Biogeosciences Discuss., 10, 16615–16643, 2013 www.biogeosciences-discuss.net/10/16615/2013/ doi:10.5194/bgd-10-16615-2013 © Author(s) 2013. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Biogeosciences (BG). Please refer to the corresponding final paper in BG if available.

Isotopomeric characterization of nitrous oxide produced by reaction of enzymes extracted from nitrifying and denitrifying bacteria

T. Yamazaki^{1,*}, T. Hozuki², K. Arai², S. Toyoda¹, K. Koba³, T. Fujiwara², and N. Yoshida^{1,4,5}

¹Department of Environmental Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan

²Department of Biological Science, Graduate School of Science, Shizuoka University, 836 Oh-ya, Suruga-ku, Shizuoka 422-8529, Japan

³Department of Environmental Science on Biosphere, Graduate School of Agriculture and Technology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-city, Tokyo 183-8509, Japan

⁴Department of Environment Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan

⁵Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, 152-8551, Japan now at: Mitsubishi chemical medience corporation, 1000 Kamoshita-chou, Aoba-ku, Yokohama 227-0033, Japan

Received: 26 September 2013 – Accepted: 12 October 2013 – Published: 25 October 2013 Correspondence to: S. Toyoda (toyoda.s.aa@m.titech.ac.jp)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

Nitrous oxide (N₂O) is a potent greenhouse gas and produced in denitrification and nitrification in environmental nitrogen cycle by various microorganism. Site preference (SP) of ¹⁵N in N₂O, which is defined as the difference in the natural abundance of isotopomers ¹⁴N¹⁵NO and ¹⁵N¹⁴NO relative to ¹⁴N¹⁴NO, has been reported to be a useful tool to quantitatively distinguish N₂O production pathway. To determine representative SP value for each microbial process, we firstly measured SP of N₂O produced in the

- enzyme reaction of hydroxylamine oxidoreductase (HAO) purified from two species of ammonia oxidizing bacteria (AOB), *Nitrosomonas europaea* and *Nitrosococcus oceani*,
 and that of nitric oxide reductase (NOR) from *Paracoccus denitrificans*, respectively. The SP value for NOR reaction (-5.9 ± 2.1 ‰) showed nearly the same value as that
- reported for N₂O produced by *P. denitrificans* in pure culture. In contrast, SP value for HAO reaction (36.3 \pm 2.3 ‰) was a little higher than the values reported for N₂O produced by AOB in aerobic pure culture. Using the SP values obtained by HAO and NOR
- reactions, we calculated relative contribution of the nitrite (NO₂⁻) reduction (which is followed by NO reduction) to N₂O production by *N. oceani* incubated under different O₂ availability. Our calculations revealed that previous in vivo studies might have underestimated the SP value for NH₂OH oxidation pathway possibly due to a small contribution of NO₂⁻ reduction pathway. Further evaluation of isotopomer signatures of N₂O using
 common enzymes of other processes related to N₂O would improve the isotopomer
 - analysis of N₂O in various environments.

1 Introduction

25

Nitrous oxide (N_2O) is a potent greenhouse gas and contributes indirectly to destruction of ozone layer in the stratosphere (Ravishankara et al., 2009). Production of the N_2O on the earth is mainly controlled by microbial processes that include nitrification and denitrification (Stein and Yung, 2003). In the nitrification, autotrophic microorganisms

like ammonia oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB) oxidize ammonia to nitrite (NO_2^-) and produce N_2O as a byproduct under mainly aerobic environment (Casciotti et al., 2011). On the other hand, various heterotrophic denitrifying microorganisms such as archaea, bacteria, and fungi reduce nitrate (NO_3^-) or NO_2^- to

denitrogen (N₂) as electron acceptors for anaerobic respiration and produce the N₂O as an intermediate under mainly anaerobic environment (Hayastu et al., 2008). Thus, the production and consumption of N₂O consist of many microbiological functions including autotrophic/heterotrophic and oxic/anoxic processes. The investigation of N₂O production pathways is useful to understand the nitrogen cycle and relevant microor ganisms in various environments.

Natural abundance ratios of isotopomers, a set of molecules containing various stable isotopes, have been used to analyze the N_2O production pathways and several studies reported the isotopomer ratios of each N_2O production pathway using several strains belonging to bacteria, archaea, and fungi (Casciotti et al., 2011; Frame and

- ¹⁵ Casciotti, 2010; Santoro et al., 2011; Sutka et al., 2008, 2006; 2004; Toyoda et al., 2005; Yoshida, 1988). These studies showed that the site preference (SP), which was defined as the difference of ¹⁵N enrichment between the center (α) and the terminal (β) N atoms in N₂O molecule, is a powerful tool to quantitatively distinguish the production pathways such as bacterial NO₂⁻ reduction and bacterial hydroxylamine (NH₂OH)
- oxidation because the SP value for each production pathway was found to be independent of concentrations or isotope ratios of substrates (Toyoda et al., 2005; Sutka et al., 2003, 2004, 2006). To date, the isotope analysis has been applied to N₂O produced in various ecosystems including natural and agricultural soils, oceans, rivers, wastewater treatment plants (Goldberg et al., 2010; Koba et al., 2009; Park et al., 2011; Sasaki
- et al., 2011; Toyoda et al., 2011; Well et al., 2008; Yoshida and Toyoda, 2000). However, as argued by Baggs et al. (2008), the isotopomer signatures were reported for only a few bacterial strains and the variation of the signatures among various species was not fully evaluated. In addition, previous reports on the SP value of N₂O produced by NH₂OH oxidation might have been biased by simultaneous N₂O production

- by NO₂⁻ reduction because some AOB have denitrifying enzymes and produce N₂O by NO₂⁻ reduction in addition to NH₂OH oxidation (Arp et al., 2003). In consideration of this problem, Frame and Casciotti (2010) estimated the SP value of N₂O produced by NH₂OH oxidation using the relationship between SP and oxygen isotope ratios in
- N₂O obtained in incubation experiments with *Nitrosomonas marina* C-113a, a marine 5 ammonia-oxidizing bacterium, under various oxygen concentrations. Clearly more information on SP produced by other strains should be obtained according to Frame and Casciotti (2010) for the better use of SP and precise estimation of the contribution from each N₂O production pathway.
- In this study, we report the isotopomer ratios of N₂O produced in vitro using en-10 zymes extracted and purified from two strains of AOB (Nitorosococcus oceani and Nitrosomonas europaea) and one species of denitrifying bacteria (Paracoccus deni*trificans*). Our experiments have an advantage that isotope effects related to the N_2O production by enzymes (hydroxylamine oxidoreductase (HAO) in AOB and nitric oxide
- reductase (NOR) in denitrifier) can be directly determined and that the effects related 15 to other processes such as diffusion of substrate/product through cell membrane and reactions mediated by other enzymes can be excluded. We also measure isotopomer ratios of N₂O produced in vivo by *N. oceani* under different oxygen concentrations and estimated the relative contribution of NH₂OH oxidation and NO₂⁻ reduction using the isotopomer signatures obtained in vitro. 20

Materials and methods

2

25

Cultivation of the bacterial strains 2.1

Nitrosococcus oceani strain NS58 was kindly supplied by H. Urakawa (Florida Gulf Coast Univ.) and used for the experiments. Phylogenetic and morphological analyses indicated a close systematic relationship of the bacterium with N. oceani ATCC19707 (Hozuki et al., 2010). The bacterium was cultivated in the $(NH_4)_2SO_4$ -supplemented

artificial seawater (37.8 mM NH⁺₄), of which the pH was buffered to 7.8 by 50 mM MOPS (3-morpholinopropanesulfonic acid) as described in detail in the previous report (Hozuki et al. 2010). The inoculated medium in the conical flask was shaken reciprocally at 120 rpm at 25 °C in a dark condition. After cultivation for 7–10 days and the concentration of NO⁻₂ in the medium had reached 25–30 mM, the culture of the bacterium in the late-log or stationary phase was used for the in vivo experiments as described below. Large scale cultivation of the bacterium to prepare the starting material for purification of HAO was carried out with the same procedure but using a glass bottle of 10 L in volume with vigorous air ventilation through the sterilized air filter.

- ¹⁰ Cultivated cells of *Nitrosomonas europaea* ATCC19718, which was obtained by large scale cultivation in accordance to the previous study (Yamanaka and Shinra, 1974), were kindly supplied by Y. Fukumori (Graduate School of Natural Science and Technology, Kanazawa University) and were used as a starting material for the purification of HAO.
- Paracoccus denitrificans ATCC35512 was cultivated in the denitrifying condition and used for preparing a purified NOR according to the previous report by Fujiwara and Fukumori (1996).

2.2 Purification of hydroxylamine oxidoreductase (HAO)

Purification of HAO from *N. oceani* NS58 was carried out according to Hozuki
 et al. (2010) with a slight modification. About 3 g (wet weight) of the pellet of *N. oceani* NS58 cell was obtained from a 60 L culture and used as the starting material for purification. Catalytic activity of HAO was analyzed by spectrophotometrical measurement of the NH₂OH-dependent reduction of potassium ferricyanide as reported previously (Hozuki et al., 2010). The reaction was started by mixing the enzyme with 1 mL of the
 reaction solution containing 0.1 M sodium phosphate buffer (pH 7.8), 20 µM NH₂OH, and 100 µM potassium ferricyanide, then the decreasing rate of absorbance at 420 nm was monitored in a 1 cm light-path cuvette by using an MPS-2000 spectrophotometer

of ferricyanide and that of ferrocyanide ($\Delta \varepsilon_{mM}$) at 420 nm was 1.02 mM⁻¹ cm⁻¹. Finally 1.8 mg of the purified HAO, that showed the enzymatic activity as 37 unit mg protein⁻¹ (1 unit is equivalent to the activity where 1 µmol of NH₂OH is oxidized in a minute), was obtained and used for the assay of N₂O-generating activity. HAO was also purified from *N. europaea* according to the method of Yamanaka et al. (1979) with some modifications. A low catalytic activity (6.7 unit mg protein⁻¹) of the enzyme purified from *N. europaea* in this study was probably due to using the old stock of the cultivated bacterial cells, that has been kept in a freezing container at -30 °C for about 10 yr, as the

starting material for purification.

5

$_{\rm 10}$ 2.3 Quantitative and isotopomeric analysis of N_2O produced during oxidation of NH_2OH with HAO

In a 69 mL glass vial (Maruemu Corp., Osaka, Japan), 10 mL of substrate solution was prepared so that it contains 0.1–3 mM hydroxylamine, 1 mM potassium ferycyanide as electron acceptor, and 10 mM sodium phosphate as buffer (pH = 7.8). After the vial
 ¹⁵ was sealed with a butyl rubber stopper and an aluminum cap, air in the headspace was replaced with pure N₂ (Shizuoka Sanso Co., Shizuoka, Japan), and then the reaction was started by injecting 0.1 unit of the HAO extracted from *N. oceani* or *N. europaea*. Experiments with 3 mM NH₂OH were conducted on four different dates (A–D). In experiments C and D, lot number of NH₂OH reagent (hydroxylamine hydrochloride, Wako Pure Chemical Industries, Ltd., Osaka, Japan) was different from that used in experiments A and B. After incubating the vial for 2 h at 25 °C or for 12 h on ice, gas sample was extracted and analyzed as described below. Concentration of NO₂⁻ was determined spectrophotometrically by a diazo-coupling method (Nicholas and Mason, 1957).

2.4 Purification of nitric oxide reductase (NOR) from Paracoccus denitrificans

NorBC-type NO reductase was purified from the cultivated *P. denitrificans* cells according to the previous report (Fujiwara and Fukumori, 1996) with some modification. The membrane fraction was prepared from the bacterial cells that had cultivated apparentically in the presence of NO^- . NO reductase was extracted from the mem-

- ⁵ anaerobically in the presence of NO₃⁻. NO reductase was extracted from the membrane fraction by treating with the 1 % (w/v) 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS; Dojindo Lab., Kumamoto, Japan), then was fractionated by anion-exchange chromatography using DEAE-Toyopearl 650M gel (Tosoh, Tokyo, Japan).
- ¹⁰ NO reducing activity of the purified enzyme was measured spectrometrically by monitoring NO-dependent oxidation of horse ferrocytochrome *c* (Nacalai Tesque, Kyoto, Japan). Experimental procedure was detailed in the previous report (Fujiwara and Fukumori, 1996). For preventing the disappearance of NO by the reaction with oxygen, dissolved oxygen in the solution was enzymatically removed using D-glucose ox-
- idase/catalase system before starting the assay of NO reducing activity. NO-saturated ethanol, of which the concentration of NO was 11.9 mM, was prepared by treating ethanol with pure NO gas (Sumitomo Seika Chemicals Co., Ltd. Osaka, Japan) and used for the stock solution of NO (Seidell and Linke, 1965). Oxidation rate of ferrocy-tochrome *c* was measured by monitoring the decrease in the absorbance at 550 nm
 with a spectrophotometer (MPS-2000, Shimadzu, Kyoto, Japan), whereby the differ-
- ence of millimolar extinction coefficient ($\Delta \varepsilon_{mM}$, 21.0 mM⁻¹ cm⁻¹) at 550 nm between reduced and oxidized form of horse cytochrome *c* was used. NO reducing activity of the purified enzyme was estimated to be 35 unit mg protein⁻¹ (1 unit is equivalent to the activity where 1 µmol of NO is reduced in a minute.

25 2.5 Isotopomeric analysis of N₂O produced by enzymatic reduction of NO

In a same glass vial that had been used for NH_2OH oxidation experiments, a 10 mL solution was prepared so that it contain 10 mM sodium phosphate buffer (pH6.0), 2.9 μ M

horse cytochrome *c*, 1.0 mM sodium ascorbate and 0.1 mM N, N, N', N'-tetramethylp-phenylenediamine (TMPD). The reaction was started by injecting the NO-saturated ethanol to yield final concentration of 50 μM, and the purified NO reductase (0.005 unit) by using a gastight syringe (VICI Precision Sampling Inc., Baton Rouge, LA). Experiments were conducted on three different dates (A, C, and D). After incubating the vial for 2 h at 25 °C or for 12 h on ice, the gas phase in the headspace of the reaction vial was extracted and the isotopomeric analysis of the N₂O generated was done as mentioned below.

2.6 Quantitative and isotopomeric analysis of N₂O produced from cultivated *N. oceani* cells

10

The 70 mL culture of the *N. oceani* NS58 was centrifuged at $9800 \times g$ for 60 min at 4 °C (refrigerated centrifugator model 3700, Kubota Corp., Tokyo, Japan). The pelleted cells obtained were suspended in the 70 mL of the pH-buffered and $(NH_4)_2SO_4$ -supplemented artificial seawater (see Sect. 2.1), then were incubated with gentle stirring at 25 °C in dark for 30 min to remove NO₂⁻ that accumulate in the medium during the cultivation. The resulting cell suspension was centrifuged again with the same condition, then the cell pellet obtained was resuspended in the same volume of the freshly

prepared culture medium and used as the washed cell suspension. The washed cell suspension of 10 mL in volume was put into the glass vial, and the vial was sealed by a butyl rubber stopper and an aluminum cap. After sealing, the headspace (59 mL in volume) of the vial was replaced with O_2/N_2 mixture that contained 2 % (v/v) O_2 (Shizuoka Sanso Co., Shizuoka, Japan) or pure N_2 by gently bubbling for 15 min. The reaction solution was prepared in a glass vial by mixing 1.0 mL of the washed cell suspension and 9.0 mL of the cultivation medium. In addition to the anaerobic (0 % O_2) and the microaerobic (2 % O_2) vials, an aerobic vial without gas

replacement was prepared. Incubation of the bacterial cells in the vials was carried out by gentle shaking at 25 °C in dark. After 24 or 48 h from starting the incubation, $50 \,\mu\text{L}$ of 10 M NaOH solution was added into the reactors to stop the microbial reaction.

Quantification and measurement of isotopomer ratios of N₂O gas released into the headspace of the incubation vial were performed as described below. Concentration of NO_2^- that was accumulated in the reaction solution was also measured as explained above.

$_{\rm 5}$ 2.7 Measurement of N_2O concentration and isotopomer ratios

Concentrations and isotopomer ratios of N_2O were measured using an on-line analytical system that originally developed for N_2O dissolved in water samples (Toyoda et al., 2002). The system consists of a gas extraction chamber with a septum for syringe injection, traps made of stainless-steel tubing or glass, a gas chromatograph (Agilent 6890, Agilent Technologies Japan, Ltd., Tokyo) and an isotope-ratio monitoring mass spectrometer (MAT 252, ThermoFisher Scientific KK, Yokohama) equipped with GC interface.

Using a gas-tight syringe, 0.1 to 1.5 mL of the gas was extracted from the headspace of sample vial and was injected into the gas extraction chamber. The sample gas was

then transferred with He carrier gas to chemical traps (Mg(ClO₄)₂ and NaOH on support) to remove H₂O and CO₂, and N₂O was concentrated on glass beads packed in a U-shaped trap at liquid N₂ temperature. After further purification on GC, N₂O was introduced into the mass spectrometer for isotope ratio monitoring. Site-specific nitrogen isotope analysis was conducted with ion detectors modified for mass analysis of fragment ion of N₂O (NO⁺) that contains N atom in the center position of N₂O molecules (Toyoda and Yoshida, 1999). Concentration and bulk nitrogen and oxygen isotope ratio of N₂O was determined with analysis of N₂O molecule ion (N₂O⁺). Pure N₂O was used as a reference gas for isotopomer ratios. Notation of isotopomer ratios of N₂O is shown below.

²⁵
$$\delta^{15} N_{\text{sample}}^i = {}^{15} R_{\text{sample}}^i / {}^{15} R_{\text{standard}} - 1$$

 $\delta^{18} O_{\text{sample}}^i = {}^{18} R_{\text{sample}}^i / {}^{18} R_{\text{standard}} - 1$

(1)

(2)

In Eqs. (1) and (2), ¹⁵R and ¹⁸R represent ¹⁵N/¹⁴N ratio and ¹⁸O/¹⁶O ratio, respectively. Subscript "Sample" and "Standard" indicate isotope ratios for sample and the standard (atmospheric N₂ for nitrogen and Vienna Standard Mean Ocean Water (VSMOW) for oxygen), respectively. Superscript *i* is α , β , or bulk which respectively designates central, peripheral, or average isotope ratios in nitrogen atom(s) in N₂O molecule. We also define the ¹⁵N-site preference (SP) as an illustrative parameter of intramolecular distribution of ¹⁵N (Yoshida and Toyoda, 1999). The precision of measurement is better than 0.5 ‰ for $\delta^{15}N^{\text{bulk}}$ and δ^{18} O, and better than 1.0 ‰ for $\delta^{15}N^{\alpha}$ and $\delta^{15}N^{\beta}$.

¹⁵N – Site preference (SP) =
$$\delta^{15}N^{\alpha} - \delta^{15}N^{\beta}$$

The δ^{15} N of NH₂OH was measured by an elemental analyzer coupled with isotope ratio mass spectrometer. Statistical analysis was performed using Excel 2011 (Microsoft, USA). The statistical difference was determined by two-side Student's *t* test. Difference with *p* < 0.05 was considered significant.

15 3 Results

1

3.1 Concentrations and isotopomer ratios of N₂O produced during oxidation of NH₂OH with HAO

Figure 1 shows the amount of NO₂⁻ and N₂O produced during the reaction catalyzed by HAO from *N. oceani* with different initial concentration of NH₂OH (0.1–3 mM). About
5.1–29.0 % of NH₂OH was converted to NO₂⁻ or N₂O after the reaction, and the ratio of produced NO₂⁻ and N₂O decreased with initial NH₂OH concentration. With high initial NH₂OH concentrations (1 and 3 mM), production of N₂O in negative control runs without HAO (HAO–) for 1 mM and 3 mM was 5.9 %, 7.1 % of that in the presence of HAO (HAO+), respectively (Table 1). With low NH₂OH concentrations (0.1 and 0.3 mM),

(3)

however, production of N₂O in the HAO– runs was 32.2 % and 179.1 % of that in the HAO+ runs for 0.3 mM and 0.1 mM, respectively (Table 1). For this reason, further experiments were conducted at initial NH₂OH concentration of 3 mM to examine repeatability of the reaction and effect of bacterial strain and N isotope ratio of NH₂OH.

⁵ The δ^{15} N^{bulk} and δ^{18} O of N₂O showed lower values at high (3 mM) NH₂OH concentration compared to low (1 mM) concentration (Table 1). SP value was independent of substrate concentration or the degree of the reaction since the difference of SP value between sample with 1 mM and 3 mM was insignificant (p > 0.05).

With initial NH₂OH concentration of 3 mM (see Table 2), δ^{15} N^{bulk} for *N. oceani* and *N. europaea* was almost constant in experiments A and B, and was about 10 ‰ lower than δ^{15} N of NH₂OH (-7.0 ‰). In experiment D of *N. oceani*, the difference of δ^{15} N^{bulk} from δ^{15} N of NH₂OH used in the experiment (-43.9 ‰) was similar to those in experiments A and B (-9 ‰). In experiment C, however, δ^{15} N of N₂O was higher than δ^{15} N of NH₂OH by 1.8–9.9 ‰ for both strains (Table 2). The δ^{18} O also showed a variation

¹⁵ among experiments A–D of *N. oceani*, although it is not clear whether the δ^{18} O of NH₂OH was different between experiments A/B and C/D. When we compare the results from experiment A, the difference in δ^{15} N^{bulk} and δ^{18} O of N₂O was not significant between the two strains (*p* > 0.05 and *p* > 0.05, respectively).

In contrast, SP value of N₂O produced by NH₂OH oxidation with HAO was indepen-

²⁰ dent of initial concentration or degree of reaction process and δ^{15} N value of NH₂OH (Tables 1 and 2). Moreover, difference in SP between experiments with HAO extracted from *N. oceani* in experiments A, B, C and D (average: $36.2 \pm 1.7 \%$, *n* = 7) and *N. europaea* in experiments A and C (average: $36.6 \pm 3.3 \%$, *n* = 4) was insignificant (*p* > 0.05).

3.2 Concentration and isotopomer ratios of N_2O produced during reduction of NO with NOR

Table 3 shows concentration and isotopomer ratios of N_2O produced by the reduction of NO with NOR. About 66.0–151.6 % of NO was converted to N_2O . The concentration

⁵ of N₂O was 17 times and 7.3 times higher in the presence of NOR (NOR+) compared to the control runs without NOR (NOR-). SP value of N₂O from the enzymatic reaction showed little variation ($-5.9 \pm 2.1 \%$) and was lower than SP values observed in the control runs (15.1–16.8 ‰) (p < 0.05).

3.3 Isotopomer ratio of N_2O produced by *N. oceani* under different initial O_2 concentration

The amount of N₂O produced by *N. oceani* was 2.9 ± 0.9 (n = 6), 8.9 ± 0.5 (n = 2), and 18.1 ± 3.6 (n = 5) nmol for O₂ concentration of 0, 2, and 21 %, respectively. Production of both N₂O and NO₂⁻ was much higher in aerobic condition than in anaerobic condition (p < 0.05, Fig. 2). Isotopomer ratios of N₂O showed a strong dependence on initial O₂ concentration (Fig. 3). They were more enriched under aerobic condition compared to anaerobic conditions, and positive correlation between the isotopomer ratios was observed (Fig. 3, $R^2 = 0.89$, p < 0.05).

4 Discussion

10

15

The characteristic SP value of N₂O produced during the in vitro oxidation of NH₂OH with HAO from the two strains of AOB (average SP for the two strains: $36.3 \pm 2.3 \%$) indicates that this parameter is determined by the enzymatic reaction step and not affected by other factors such as concentration or the degree of the reaction and nitrogen isotope ratios of substrate (Table 2). This study first demonstrates the direct evidence of isotopomeric fractionation during the enzymatic reaction and showed the similar SP

value $(36.3 \pm 2.4 \%)$ as previous studies predicted and its robustness during the bacterial oxidation of NH₂OH (e.g., Frame and Casciotti, 2010).

Observed dependence of the product concentration ratio between NO_2^- and N_2O on initial NH_2OH concentration could be caused by the availability of electron acceptor.

- ⁵ The oxidation of NH₂OH with HAO mainly gives NO₂⁻ as a product when enough electron acceptor is supplied, while the reaction is likely to produce N₂O when the amount of electron acceptor is not enough to complete the reaction as proposed by Yamanaka and Sakano (1980). In the present study, electron acceptor (potassium ferycyanide) might have been depleted under the condition with 1 and 3 mM NH₂OH because its ini-
- ¹⁰ tial concentration was kept constant. With low NH₂OH concentrations (0.1 and 0.3 mM), rate of N₂O production was smaller than that of NO₂⁻ production and the amount of produced N₂O became closer to that produced in the control experiments (HAO- runs). The amount of N₂O produced in HAO- runs were almost constant (70–90 nmol; note that the "yield" listed in Table 1 shows the amount of N₂O relative to initial NH₂OH), and it must have been produced by non-catalytic reactions.

The yield for N_2O produced during the reduction of NO with NOR exceeded 100%, which could be caused by the difference in the temperature between the reservation and the preparation of the NO-saturated ethanol. The NO-saturated ethanol was prepared by purging the ethanol with NO gas in a sealed vial at the room temperature, although the solution was reserved in a refrigerator. Therefore, it would cause the high yield because it is known that the solubility of a gas depends on the temperature.

20

The SP value of N₂O produced during the in vitro reduction of NO with NOR from *P. denitirifcans* (-5.9 ± 2.1 ‰) agrees with that value reported for N₂O produced in vivo from NO₃⁻ reduction by the same species (-5.1 ± 1.8 ‰, Toyoda et al., 2005). Therefore, ours result proves that the factor controlling SP value of N₂O produced in NO₃⁻ reduction is the reaction with NOR rather than other reaction steps including diffusion of substrate and product through cell membranes. However, the SP value is slightly lower than SP values reported for N₂O produced from NO₃⁻ or NO₂⁻ reduction by other denitrifying bacteria or some species of AOB (-0.8 to +0.1 ‰) (Sutka et al.,

2004, 2006), and slightly higher than the value estimated for N₂O produced from NO₂⁻ reduction by *N. marina 113a*, oceanic AOB ($-10.7\pm2.9\%$; Frame and Casciotti, 2010). This implies that previously reported SP for N₂O from NO₃⁻/NO₂⁻ reduction could have been affected by other processes like NH₂OH oxidation or that SP might depend on a small structural difference in NOR of studied species.

It is known that AOB produces N₂O as a byproduct during the oxidation of NH₂OH to NO₂⁻ with HAO and that some species of AOB can also reduce NO₂⁻ to N₂O with NO₂⁻ reductase (NIR) and NOR (Klotz et al., 2006; Arp et al., 2003). The latter pathway is often referred to as nitrifier-denitrification (Wrage et al., 2001) and is believed

- ¹⁰ to occur under anaerobic condition. Although the reason why those AOB have a function of nitrifier-denitrification is still uncertain, detoxification of accumulated NO_2^- has been proposed as a possible explanation (Beaumont et al., 2004). In our experiments, production of both NO_2^- and N_2O are enhanced under aerobic condition because $O_2^$ is required for ammonium oxidation, the first step of the successive reaction to NO_2^-
- ¹⁵ (Fig. 2). Observed co-variation of SP value of N₂O and oxygen concentration (Fig. 3) implies that relative contributions from the two pathways are sensitive to oxygen availability; NH₂OH oxidation becomes dominant N₂O production pathway under aerobic condition while NO₂⁻ reduction is dominant under anaerobic condition (Fig. 3). It is noteworthy that even in aerobic condition (20% O₂), SP value of N₂O produced by
- N. oceani is lower than the value obtained by in vitro NH₂OH oxidation with HAO from the same bacteria (Fig. 3), which suggests NO₂⁻ reduction pathway is not negligible under aerobic condition and thus previous studies based on pure culture incubation of AOB underestimated the SP value for N₂O from NH₂OH oxidation.

We further show quantitative estimation of the contribution of NO_2^- reduction to N_2O production by using following equation.

 $SP_{measured} = SP_{NOR} \times X_{NOR} + SP_{HAO} \times (1 - X_{NOR})$

25

In Eq. (4), SP_{measured}, SP_{NOR}, and SP_{HAO} represent SP values of observed N₂O, N₂O produced in enzymatic reaction with NOR and HAO, respectively, and X_{NOR} indicates 16629

(4)

relative contribution of the NOR-mediated pathway. As shown in Table 4, average X_{NOR} is calculated as 82 ± 18 %, 42 ± 10 %, and 22 ± 4 % under 0 %, 2 %, and 21 % initial O₂ concentration, respectively. These values were similar to those measured by Frame and Casciotti (2010). Using the total amount of N₂O produced in each experiment, the N₂O produced from NO₂⁻ reduction is estimated at 2.5 ± 1.0 nmol (n = 6), 3.8 ± 0.7 nmol (n = 2), 3.9 ± 0.7 nmol (n = 5) under 0, 2, and 21 % initial O₂ concentration, respectively. This means that the rate of N₂O production via NO₂⁻ reduction pathway does not depend on the amount of NO₂⁻ produced which showed an increase of more than 20 times under aerobic condition than under anaerobic condition. Although the accumulation of NO₂⁻ inactivates an ammonia monooxygenase (AMO) enzyme activity

accumulation of NO₂ inactivates an ammonia monooxygenase (AMO) enzyme activity and *nir*K was expressed in response to the accumulation of NO_2^- for detoxification of NO_2^- (Beaumont et al., 2004), activities of NIR or NOR seems to have been not enhanced in this study.

The process information provided by SP value enables us to estimate bulk ¹⁵N-¹⁵ enrichment factors (ε , which is approximately equal to $\delta^{15}N_{product} - \delta^{15}N_{substrate}$ under the excess supply of substrate) for N₂O production from NH₄⁺ by NOR and HAO-mediated pathways. If N₂O is produced only by NH₂OH oxidation pathway ($X_{NOR} = 0$), SP_{measured} = SP_{HAO} and $\delta^{15}N^{bulk}$ of N₂O is estimated at -32.9% from the linear relationship between SP and $\delta^{15}N^{bulk}$ (Fig. 3). On the other hand, if N₂O is produced only by NO₂⁻ reduction pathway ($X_{NOR} = 1$), SP_{measured} = SP_{NOR} and $\delta^{15}N^{bulk}$ of N₂O is estimated at -67.5%. Combining these values with $\delta^{15}N$ of (NH₄)₂SO₄ used in this study (= -0.34%), we obtain $\varepsilon_{HAO} = -32.6\%$ and $\varepsilon_{NOR} = -67.2\%$. The ε_{NOR}

value is about 10% lower than the value estimated from pure culture incubation of *Nitrosomonas marina* C-113a (Frame and Casciotti, 2010) under several O₂ concen-²⁵ trations (${}^{15}\varepsilon_{\rm ND} = -56.9$ %). The cause of the difference could be different experimental approach (with/without enzymatic reactions) or different species studied. However, it is proved that ε is significantly different between NH₂OH oxidation pathway and NO₂⁻ reduction pathway.

Finally, we discuss the mechanisms that control SP value of N₂O produced during the enzymatic reactions. Both HAO and NOR enzymes are known to have Fe atoms as active centers, but their structure are different according to functional types. Because the catalytic site of HAO has a single Fe atom (one nuclear center) (Igarashi et al., ⁵ 1997), it is likely that a single NH₂OH molecule binds to the center and is oxidized to NO_2^- . If substrate NH₂OH is supplied in excess or electron acceptor for the reaction is lacking, however, another NH₂OH molecule would bind to the same center to form N-N bond. In this case, the primary-binding NH₂OH molecule could be more depleted in ¹⁵N than secondary-binding NH₂OH molecule by the kinetic isotope effect. The observed positive SP might indicate that the peripheral (β) and central (α) N atoms in product N₂O derive from the primary and secondary NH₂OH, respectively.

In the case of NOR, three types are known for bacteria: cNOR that accepts electrons from cytochrome c, qNOR and qCuNOR that accept electrons from quinols (Zumft et al., 2005). Bacterial denitrification is considered to be catalyzed by cNOR, although

- ¹⁵ qNOR, qCuNOR may be responsible for detoxification of NO produced in environments (Hendriks et al., 2000). The active site of NOR enzymes has two Fe atoms (binuclear center) and have similarity among NOR types. In the case of cNOR, the binuclear center consists of non-heme iron (Fe_b) and heme b_3 (Hino et al., 2010), and it is proposed that two NO molecules bind at each center simultaneously to form N₂O (Watmough
- et al., 2009). This parallel binding mechanism could bring about nearly the same isotope effect for the two N atoms in intermediate like ONNO, and if the elimination of O atom from N-O bonding does not fractionate ¹⁵N within the intermediate molecule, then SP value of N₂O would be nearly 0 ‰.

5 Conclusions

²⁵ We presented the direct evidence that SP values of N₂O produced by bacterial nitrification and denitrification are controlled by enzymatic reaction of HAO and NOR during NH₂OH oxidation and NO reduction, respectively. The SP value does not depend

on factors like concentration and isotope ratios of substrate and degree of reaction progress. Using the distinct SP values for HAO and NOR related processes, we evaluated the relative contributions from the two pathways of N₂O production by AOB in pure culture, and showed that they are sensitive to oxygen concentration and that NO_2^- reduction could occur under aerobic condition.

Although further studies are required, this study demonstrates that isotopomer analysis constitutes a powerful tool to investigate N_2O production pathways in various environments. It will be important to expand these observation beyond nitrifying and denitrifying bacteria to examine the generality of these results. For example, isotopomeric characteristics on fungal denitrification and archaeal nitrification have been reported only recently (Santro et al., 2011; Sutka et al., 2008), and those on fungal codenitrification are unknown. Combined analysis of several isotopomer ratios should be developed to distinguish NH_2OH oxidation and fungal denitrification because SP value of N_2O from the two pathways has been found to be nearly the same (Sutka et al.,

15 2008). As for the characterization of various microbial N₂O production processes, studies focused on enzymatic reaction would be effective as shown in this work. Combined analysis of genome sequence, physiology, and isotopomer ratios would promise further understanding of microbial N₂O production mechanisms.

Acknowledgements. We thank members of Yoshida Laboratory at Tokyo Tech for fruitful dis cussion and kind technical assistance. F. Breider is acknowledged for proofreading of the manuscript. This work was supported by the Global Environmental Research Fund (A-0904) of the Ministry of the Environment, Japan, and by KAKENHI (23224013) of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

10

Arp, D. J. and Stein, L. Y.: Metabolism of inorganic N compounds by ammonia-oxidizing bacteria, Crit. Rev. Biochem. Mol., 38, 471–495, 2003.

Baggs, E. M.: A review of stable isotope techniques for N₂O source partitioning in soils: recent progress, remaining challenges and future considerations, Rapid Commun. Mass. Sp., 22, 1664–1672, 2008.

Beaumont, H. J., Lens, S. I., Reijnders, W., Westerhoff, H. V., and van Spanning, R. J.:

- 5 Expression of nitrite reductase in *Nitrosomonas europaea* involves NsrR, a novel nitrite-sensitive transcription repressor, Mol. Microbiol., 54, 148–158, doi:10.1111/j.1365-2958.2004.04248.x, 2004.
 - Casciotti, K., Buchwald, C., Santoro, A. E., and Frame, C.: Assessment of nitrogen and oxygen isotopic fractionation during nitrification and its expression in the marine environment, Methods Enzymol., 486, 253–280, doi:10.1016/B978-0-12-381294-0.00011-0, 2011.
- Frame, C. H. and Casciotti, K. L.: Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium, Biogeosciences, 7, 2695–2709, doi:10.5194/bg-7-2695-2010, 2010.

10

Fujiwara, T. and Fukumori, Y.: Cytochrome *cb*-type nitric oxide reductase with cytochrome *c*

- oxidase activity from *Paracoccus denitrificans* ATCC 35512, J. Bacteriol., 178, 1866–1871, 1996.
 - Goldberg, S. D., Borken, W., and Gebauer, G.: N₂O emission in a Norway spruce forest due to soil frost: concentration and isotope profiles shed a new light on an old story, Biochemistry, 97, 21–30, doi:10.1007/s10533-009-9294-z, 2010.
- Hayatu, M., Tago, K., and Saito, M.: Various players in the nitrogen cycle, diversity and functions of the microorganisms involved in nitrification and denitrification, Soil Sci. Plant nutri., 54, 33– 45, doi:10.1111/j.1747-0765.2007.00195.x, 2008.
 - Hendriks. J., Oubrie, A., Castresana, J., Urbani, A., Gemeinhardt, S., and Saraste, M.: Nitric oxide reductases in bacteria, Biochim. Biophys. Acta, 1459, 266–273, 2000.
- ²⁵ Hino, T., Matsumoto, Y., Nagano, S., Sugimoto, H., Fukumori, Y., Murata, T., Iwata, S., and Shiro, Y.: Structural basis of biological N₂O generation by bacterial nitric oxide reductase, Science, 330, 1666, doi:10.1126/science.1195591, 2010.
 - Hozuki, T., Ohtsuka, T., Arai, K., Yoshimatsu, K., Tanaka, S., Fujiwara, T.: Effect of salinity on hydroxylamine-oxidation in marine ammonia-oxidizing γ -proteobacterium, *Nitrosococcus*
- *oceani*: molecular and catalytic properties of tetraheme cytochrome *c*-554, Microbe Environ., 25, 95–102, doi:10.1264/jsme2.ME09154, 2010.

6315, doi:10.1128/AEM.00463-06, 2006. Koba, K., Osaka, K., Tobari, Y., Toyoda, S., Ohte, N., Katsuyama, M., Suzuki, N., Itoh, M., Yamagishi, H., Kawasaki, M., Kim, S. J., Yoshida, N., Nakajima, T.: Biogeochemistry of ni-

Igarashi, N., Moriyama, H., Fujiwara, T., Fukumori, Y., and Tanaka, N.: The 2.8 Å structure of

Klotz, M. G., Arp, D. J., Chain, P. S. G., El-Sheikh, A. F., Hauser, L. J., Hommes, N. G.,

Larimer, F. W., Malfatti, S. A., Norton, J. M., Poret-Peterson, A. T., Vergez, L. M., and

Ward, B. B.: Complete genome sequence of the marine, chemolithoautotrophic, ammonia-

oxidizing bacterium Nitrosococcus oceani ATCC 19707, Appl. Environ. Microbiol., 72, 6299-

europaea, Nat. Struct. Biol., 4, 276–284, doi:10.1038/nsb0497-276, 1997.

hydroxylamine oxidoreductase from a nitrifying chemoautotrophic bacterium, Nitrosomonas

Yamagishi, H., Kawasaki, M., Kim, S. J., Yoshida, N., Nakajima, T.: Biogeochemistry of nitrous oxide in groundwater in a forested ecosystem elucidated by nitrous oxide isotopomer measurements, Geochim. Cosmochim. Ac., 73, 3115–3133, doi:10.1016/j.gca.2009.03.022, 2009.

Nicholas, D. J. D. and Mason, A.: Determination of nitrate and nitrite, Methods Enzymol., 3, 981–984, 1957.

15

25

5

- Park, S., Pérez, T., Boering, K. A., Trumbore, S. E., Gil, J., Marquina, S., and Tyler, S. C.: Can N₂O stable isotopes and isotopomers be useful tools to characterize sources and microbial pathways of N₂O production and consumption in tropical soils?, Global Biochem. Cy., 25, GB1001, doi:10.1029/2009GB003615, 2011.
- Ravishankara, A. R., Daniel, J., Sortman, R. W.: Nitrous oxide (N₂O): the dominant ozone-depleting substance emitted in the 21st century, Science, 326, 123–125, doi:10.1126/science.1176985, 2009.
 - Santoro, A. E., Buchwald, C., McIlvin, M. R., and Casciotti, K. L.: Isotopic signature of N₂O produced by marine ammonia-oxidizing archaea, Science, 333, 1282–1285, doi:10.1126/science.1208239. 2011.
 - Sasaki, Y., Koba, K., Yamamoto, M., Makabe, A., Ueno, Y., Nakagawa, M., Toyoda, S., Yoshida, N., and Yoh, M.: Biogeochemistry of nitrous oxide in Lake Kizaki, Japan, elucidated by nitrous oxide isotopomer analysis, J. Geophys. Res., 116, G04030, doi:10.1029/2010JG001589, 2011.
- ³⁰ Seidell, A. and Linke, W. F.: Solubilities of Inorganic and Metal Organic Compounds, 4th ed., American Chemical Society, Washington DC, 792 pp., 1965.

16635

Stein, L. Y. and Yung, Y. L.: Production, isotopic composition, and atmospheric fate of biologically produced nitrous oxide, Annu. Rev. Earth Planet Sci., 31, 329–356, doi:10.1146/annurev.earth.31.110502.080901, 2003.

Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Gandhi, H., and Breznak, J. A.: Nitrogen isotopomer site preference of N₂O produced by *Nitrosomonas europaea* and *Methylococcuscapsulatus*

Bath, Rapid Commun. Mass. Sp., 17, 738–745, doi:10.1002/rcm.968, 2003.

5

10

20

30

Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Gandhi, H., and Breznak, J. A.: Erratum nitrogen isotopomer site preference of N₂O produced by *Nitrosomonas europaea* and *Methylococcus-capsulatus Bath*, Rapid Commun. Mass Spectrom., 18, 1411–1412, doi:10.1002/rcm.1482, 2004.

Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Breznak, J. A., Pitt, A. J., Li, F., and Gandhi, H.: Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances, Appl. Environ. Microbiol., 72, 638–644, doi:10.1128/AEM.72.1.638-644.2006, 2006.

¹⁵ Sutka, R. L., Adams, G. C., Ostrom, N. E., and Ostrom, P. E.: Isotopologue fractionation during N₂O production by fungal denitrification, Rapid Commun. Mass Spectrom., 22, 3986–3996, doi:10.1002/rcm.3820, 2008.

Toyoda, S. and Yoshida, N.: Determination of nitrogen isotopomers of nitrous oxide on a modified Isotope Ratio Mass Spectrometer, Anal. Chem., 71, 4711–4718, doi:10.1021/ac9904563, 1999.

Toyoda, S., Yoshida, N., Miwa, T., Matsui, Y, Yamagishi, H., and Tsunogai, U.: Production mechanism and global budget of N₂O inferred from its isotopomers in the western North Pacific, Geophys. Res. Lett., 29, 1037, doi:10.1029/2001GL014311, 2002.

Toyoda, S., Mutobe, H., Yamagishi, H., Yoshida, N., and Tanji, Y.: Fractionation of

 $_{25}$ N_2O isotopomers during production by denitrifier, Soil. Biol. Biochem., 37, 1535–1545, doi:10.1016/j.soilbio.2005.01.009, 2005.

- Toyoda, S., Suzuki, Y., Hattori, S., Yamada, K., Fujii, A., Yoshida, N., Kouno, R., Murayama, K., and Shiomi, H.: Isotopomer analysis of production and consumption mechanisms of N₂O and CH₄ in an advanced wastewater treatment system, Environ. Sci. Technol., 45, 917–922, doi:10.1021/es102985u, 2011.
- Watmough, N. J., Field, S. J., Hughes, R. J. L., and Richardson, D. J.: The bacterial respiratory nitric oxide reductase, Biochem. Soc. T., 37, 392–399, doi:10.1042/BST0370392, 2009.

Discussion Paper **BGD** 10, 16615–16643, 2013 Isotopomeric characterization of nitrous oxide **Discussion Paper** T. Yamazaki et al. **Title Page** Introduction Abstract Conclusions References **Discussion** Paper Tables **Figures** 14 Back Close Full Screen / Esc **Discussion** Paper **Printer-friendly Version** Interactive Discussion

Well, R., Flessa, H., Xing, L., Xiaotang, J., and Romheld, V.: Isotopologue ratios of N₂O emitted from microcosms with NH⁴ fertilized arable soils under conditions favoring nitrification, Soil Biol. Biochem, 40, 2416–2426, doi:10.1016/j.soilbio.2008.05.016, 2008.

Wrage, N., Velthof, G. L., van Beusichema, M. L., and Oenema, O.: Role of nitrifier denitrification in the production of nitrous oxide, Soil Biol. Biochem., 33, 1723–1732, 2001.

5 Yamanaka, T. and Sakano, Y.: Oxidation of hydroxylamine to nitrite catalyzed by hydroxylamine oxidoreductase purified from Nitrosomonas europaea, Curr. Microbiol., 4, 239-244, 1980.

Yamanaka, T. and Shinra, M.: Cytochrome c-552 and cytochrome c-554 derived from Nitrosomonas europaea. Purification, properties, and their function in hydroxylamine oxidation. J. Biochem., 75, 1265-1273, 1974.

10

Yamanaka, T., Shinra, M., Takahashi, K., and Shibasaka, M.: Highly purified hydroxylamine oxidoreductase from Nitrosomonas europaea some physicochemical and enzymatic properties, J. Biochem., 86, 1101-1108, 1979.

Yoshida, N.: ¹⁵N depleted N₂O as a product of nitrification, Nature, 335, 528–529, 1988.

- Yoshida, N. and Toyoda, S.: Constraining the atmospheric N₂O budget from intramolecular site 15 preference in N₂O isotopomers, Nature, 405, 330–334, doi:10.1038/35012558, 2000.
 - Zumft, W. G.: Nitric oxide reductases of prokaryotes with emphasis on the respiratory, hemecopper oxidase type, J. Inorg. Biochem., 99, 194-215, doi:10.1016/j.jinorgbio.2004.09.024, 2005.

B	BGD					
10, 16615–	10, 16615–16643, 2013					
Isotop characte nitrou	Isotopomeric characterization of nitrous oxide					
T. Yama	T. Yamazaki et al.					
Title	Page					
Abstract	Introduction					
Conclusions	References					
Tables	Figures					
14	×					
•	•					
Back	Close					
Full Screen / Esc						
Printer-friendly Version						
Interactive Discussion						

BY

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Table 1. Isotopomer ratios of N_2O produced during NH_2OH oxidation by HAO enzyme extracted from *N. oceani* with different concentration of NH_2OH .

HAO	$\rm NH_2OH$		Yield (%)	$\delta^{15} N^{bulk}$ (‰)	$\delta^{15}N^{lpha}$ (‰)	$\delta^{15} N^{eta}$ (‰)	δ ¹⁸ Ο (‰)	SP (‰)
+	3 mM 3 mM	Average \pm SD	5.1 ± 0.4	-17.9 ± 0.2	0.1 ± 0.2	-36.0 ± 0.2 -31.1	37.8 ± 0.1	36.1 ± 0.2
+	1 mM	Average \pm SD	16.8 ± 3.9	-13.4 ± 0.2	4.7 ± 0.4	-31.6 ± 0.3	42.6 ± 0.2	36.3 ± 0.6
- +	1mM 0.3mM	Average + SD	1.0 10.6 + 0.3	-15.4 -58+02	1.0 12.0 + 0.3	-31.8 -23.6+0.2	37.7 44 5 + 0 1	32.8 35.6 ± 0.3
_	0.3 mM	/ Weitage ± OD	3.4	-15.1	2.9	-33.1	47.7	36.0 36.0
+ -	0.1 mM 0.1 mM	Average \pm SD	6.9 ± 1.2 12.3	-10.7 ± 0.5 -15.5	6.6±0.4 0.5	-28.1 ± 0.4 -31.5	45.1 ± 0.8 50.4	34.7 ± 0.9 32.0

Average and SD (Standard Deviation) were calculated for samples including HAO in each conditions (n = 3). Isotopomer ratios for "HAO+" were corrected for the blank "HAO-").

Table 2. Concentration in gas phase and isotopomer ratios of N_2O produced during NH_2OH oxidation by HAO enzyme extracted from *Nitrosococcus oceani* and *Nitrosomonas europaea* with 3 mM of NH_2OH .

Experiment	HAO	Yield (%)	$\delta^{15} N^{bulk}$ (‰)	$\delta^{15} N^{lpha}$ (‰)	$\delta^{15} N^{eta}$ (‰)	δ ¹⁸ Ο (‰)	SP (‰)
Nitrosococcus oceani (HAO)							
А	+	13.3	-16.5	2.1	-35.1	41.6	37.1
А	+	12.1	-17.1	1.8	-36.0	41.3	37.8
	Average	12.7 ± 0.9	-16.8 ± 0.4	1.9 ± 0.2	-35.5 ± 0.6	41.5 ± 0.2	37.4 ± 0.5
А	-	2.0	-14.8	-4.0	-25.6	36.3	21.6
В	+	10.7	-17.7	0.0	-35.4	37.2	35.3
В	+	9.2	-18.0	0.0	-16.4	37.6	35.8
В	+	10.9	–18.1	-0.2	-16.5	37.3	35.5
	Average	10.3 ± 1.0	-17.9 ± 0.2	-0.1 ± 0.1	-35.7 ± 0.2	37.4 ± 0.2	35.6 ± 0.3
В	-	0.7	-17.0	-2.9	-31.1	32.3	28.2
С	+	16.6	-42.1	-25.4	-58.8	33.9	33.3
С	-	0.3	-39.7	-24.2	-55.2	33.1	31.1
D	+	10.6	-52.7	-33.5	-71.9	56.8	38.4
D	_	1.1	-49.4	-38.2	-60.5	54.7	22.3
D	_	0.0	-46.2	-27.0	-65.5	55.3	38.5
Nitrosomona	is europaea	a (HAO)					
А	+	14.1	-14.4	4.9	-33.7	42.5	38.6
А	+	15.6	-13.8	4.6	-32.2	42.9	36.8
А	+	14.9	–17.1	2.4	-36.5	42.8	38.9
	Average	14.9 ± 0.9	-15.0 ± 1.5	2.9 ± 1.2	-33.0 ± 1.9	41.8 ± 0.2	35.9 ± 0.9
А	-	2.0	-14.8	-4.0	-25.6	36.3	21.6
С	+	2.2	-34.0	-18.1	-49.9	37.4	31.8
С	-	0.1	-39.7	-24.2	-55.2	33.1	31.1

Experiments A, B, C and D were conducted on different date. Isotopomer ratios for "HAO+" were corrected for the blank "HAO-". The initial δ^{15} N value of NH₂OH was -7.0 % for A and B, -43.9 % for C and D. Average and standard deviation were calculated for samples including HAO.

BGD 10, 16615-16643, 2013 Isotopomeric characterization of nitrous oxide T. Yamazaki et al. **Title Page** Introduction Abstract Conclusions References Tables **Figures** 14 Close Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

B (10, 16615–	BGD 10, 16615–16643, 2013					
Isotop characte nitrou	Isotopomeric characterization of nitrous oxide					
T. Yama	zaki et al.					
Title	Title Page					
Abstract	Introduction					
Conclusions	References					
Tables	Figures					
I						
•	•					
Back	Close					
Full Screen / Esc						
Printer-frie	ndly Version					
Interactive Discussion						

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Table 3. Concentration and isotopomer ratios of N_2O during NO reduction by NOR extracted from *Paracoccus denitrificans*.

Experiment	NOR	Yield (%)	$\delta^{15}N^{bulk}$ (‰)	$\delta^{15} N^{lpha}$ (‰)	$\delta^{15}N^{eta}$ (‰)	δ ¹⁸ Ο (‰)	SP (‰)
A	+	131.5	17.1	14.3	19.9	24.0	-5.7
А	+	129.9	17.1	15.1	19.1	24.1	-4.0
А	+	151.6	17.1	14.6	19.6	22.9	-5.0
	Average	137.6 ± 12.1	17.1 ± 0.0	14.6 ± 0.4	19.5 ± 0.4	23.7 ± 0.6	-4.9 ± 0.8
А	_	7.7	14.5	22.0	6.9	-7.5	15.1
С	+	66.0	11.0	6.5	15.5	18.7	-9.0
С	_	7.5	11.7	19.9	3.5	13.5	16.4
D	-	9.0	16.3	24.7	8.0	-6.5	16.8

Experiments A, C and D were conducted on different date. Isotopomer ratios for NOR+ was corrected for the blank (NOR–) and were averaged for each experiment. SD represents standard deviation for each experiments. For experiment C, results of experiment D were adopted as the blank because the blank δ^{18} O value obtained in experiment C was significantly different from that obtained in experiments A and D.

Discussion Pa	BC 10, 16615–1	3D 6643, 2013			
per Discussio	Isotopo character nitrous T. Yamaz	omeric ization of oxide aki et al.			
on Paper	Title F	Page			
Discu	Conclusions	References Figures			
ssion Paper	14	►I ►			
Discuss	Back Full Scre	Full Screen / Esc			
sion Paper	Interactive I				

Table 4. Estimated contribution of NO_2^- reduction catalyzed by NOR to N_2O production by *N. oceani* under different initial O_2 concentration.

Initial O ₂ (%)	N ₂ O (nmol)	N_2O yield (10 ⁻⁵)	X _{NOR} ^a	N ₂ O _{NOR} ^b (nmol)
0%	2.9 ± 0.9	1.5 ± 0.5	0.82 ± 0.1	2.5 ± 1.0
2%	8.9 ± 0.5	4.7 ± 0.3	0.42 ± 0.1	3.8 ± 0.7
21%	18.1 ± 3.6	9.5 ± 1.9	0.22 ± 0.0	3.9 ± 0.7

 N_2O yield represents the fraction of N-atoms converted to N_2O from $NH_4^{\scriptscriptstyle +}$ as substrate;

$$N_2O - N/NH_4^+ - N.$$

^a Contribution of NO_2^- reduction to N_2O production. ^b Amount of N_2O produced by NO_2^- reduction.

Printer-friendly Version

Interactive Discussion

Fig. 3. Site preference and δ^{15} N of N₂O in concentrated cell suspensions of *N. oceani* under different initial O₂ concentration. Error bar indicates the measurement error.