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Supporting Material to Neural network-based estimates of Southern Ocean ��

net community production from in-situ O2/Ar and satellite observation: A ��

methodological study ��

S1. Supplementary Methods ��

S1.1 General Desription ��

The SOM methodology partitions a potentially large, high-dimensional dataset into a smaller ��

number of representative clusters.  In contrast with conventional cluster analysis, these SOM ��

clusters, each of which is associated with a component called a node or neuron, become 	�

topologically ordered on a lower-dimensional, typically two-dimensional, lattice so that similar 
�

clusters are located close together in the lattice and dissimilar clusters are located farther apart.  ���

This topological ordering occurs through the use of a neighborhood function, which acts like a ���

kernel density smoother among a neighborhood of neurons within this low-dimensional lattice.  ���

As a result, neighboring neurons within this lattice influence each other to produce smoothly ���

varying clusters that represent the multi-dimensional distribution function of the data used to ���

construct the SOM.   ���

Our approach of determining predictor/predictand SOM clusters is quite similar to that of ���

Telszewski et al. [2009] except for one main difference: we incorporate the predictand into the ���

SOM analysis rather than labeling each neuron with an associated NCP value after the SOM has �	�

been trained.  Thus we combine the first two steps of map generation from Telszewski et al. �
�

[2009] into a single step.  We choose this alternative approach so that the neighborhood function, ���

which smoothes the clusters in the data space, may operate on the NCP as well as the predictor ���

data. ���

S1.2 Cross-validations  ���

To determine a set of candidate predictor and parameter combinations, we first perform a set ���

of cross-validation tests in the following manner.  We identify 39 weeks in the ship track ���

database that have at least five days of NCP data within a seven-day period and then divide these ���

39 weeks into five validation segments (eight weeks each segment except one with seven ���



� �

weeks).  We next perform a five-fold cross-validation for many predictor/parameter �	�

combinations, whereby we train the SOM with all ship track data excluding the validation �
�

segments and evaluate the prediction of weekly mean NCP for the validation segments in five ���

separate iterations.  To minimize the possibility that the data in the validation and training ���

samples are highly correlated and thus leading to over-confident NCP predictions, we add the ���

condition that the data from any particular ship track cannot be split between training and ���

validation samples.  We calculate the MAE, RMSE, and MFE of the predicted NCP.   ���

For the SOM parameter combinations we evaluate the following values for the number of ���

rows and columns: 1-6, 8, 10, 12, 14, 18, and 24.  We also vary the final neighborhood radius ���

from zero to five.  With 12 possible values for the number of rows and columns and six values ���

for the final neighborhood radius, we test 864 possible SOM parameter combinations.  In �	�

addition, we test all 63 possible predictor combinations to give a total of 54,432 cross-validation �
�

tests.  We record the parameter combination with the minimum MAE, RMSE, and MFE for each ���

of the 63 predictor combinations. ���

S2. Interannual NCP variability ���

To explore the potential use of our constructed dataset to study interannual NCP variability, ���

we present snapshots of November NCP for 2003 and 2004 in Figures S1a and S1b.  These ���

results should be interpreted with caution because we have not yet assessed the uncertainty in ���

interannual predictions.  In both figures, two large patches of high NCP are seen over southwest ���

Atlantic in the Brazil-Malvinas Confluence zone as well as in the region near southeast Australia ���

and New Zealand, which are marked with blue squares in Figure S1.  Our constructed dataset �	�

predicts variations between these two years in the two regions.  The Australia-New Zealand �
�

patch (140
o
E−170

o
W, 35

o
S−46

o
S) exhibits a distinct southeastward extension in 2003 (Figure ���

S1a), whereas it is zonally confined in 2004 (Figure S1b).  Over the Brazil-Malvinas patch ���

(65
o
W−45

o
W, 35

o
S−46

o
S), the area-averaged NCP decreases from 37 to 27 mmol C m

-2
d

-1
 from ���

2003 to 2004.  The November maps of POC (Figures S2a, b) and Chl (not shown) also show ���

similar variations for the same years, which support the physical basis for these NCP changes.  ���

The pattern correlation between NCP and POC (log10(Chl)) are 0.48 (0.42) and 0.47 (0.39) for ���

2003 and 2004, respectively.   ���
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These large-scale variations in biological productivity plausibly may relate to dominant ���

modes of the ocean-atmosphere interaction and the associated atmospheric teleconnections, as �	�

well as ocean current variability.  For example, possible contributors include the change from �
�

neutral ENSO to El Nino conditions between 2003 and 2004 [Yu et al., 2012], and the ���

pronounced southward shift of the Brazil Current front from the continental shelf observed in ���

2003 [Goni et al., 2011].  However, more in depth analysis of the mechanisms of variability is ���

reserved for future studies. ���

One may question whether the constructed NCP dataset can capture intraseasonal and ���

interannual variability, given the fairly weak relationship between daily NCP and POC/Chl in the ���

ship track observations, as reported in the main text, the temporal correlation between daily NCP ���

and POC/log10(Chl) is only 0.20/0.23.  Because the residence time of POC and NCP integration ���

time are of similar magnitude, 1−2 weeks in the surface ocean, and POC is the dominant form of �	�

NCP in the Southern Ocean, the low correlation between POC and NCP on daily timescales �
�

suggests sub-weekly transient processes and/or measurement errors that weaken the POC/NCP ���

relationship.   ���

The weak correlation between NCP and Chl is similar to the value of 0.33 reported in Reuer ���

et al. [2007], although Reuer et al. [2007] consider area averages in three discrete zones for each ���

of 23 transits rather than discrete points along the ship tracks.  However, a substantially ���

improved correlation of 0.62 is achieved in Reuer et al. [2007] between the in situ NCP and ���

NPP, calculated using the VGPM (Vertically Generalized Productivity Model) of Behrenfeld and ���

Falkowski [1997] that accounts for additional predictors (e.g., Chl, SST, and PAR).  Given that ���

our SOM-based approach includes additional biogeochemical and physical properties, aside from �	�

Chl that is also incorporated in the VGPM NPP estimates of Reuer et al. [2007], that our results �
�

are constrained by in situ observations, and that we find good agreement with previously 	��

reported independent, in situ NCP measurements (Tables 3.2 and 3.3) through real-time 	��

comparisons, we expect that our reconstruction explains a larger fraction of NCP variance on 	��

intraseasonal and interannual timescales than indicated by the low POC and Chl correlations.  	��

Additional validation tests are required to assess the reliability of the predicted interannual and 	��

possibly intraseasonal NCP variability, and relation to plausible physical mechanisms.   	��

 	��
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Figure S 1. November NCP (mmol C m
2
d

-1
) for (a) 2003, and (b) 2004.  The blue squares mark ����

the two regions discussed in the supporting text. ����

����

�����

�����



� �

Figure S 2 As in Figure S1 but for POC (mmol C m
-3

). ����
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