1 [Supplementary Materials]

2

3

4	latitudes from 1993 to 2004
5	Authors: X. Zhu ¹ , Q. Zhuang ^{1,2} , X. Lu ³ , and L. Song ^{1,4,5}
6	¹ Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West
7	Lafayette, IN, 47907, USA
8	² Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
9	³ The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
10	⁴ Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of
11	Sciences, Beijing, 100101, China
12	⁵ Graduate University of the Chinese Academy of Sciences, Beijing, 100049, China
13	Corresponding author: X. Zhu, Department of Earth, Atmospheric and Planetary
14	Sciences, Purdue University, West Lafayette, IN, 47907, USA. Email:
15	zhu123@purdue.edu

Title: Spatial scale-dependent land-atmospheric methane exchange in the northern high

16

17 (Submitted to *Biogeosciences*)

18 TOPMODEL parameterization scheme

19	An illustration of the TOPMODEL-based parameterization scheme was shown in		
20	Fig. S3. Watershed-mean topographic wetness index (TWI) (Fig. S3b) was calculated		
21	from original TWI data (Fig. S3a) according to basin boundaries from watershed		
22	delineation (Fig. S2). Time-varying scaling parameter m (m values of July in 1994 are		
23	shown in Fig. S3c) was estimated from Eq. (3) and Eq. (4). The topography-related data,		
24	including TWI, watershed delineation and terrain slope, was acquired from HYDRO1K		
25	database (http://eros.usgs.gov/#Find_Data/Products_and_Data_Available/gtopo30/hydro),		
26	which provides global coverage of topographically derived data based on 30-sec USGS-		
27	GTOPO30 DEM data. The original five-level watershed delineation basin data was		
28	aggregated into four-level data according to Pfafstetter code		
29	(http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30/hydro/P311),		
30	with average surface area of 6597 km^2 (Fig. S2).		
31	The calibrated time-varying α in Eq. (3) were shown in Fig. S4a, and the		
32	comparison of total inundated area from satellite observations and model simulation were		
33	shown in Fig. S4b. The calibrated parameter α had a strong temporal variation: larger in		
34	warmer seasons and smaller in colder seasons. The monthly parameter α was spatially		
35	constant and larger α corresponded to larger parameter <i>m</i> , and resulted in higher variance		
36	of local WTD. It is important to note that, in our three-step calibration procedure, only		
37	the total inundated area over the whole region, rather than for each grid cell, was		
38	confirmed by satellite data. The calibration at each grid cell was impossible since only		
39	inundated area fraction data (for West Siberian Lowlands, ~7% of all grid cells were		

2

- 40 inundated during the growing season (Fig. 4)) rather than WTD data was available from
- 41 satellite observations.

42 **References**

43	Bellisario, L. M., Bubier, J. L., Moore, T. R., and Chanton, J. P.: Controls on CH ₄
44	emissions from a northern peatland, Glob. Biogeochem. Cycles, 13, 81-91, 1999.
45	Christensen, T. R.: Methane emission from Arctic tundra, Biogeochem., 21, 117-139,
46	1993.
47	Fan, Y., Li, H., and Miguez-Macho, G.: Global Patterns of Groundwater Table Depth,
48	Science, 339, 940-943, 2013.
49	Glagolev, M., Kleptsova, I., Filippov, I., Maksyutov, S., and Machida, T.: Regional
50	methane emission from West Siberia mire landscapes, Environ. Res. Lett., 6,
51	045214, 2011.
52	Heyer, J., Berger, U., Kuzin, I. L., and Yakovlev, O. N.: Methane emissions from
53	different ecosystem structures of the subarctic tundra in Western Siberia during
54	midsummer and during the thawing period, Tellus B, 54, 231-249, 2002.
55	Moore, T. R., Heyes, A., and Roulet, N. T.: Methane emissions from wetlands, southern
56	Hudson Bay lowland, J. Geophys. Res., 99, 1455-1467, 1994.
57	Moosavi, S. C., Crill, P. M., Pullman, E. R., Funk, D. W., and Peterson, K. M.: Controls
58	on CH ₄ flux from an Alaskan boreal wetland, Glob. Biogeochem. Cycles, 10,
59	287-296, 1996.
60	Nakano, T., Kuniyoshi, S., and Fukuda, M.: Temporal variation in methane emission
61	from tundra wetlands in a permafrost area, northeastern Siberia, Atmos. Environ.,
62	34, 1205-1213, 2000.
63	Rhew, R. C., Teh, Y. A., and Abel, T.: Methyl halide and methane fluxes in the northern
64	Alaskan coastal tundra, J. Geophys. Res., 112, G02009, 2007.

4

65	Sachs, T., Giebels, M., Boike, J., and Kutzbach, L.: Environmental controls on CH ₄
66	emission from polygonal tundra on the microsite scale in the Lena river delta,
67	Siberia, Glob. Change Biol., 16, 3096-3110, 10.1111/j.1365-2486.2010.02232.x,
68	2010.
69	Turetsky, M. R., Wieder, R. K., and Vitt, D. H.: Boreal peatland C fluxes under varying
70	permafrost regimes, Soil Biol. Biochem., 34, 907-912, 2002.
71	Vourlitis, G. L., Oechel, W. C., Hastings, S. J., and Jenkins, M. A.: A system for
72	measuring in situ CO_2 and CH_4 flux in unmanaged ecosystems: an arctic
73	example, Funct. Ecol., 369-379, 1993.

Table S1 Description of the site methane measurements made in the pan-Arctic reported

75 by published literatures

	CH ₄ flux range	
Site name	(mean)	Reference
	$(mg CH_4 m^{-2} d^{-1})$	
Toolik Lake, Alaska, USA	0.6 ~ 42.8 (17.5)	Christensen (1993)
Toolik Lake, Alaska, USA	22.7 ~ 112.4 (65.6)	Christensen (1993)
Patuanak, Saskatchewan, Canada	0.0 ~ 0.3 (0.1)	Turetsky et al. (2002)
Yamal Peninsula, Russia	4.3 ~ 195.3 (83.5)	Heyer et al. (2002)
Chersky, Russia	-0.7 ~ 281.0 (81.8)	Nakano et al. (2000)
Lena Delta, Russia	7.7 ~ 94.0 (50.9)	Sachs et al. (2010)
Thompson, Manitoba, Canada	19.7 ~ 226.0 (89.0)	Bellisario et al. (1999)
North Point - Kinosheo transect, Hudson	1.0 ~ 16.4 (6.6)	Moore et al. (1994)
Bay lowlands, Canada		
North Point - Kinosheo transect, Hudson	27 1047(256)	Moore at al. (1004)
Bay lowlands, Canada	2.7 ~ 104.7 (25.6)	Moore et al. (1994)
Lementa Bog, Fairbanks, Alaska, USA	0.0 ~ 57.3 (28.6)	Moosavi et al. (1996)
Prudhoe Bay, Alaska, USA	95.0 ~ 185.0 (140.0)	Vourlitis et al. (1993)
Barrow, Alaska, USA	10.0 ~ 67.0 (45.3)	Rhew et al. (2007)
Tobolsk, West Siberia, Russia	-2.7 ~ 115.0 (30.0)	Glagolev et al. (2011)
Surgut, West Siberia, Russia	-2.0 ~ 310.2 (34.6)	Glagolev et al. (2011)
Pangody, West Siberia, Russia	-1.5 ~ 468.0 (87.8)	Glagolev et al. (2011)
Plotnikovo, West Siberia, Russia	-9 ~ 471.0 (174.8)	Glagolev et al. (2011)
Noyabrsk-Hills, West Siberia, Russia	-2.3 ~ 110.5 (41.4)	Glagolev et al. (2011)
Noyabrsk-Palsa, West Siberia, Russia	-0.6 ~ 371.3 (140.2)	Glagolev et al. (2011)
Vah, West Siberia, Russia	20.7 ~ 246.2 (114.8)	Glagolev et al. (2011)
Muhrino, West Siberia, Russia	-7.2 ~ 428.2 (63.0)	Glagolev et al. (2011)
Tazovsky, West Siberia, Russia	-6.2 ~ 213.6 (34.3)	Glagolev et al. (2011)
Gyda, West Siberia, Russia	-0.5 ~ 156.9 (25.2)	Glagolev et al. (2011)
Skala, West Siberia, Russia	0.0 ~ 4.3 (2.7)	Glagolev et al. (2011)

Fig. S1. The VIC grid cells over the pan-Arctic at a spatial resolution of 100 km.

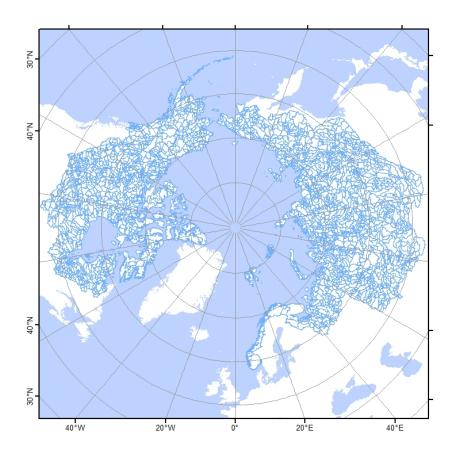
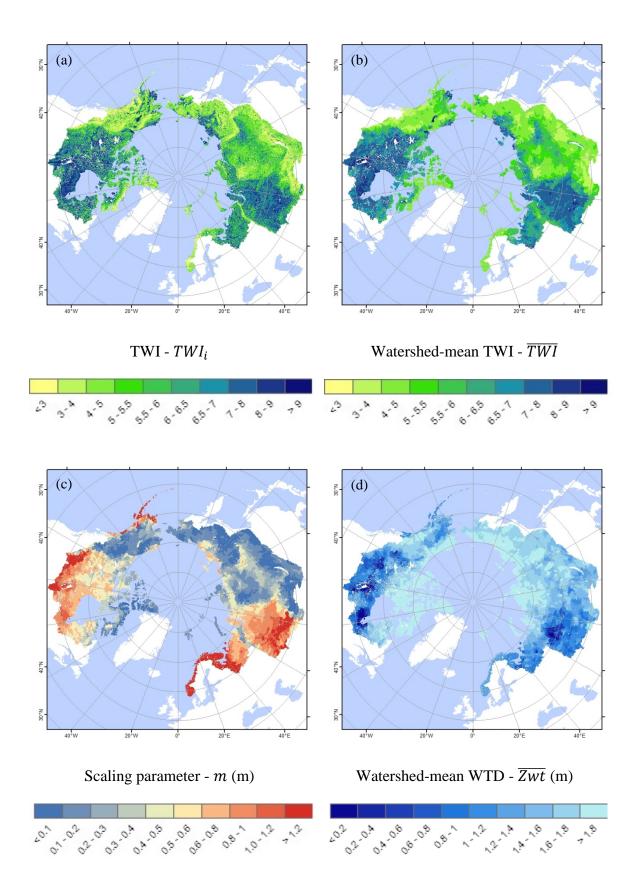
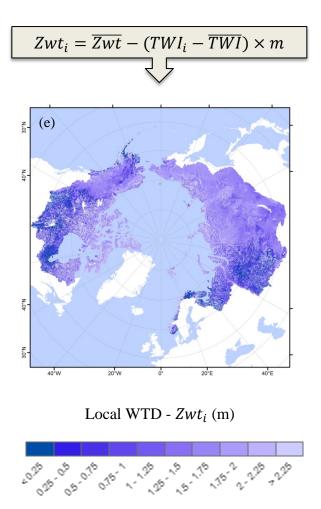
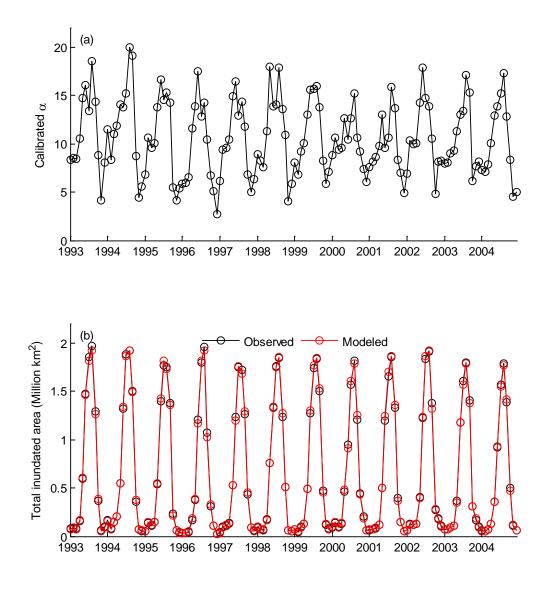
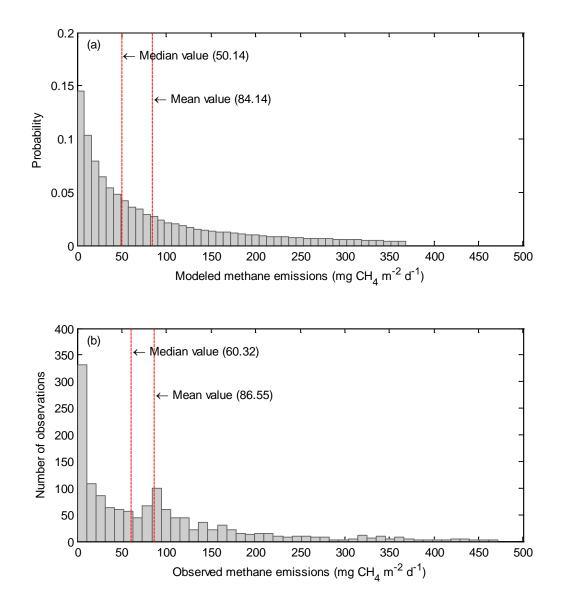




Fig. S2. The delineation of the watersheds over the pan-Arctic (average surface area of
6597 km²), derived from HYDRO1K dataset.

82 Fig. S3. An illustration of TOPMODEL-based parameterization scheme used for

83 redistributing water table depth. See text for more details.

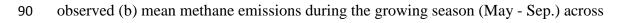


Fig. S4. Calibrated monthly parameter α for TOPMODEL-based parameterization (a) and the comparison of monthly total inundated area from satellite observations and model simulations (b) from 1993 to 2004.

89 Fig. S5. Probability distribution of modeled (at a 5-km spatial resolution) (a) and

91 West Siberian Lowlands.

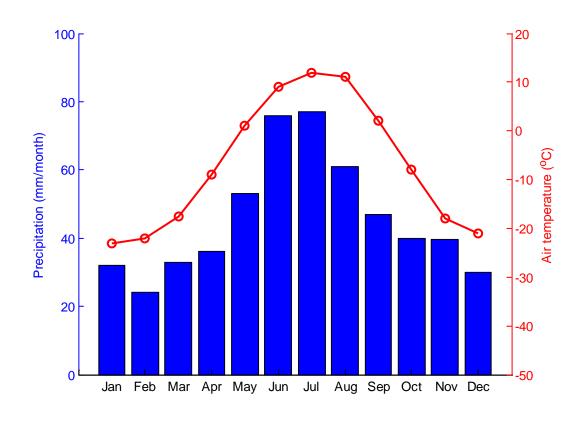


Fig. S6. Monthly precipitation and air temperature averaged over the pan-Arctic for the
year 1994 (maximum methane emission year from 1993 to 2004 at a 5-km spatial
resolution). The climate data were derived from NCEP/NCAR Reanalysis dataset.

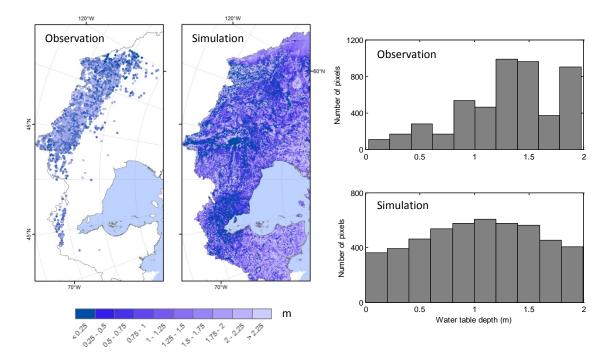


Fig. S7. Comparison of observed and simulated water table depth during the growing
season (May - Sep.) across southern Canada. Observed water table depths at well sites
(~5000, first gridded into 5-km cells) are retrieved from Fan et al., 2013. Only those well
sites with shallow water table (< 2 m below the land surface) are included in our
comparison.