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1 FORMIND model details1

FORMIND is an individual-based, spatially semi-explicit, dynamic forest model.2

Spatially semi-explicit means that trees are assigned to a spatial 20x20m grid.3

Trees have no explicit position within a grid cell, and, horizontally, their crown4

area is homogeneously distributed across their respective grid cell. Trees mostly5

interact within grid cells, essentially through the mechanisms that are present6

in all classical gap models (e.g. Shugart, 1984; Bugmann, 2001): for each tree,7

growth and establishment depends on the light climate at its crown top. The8

light climate is determined by the overtopping leaf area. Additional to this9

central process of competition for light on grid cells, FORMIND implements a10

number of other processes that act across grid cells such as tree falling and seed11

dispersal between grid cells. We use the FORMIND model version of Dislich12

et al. (2009), developed for a tropical rainforest in Ecuardor, with some minor13

updates that have accumulated since then due to the general development of14

the model. The FORMIND scheduling within one time step is given in Alg. 1,15

a visual representation of the model concept in Fig. 116

Establishment is modeled as a constant seed rain, meaning that tree re-17

generation is independent of relative species abundances in the modeled tree18

community. Provided that species-speci�c light conditions are met, the number19

of new recruits appearing on a site is a species speci�c parameter of the model.20

There is stochasticity in the recruitment regarding the spatial distribution of21

recruits.22

After establishment, mortality acts on all trees individuals. Mortality orig-23

inates from four sources: 1) Base mortality: each tree has a species-speci�c24

base mortality rate that is independent of its age and environmental conditions.25

2) Small trees have an additional species speci�c size-dependent mortality (see26

Dislich et al., 2009, Appendix A). 3) Self-thinning: when the crown area in a27

1
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Figure 1: Formind model principles

particular height layer exceeds the plot area, trees are randomly removed until28

the layer is su�ciently thinned. 4) Gap-formation: When trees larger than a29

threshold diameter df die, they are assumed to fall on a neighboring plot and30

produce an additional mortality proportional to their crown size on all trees31

that do not exceed the height of the falling tree by one meter. In that sense,32

FORMIND di�ers from more traditional gap models, where only one "represen-33

tative" plot is modeled. All four mortality processes are modeled stochastically.34

Algorithm 1 FORMIND scheduling

1: Read initial tree con�guration

2: for t = 1 to tend do

3: for all Plots do

4: if Light conditions allow establishment then

5: Establishment of new seedlings from seed bank

6: end if

7: for all Trees do

8: Mortality

9: end for

10: Update light climate

11: for all Trees do

12: Growth

13: end for

14: end for

15: end for

For each remaining tree individual, productivity and thereby growth is cal-35
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culated. Productivity and growth are modeled deterministically and depend on36

tree size and light climate at crown top, corrected by self-shading, according37

PFT-speci�c functions for light-response, photosynthesis and respiration. The38

light climate on the plot is derived by calculating the leaf area contributed by39

the trees on the plot to di�erent height layers, and from that the light inter-40

ception of the di�erent hight layers. Respiration rates are calculated according41

to an inverse method which takes maximum growth rates under full light as an42

input (Dislich et al., 2009, Appendix A). Maximum growth rates can be derived43

from observations, but in this study, we treat growth rates as parameters that44

are �t to observed community data.45

For reasons of computability, seedlings of the same PFT and age within one46

plot are grouped into cohorts, which is mathematically identical to calculating47

individual trees as there are no stochastic e�ects on existing tree individuals48

except for mortality.49

2 Statistical Algorithm50

The algorithm for Bayesian parameter estimation was implemented in Python51

2.6, using Scipy, Numpy and parallel python. Parallel python was used to speed52

up the MCMC algorithm - instead of calculating the posterior value of one new53

parameter proposal, we always propose n values in parallel (here, n was 6 or 12).54

If the �rst value was rejected, the algorithm goes on to check for acceptance of55

the second value and so on. If one value was accepted, the other values were56

discarded. The acceptance check was done strictly ordered, so that the order of57

steps within this algorithm is identical to that of a usual MCMC. The advantage,58

however, is that time is saved in the case of rejection because practically all59

our computational costs are for the FORMIND calculations (the estimation of60

mean and covariance of one parameter combination for a typical situation of 761

PFTs on 1 ha over 10.000 yrs with 5yr time steps takes around 20 seconds).62

Therefore, parallel proposals create a considerable speed-up (maximum a factor63

n) when there are high rejection rates. Based on the observed rejection rates,64

we estimate that the average speed-up through parallelization with 6 cores was65

approximately a factor 3-4.66
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Algorithm 2 MCMC-SPL (parallel version)

1: Choose initial condition

2: Calculate initial unnormalized posterior value (eqs. 1,2, main text)

3: repeat

4: Propose n new φ according to proposal function q(φ→ φ′)

5: Create n proposal φi and run the model with those in parallel

6: repeat

7: Estimate p(φ′i|Dobs) according to eq. 1,2, main text

8: Accept φ′i with probability p(φ′|Dobs)q(φ
′→φ)

p(φ|Dobs)q(φ→φ′) , else stay at φ

9: until Acceptance of one φ′i or all n runs tested

10: If applicable, adjust q(φ→ φ′) according to (Haario et al., 2001)

11: until Convergence

The algorithm was started with random initial values φinit that were gen-67

erated by adding a random parameter vector φr to the prior best estimate φ?68

according to φinit = 0.9 · φ? + 0.1 · φr. The best estimate φ? was the "true"69

value for the virtual tropical forest, and the value from Dislich et al. (2009)70

for the Ecuadorian parameterization. The proposal function q(φ → φ′) was71

chosen multivariate normal, with a covariance adaptation according to (Haario72

et al., 2001) for the parameterizations to the virtual data, and a �xed pro-73

posal function for the parameterization to the Ecuadorian data. The covariance74

adaptation of Haario et al. (2001) sets the covariance of the proposal function75

as Σi = c ∗ covi(p(Φ|D)), where i is the i − th step of the algorithm, and the76

scaling parameter c is a constant whose optimal choice depends on the target77

function (we used c = 2.382/d, where d is the number of dimensions of the78

parameter space). Although the adaptive algorithm leads to more e�cient pro-79

posal generation under correlations in the posterior, we noted that there were80

some remaining ine�ciencies in the proposal generation that were probably due81

to the observed nonlinear and higher-order correlations in the posterior. To82

minimize the e�ect of those, we drew did not vary all parameters at once in one83

step of the MCMC, but �rst drew two random parameters, and then drew a84

proposal for those according to Alg. 2.85

3 Additional analyses of the parameter estimates86

In this section, we show more detailed analyses for the results presented in the87

main article (in particular Figs. 3,5), and additional analyses that replicates the88

setup of Figs. 3,5 with di�erences in the number of parameters estimated, and89
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Case Explanation Dimensions

Parameterization to virtual data, 3 PFTs:

V 1 Data: SDD, GRO, reduced parameters 12, 96

V 2 Data: SDD, GRO, full parameters 26, 96

V 3 Data: SDD, reduced parameters 12, 48

V 4 Data: total SDD, reduced parameters 12, 16

V 5 Data: BM, reduced parameters 12, 3

Parameterization to Ecuadorian �eld data, 7 PFTs:

E1 Data: SSD 18, 112

Table 1: Overview of parameterizations for di�erent models, parameters and

summary statistics. Abbreviations for the data: SSD = Stem size distribution

(16 10-cm classes), GRO = size-speci�c average growth distribution (16 10-cm

classes), BM = Biomass. If not stated otherwise, the data type was available

for each PFT separately. If we use the mean over all PFTs, we label the data

with "total". Full parameters means that the parameters given in tables 1,2

in the online supplementary are under calibration. Reduced parameters means

that from table 1, only recruitment, mortality, maximum growth and maximum

growth diameter are estimated. Dimensions gives the number of parameters

and the number of data points in that order.
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in the aggregation type (summary statistics) that are used to compare model90

results and �eld data. A summary of the cases considered is provided in Table 1.91

For all these cases, we show a) a histogram of the marginal posterior density,92

which allows gaining a better picture of the distribution represented by the violin93

plots in the main paper, and b) a plot of posterior pair correlation density. The94

width of the marginal distributions was scaled to the prior width (denoted by95

the green lines at the sides of the plot). For the virtual case, the red line depicts96

the "true" parameter value that was used to create the virtual �eld data. For97

the dataset from Ecuador, the red line depicts the parameter values chosen by98

(Dislich et al., 2009). However, as we note in the main text, the model setup99

was not completely identical, so there are limits in the comparability of the100

inference with these values. Prior and true parameter values are also provided101

in Tables 2,3. In the caption of the marginal density plots, we provide some102

additional information for the runs such as sample size, convergence diagnostics103

(using Geldman-Rubin, see Gelman and Rubin, 1992; Brooks and Gelman, 1998)104

and runtime. In all cases, we removed 100.000 samples as burn-in from the105

chains.106

3.1 V1 Parameterization to virtual data, details for results107

from the main paper108

Figs. 2,3 show detailed plots for Fig. 3 of the main text, which allows a better109

assessment of the shape of the distributions, and of the parameter correlations.110

3.2 V2 Parameterization to virtual data, full parameter111

set112

Figs. 4,5 uses the same data as V1, but with a larger number of parameters esti-113

mated. Those additional parameters are parameters for the crown geometry, for114

speci�c leaf area, the light extinction coe�cient, the leaf area index (LAI) per115

tree, and tree mortality at gap formation (Table 2). As can be seen, marginal116

parameter uncertainty considerably increases when �tting a larger number of117

parameters, which must be due to additional trade-o�s between the old and118

the new parameters with respect to the data. The lower amount of strong pair119

correlation in Fig. 5 as compared to Fig. 2 suggests that those newly introduced120

trade-o�s are predominantly of higher order and therefore not picked up by the121

pair correlation plots. Again, we stress that this is neither a fundamental prob-122

lem, nor speci�c to the simulation-based likelihood approximation, but simply123

a result from interactions between parameters with respect to the data used124
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for the �t - we would most probably �nd the same results in a conventional125

Bayesian analysis. However, the wide marginal distributions that result from126

these correlations make it di�cult to see how parameter uncertainty is a�ected127

by the simulation-based approximation and by the choice of model output. The128

latter is the reason why we estimated only a reduced set of parameters for the129

main results.130

3.3 V3-V5 Parameterization to virtual data with more ag-131

gregated model outputs132

The next plots Figs. 6-11 show results from �tting the same parameters as133

in Fig. 3, main text, but using more aggregated model outputs (i.e. more134

coarse summary statistics) for the comparison between model and observed135

data. One can see that width of the posterior distribution generally increases136

when going to more aggregated representations of the data. Also some new137

trade-o�s between parameters appear while going to more aggregated outputs,138

while others disappear, potentially indicating higher-order interactions between139

parameters with respect to this pattern.140

3.4 E1 Parameterization to Ecuadorian data141

Finally, Figs. 12-13 show details of the parameter estimation with �eld data142

from Ecuador. Our data consisted of size-abundance distributions only. From143

our results for the virtual dataset (Fig 7), we know that this data type leads144

to relatively strong correlations when �tting similar parameters as in V3, which145

makes the result di�cult to interpret. To avoid these correlations, we estimated146

a lower number of parameters per plant functional type than for the virtual147

case. However, note that the number of parameters is still larger than for V3,148

due to the higher number of plant function types. For the model parameters149

that were not �t to data, we used the values from Dislich et al. (2009).150
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Figure 2: Marginal posterior densities for case V1 in Table 1. Result from

3 chains; sample size per chain: ca. 1.3 million; Gelman-Rubin multivariate

potential scale reduction factor: 1.01; runtime: ca. 6 weeks, 6 parallel cores per

chain. Model parameters are explained in Table 2
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Figure 3: Pair correlation density plot of the posterior distribution for case V1

in Table 1. As in Fig. 3b, main text, the histograms on the diagonal show

the marginal distributions for the posterior parameter estimates that were also

displayed in the previous �gure. The panels in the lower triangle show pairwise

correlations between the parameters for which marginals are displayed on the

diagonal. The numbers in the upper triangle show Spearman's rank correlation

coe�cients for the correlations in the lower triangle. Parameter abbreviations

are explained in Table 2.
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Figure 4: Marginal posterior densities for case V2 in Table 1. Result from

3 chains; sample size per chain: ca. 1.4 million; Gelman-Rubin multivariate

potential scale reduction factor: 1.17; runtime: ca. 6 weeks, 6 parallel cores per

chain. Model parameters are explained in Table 2
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Figure 5: Pair correlation density plot of the posterior distribution for case V2

in Table 1. As in Fig. 3b, main text, the histograms on the diagonal show

the marginal distributions for the posterior parameter estimates that were also

displayed in the previous �gure. The panels in the lower triangle show pairwise

correlations between the parameters for which marginals are displayed on the

diagonal. The numbers in the upper triangle show Spearman's rank correlation

coe�cients for the correlations in the lower triangle. Parameter abbreviations

are explained in Table 2.
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Figure 6: Marginal posterior densities for case V3 in Table 1. Result from

2 chains; sample size per chain: ca. 1.4 million; Gelman-Rubin multivariate

potential scale reduction factor: 1.02; runtime: ca. 6 weeks, 6 parallel cores per

chain. Model parameters are explained in Table 2
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Figure 7: Pair correlation density plot of the posterior distribution for case V3

in Table 1. As in Fig. 3b, main text, the histograms on the diagonal show

the marginal distributions for the posterior parameter estimates that were also

displayed in the previous �gure. The panels in the lower triangle show pairwise

correlations between the parameters for which marginals are displayed on the

diagonal. The numbers in the upper triangle show Spearman's rank correlation

coe�cients for the correlations in the lower triangle. Parameter abbreviations

are explained in Table 2.
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Figure 8: Marginal posterior densities for case V4 in Table 1. Result from

2 chains; sample size per chain: ca. 0.7 million; Gelman-Rubin multivariate

potential scale reduction factor: 1.04; runtime: runtime: ca. 6 weeks, 6 parallel

cores per chain. Model parameters are explained in Table 2
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Figure 9: Pair correlation density plot of the posterior distribution for case V4

in Table 1. As in Fig. 3b, main text, the histograms on the diagonal show

the marginal distributions for the posterior parameter estimates that were also

displayed in the previous �gure. The panels in the lower triangle show pairwise

correlations between the parameters for which marginals are displayed on the

diagonal. The numbers in the upper triangle show Spearman's rank correlation

coe�cients for the correlations in the lower triangle. Parameter abbreviations

are explained in Table 2.
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Figure 10: Marginal posterior densities for case V5 in Table 1. Result from

2 chains; sample size per chain: ca. 1 million; Gelman-Rubin multivariate

potential scale reduction factor: 1.08; runtime: ca. 6 weeks, 6 parallel cores per

chain. Model parameters are explained in Table 2
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Figure 11: Pair correlation density plot of the posterior distribution for case

V5 in Table 1. As in Fig. 3b, main text, the histograms on the diagonal show

the marginal distributions for the posterior parameter estimates that were also

displayed in the previous �gure. The panels in the lower triangle show pairwise

correlations between the parameters for which marginals are displayed on the

diagonal. The numbers in the upper triangle show Spearman's rank correlation

coe�cients for the correlations in the lower triangle. Parameter abbreviations

are explained in Table 2.
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Figure 12: Marginal posterior densities for case E1 in Table 1. Red bars show

the parameter estimates by Dislich et al. (2009). Result from 3 chains; sample

size per chain: 0.9 million; Gelman-Rubin multivariate potential scale reduction

factor: 1.19; runtime: ca. 5 weeks, 12 parallel cores per chain. Model parameters

are explained in Table 3
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Figure 13: Pair correlation density plot of the posterior distribution for case

E1 in Table 1. As in Fig. 3b, main text, the histograms on the diagonal show

the marginal distributions for the posterior parameter estimates that were also

displayed in the previous �gure. The panels in the lower triangle show pairwise

correlations between the parameters for which marginals are displayed on the

diagonal. The numbers in the upper triangle show Spearman's rank correlation

coe�cients for the correlations in the lower triangle. Parameter abbreviations

are explained in Table 3. Note that the 4 growth parameters are assigned to

the 7 PFTs as follows: gro1 -> PFT 2, gro2 -> PFT 1, gro3 ->PFTs 3,4, gro4

-> PFTs 5,6,7, which is re�ected by the correlation structure.
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4 Prior ranges151

Tables 2,3 show prior ranges and additional information or the parameters es-152

timated in V1-V5 and E1, respectively.153

Parameter Abbr. Lower-upper (true) Units

light extinction coe�cient li-ext 0.4-0.8 (0.6) [m2 ·m−2]
recruitment rate pft1 recr1 50-200 (100) [ind/ha/yr]

recruitment rate pft2 recr2 15-50 (30) [ind/ha/yr]

recruitment rate pft3 recr3 10-40 (20) [ind/ha/yr]

min light for establishment pft1 estab1 0-0.3 (0.1) [-]

min light for establishment pft2 estab2 0-0.15 (0.05) [-]

min light for establishment pft3 estab3 0-0.1 (0.01) [-]

mortality pft1 mort1 0-0.25 (0.05) [yr−1]

mortality pft2 mort2 0-0.1 (0.15) [yr−1]

mortality pft3 mort3 0-0.05 (0.005) [yr−1]

falling probability of trees fall 0.2-0.7 (0.4) [-]

leaf area index per tree LAI 1.5-2.5 (2) [m2 ·m−2]
crown diameter cr-d 0.12-0.2 (0.15) [-]

crown length cr-l 0.1-0.35 (0.25) [-]

max dbh growth pf1 gro1 20-80 (41) [mm/yr]

max dbh growth pf2 gro2 5-15 (9.2) [mm/yr]

max dbh growth pf3 gro3 2-6 (3.5) [mm/yr]

start growth pf1 (% of max) start1 0-100 (40) [-]

start growth pf2 (% of max) start2 0-100 (40) [-]

start growth pf3 (% of max) start3 0-100 (40) [-]

end growth pft1 (% of max) end1 0-100 (10) [-]

end growth pft2 (% of max) end2 0-100 (10) [-]

end growth pft3 (% of max) end3 0-100 (10) [-]

max growth diameter pft1 dia1 0.0-1.0 (1/3) [-]

max growth diameter pft2 dia2 0.0-1.0 (1/3) [-]

max growth diameter pft3 dia3 0.0-1.0 (1/3) [-]

Table 2: Ranges for the uniform priors used for �tting the model to the virtual

data. "Abbr." refers to the parameter abbreviation used in the �gures. Lower,

upper refers to the lower and upper bound of the uniform prior distributions.

True refers to the values used to create the virtual data.
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Parameter Abbr. Lower-upper (Dislich et al.) Units

recruitment rate pft1 recr1 5-100 (50) [ind/ha/yr]

recruitment rate pft2 recr2 100-300 (180) [ind/ha/yr]

recruitment rate pft3 recr3 50-250 (130) [ind/ha/yr]

recruitment rate pft4 recr4 10-100 (50) [ind/ha/yr]

recruitment rate pft5 recr5 50-200 (120) [ind/ha/yr]

recruitment rate pft6 recr6 100-500 (310) [ind/ha/yr]

recruitment rate pft7 recr7 20-100 (50) [ind/ha/yr]

mortality pft1 mort1 0-0.25 (0.05) [yr−1]

mortality pft2 mort2 0-0.1 (0.09) [yr−1]

mortality pft3 mort3 0-0.1 (0.05) [yr−1]

mortality pft4 mort4 0-0.25 (0.05) [yr−1]

mortality pft5 mort5 0-0.1 (0.06) [yr−1]

mortality pft6 mort6 0-0.05 (0.018) [yr−1]

mortality pft7 mort7 0-0.25 (0.008) [yr−1]

max dbh growth type1 gro1 10-40 (20) [mm/yr]

max dbh growth type2 gro2 5-30 (10) [mm/yr]

max dbh growth type3 gro3 2-30 (6) [mm/yr]

max dbh growth type4 gro4 1-15 (2) [mm/yr]

max growth diameter pft1 dia1 0.0-1.0 (0.33) [-]

max growth diameter pft2 dia2 0.0-1.0 (0.33) [-]

max growth diameter pft3 dia3 0.0-1.0 (0.25) [-]

max growth diameter pft4 dia4 0.0-1.0 (0.33) [-]

max growth diameter pft5 dia5 0.0-1.0 (0.2) [-]

max growth diameter pft6 dia6 0.0-1.0 (0.33) [-]

max growth diameter pft7 dia7 0.0-1.0 (0.33) [-]

Table 3: Ranges for the uniform priors for the Ecuadorian �t. Note that the

grouping is for 7 PFTs, but there are also 4 broader growth types to which

the 7 PFTs belong (see Dislich et al., 2009, for details). "Abbr." refers to the

parameter abbreviation used in the �gures. Lower, upper refers to the lower

and upper bound of the uniform prior distributions. Dislicht et al. refers to the

parameter values used in Dislich et al. (2009).
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