SUPPLEMENT

Natural abundance labelling

- 3 In a preliminary experiment, the continuous introduction of fresh air into the growth cabinets
- 4 was suppressed over the entire growing period resulting in a ¹³C enrichment of cabinet CO₂
- 5 due to the highly productive plants growing within them, discriminating against ¹³C. High
- 6 photosynthetic rates changed cabinet air conditions to c. 100 ppm [CO₂] and δ^{13} C_{air} to c. -1‰
- 7 which subsequently also changed δ^{13} C values of respiration. Labelling was achieved by re-
- 8 starting fresh air supply resulting in near-ambient air conditions inside the cabinets with
- 9 [CO₂] of 400 ppm and δ^{13} C_{air} of *c*. -9‰.
- 10 Labelling started at the same time as the random allocation of plants to one of two cabinets –
- one with a warm treatment (25°C; equal to the daytime growing conditions; control) and one
- 12 with a cold treatment (10°C) .

13

14

1

2

Results

- The δ^{13} C of pre-label leaf-respired CO₂ was around -11% which is much less depleted than
- usual C_3 plant respiration (of around -27‰). Further, $\delta^{13}C_{SR}$ was stable during the diurnal
- cycle of the pre-label day (data not shown) with only small variations between replicates.
- However, $\delta^{13}C_{SR}$ was very responsive to the labelling. Immediately after introducing ambient
- 19 fresh air, shoot respiration was already much more depleted in 13 C (change of c. 3.5‰)
- 20 compared to the average values during pre-labelling (Fig S1, upper panel). This indicates a
- very fast utilization of recent photo-assimilates for shoot respiration. Within about 7 h, $\delta^{13}C_{SR}$
- had changed by the full magnitude of the treatment (c. 8‰). There was no difference in the
- response of $\delta^{13}C_{SR}$ between warm and cold treatments. However, after 8 h post-labelling,
- $\delta^{13}C_{SR}$ of the warm treatment increased again by c. 3‰, whereas the cold treatment continued
- to decline, levelling out at 10.5 h post-labelling. The change of $\delta^{13}C_{SR}$ by the full magnitude
- of the label might indicate that all recent photo-assimilates are quickly invested in respiration
- or export (to roots) rather than storage and/or growth within leaves.
- The δ^{13} C signal of root respiration (δ^{13} C_{RR}) on the other hand, showed a time-lagged response
- to the label application with a faster response in the warm (after c. 2 h) compared to the cold
- treatment (after c. 5 h; Fig S1, lower panel). Unlike $\delta^{13}C_{SR}$, $\delta^{13}C_{RR}$ of both treatments did not
- 31 change by the full magnitude of the label, shifting only by $5\%_0$.

32

Figure S1: Time course of relative change of $\delta^{13}C$ in shoot ($\delta^{13}C_{SR}$; *upper panel*) and root ($\delta^{13}C_{RR}$; *lower panel*) respired CO₂ during continuous label; control treatment (25 °C, *closed symbols*); cold treatment (10 °C; *open symbols*); sample allocation to warm and cold cabinets and label start (*vertical line*). The data shown are means \pm standard error (n = 3)