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TOPMODEL parameterization scheme 18 

An illustration of the TOPMODEL-based parameterization scheme was shown in 19 

Fig. S3. Watershed-mean topographic wetness index (TWI) (Fig. S3b) was calculated 20 

from original TWI data (Fig. S3a) according to basin boundaries from watershed 21 

delineation (Fig. S2). Time-varying scaling parameter 𝑚 (𝑚 values of July in 1994 are 22 

shown in Fig. S3c) was estimated from Eq. (3) and Eq. (4).The topography-related data, 23 

including TWI, watershed delineation and terrain slope, was acquired from HYDRO1K 24 

database (http://eros.usgs.gov/#Find_Data/Products_and_Data_Available/gtopo30/hydro), 25 

which provides global coverage of topographically derived data based on 30-sec USGS-26 

GTOPO30 DEM data. The original five-level watershed delineation basin data was 27 

aggregated into four-level data according to Pfafstetter code 28 

(http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30/hydro/P311), 29 

with average surface area of 6597 km2 (Fig. S2). 30 

The calibrated time-varying 𝛼 in Eq. (3) were shown in Fig. S4a, and the 31 

comparison of total inundated area from satellite observations and model simulation were 32 

shown in Fig. S4b. The calibrated parameter 𝛼 had a strong temporal variation: larger in 33 

warmer seasons and smaller in colder seasons. The monthly parameter 𝛼 was spatially 34 

constant and larger 𝛼 corresponded to larger parameter m, and resulted in higher variance 35 

of local WTD. It is important to note that, in our three-step calibration procedure, only 36 

the total inundated area over the whole region, rather than for each grid cell, was 37 

confirmed by satellite data. The calibration at each grid cell was impossible since only 38 

inundated area fraction data (for West Siberian Lowlands, ~7% of all grid cells were 39 
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inundated during the growing season (Fig. 4)) rather than WTD data was available from 40 

satellite observations.  41 
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Table S1 Description of the site methane measurements made in the pan-Arctic reported 74 

by published literatures 75 

Site name 

CH4 flux range 

(mean) 

(mg CH4 m-2 d-1) 

Reference 

Toolik Lake, Alaska, USA 0.6 ~ 42.8 (17.5) Christensen (1993) 

Toolik Lake, Alaska, USA 22.7 ~ 112.4 (65.6) Christensen (1993) 

Patuanak, Saskatchewan, Canada 0.0 ~ 0.3 (0.1) Turetsky et al. (2002) 

Yamal Peninsula, Russia 4.3 ~ 195.3 (83.5) Heyer et al. (2002) 

Chersky, Russia -0.7 ~ 281.0 (81.8) Nakano et al. (2000) 

Lena Delta, Russia 7.7 ~ 94.0 (50.9) Sachs et al. (2010) 

Thompson, Manitoba, Canada 19.7 ~ 226.0 (89.0) Bellisario et al. (1999) 

North Point - Kinosheo transect, Hudson 

Bay lowlands, Canada 
1.0 ~ 16.4 (6.6) Moore et al. (1994) 

North Point - Kinosheo transect, Hudson 

Bay lowlands, Canada 
2.7 ~ 104.7 (25.6) Moore et al. (1994) 

Lementa Bog, Fairbanks, Alaska, USA 0.0 ~ 57.3 (28.6) Moosavi et al. (1996) 

Prudhoe Bay, Alaska, USA 95.0 ~ 185.0 (140.0) Vourlitis et al. (1993) 

Barrow, Alaska, USA 10.0 ~ 67.0 (45.3) Rhew et al. (2007) 

Tobolsk, West Siberia, Russia -2.7 ~ 115.0 (30.0) Glagolev et al. (2011) 

Surgut, West Siberia, Russia -2.0 ~ 310.2 (34.6) Glagolev et al. (2011) 

Pangody, West Siberia, Russia -1.5 ~ 468.0 (87.8) Glagolev et al. (2011) 

Plotnikovo, West Siberia, Russia -9 ~ 471.0 (174.8) Glagolev et al. (2011) 

Noyabrsk-Hills, West Siberia, Russia -2.3 ~ 110.5 (41.4) Glagolev et al. (2011) 

Noyabrsk-Palsa, West Siberia, Russia -0.6 ~ 371.3 (140.2) Glagolev et al. (2011) 

Vah, West Siberia, Russia 20.7 ~ 246.2 (114.8) Glagolev et al. (2011) 

Muhrino, West Siberia, Russia -7.2 ~ 428.2 (63.0) Glagolev et al. (2011) 

Tazovsky, West Siberia, Russia -6.2 ~ 213.6 (34.3) Glagolev et al. (2011) 

Gyda, West Siberia, Russia -0.5 ~ 156.9 (25.2) Glagolev et al. (2011) 

Skala, West Siberia, Russia 0.0 ~ 4.3 (2.7) Glagolev et al. (2011) 

76 
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 77 

Fig. S1. The VIC grid cells over the pan-Arctic at a spatial resolution of 100 km.  78 
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 79 

Fig. S2. The delineation of the watersheds over the pan-Arctic (average surface area of 80 

6597 km2), derived from HYDRO1K dataset.  81 
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Fig. S3. An illustration of TOPMODEL-based parameterization scheme used for 82 

redistributing water table depth. See text for more details.  83 

𝑍𝑍𝑍𝑖 = 𝑍𝑍𝑍����� − (𝑇𝑇𝑇𝑖 − 𝑇𝑇𝑇������) × 𝑚 
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 84 

Fig. S4. Calibrated monthly parameter 𝛼 for TOPMODEL-based parameterization (a) 85 

and the comparison of monthly total inundated area from satellite observations and model 86 

simulations (b) from 1993 to 2004.  87 
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 88 

Fig. S5. Probability distribution of modeled (at a 5-km spatial resolution) (a) and 89 

observed (b) mean methane emissions during the growing season (May - Sep.) across 90 

West Siberian Lowlands.  91 
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 92 

Fig. S6. Monthly precipitation and air temperature averaged over the pan-Arctic for the 93 

year 1994 (maximum methane emission year from 1993 to 2004 at a 5-km spatial 94 

resolution). The climate data were derived from NCEP/NCAR Reanalysis dataset.  95 
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Fig. S7. Comparison of observed and simulated water table depth during the growing 96 

season (May - Sep.) across southern Canada. Observed water table depths at well sites 97 

(~5000, first gridded into 5-km cells) are retrieved from Fan et al., 2013. Only those well 98 

sites with shallow water table (< 2 m below the land surface) are included in our 99 

comparison. 100 
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