$C_{ij,2}\left(1+\sum_{k=1}^{k=J}\frac{E_{k,0}}{K_{S,ik}}+\sum_{k=1}^{k=I}\frac{S_{k,0}}{K_{S,kj}}\right)=C_{ij,1}\left(\sum_{l=1,n=1}^{n=I,l=J}\frac{C_{nl,1}}{K_{S,il}}+\sum_{k=1,l=1}^{n=I,l=J}\frac{C_{nl,1}}{K_{S,nj}}-\sum_{n=1,l=1}^{n=I,l=J}\frac{K_{S,nl}C_{nl,1}}{K_{S,il}K_{S,nj}}\right)$$
(S1-4)

11 from which Eq. (A6-b) can be derived.

12

4

13 **S2.** A synthetic isotope experiment with model **S3B1**

14 We applied model S3B1 with the parameter values in Table S1 for a synthetic

15 isotope simulation. From the initial condition, we define the reference isotopic mass

16 fractions for substrate S_i , i = 2,3 as

17
$$R_{S_{i},0} = \frac{S_{i}}{\sum_{k=1}^{k=3} S_{k}}$$
(S2-1)

18 At any point in time, the isotope ratio of substrate S_i , i = 2, 3 is calculated as

19
$$\delta S_i \left(\text{per mil} \right) = \left(\frac{R_{S_i}}{R_{S_i,0}} - 1 \right) \times 1000$$
 (S2-2)

20

1	References					
2	Aber, J. D., McClaugherty, C. A. and Melillo, J. M.: Litter decomposition in Wisconsin					
3	forests: mass loss, organic-chemical constituents and nitrogen. Report #R3284,					
4	School of Natural Resources, University of Wisconsin, Madison, Wisconsin, USA,					
5	1984					
6	Magill, A. H., and Aber, J. D.: Long-term effects of experimental nitrogen additions on					
7	foliar litter decay and humus formation in forest ecosystems, Plant Soil, 203, 301-					
8	311, doi: 10.1023/A:1004367000041, 1998.					
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						
31						

1 List of Tables

2

3 Table S1. Parameter values for the synthetic-isotope experiment with model S3B1.

4	The parameter vectors are presented in the form $\left(K_{S,ij},k_{ij,2}^{*},\mu_{ij} ight)$, whose units are,
5	respectively, mg C dm ⁻³ , d ⁻¹ , and none. The numbers in parentheses following the
6	state variables are their initial values, whose units are mg C dm ⁻³ . The respiration
7	rate γ_1 is set to 0.03 d ⁻¹ . The parameters for the substrate kinetics were randomly
8	chosen as in the main text.

		<i>S</i> ₁ (30)	<i>S</i> ₂ (0. 6)	<i>S</i> ₃ (0.4)			
	<i>B</i> ₁ (1)	(20,48,0.5)	(19.6,47.84,0.3)	(18.8,47.72,0.1)			
9							
10	Table S2. Best-fit parameters for model S3B3-MM (S3B3 model implemented with M						
11	kinetics) by optimizing the simulation outputs to the 77-month red pine litter						
12	decomposition experiment data in Melillo et al. (1989). The parameter vectors are						
13	presented in the form $(K_{S,ij},k_{ij,2}^*,\mu_{ij})$, whose units are, respectively, g C, d ⁻¹ , and none.						
14	The respiratory coefficients (i.e., γ_j , $j = 1, 2, 3$ as defined in Eq. (30)) of the three						
15	microbes are, respectively, 0.01, 005, and 0.001 d ⁻¹ . Numbers in the parentheses						
16	following the state variables are their initial values, whose units are g C. In doing the						
17	calibration, we assumed (i) $K_{S,1j}$, $j = 1,2,3$ are the same for all three microbes; (ii)						
18	$K_{s,22} = K_{s,23}$; and (iii) for microbe B_j , $k_{ij,2}^+$, $i = 1,2,3$ are the same for all three						
19	substrates. By further fixing μ_{ij} to the values in the parentheses, we effectively had						
20	9 total parameters in the calibration.						
		S ₁ (359)	S ₂ (386)	<i>S</i> ₃ (255)			
	B_1	(48.12,0.5886,0.5)	(94.39,0.5886,0.3)	(1964.5,0.5886,0.1)			

 B_2

 B_3

21

22

(182.26,0.3995,0.3)

(182.26,0.3913,0.3)

(1946.2, 0.3995, 0.1)

(180.2,0.3913,0.1)

(48.12,0.3995,0.5)

(48.12,0.3913,0.5)

2 Figure S1. Evolution of lignin in the decomposition experiments documented in

3 Magill et al. (1998). The corrected LCI in panel (c) is derived by replacing the

4 unreasonable lignin data (marked in red) reported in Magill et al. (1998) (that are higher

5 than the initial lignin mass) with the initial lignin mass. We corrected 32 out of 78 (about

- 6 40%) data points.
- 7

2 3 Figure S2. Time series of relevant state variables simulated from the syntheticisotope simulation experiment by applying the three different substrate uptake

- functions to microbial model S3B1. Relevant parameters are specified in Table S1.

Figure S3. Temporal evolution of the synthetic-isotopic signatures of pool S2 and S3 simulated from model S3B1 using different substrate uptake functions. Relevant

- 4 parameters are specified in Table S1.

2 3 4

Figure S5. Model (S3B3-MM: models S3B3 implemented with MM kinetics) predicted temporal evolution of litter decomposition dynamics for the 9 different litters in Table 4. Model parameters are in Table S2.