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Abstract

Inverse parameter estimation of process-based models is a long-standing problem in
ecology and evolution. A key problem of inverse parameter estimation is to define
a metric that quantifies how well model predictions fit to the data. Such a metric can be
expressed by general cost or objective functions, but statistical inversion approaches
are based on a particular metric, the probability of observing the data given the model,
known as the likelihood.

Deriving likelihoods for dynamic models requires making assumptions about the
probability for observations to deviate from mean model predictions. For technical rea-
sons, these assumptions are usually derived without explicit consideration of the pro-
cesses in the simulation. Only in recent years have new methods become available that
allow generating likelihoods directly from stochastic simulations. Previous applications
of these approximate Bayesian methods have concentrated on relatively simple mod-
els. Here, we report on the application of a simulation-based likelihood approximation
for FORMIND, a parameter-rich individual-based model of tropical forest dynamics.

We show that approximate Bayesian inference, based on a parametric likelihood ap-
proximation placed in a conventional MCMC, performs well in retrieving known param-
eter values from virtual field data generated by the forest model. We analyze the results
of the parameter estimation, examine the sensitivity towards the choice and aggrega-
tion of model outputs and observed data (summary statistics), and show results from
using this method to fit the FORMIND model to field data from an Ecuadorian tropical
forest. Finally, we discuss differences of this approach to Approximate Bayesian Com-
puting (ABC), another commonly used method to generate simulation-based likelihood
approximations.

Our results demonstrate that simulation-based inference, which offers considerable
conceptual advantages over more traditional methods for inverse parameter estima-
tion, can successfully be applied to process-based models of high complexity. The
methodology is particularly suited to heterogeneous and complex data structures and
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can easily be adjusted to other model types, including most stochastic population and
individual-based models. Our study therefore provides a blueprint for a fairly general
approach to parameter estimation of stochastic process-based models in ecology and
evolution.

1 Introduction

Parameter estimation of process-based models is a long-standing problem in ecology
and evolution. Early proponents of process-based modeling have stressed the impor-
tance of deriving predictions from basic physical processes, with physical parameters
that can be experimentally determined (Bossel, 1992). In practice, however, various
reasons, ranging from time limitations to fundamental observability restrictions, result
in the situation that most process-based models include parameters for which direct
measurements are not available (Hartig et al., 2012). These parameters need to be
estimated inversely, meaning that they are adjusted by comparing model outputs to
observed data.

To make this comparison, Bayesian methods have become increasingly popular in
ecological research during the last decades (e.g. O’Hara et al., 2002; Clark, 2005;
Purves et al., 2007; Higgins et al., 2012). Additional to their flexibility and their ex-
plicit treatment of parameter uncertainty, a particularly appealing property of Bayesian
statistics is the possibility to combine existing information on likely parameters values
with the information that is generated inversely (Hartig et al., 2012). As other inverse
parameterization approaches, Bayesian methods require the definition of a metric that
measures how well model predictions fit to the observed data. In non-statistical inver-
sion approaches, such metrics are often called goal functions, objective functions or
cost functions (e.g. Schréder and Seppelt, 2006). Bayesian approaches use a partic-
ular statistical metric, the probability of obtaining the observed data given the current
model and parameter values, usually referred to as the likelihood. Most previous ap-
plications of Bayesian statistics to complex stochastic models derive this probability by
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making distributional assumptions about how observations vary around mean model
predictions that are independent of the processes in the model, either ad-hoc or based
on the observed variance in the data (e.g. Martinez et al., 2011; van Oijen et al., 2013).
This is usually justified with the idea in mind that there is observation uncertainty or vari-
ability in environmental conditions that is not accounted for in the model. The approach
of constructing likelihoods from such assumptions is the current state-of-the-art, but
it has a major limitation: many process-based ecological models are already stochas-
tic and predict variability of certain model outputs. Additional process-based observer
models that describe how field data was collected can easily be added (Zurell et al.,
2009). In principle, one would therefore much rather use this mechanistically derived
variability for deriving the likelihood, because this accounts for our ecological under-
standing in creating expectations for the probabilities of observing particular deviations
from mean model predictions. However, while theoretically always possible, this route
was blocked in practice for most models due to the difficulties of making the necessary
probability calculations technically tractable (Hartig et al., 2011).

This technical limitation has weakened in recent years. Simulation-based approxima-
tion techniques have been developed that allow treating any stochastic model in a for-
mal statistical inference framework. Of those, Approximate Bayesian Computing (Beau-
mont, 2010) has arguably attracted most attention, but there are other approaches as
well. Their common principle is very simple: what is needed for including a stochas-
tic simulation model in a formal inferential framework is the likelihood p(D|M(¢)) for
an outcome D to occur under a model M with parameters ¢ (Diggle and Gratton,
1984). Simulation-based likelihood approximations estimate this probability by gener-
ating draws from the stochastic model. Subsequently, different methods are used to
approximate the likelihood or posterior (Hartig et al., 2011). Often, this involves com-
paring model output and observed data by means of data aggregations, also called
patterns (Wiegand et al., 2004; Grimm and Railsback, 2012) or summary statistics
(Beaumont, 2010; Wood, 2010). For brevity, we will refer to these methods in gen-
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eral simply as likelihood approximations, or, in the context of a Bayesian analysis, as
approximate Bayesian methods.

The potential for likelihood approximations in ecology has been repeatedly stressed,
but applications to community or population ecology are still rare (but see Jabot and
Chave, 2009, 2011; May et al., 2013), and to our knowledge, there is no previous study
that applies likelihood-approximations to a computationally expensive, parameter-rich
model of an ecological community. In this study, we use FORMIND, an individual-based
model of tropical forest communities, to test the applicability of the likelihood approxi-
mations proposed by Wood (2010) to this model type. Using virtual field data that were
generated from the model with known parameters, we test whether the method allows
us to correctly identify all model parameters. We also examine how choice and ag-
gregation (summary statistics) of the data affect the results of the inference. Finally,
we apply the method to fit the model to field data from a tropical montane forest in
Ecuador.

2 Materials and methods
2.1 Forest gap dynamics and the FORMIND model

Forests ecosystems are locally highly dynamic. One of the most prominent drivers of
these dynamics, particularly in the tropics, are natural disturbances, where large trees
that have lost stability due to mortality or other factors fall and damage or kill other
trees. This creates a dynamic mosaic of light-filled gaps in natural forests (Shugart,
1984; McCarthy, 2001). Within these gaps, pioneer species colonize first, until other
species take over and continue the successional dynamics that are thought to be one
part of the explanation for forest diversity (Kohyama, 1993).

Mechanistic forest models that describe the processes of gap formation and revovery
have a long history in ecology (Pacala et al., 1996; Bugmann, 1996; Shugart, 1998;
Huth and Ditzer, 2000). These models typically include several tree species with differ-
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ent growth properties and light demands. For highly diverse systems such as tropical
rainforests exhibit, species are usually grouped into plant functional types (PFTs) that
represent a group of species with similar functional properties. Parameters and model
predictions per plant functional types then represent a mean over the species that are
represented by this type. Gap formation, that is, the death of large trees, maintains the
modeled forest in a dynamic equilibrium. As a result, forest gap models do not merely
predict a mean value for outputs such as biomass, species composition, or tree size
distributions. Rather, they deliver samples of different possible values for these outputs
and therefore allow assigning probabilities to different community or biomass states.
These predictions of spatio-temporal variation in community composition is what we
will use later to derive a probabilistic distance measure between model output and
observed data.

FORMIND, the forest model used for this study, is a stochastic, individual-based
forest model designed in the tradition of classical forest gap models (Kéhler, 2000). It
has been applied for estimating forest succession, variability and disturbances impacts
in various tropical locations around the world (e.g. Ruger et al., 2007; Kéhler and Huth,
2010; Dislich and Huth, 2012; Gutiérrez and Huth, 2012). The simulation area (plot)
in FORMIND, which can be of variable size (we use 1ha throughout the paper) is
subdivided into 20m x 20m grid cells. Tree individuals are assigned to one of these
cells and interact with each other on this cell, but do not have an explicit spatial position
within the cells. The model state is entirely described by species respectively functional
type, size (measured in diameter at breast height dbh), and location (cell) of all trees.
Other variables, such as tree height and crown dimensions, are derived through fixed
allometric relationships.

At each time step (we use 5yr time steps), the light climate for each tree is cal-
culated from the position of all trees and their respective crowns in the same cell.
Subsequently, establishment (light-dependent, stochastic), mortality (stochastic) and
tree growth (light-dependent) act on the plot, respectively the tree individuals. Impor-
tant parameters in the model (Table 1) are recruitment and mortality rates, parameters
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that describe the size-specific maximum growth rates, and the allometric relationships
that determine height and crown dimensions. The model is Markov in the sense that
the probabilities for reaching any possible state in the next time step are entirely de-
termined by the values of the state variables in the previous time step. Details of these
processes, together with a more exact description of the model scheduling, are pro-
vided in the online Supplement (see also Kéhler, 2000; Dislich et al., 2009).

2.2 Bayesian parameter estimation with simulation-based likelihood
approximations

We use a Bayesian approach for parameter estimation. Hartig et al. (2011) recommend
using Bayesian methods (or at least MCMCs) with simulation-based likelihood approx-
imations, because MCMCs (unlike optimization approaches) are more robust towards
variance in likelihood estimates generated by the approximation. They are also less
sensitive to interactions between parameters that are to be expected in process-based
models. In principle, however, one could use the likelihood-approximation used in this
study with an optimization algorithm in a maximume-likelihood framework as well.

There are a number of introductions to Bayesian statistics. A detailed reference is
Gelman et al. (2003), for shorter introductions see Ellison (2004). We therefore give
only a brief summary here. The outcome of a Bayesian inference is a probability distri-
bution P(¢|D,s) for the parameters ¢ given the observed data D,¢. This distribution,
called the posterior, is calculated as

p(¢|Dobs) = C'p(Dobs|¢) p(d’) ) (1)

where c is a normalization constant, the prior probability density p(¢) quantifies param-
eter uncertainties before comparing the model to the observed data, and the likelihood
function p(D|¢) describes the probability of obtaining the observed data conditional on
a parameter set ¢, which can, broadly speaking, be interpreted as a measure of fit.
Because our main concern in this paper is the approximation of the likelihood, we
chose wide uniform (flat) priors for all parameters and fit types, which means that the
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posterior and likelihood are strictly proportional to each other across the possible prior
range. Tables with the widths of these uniform priors are provided in the online Sup-
plement. Given that we knew that the model reacts nonlinearly to many parameters,
other uninformative priors choices would have been possible (e.g. Kass and Wasser-
man, 1996), but we felt that for this study it is more useful to ensure proportionality of
likelihood and posterior to make the results better interpretable.

2.2.1 Generating approximate likelihoods

The technical key novelty in this study is the definition of the likelihood p(D|g). In “con-
ventional” Bayesian or maximum likelihood studies, this conditional probability is ob-
tained by formulating an error model that quantifies probabilities of deviations between
model predictions and observations to occur (e.g. Van Oijen et al., 2005). This model
may be mechanistically motivated, for example by knowledge about measurement un-
certainties during obtaining the data. In practical situations, however, there are usually
a number of error sources that interact, and error models are therefore typically either
fixed ad hoc (van Oijen et al., 2013) or derived from the observed variability in the data
(Martinez et al., 2011). Hence, “conventional’ likelihoods are usually independent of
the mechanisms in the process-model that is fit.

The method that we apply here goes beyond such an independent error model to-
wards an approach where both the mean model prediction, but also the probability of
observing deviations from the mean, are derived from the same stochastic ecological
processes. This is particularly promising in systems where process-stochasticity domi-
nates observation errors. For many tropical forest inventories, this is the case — typical
observation errors are known (Chave et al., 2004), and based on these results we can
assume that, for small plots (1 ha), observation uncertainty is small compared to the
local biomass variation due to successional dynamics (Chave et al., 2003). FORMIND
simulations of the aforementioned successional dynamics triggered by gap formation
explain the extent of this variability well (e.g. Kéhler and Huth, 2010) and can therefore
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be used to generate statistical expectations for field observations such as, for example,
plot biomass (Fig. 1).

Several techniques have been suggested for achieving approximations of the like-
lihood p(D,,¢|@p) from the variability of the stochastic simulation outputs. Most promi-
nent is arguably the method of Approximate Bayesian Computing (ABC) (Csilléry et al.,
2010; Beaumont, 2010), which has attracted much attention in recent years. However,
as discussed in Hartig et al. (2011), there are a number of closely related methods
that are currently not counted as examples of ABC, but that apply nearly the same
principles. In this study, we apply a simulation-based likelihood approximation used by
(Wood, 2010), called a “parametric likelihood approximation” in Hartig et al. (2011).

The principle of this method is to estimate p(D.s|®), for any ¢ desired, by fitting
a parametric distribution to the output of the stochastic simulation, and estimating the
probability of obtaining D, from this distribution (Fig. 2). We used a multivariate nor-
mal distribution because it fitted well to the simulation outputs, and it allows a conve-
nient estimation of the covariance structure, but normality is by no means a fundamen-
tal requirement. For this multivariate normal approximation, the likelihood of obtaining
the observed data D is

PDoos|®) =~ C-[Zgin(@®)]'/2ex0 | (Dops ~ Asim(®)) E31 (@) (Doss — dsim(@®)] ()

where c is (27T)k/2, k the dimension of D, dg, (@) is the corresponding vector of
mean simulation outputs, and Is'i:n(q)) the covariance matrix of the simulation outputs
that summarizes the variability within each dimension of the model output, but also
correlations between those dimensions. Pseudocode for the entire parameter algorithm
is provided in the Supplement.

2.2.2 Representation of the data

Similar as in ABC, it is desirable to represent the data used in Eq. (2) in a low-
dimensional form so that the estimation particularly of Z;:n(tp) can be achieved in
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a computationally efficient way. Therefore, we do not use the raw data (which would
be in our case the size and identity of each tree on the plot), but some aggregation
(summary statistics) of the data. Ideally, one would choose the lowest-dimensional ag-
gregation of the original data for which there is no loss of information with respect to the
inference (minimal sufficient statistics), but there is no generally accepted rule about
how to find this representation (but see Fearnhead and Prangle, 2012; Blum et al.,
2013). We therefore decided to use mainly two aggregations of forest data that have
been frequently used for summarizing local inventory data in forest modeling. The first
aggregation is stem size distributions per PFT, which count the number of tree individ-
uals in (here) 10cm size classes. The second is the size specific mean growth, which
quantifies the mean stem diameter growth for different tree size classes. We also ex-
perimented with other forest attributes or aggregations of the data (see Table 2).

2.2.3 Posterior estimation

Subsequent posterior estimation based on the approximate likelihood was done with
an adaptive Metropolis-Hastings MCMC (Haario et al., 2001). We always ran several
chains and checked convergence visually and with Gelman—Rubin diagnostics (Gel-
man and Rubin, 1992, see Supplement for further details). As we required typically
several seconds to evaluate a single parameter combination with FORMIND, poste-
rior estimations cost substantial computing time. The exact number, length and burn-in
of chains are provided in the figure captions. Figure 2 visualizes a summary of the
analysis method.

2.3 Field data, model setup and analysis

We used two data sets to fit the parameters of the model, a “virtual” 1 ha inventory with
three plant functional types (PFT1 = pioneer, PFT2 = mid-successional, PFT3 = late
successional) that was created from the FORMIND model itself (which has the ad-
vantage that the “true” parameter values are known), and a 5 ha forest inventory from
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a montane tropical rainforest in Ecuador that is described in (Dislich et al., 2009). The
purpose of the virtual dataset is to test the parameter estimation method for different
data types in a situation where true parameters are known, while the data from Ecuador
provides a realistic case study by testing the method in a situation that had previously
been dealt with by informal model calibration.

To create the “virtual” inventory, we used a base parameterization that was adjusted
for exhibiting biomass values and successional patterns typical to a wet tropical low-
land rainforest. With this setting, we simulated 1000 model runs, and created virtual
datasets from the mean equilibrium values of these replicates for different types of out-
put variables (summary statistics) such as biomass, stem diameter growth rates and
stem size distributions. We also experimented with a different number of parameters to
be estimated. A summary of these options, labeled with V1-V5, is provided in Table 2.
While the question of sufficiency of different data types for the parameterization is a fun-
damental concern in this type of analysis (e.g. Jabot and Chave, 2009), the number of
estimated parameters is more a practical issue: we knew already before that FOR-
MIND exhibits interactions between parameters with respect to these outputs, which
slows down posterior estimation and makes the analysis of the posterior distribution
difficult.

For the fit of the model to field data in Ecuador, a tree-species grouping into seven
PFTs was used that is described in detail in Dislich et al. (2009). Due to data availability,
we used only the stem size distributions for the parameter estimation which was labeled
E1.

3 Results

3.1 Fit to virtual field data (tropical lowland rainforest, V1-V5)

For fitting the model to the virtual field data, we considered a number of options that
differ in the aggregation of model outputs, and in the number of estimated parameters.
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We concentrate here on the case V1 in Table 2 (detailed data, not all parameters under
calibration). Results for the other cases are discussed shortly below. Detailed results
are provided in the Supplement.

3.1.1 Marginal distributions

Figure 3a shows the estimated marginal posterior densities (Eq. 1) for the parameteri-
zation V1 in Table 2, which represents the probability assigned to the different possible
values for the respective parameter. We find that most parameter values are retrieved
correctly and show moderate uncertainties of the order of 20-50 % of the mean. In
interpreting these plots, note that “marginal” means that we display the values of one
particular parameter in the posterior sample without consideration of the correspond-
ing values of the other parameters. The latter is important because marginally, the
uncertainty of a parameter appears often substantially larger than it effectively is due
to correlations between parameters. We examine this in Sect. 3.1.2.

3.1.2 Correlations

Marginal distributions represent a cross-section of the posterior sample along a par-
ticular parameter axis, which neglects potential trade-offs between parameters with
respect to the data that is used for the fit. Statistical models are usually designed in
a way that such correlations are avoided wherever possible. For process-based mod-
els, the correspondence to concrete biological mechanisms is usually the main design
criterion. It is therefore likely that such correlations will appear when estimating param-
eters of process-based models, as evidenced by Fig. 3b. Moreover, it is to be expected
that the correlation structure depends on the data used to fit the model — less infor-
mative data will typically lead to more parameter combinations that can reproduce this
data, affecting the correlation structure in the posterior sample.

These expectations are largely confirmed by our results. We find strong negative
correlations particularly for recruitment and mortality of early successional types, as
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one would expect, because, for those PFTs, increased mortality can be compensated
for to some extent by increased recruitment. Also, we find that the correlation structure
changes with the data types used. A detailed analysis of the correlation structure for the
different data types (summary statistics) tested by us is provided in the Supplement.

3.1.3 Choice of data type and number of fitted parameters

For the parameter estimations V3-V5 in Table 2 that used less information (more ag-
gregated model outputs or summary statistics), posterior parameter estimates were
clearly wider than for our baseline V1 (Table 2, for details, see Supplement). It can
therefore be concluded that all further aggregations of the data used in V1 lose infor-
mation for the purpose of estimating the considered parameters (see also Wiegand
et al., 2004). Similarly, increasing the number of fitted parameters (V2) increases the
width of the posterior distribution. For all cases, the results indicate that more coarse
aggregations or more parameters under calibration lead to additional correlations be-
tween parameters with respect to the objective of reproducing the respective data type,
with the consequence of wider marginal distributions and slower convergence of the
MCMC algorithms (Table 2, see Supplement for details).

3.1.4 Reduction of predictive uncertainty

Based on the posterior distribution of parameter values, we may also estimate the
posterior predictive uncertainty for output values of the model, that is, the uncertainty
estimates that are generated for the output of the model given the posterior parameter
uncertainty for the parameters of the model. We compare three cases, the inherent
stochastic uncertainty of the model with the “true” parameters, the uncertainty result-
ing from parameters drawn from the prior distribution (i.e. before parameter estimation),
and the uncertainty for parameters drawn from the posterior distribution (i.e. after pa-
rameter estimation). We see that the posterior predictive mean is similar to that of the
“true” parameters, with predictive uncertainty only slightly larger than for the “true”,
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fixed parameter value, which indicates that, for a single 1 ha plot, the output uncer-
tainty generated from process-stochasticity is of the same order of magnitude as the
uncertainty originating from the parameters (Fig. 4). The prior predictive distribution,
showing the predictions before calibration, is clearly biased towards smaller values.
The reason is likely that many parameters in the prior distribution, in particular those
with high mortality, result in very low biomass values.

3.2 Fit to Ecuadorian montane rain forest, E1

The results of the fit to field data in Ecuador (case E1 in Table 2) are displayed in
Fig. 5. We show the marginal distributions for each parameter scaled to the prior range.
As priors were set wide, but with typical ranges for a forest of that type in mind, this
provides a visual estimate of the reduction of parameter uncertainty that would be
reached by from a state at which no specific information about the plot is available —
a distribution of a width of, e.g., 0.2 indicates that the prior uncertainty is reduced by
80 % by the chosen data type (static stem size distributions). Parameter correlations
and unscaled marginal parameter estimates are provided in the Supplement, Figs. 13
and 12, respectively.

4 Discussion

Inverse parameters estimation of ecological models requires a metric that quantifies
how well model predictions fit to observed data. Because of technical limitations, the
current state-of-the-art is choosing these metrics from expert knowledge or deriving
them from field data. However, new statistical methods make it possible to generate
goodness-of-fit metrics directly from any stochastic simulation models. More specifi-
cally, simulation-based likelihood approximations allow generating approximate likeli-
hood functions that report the probability of obtaining a certain field observation from
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any stochastic ecological model. This technique provides a universal and unambiguous
way to connected stochastic ecological models to field data.

The present study is one of the first to apply this method to a large ecological model.
We use a parametric likelihood approximation, proposed by Wood (2010), to fit FOR-
MIND, a relatively complex individual-based forest gap model, to a range of different
virtual field data sets created from the model as well as to real field data from an
Ecuadorian tropical forest.

4.1 Validation of the method with virtual field data

Fitting the model to different virtual field data sets allowed us to assess uncertainty
and bias of the fit for situations where true parameters were known. For the most de-
tailed data (abundance and growth distributions, case V1 in Table 2), parameter values
were largely unbiased, with correlations between a few of the parameters (Fig. 4, as
well as Figs. 2 and 3 in the Supplement). With increasing level of aggregation, (V3—
V5), parameter values showed increasing correlations, bias and uncertainty. Note that
it is important to take correlations into account when interpreting marginal parameter
uncertainties such as Fig. 3a: if there are correlations between parameters, marginal
uncertainties appear wider than in the multivariate correlation plots. This remains true
for higher-order correlations which are likely present for more aggregated data types
such as V4 and V5, but which are not covered by our analysis. Comparing the extent
to which model parameters are constraint by the data by the width of their marginal
posterior distribution only can therefore be misleading in the presence of strong corre-
lations.

Correlations in the posterior indicate a trade-off between parameters with respect
to the data that is used for the fit. For the data V1, for example, correlations occurred
mostly within the parameters of the same PFT, with higher mortality requiring higher
recruitment, with the strongest correlation for the early-successional type and weakest
correlation for the late-successional type. The explanation is that if the mortality of
a species is increased, we have to increase recruitment or growth to maintain similar
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species numbers in the community. However, as V1 contained data on growth data,
growth rates are tightly constrained, so the only option to maintain a similar species
number is to increase recruitment, those effects are most strong for the pioneer species
that has the highest turnover. The fits to data V3 without growth data, on the other hand,
show correlation also with mortality and growth, because growth is unconstrained for
this data type.

It is an advantage of the Bayesian analysis (or rather the use of an MCMC) that
these interactions can be made explicit and interpreted. Thinking about the reasons
for correlations may be helpful to understand and improve the model structure, but
a correlation in the posterior does not necessarily mean that two parameters share
a particular ecological connection. It just means that changes in one of the parameters
may be counterbalanced by the other to maintain the same value of the model output
under consideration. Thus, correlations are connected to a data type, and they inform
us which parameters cannot be fully constraint by this data type. For example, cor-
relations and bias increase from V1 to V3, indicating that even for fitting recruitment,
mortality and growth parameters only, static data such as stem size distributions does
not provide sufficient information to constrain all parameters at once.

Bias or correlations observed in the virtual test case seemed to originate predomi-
nantly from data limitations and not from problems with the simulation-based likelihood
approximation. We have no indications that would suggest that the parametric model
(multivariate normal) used in the likelihood approximation created any problems or bias
by not adequately summarizing model outputs, which would be theoretically possible.
Due to the computational complexity of this study, however, it was not possible for us
to make a more systematic analysis of this question, for example by using virtual repli-
cates of the field data sets or less aggregated data types.

4.2 Fit to Ecuadorian field data

Only static data was available to us for fitting the FORMIND model to field data from
a montane forest in Ecuador. Our previous analysis suggested that these data would
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not be sufficient to sensibly constrain all demographic parameters at once. To get eco-
logically interpretable results, we therefore fixed the recruitment parameters to the val-
ues used in Dislich et al. (2009), and calibrated mortality and growth parameters only.
Prior uncertainty was considerably reduced by these data (Fig. 5), suggesting that the
data was relatively informative to constrain the parameters under calibration. Marginal
posterior parameter estimates are similar to those that were derived by Dislich et al.
(2009) with a combination of literature data, expert knowledge and calibration (see
Supplement, Table 3 for exact values).

From the fits to the virtual field data V3 (Fig. 7, Supplement), we expected correla-
tions in the posterior mostly to occur between parameters of the same PFT. We find
those correlations, but we find additionally correlations particularly between the mor-
tality parameters of some PFTs (Fig. 13, Supplement). To understand this, one has to
know that species grouping designed by Dislich et al. (2009) is hierarchical, consisting
of 7 PFTs that were further divided into 4 growth groups with equal maximum diam-
eter growth for the PFTs in each group, with the following reation between (PFT) and
growth group: (1)-2,(2)-1,(3,4)-3,(5,6,7)-4. Diameter growth parameter 3, which is esti-
mated lower, thus applies to the mid-successional PFTs 3 and 4, and diameter growth
parameter 4, estimated higher, applies to the late successional PFTs 5, 6 and 7. This
hierarchical species grouping is mirrored in the correlation structure, with particularly
strong correlations in the mortality parameters of PFTs that belong to the same growth
group. Our interpretation of this pattern is that PFTs in the same growth group are
competing more strongly with each other than those that are in different growth groups.

Differences to the parametrization of Dislich et al. (2009) are particularly evident in
the mortality parameters. Lower values were estimated for the mortality of the mid-
successional PFTs 3 and 4, while mortality of the late successional PFTs 5, 6 and 7
was estimated higher. This pattern is mirrored in the maximum diameter growth rates
of mid-successional species. Thus, our study points to less pronounced differences be-
tween mid and late-successional types than Dislich et al. (2009). We can only speculate
about the reason for these differences. In general, one would think that the system-
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atic parameter estimation is more reliable than the manual calibration by Dislich et al.
(2009). However, although Dislich et al. (2009) calibrated to the same data, they also
considered the fit of other model outputs such as total biomass and expert opinions
for fixing the parameters. Expert opinion in particular would favor more pronounced
differences in mortality rates between mid and late successional species due to eco-
logical expectations, although specific empirical data on tree mortality or on maximum
growth rates under full light were not available. Secondly, there are significant correla-
tions between the parameters, which allow gaining a similar fit with a range of different
parameter values. And finally, we were using the model in this study at a lower temporal
resolution (5yr time steps) than Dislich et al. (2009) to reduce computing time, which
can affect model dynamics and equilibrium distributions, meaning that slightly differ-
ent parameter values would be estimated for the same model with different temporal
resolution.

4.3 Advantages compared to conventional calibration methods

Our results demonstrate that inverse parameter estimation with a likelihood function
derived from the stochasticity in the model outputs is feasible and provides good re-
sults, even for a relatively complex and runtime-intensive ecological model. This is
encouraging in itself, as it is neither trivial to calibrate a parameter-rich model with het-
erogeneous data in general, nor to address all the technical challenges for performing
the simulation-based likelihood approximation. A valid question, however, is whether
the gain is worth the effort — after all, our approach is connected with considerable
computational and conceptual costs, and all we gain are parameter estimates that
could probably also have been derived with conventional inversion methods such as
parameter optimization.

However, there are practical advantages of simulation-based likelihood approxima-
tions for ecological research that extend far beyond what we could demonstrate in this
study. First of all, there is considerable interest in connecting models to large and het-
erogeneous data sources that become increasingly available (Luo et al., 2011; Hartig
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et al., 2012; Dietze et al., 2013). A practical problem in this context is that conven-
tional methods provide no good answer for how to weight different data sources to con-
struct a joint likelihood or objective function. Moreover, ecological processes nearly in-
evitably lead to correlations between those different data types, meaning that we would
not expect errors to be independent, posing a challenge for conventional methods.
Simulation-based likelihood approximations provide a natural answer to these prob-
lems. Assuming that the simulation model includes all major sources of stochasticity,
likelihoods approximations automatically weight the importance of different model out-
puts and account for correlations between them. In our study, we can see this in the
combined fit of growth rates and stem size distributions, which required no weighting of
these two patterns and automatically accounted for second order correlations between
them.

Moreover, under conventional inverse parametrization procedures, one might see
that a certain pattern is not well represented, but it is often difficult to decide whether
this is a random or a systematic problem. Simulation-based likelihood approximations
allow making a definite statement about the probability of observed patterns given the
current model (parameters). Thus, we can use the full arsenal of statistical procedures,
including Bayesian and frequentist model selection, to compare alternative ecological
hypotheses. The possibility of such rigorous statistical tests for alternative process-
based models will likely increase the acceptance of process-based models as a tool for
not only representing and predicting, but for statistically testing ecological knowledge.

4.4 Differences to ABC

The comments in the previous subsection apply to parametric and non-parametric like-
lihood approximation alike. However, it also seems interesting to discuss differences
between the parametric likelihood approximation used in this study and the more widely
used non-parametric approximation used in Approximate Bayesian Computing (ABC,
Beaumont, 2010). As discussed in Hartig et al. (2011), unlike ABC, parametric likeli-
hood approximations will nearly inevitably exhibit a certain amount of approximation
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error because it is unlikely that a simple distributional model can emulate model out-
put distributions in all respects (particularly in the tails of the output distribution). Yet,
the parametric approximation also has practical advantages. Many ecological models
have to be run into equilibrium before predictions can be made. Once such a model
is in equilibrium, more draws for the parametric approximation can be generated rel-
atively cheap, while a new run has to be started for each ABC step. In our example,
the time required for the parametric approximation in one MCMC step was not much
longer than for an ABC step, but the parametric approximation ensures a good accep-
tance probability. To reach the same acceptance probability with ABC, we would have
to accept a relatively large ABC approximation error. This error may be corrected later,
but the fact remains that for situations where the number of possible MCMC evaluation
is fixed (complex models), both ABC and parametric approximations will have a non-
negligible error. We conjecture that the balance could well be in favor of parametric
approximations in situations such as the one encountered in this study.

5 Conclusions

Our results suggest that likelihood approximations, in particular parametric likelihood
approximations, are a promising route for the parametrization of stochastic ecologi-
cal models. Using them is technically more challenging that the “traditional” Bayesian
approach where likelihoods are based on phenomenological error models. The advan-
tage, however, is that error models are based on the same ecological mechanisms as
all other model predictions. Thus, they allow a more rigorous test of the mechanistic
model assumptions, because the mechanisms have to explain both the mean and the
variance in the data. Moreover, likelihood approximations account for the relative im-
portance and correlations between different data types predicted by the model, which
makes them interesting when models have to be coupled to heterogeneous data. In
this study, additional computational costs of the approach were moderate (factor 2-5)
compared to a standard Bayesian approach due to the fact that the model had to be

13116

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< |
] >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/13097/2013/bgd-10-13097-2013-print.pdf
http://www.biogeosciences-discuss.net/10/13097/2013/bgd-10-13097-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

run into equilibrium in any case. Such runtime differences appear secondary compared
to the methodological advantage of rigorously testing our mechanistic understanding
of ecosystems against field data, including the sampling and measurement process.
Parametric likelihood approximations therefore seem particularly promising for models
that have to be run into equilibrium, contain the dominant stochastic processes, use
heterogeneous data, and can still be well summarized by simple distributions.

Supplementary material related to this article is available online at
http://www.biogeosciences-discuss.net/10/13097/2013/
bgd-10-13097-2013-supplement.pdf.
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Table 1. Important model parameters and their interpretation. The parameter dbh,, in the last ©
line refers to the maximum diameter of a tree, which is a species or PFT specific parameter of § F. Hartig et al.
the model (see Dislich et al., 2009). 7
g.
Parameter Notes Units T
Q
light extinction coefficient  fraction of light intercepted per unit of LAI [m?m™2] S
recruitment rate new tree individuals at 1 cm dbh [ha"1 yr"1] -
min light for establishment for recruitment, relative to full irradiance [-] -
mortality rate probability per year [yr"1]
falling probability applies to large trees that die [-] %
leaf area index per tree projected leaf area per unit area [m2 . m‘2] o
crown diameter relative to diameter [dbh™] =
crown length relative to tree height [-] o
max dbh growth (gro;) maximum stem diameter (sd) growth rate [mm yr"1] %
start growth sd growth rate for minimum stem diameter (relative to gro,,) [-] %
end growth sd growth rate at maximum stem diameter (relative to gro,,) [-] @
max growth diameter stem diameter of max growth (relative to dbh,,) -]
O
=
o)
(=
(2}
@
o
=}
o
Q
§S)
@
=

(cc) W)
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Table 2. Overview of parameter estimations with different models, parameters and sum-
mary statistics. Abbreviations for the data: SSD = stem size distribution (16 10cm classes),
GRO =mean stem diameter growth for each of the 16 10cm stem diameter classes,
BM = Biomass. If not stated otherwise, the data type was available for each PFT separately.
If we use the mean over all PFTs, we label this by “total”. Full parameters means that all
parameters listed in Tables 1 and 2 in the Supplement are estimated inversely. Reduced pa-
rameters means that from Table 1, only recruitment, mortality, maximum growth and maximum
growth diameter are estimated. “Number of parameters” and “Data dimension” give the number
of parameters and data points, respectively. “Posterior width” measures the posterior width of
the marginal distributions by the ratio between marginal posterior standard deviation and uni-
form prior width averaged over all parameters. “Convergence ranking” provides a ranking of
the speed of convergence of the MCMCs based on the convergence diagnostics discussed in
the Supplement. Lower numbers indicate fastest convergence. As E1 uses different data and
a different number of PFTs, the convergence ranking is not fully comparable and was set in
parenthesis.

Label Description Number of  Data Posterior Convergence
Parameters Dimension Width Ranking

Parameterization to virtual tropical forest (3 PFTs):

VA Field data: SDD, GRO, reduced parameters 12 96 0.019 1

v2 Field data: SDD, GRO, full parameters 26 96 0.096 5

V3 Field data: SDD, reduced parameters 12 48 0.073 2

V4 Field data: total SDD, reduced parameters 12 16 0.190 3

V5 Field data: BM, reduced parameters 12 3 0.192 4

Parameterization to Ecuadorian montane rain forest (7 PFTs):

E1 Field data: SSD 18 112 0.036 (5)
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Fig. 1. Principle of statistical inference through stochastic simulation. (a) shows mean model
predictions (black), standard deviation (gray) and extreme values (light gray) for the biomass of
a 1 ha plot over 10000 yr, starting from an empty plot. (b) shows the same mean equilibrium
biomass (black) and two standard deviations (gray), but as a function of the mortality of the
late-successional type PFT 3, all other parameters equal. We see that comparing the observed
biomass from (a), which was created with a mortality rate of 0.005, with the predicted biomass
for different mortality rates, we can infer the original value as well as a statistical uncertainty,
without having to define a statistical model.
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Fig. 2. Parameter estimation: at the top left, a conceptual illustration of the FORMIND model. %
Different colors represent different PFTs. The model is compared to the field data (middle) by &
fitting a distribution to the stochastic model output, and calculating the approximate probability &
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(a) Marginal parameter distributions of p(¢|D) (b) Correlations between parameter in p(¢|D)
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Fig. 3. Summaries of the estimated parameter values (shown as probability distributions) after
fitting the model to the virtual field data (case V1 in Table 2). The distributions in (a) correspond
to the marginal posterior density p(¢|D) for each parameter, scaled relative to the “true” values
that were used to create the synthetic data (see Table 2 in the Supplement for true values and
units). The dot within each distribution denotes the median value. Panels in (b) visualize cor-
relations between recruitment and mortality parameters in the posterior sample (recr1 refers to
the recruitment rate of PFT1, mort2 refers to mortality of PFT2 and so on). The diagonal shows
the marginal distributions displayed in (a). The lower triangle shows the correlation density be-
tween the parameters on the diagonal (red values denoting higher density) and a nonlinear fit of
the correlation (black line). The upper triangle shows Spearman’s rank correlation coefficients
for the correlations in the lower triangle.
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Predictive uncertainties for the biomass of 1 ha of forest

Uncertainty (due to stoch- |
asticity) for the true parameter

Prior predictive
uncertainty

Posterior predictive
uncertainty

0 100 200 300 400

Biomass [tons/ha]

Fig. 4. True, prior and posterior predictive uncertainty. Each distribution is created from 1000
model runs, observing the biomass on a 1 ha forest plot after 2000 yr. The upper distribution
shows biomass values from model runs with the same, “true” parameters (Table 2, Supple-
ment), and thereby gives an estimate of the stochastic uncertainty of the model. For the middle
distribution, model parameters were drawn from the prior distribution (resulting in what is called
the prior predictive distribution). For the lower distribution, model parameters were drawn from
the posterior (posterior predictive uncertainty).
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Fig. 5. Marginal posterior probabilities for the model parameters after fitting the model to field
data from Ecuador, scaled relative to the uniform prior distributions (see Table 3 in the Supple-
ment for prior values and units). Values used by Dislich et al. (2009) are marked as dark red
triangles. An unscaled version of these distributions and correlations are provided in Figs. 12
and 13 of the Supplement.

13128

| Jadeq uoissnosigq | Jeded uoissnosiq | Jaded uoissnosiqg

Jaded uoissnosiq

BGD
10, 13097-13128, 2013

Approximate
bayesian calibration
of a forest model

F. Hartig et al.

(8
S


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/13097/2013/bgd-10-13097-2013-print.pdf
http://www.biogeosciences-discuss.net/10/13097/2013/bgd-10-13097-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

