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Abstract

Uncertainties in the estimation of tree biomass carbon storage across large areas
pose challenges for the study of forest carbon cycling at regional and global scales.
In this study, we attempted to estimate the present biomass carbon storage in Alberta,
Canada, by taking advantage of a spatially explicit dataset derived from a combination5

of forest inventory data from 1968 plots and spaceborne light detection and ranging
(LiDAR) canopy height data. Ten climatic variables together with elevation, were used
for model development and assessment. Four approaches, including spatial interpo-
lation, non-spatial and spatial regression models, and decision-tree based modelling
with random forests algorithm (a machine-learning technique), were compared to find10

the “best” estimates. We found that the random forests approach provided the best
accuracy for biomass estimates. Non-spatial and spatial regression models gave es-
timates similar to random forests, while spatial interpolation greatly overestimated the
biomass storage. Using random forests, the total biomass stock in Alberta forests was
estimated to be 3.11×109 Mg, with the average biomass density of 77.59 Mg ha−1. At15

the species level, three major tree species, lodgepole pine, trembling aspen and white
spruce, stocked about 1.91×109 Mg biomass, accounting for 61 % of total estimated
biomass. Spatial distribution of biomass varied with natural regions, land cover types,
and species. And the relative importance of predictor variables on determining biomass
distribution varied with species. This study showed that the combination of ground-20

based inventory data, spaceborne LiDAR data, land cover classification, climatic and
environmental variables was an efficient way to estimate the quantity, distribution and
variation of forest biomass carbon stocks across large regions.

1 Introduction

Forest ecosystems, accounting for over 80 % of terrestrial vegetation biomass, play25

a major role in balancing regional and global carbon (C) budget and analyzing the fate
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of carbon dioxide produced by the burning of fossil fuels and forest harvesting (Dixon
et al., 1994; Brown et al., 1997; Houghton et al., 2009). The accurate estimation of
broad-scale biomass C stocks has been a focus of regional and global C cycle stud-
ies and has attracted the interest of researchers, forest managers and policy makers
over the past half century. A proper assessment of actual and potential roles of forest5

ecosystems in the global C cycle requires accurate information about carbon storage
and change over space and time (Botkin and Simpson, 1990). However, such accurate
information has been lacking at regional and global scales.

A number of approaches have been developed to estimate spatial distribution of
biomass C stocks, ranging from allometric regression equations or biomass expan-10

sion factors (e.g., Brown, 1997; Cairns et al., 1997; Schroeder et al., 1997), local and
regional scale forest inventories (Monserud et al., 2006; Blackard et al., 2008), simu-
lation modelling (Tans et al., 1990; Ciais et al., 1995), to methods using only remote
sensing or combined with inventory data (Hall et al., 2011; Myneni et al., 2001; Wul-
der et al., 2008; Yemshanov et al., 2012). However, the estimates obtained by these15

different approaches are often inconsistent. For example, Houghton et al. (2001) com-
pared several biomass estimates for the Brazilian Amazon forests and found very low
agreement across the estimates, with the range ranging from 39 to 93 gigatons (Gt) of
carbon. Blackard et al. (2008) compared several estimates of C pools in living forest
biomass of continental US forests and found that satellite-image based estimation was20

two times higher than estimates based on inventory data.
Forest ground-based inventory laid out in a statistically sound design is considered

to be the optimum approach to accurately and precisely measure forest biomass C
stocks (Schroeder et al., 1997; Ketterings et al., 2001; Brown, 2002). However, sam-
pling a sufficient number of trees to represent the size and species distribution in25

a forest is extremely time-consuming and costly. The task becomes much harder for
accurate estimation of biomass C stocks over large areas. For carbon estimation at
the regional scale, most researchers tend to measure biomass on a few small, gen-
erally non-randomly selected plots, and use various prediction approaches (e.g., spa-

19007

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/19005/2013/bgd-10-19005-2013-print.pdf
http://www.biogeosciences-discuss.net/10/19005/2013/bgd-10-19005-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
10, 19005–19044, 2013

Estimating spatial
variation in Alberta

forest biomass

J. Zhang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

tial interpolation techniques, and regression models), to estimate regional biomass C
stocks based on observed values of these small sampling plots. However, inventories
based on ground samplings are not free of problems. The first problem is related to
the scarcity of ground-based inventory plots (Botkin and Simpson, 1990; Wulder et al.,
2008; Pan et al., 2011). The lack of sufficient and high-quality sample plots has been5

identified as a major barrier to the development of robust biomass estimates and to the
subsequent validation of these estimates (Wulder et al., 2008). For example, in a re-
cent report about global carbon storage, Pan et al. (2011) stated that estimates of C
stocks are only limited to the 230 million hectares (Mha) of managed forest in Canada,
leaving about 118 Mha of northern forests unaccounted for because of data paucity.10

The second problem is related to the fact that forest inventories tend to be conducted
in forests that are considered to have commercial value, i.e., closed forests, with little
regard to the open, drier forests, woodlands, or human-disturbed forests (Botkin and
Simpson, 1990; Brown, 1997). This biased sampling design usually tends to overesti-
mate biomass C stocks over large areas.15

Light Detection And Ranging (LiDAR) is perhaps the most promising remote sens-
ing technology for estimating biomass because it directly measures vertical forest
structure, such as canopy height and crown dimensions (Simard et al., 2011). Gen-
erally, LiDAR remote sensing has three platforms, including spaceborne, airborne, and
ground-based platforms. While airborne or ground-based LiDAR methods have been20

intensely used for biomass-related measurements at the stand level or individual tree
level, these methods are only feasible at local or small-regional scales, rarely at larger
scales (Popescu et al., 2011). The main reason of this restriction is because the costs
of airborne or ground-based LiDAR on data acquisition and analysis are still high at
large extents (Popescu et al., 2011; Saatchi et al., 2011). For biomass and carbon25

estimation at the regional scale, spaceborne LiDAR with relatively low cost has some
competitive advantages.

The boreal forest, containing large amounts of carbon in its biomass and soils, has
been recognized as an important global contributor to the net balance of carbon ex-
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change between the atmosphere and the biosphere (Kurz and Apps, 1999; Fyles et al.,
2002; Pan et al., 2011). According to Intergovernmental Panel on Climate Change
(IPCC, 2007), climate warming in northern latitudes is occurring almost twice as rapidly
as the global average. Climate warming in the boreal may be leading to increases the
frequency of wildfires (Harden et al., 2000), insect outbreaks (e.g., mountain pine bee-5

tle, Kurz et al., 2008) and regional drought events (Allen et al., 2010), thus influencing
carbon stocks and dynamics (Kurz et al., 2008; Monserud et al., 2006; Pan et al., 2011).
Since forest biomass is a key biophysical parameter in evaluating and modeling terres-
trial carbon stocks and dynamics (Houghton et al., 2009), an accurate estimation of
regional biomass is important for understanding boreal forests and their responses to10

climate warming. However, most of the previous studies for biomass estimations in the
boreal were limited to the regions with high productivity and little disturbance (Botkin
and Simpson, 1990). There is a lack of information about biomass in regions under
other successional stages and different disturbance extents. In addition, for remote
areas in northern boreal regions, few ground inventory data are available.15

In this study, we estimated biomass carbon stocks in the forest regions of Alberta,
Canada, using recent forest inventory data from different forest monitoring networks
and remote sensing data. Our inventory data had a large sample size, covered a broad
range, and included different disturbance types, stand age groups, and successional
stages. Our objectives were to: (1) produce a spatially explicit dataset of Alberta forest20

biomass carbon stocks; (2) quantify the relative contributions of various predictor layers
including climatic variables, elevation and canopy height to the biomass carbon stocks;
and (3) assess the variability in estimation of biomass carbon stocks using different
techniques.
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2 Methods

2.1 Study area

The forests of the Canadian province of Alberta (49–60◦ N, 110–120◦ W) cover an area
of about 45 million hectares (ha), accounting for about 68 % of the total area of the
province. They encompass four natural regions: Boreal forest, Foothills, Rocky Moun-5

tains and Canadian Shield (Alberta Natural Regions Committee, 2006). These regions
have short summers and long and cold winters. Mean annual temperature ranges from
−2.6 ◦C in the Canadian Shield to 1.7 ◦C in the Foothills. Mean warmest month temper-
ature ranges from 11.0 ◦C in the Rocky Mountains to 16.6 ◦C in the Canadian Shield,
and mean coldest month temperature ranges from −25.1 ◦C in the Canadian Shield to10

−11.7 ◦C in the Rocky Mountains. Precipitation follows a summer-high continental pat-
tern. Mean annual precipitation ranges from 380 mm in the Canadian Shield to about
800 mm in the Rocky Mountains. Elevations range from about 150 m near the Alberta–
Northwest Territories border to over 3600 m in the Rocky Mountains. There is also large
variation in climatic variables within the subregions of each natural region.15

Variation in climate and topography in this area has produced a wide range of vegeta-
tion types across the province. In the Boreal natural region, deciduous aspen (Populus
tremuloides) and balsam poplar (Populus balsamifera) and coniferous white spruce
(Picea glauca), black spruce (Picea mariana) and jack pine (Pinus banksiana) forests
are the dominant species. In the Foothills, mixed forests of aspen, lodgepole pine (Pi-20

nus contorta), white spruce and balsam poplar with variable understories are dominant
on average sites at lower elevations, while at higher elevations lodgepole pine forests
with less diverse understories are typical. In the Rocky Mountains, closed coniferous
forests are dominant at lower elevations, and open coniferous stands and herbaceous
alpine meadows are the major vegetation types at higher elevations. In the Canadian25

Shield, open jack pine, aspen and birch stands occur where the soil is sufficiently deep.
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2.2 Data sources

We combined three different sources of ground-based inventory data for our current
study, including 342 permanent sample plots (PSPs) from Alberta Environment and
Sustainable Resource Development (ESRD), 635 PSPs from Weyerhaeuser Canada,
501 PSPs from West Fraser Mill Ltd., and 490 plots from Alberta Biodiversity Moni-5

toring Institute (ABMI). In total, 1968 plots measured in the period 2000–2012 were
selected to estimate current biomass carbon stock in Alberta forest region (Fig. 1).
For the selected plots with more than one census, only the latest inventory data was
selected for the current analysis.

2.2.1 Permanent sample plots (PSPs)10

The Alberta PSP network has maintained more than two thousand PSPs established
and re-censused by the government and forest companies starting from 1950s. Most
PSPs were selected in forest regions with high productivity, and these plots were ex-
cluded from normal harvesting and other human disturbances. Plot sizes ranged from
400m2 (0.04 ha) to 8092m2 (0.81 ha) (mean: 0.12 ha). Within each PSP of ESRD, all15

living trees and standing dead trees (snags) with tree height≥ 1.3 m were tagged and
recorded. Within each PSP of Weyerhaeuser Canada, all living trees and snags with
DBH (diameter at breast height) ≥ 5 cm were measured. Within each PSP of West
Fraser, all living trees and snags with DBH≥ 7 cm were measured. These 1478 PSPs
contained 206 213 living trees and 17 688 snags over the study period.20

2.2.2 ABMI sampling plots

ABMI conducts a regional-scale, long-term monitoring program to track biodiversity
status and trends in Alberta (http://www.ABMI.ca). ABMI collects information on thou-
sands of terrestrial species and habitat structures at over one thousand sites spaced
systematically on a 20 km grid evenly across the entire province. Terrestrial survey25
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sites are established on each grid with a random distance and directional offset of up
to 5.5 km from this grid. Different from the PSP network, ABMI sampling plots were
more randomly distributed and were thus more representative of the full range of forest
stand ages and disturbance regimes at the landscape level. The area of each ABMI
plot is one hectare (100×100 m). On each site, all trees and snags with≥ 25 cm DBH5

in four selected 25×25 m plots, all trees and snags with≥ 7 cm DBH in four 10×10 m
subplots, and all trees and snags in four 5×5 m further subplots were measured re-
gardless of size. Totally, 490 sampling plots were included for current work, including
36 059 living trees and 7046 snags.

2.2.3 Canopy height data from spaceborne LiDAR10

Spaceborne LiDAR top canopy height data for Alberta forest regions (Supplement A)
were obtained from a global wall-to-wall canopy height map at 1 km spatial resolu-
tion (Simard et al., 2011). This map was produced by using the data acquired by the
Geoscience Laser Altimeter System (GLAS), onboard the Ice, Cloud, and land Ele-
vation Satellite (ICESat), in combination with several global ancillary variables, which15

correspond to climate and vegetation characteristics. These variables included: annual
mean precipitation, precipitation seasonality, annual mean temperature, temperature
seasonality, elevation, tree cover, and protection status.

2.2.4 Climatic variables

Climate data for Alberta forests were derived from the program ClimateWNA 4.7020

(Wang et al., 2012). This program uses baseline climate data derived from monthly
precipitation and temperature grids (Daly et al., 2008) based on interpolated climate
data from weather stations for the period 1961–1990. The program includes a lapse-
rate based down-sampling to 1 km resolution and estimation of biologically relevant
climatic variables. Based on input values for longitude and latitude of each inventory25

plot or each grid, we localized 10 climatic variables using the average values across
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the last 10 yr (2000–2009) to describe local climatic conditions. Ten climatic variables
were as follows:

1. MAT: mean annual temperature (◦C),

2. MWMT: mean warmest month temperature (◦C),

3. MCMT: mean coldest month temperature (◦C),5

4. MAP: mean annual precipitation (mm),

5. MSP: mean summer (May to September) precipitation (mm),

6. AHM: annual heat: moisture index (MAT+10)/(MAP/1000)),

7. SHM: summer heat: moisture index ((MWMT)/(MSP/1000)),

8. DD0: degree-days below 0 ◦C, chilling degree-days,10

9. DD5: degree-days above 5 ◦C, growing degree-days,

10. DI: dryness index (DD5/MAP).

2.2.5 Alberta land cover map

The wall-to-wall land cover map of Alberta (ABMIw2wLCV2000v2.1) at 30 m spatial
resolution was used for identifying forest lands in the study area (Supplement B, ABMI15

2012). This map is a seamless GIS vector layer with nearly a million polygons describ-
ing the spatial distribution of land cover across Alberta, circa 2000, at the 1 : 125 000
scale. It consists of a mosaic of 977 556 non-overlapping polygons of various sizes,
from 0.5 ha to thousands of ha. Each polygon represents a contiguous area relatively
homogeneous in terms of land cover. The map is derived by applying a semantic and20

spatial generalization algorithm to combine two pre-existing land-cover products: the
Canadian Forest Service’s Earth Observation for Sustainable Development (EOSD)
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map of the forested region, and Agriculture Agri-Food Canada’s map of the agricul-
tural zone. This map consists of 11 land cover classes, including waters, snow/ice,
rock/rubble, exposed land, developed, shrubland, grassland, agriculture, coniferous for-
est, broadleaf forest, and mixed forest.

2.2.6 Alberta natural region and subregion classification5

To compare how tree biomass carbon stock varies in different forest regions, we used
Alberta natural regions (NRs) and natural subregions (NSRs) classification system (Al-
berta Natural Regions Committee, 2006) as the basis for our comparisons. In Alberta,
this system has supplied for the provincial natural resource management activities
since the 1970s. The current version of this system consists of 6 NRs and 21 NSRs.10

NRs, the largest mapped ecological units in this system, are defined geographically
on the basis of landscape patterns, notably vegetation, soils and physiographic fea-
tures. NSRs, subdivisions of a NR, are generally characterized by vegetation, climate,
elevation, and latitudinal or physiographic differences within a given NR.

2.3 Data analysis15

2.3.1 Estimation of aboveground biomass

Aboveground biomass was estimated for each individual tree in all ground inventory
plots using DBH- and height-based biomass allometric equations and tree species-
specific parameters provided by Lambert et al. (2005) and Ung et al. (2008). These
equations were derived from thousands of trees sampled across Canada and allow the20

calculation of tree biomass (foliage, branches, stem bark, and stem wood) based on
DBH measurements (for details see Lambert et al., 2005 and Ung et al., 2008). The
form of the allometric equation is as follows:

Y = β1D
β2Hβ3 , (1)
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where Y is the biomass component of interest, diameter (D) is measured on each
tree, height (H) is measured on a subsample trees in each plot, and β1, β2 and β3
are parameters. For trees with missing height measure, the heights are estimated from
local species-specific height-diameter equations developed by Huang et al. (2009).

Total aboveground biomass of each PSP was summed up from all trees in each5

plot. Total aboveground biomass of each ABMI site was summed up from three parts:
the biomass per hectare of trees≥ 25 cm DBH in the 25×25 m plots, the biomass per
hectare of trees 7–25 cm DBH in 10×10 m subplots, and the biomass per hectare of
trees< 7 cm DBH in 5×5 m subplots.

2.3.2 Estimation of belowground biomass10

Since belowground data were not measured at all sites, we estimated belowground
tree root biomass using the following regression equation developed for boreal forests
by Cairns et al. (1997):

BGB = e−1.0587+0.8836×ln(AGB)+0.1874 (2)

where BGB is the belowground biomass (coarse and fine roots), and AGB is the above-15

ground biomass.

2.3.3 Estimation of debris biomass

Our aboveground biomass estimates included standing dead trees. However, there was
no inventory data on down and dead woody material (fine and coarse woody debris)
for most of our study plots. To estimate debris biomass, we calculated the ratios of20

debris biomass (fine and coarse woody debris) to above-ground biomass for 90 study
sites across Canada’s forest regions (Shaw et al., 2005). The average ratio of debris
biomass to above ground biomass was 5 %, which was used to estimate the debris
biomass in the plots.
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2.3.4 Estimation of biomass carbon stock

Estimates of belowground biomass and debris biomass were added to the above-
ground estimates to produce total biomass estimates. Biomass carbon pool was cal-
culated by multiplying a carbon biomass conversion factor of 0.5 to the total biomass
(Schlesinger, 1997).5

2.3.5 Biomass-environment correlations

We used simple Pearson correlations to explore covariation among biomass and 14
environmental variables. Because the presence of spatial autocorrelation in model
residuals violates the assumption of data independence (Bini et al., 2009), Pearson
correlations among biomass and biotic and abiotic variables were calculated after ac-10

counting for spatial autocorrelation using the R package modttest 1.4 (José Manuel
Blanco Moreno, Universitat de Barcelona, Spain, personal communication).

2.3.6 Scaling up to the whole region

To get an accurate estimate of biomass distribution, four approaches were selected for
our analysis, including spatial interpolation of direct field measurements, non-spatial15

regression model, spatial regression model, and decision-tree based modelling with
random forests algorithm (RF).

Spatial interpolation methods: These methods have been used for mapping for-
est variables (e.g. site index, standing volume, above-ground biomass, productivity,
etc.) based on forest inventory data where these variables seemingly have spatial au-20

tocorrelation (e.g., Dungan, 1998; Freeman and Moisen, 2007; Viana et al., 2012).
In this study, we compared several different approaches to find the “best” method
for spatial interpolation of tree biomass. These approaches included ordinary kriging
(Krige, 1951), standardized ordinary cokriging (elevations as the covariate), inverse dis-
tance weighting, thin-plate smoothing splines, and partial thin-plate smoothing splines.25
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Cross-validation analysis was used to evaluate effective parameters for these interpo-
lation methods. The results with the highest R2 in cross-validation analysis were finally
selected. Kriging, cokriging and inverse distance weighting were calculated using the
geostatistics software GS+ (http://www.gammadesign.com), and thin-plate smoothing
splines were calculated using the R package “fields” (Fields Development Team 2006).5

After producing the biomass map for Alberta, we used the Alberta Natural Region GIS
map to crop grassland and parkland regions, and the Alberta land cover map to crop
the areas with the following land cover classes: waters, snow/ice, rock/rubble, exposed
land, shrubland, grassland, and agriculture.

Non-spatial and spatial regression models: Two steps were used to estimate biomass10

stocks using canopy height data from spaceborne LiDAR. First, we used the data
from the 1968 forest inventory plots to establish the relationships between total tree
biomass and ground-measured top canopy height, climatic variables, elevations, lat-
itudes, and longitudes. Both non-spatial multiple regression models (ordinary least
squares, OLS) and spatial linear models (here “spatial simultaneous autoregressive15

error models (SARs)”, Kissling and Carl, 2008) were used. The SARs models allow
the inclusion of the residual spatial autocorrelation of the data. Among these predic-
tors, some of them were highly correlated. To reduce the risk of multi-collinearity, we
used VIF (Variance Inflation Factors) for variable selection. The variables with VIF> 10,
which represent high collinearity, were removed. The “best” model is selected based20

on lower AIC (Akaike information criterion) and higher R2. Second, we applied this se-
lected model to estimate tree biomass density (Mgha−1) using LiDAR canopy height
and other environmental variables in each 1×1 km grid in Alberta forest regions. All
the analyses were done using R language (R Core Team, 2013), and SARs were cal-
culated using the R package “spdep” (version 0.5–33).25

Decision-tree based modelling with random forests algorithm (RF): The method is
an ensemble machine learning technique, where many decision trees are constructed
based on random sub-sampling of the given data set (Breiman, 2001). As one of
tree-based models, RF performs recursive partitioning of data sets, and makes no
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assumptions regarding the distribution of the input data. RF can capture non-linear re-
lationships between the response variable (tree biomass in our study) and predictor
variables (canopy height, climate, and other environmental variable in our study), and
can deal with correlated variables while producing a low generalization error (Breiman,
2001). In addition, RF can be used to rank the importance of variables in a regression5

or classification problem in a natural way. In our study, this method was used to de-
tect the relative importance of climate, topography and other environmental variables,
and predict the distributions of forest biomass. All analyses were implemented in the R
package “randomForest” (Liaw and Wiener, 2002).

2.3.7 Model accuracy assessment10

Three well-known error statistics were calculated to measure the difference between
the observed and predicted forest biomass, including mean absolute error (MAE), root
mean-square error (RMSE), and the normalized root-mean-square error (NRMSE).
They are defined as:

MAE =
1
N

N∑
i=1

|PREi −OBSi |15

RMSE =

√√√√ 1
N

N∑
i=1

(PREi −OBSi )2

NRMSE = 100× RMSE
OBSmax −OBSmin

where PREi and OBSi denote the i th predicted and observed values, respectively.20

NRMSE is the RMSE divided by the range of observed values of a variable being
predicted. The value is often expressed as a percentage, where lower values indicate
less residual variance.
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3 Results

3.1 Biomass variations among forest inventory plots

Direct field measurements yielded an estimate of 172.33±101.23 Mgha−1 for the
density of total tree biomass for Alberta forests, with a range from nearly zero to
613.82 Mgha−1 in these inventory plots. For the PSP inventory plots only, the average5

biomass density estimate was 198.13 Mgha−1, which is more than double the density
of 94.50 Mgha−1 for the ABMI inventory plots (P < 0.0001, two-sample t test).

For forest inventory plots at the species level, the average biomass density estimates
for lodgepole pine, trembling aspen, black spruce and white spruce were 50.86, 44.55,
23.95, and 33.61 Mgha−1, respectively.10

Based on our inventory data, we detected a large variation of total tree biomass
along forest stand ages (Fig. 2a and b). We classified these plots into four forest
age groups (young, immature, mature, and old-growth forests). Old-growth forests
(age> 120 yr) and mature forests (80–120 yr) had the highest average tree biomass,
214.32 and 187.96 Mgha−1 respectively. The average biomass density in immature15

forests (50–80 yr) was 121.04 Mgha−1, and the average in young forests (< 50 yr) was
63.97 Mgha−1.

3.2 Biomass-environment correlations

The results of Pearson correlations after accounting for spatial autocorrelation showed
that total tree biomass of each ground plot was strongly correlated with observed20

canopy height (R2: 0.752, P < 0.001, Table 1, Fig. 2c). Elevation also showed signifi-
cant correlations with total biomass. Among the 10 climatic variables, most variables
were highly correlated with others. MCMT (mean coldest month temperature) and DD0
(degree-days below 0 ◦C) had relatively high correlations with total tree biomass.
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3.3 Biomass estimates from four different approaches

We compared the results of four approaches for biomass estimation (Table 2, Fig.
3). The RF approach provided the best accuracy for biomass estimation (R2 = 0.62,
MAE= 48.43 Mgha−1, RMSE= 64.18 Mgha−1, NRMSE= 62.25 %) (Table 2). Non-
spatial and spatial regression models performed nearly as well as the RF approach,5

while spatial interpolation had the poorest estimate (R2 = 0.29, MAE= 66.77 Mgha−1,
RMSE= 85.08 Mgha−1, NRMSE= 84.20 %). The total tree biomass estimation from
spatial interpolation was 5.07×109 Mg, which was much larger than the estimates from
spatial regression model (3.01×109 Mg) and RF (3.11×109 Mg) (Fig. 3).

Using the RF approach, the estimates of total tree biomass across Alberta forest10

regions was 3.11×109 Mg (Table 3, Fig. 3). The average biomass density in each
1×1 km grid was 77.59 Mgha−1. Nearly 25 % of total forest areas had biomass densities
between 40–60 Mgha−1, and around 11 % of total forest areas had biomass densities
larger than 150 Mgha−1 (Fig. 4).

Total tree biomass in the boreal region (RF approach) was about 1.81×109 Mg,15

accounting for 58.17 % of total tree biomass in Alberta forests among the four main
natural regions of Alberta (Table 3). The estimated biomass was about 0.76×109 Mg in
the Foothills, 0.50×109 Mg in the Rocky Mountain, and 0.03×109 Mg in the Canadian
Shield. Among the fourteen natural subregions (Table 3), Central Mixedwood had the
highest total tree biomass (0.91×109 Mg), followed by Lower Foothills, Subalpine and20

Lower Boreal Highlands.
Compared with the average biomass of inventory plots (172.33 Mgha−1, Table 3),

Foothills and Rocky Mountain natural regions had higher biomass densities of 192.57
and 190.80 Mgha−1 respectively, than the others. The averages of biomass density
also varied greatly in different subregions, from 22.11 Mgha−1 in Boreal Subarctic to25

197.01 Mgha−1 in Lower Foothills.
Among three major land cover types in Alberta forests (Supplement B), coniferous

forests stored 1.57×109 Mg biomass, accounting for 50.47 % of total tree biomass in
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Alberta forests, and broadleaf forests and mixed forests stored 0.84×109 and 0.23×
109 Mg biomass, respectively.

3.4 Biomass estimates of major tree species

Three major tree species, lodgepole pine, trembling aspen and white spruce, stocked
about 1.91×109 Mg biomass in total, accounting for 61 % of total biomass in Alberta5

forests (Fig. 5, Table 4). Total biomass of lodgepole pine was 0.76×109 Mg, and 84 % of
which is distributed in the Foothills and Rocky Mountain regions. For trembling aspen,
total biomass was 0.68×109 Mg, of which 78 % is distributed in the Boreal region.
For white spruce, total biomass was 0.47×109 Mg, of which 58 % is distributed in the
Boreal region.10

3.5 Variable importance on biomass distribution

Using the RF, we also assessed the importance of various predictor variables on
biomass distribution (Fig. 6). Canopy height, which was directly related to biomass,
had major influence on biomass distribution at both stand and species levels. Elevation
was also significantly correlated with biomass distribution. Each of the ten climatic vari-15

ables had relatively weak effects on biomass distribution at the stand level. The three
major tree species showed differing relationships with climatic variables. For lodgepole
pine, DD0, MCMT and DD5 had stronger impacts on biomass than the other climatic
variables. For trembling aspen, four climatic variables related to site dryness, including
MAP, MSP, DI and AHM, were much more important than the other climatic variables.20

For white spruce, MSP and DD5 had slightly stronger impacts on biomass than others.

4 Discussion

We reported a large-scale spatially explicit dataset for presenting biomass storage in
Alberta’s forest regions, derived from a combination of forest inventory data from 1968
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plots, spaceborne LiDAR data, land cover classification, climate and other environ-
mental variables. Using decision-tree based approach with random forests algorithm,
the total biomass stock in the study region was estimated to be 3.11×109 Mg, which
is very close to Bonnor’s (1985) estimate (3.15×109 Mg) based on volume inventory
data (Table 5). The average biomass density was 77.59 Mgha−1, which is close to5

Bonnor’s (1985) estimate (77.52 Mgha−1). This study showed that the combination of
multisource data could be a cost-effective way to estimate the amounts, distributions
and variations of biomass carbon stocks across large regions with good accuracy.

4.1 Comparison with previous biomass estimations

We summarized previous studies on boreal forest biomass estimation at different spa-10

tial extents (Table 5). At the global scale, total biomass estimates of boreal forests
ranged from 111.32×109 Mg (Cao and Woodward, 1998) to 176×109 Mg (Dixon et al.,
1994). In Canada forests, total biomass estimates varied from 29.02×109 Mg (Kurz
and Apps, 1999) to 56.34×109 Mg (Penner et al., 1997). In Alberta forest regions,
our estimate (3.11×109 Mg) using decision-tree approach was very similar to the esti-15

mate of Bonnor (1985), but smaller than the estimate of Penner et al. (1997) (Table 5).
Compared with other studies, our estimate of mean biomass density was close to sev-
eral studies at global and regional scales, while it also had a large difference from the
estimates of some other studies, such as Dixon et al. (1994), Pan et al. (2011) and
Penner et al. (1997) (Table 5). Clearly, there is a huge disagreement among different20

estimates, but it is hard to compare them because of different data sources, estimation
methodologies, and time periods of data collection.

Compared with these previous studies, our current study has several improvements
and advantages: (1) multisource data: we combined the data from ground-based in-
ventory, LiDAR, land cover, climate and other environmental variables. Many previous25

studies used only a single data source, and did not consider the role of climate and
other variables in their analyses; (2) large, relative unbiased sample plots on forest
inventory: the lack of sufficient and unbiased sample plots has been identified as a ma-

19022

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/19005/2013/bgd-10-19005-2013-print.pdf
http://www.biogeosciences-discuss.net/10/19005/2013/bgd-10-19005-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
10, 19005–19044, 2013

Estimating spatial
variation in Alberta

forest biomass

J. Zhang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

jor barrier to accurately estimate biomass stocks at large area (Botkin and Simpson,
1990; Brown, 1997; Wulder et al., 2008). In the present study, the two different sources
of plot data showed significant differences on stand age structure and biomass distribu-
tion (Fig. 2). The PSP data was derived from undisturbed, relatively productive stands
and thus gave much greater average values of biomass density than the ABMI plots,5

which includes both disturbed and undisturbed sites. Further, the regular distribution
of ABMI plots places some of them in peatlands, which generally were avoided in the
PSP inventory. Thus, the use of PSP data alone would lead to the overestimation of
biomass. In terms of the scope and sample sizes, the data used in this study are more
comprehensive and extensive than previous datasets; (3) By combining inventory data10

and remote sensing data, we provide a cost-effective scheme of mapping biomass
stock for provincial- and national-scale assessments.

4.2 Comparison of different methods for biomass estimations

Selection of appropriate models plays a central role in estimating biomass and car-
bon stocks (Fang et al., 1998; Saatchi et al., 2011). Four different approaches, includ-15

ing spatial interpolation, non-spatial and spatial regression models, and decision-tree
based modeling with random forests algorithm (RF), were used to yield an estimate of
total tree biomass for our study area. We found that spatial interpolation greatly overes-
timated total tree biomass, while regression models and RF provided similar estimate
with high accuracy. The overestimation by spatial interpolation might be related to the20

characteristics of the approach itself and the data we use. First, the spatial interpolation
approach assumes that spatial distribution of the variable we try to predict is a spatially
continuous surface, and the near points generally receive higher weights than far away
points (Krig, 1951). This principle can be easily used to the prediction of some climate
and topography variables, but, for biomass and carbon, it might not be suitable because25

the distribution of biomass is discontinuous usually because of different types of natu-
ral and anthropogenic disturbances (Supplement B). Second, the spatial interpolation
approach we used only considered one additional variable, which seriously constricts
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the ability to accurately predict. Although some techniques have been developed to
consider multiple variables into spatial interpolation, they are still not available in most
of widely used geostatistics software. Furthermore, for most of the PSP plots placed on
upland sites, these are intermixed with a fine-scale mosaic of forested peatlands with
much lower biomass.5

As a nonparametric approach, RF has shown some outstanding advantages in our
study. This is also supported by previous studies for soil mapping (e.g., Grimm et al.,
2008), biomass mapping in forests (Baccini et al., 2004; Neumann et al., 2011; Asner
et al., 2013) and seafloor (Wei et al., 2010), and bird distribution modeling (Kreakie
et al., 2012). The advantages of random forests include: ability of modeling high di-10

mensional non-linear relationships, handling of categorical and continuous predictors,
resistance to overfitting, relative robustness with respect to noise features, unbiased
measure of error rate, and measures of variable importance (Breiman, 2001; Grimm
et al., 2008). Therefore, by combining different predictor variables, this approach has
a great potential for improving the estimation of forest biomass at regional and global15

scales.

4.3 Canopy height as an important determinant of biomass distribution

It is well known that canopy height is a critical indicator of forest site quality and growth
potential (Kimmins 2004; Fang et al., 1998). Also, canopy height is highly related to
stand age and forest disturbance, both of which affect directly forest biomass and pro-20

ductivity. Using a large sample of forest inventory data, we detected a significant re-
lationship between biomass and canopy height (Table 1, Fig. 2). The assessment of
variable importance using the RF approach also showed that canopy height was the
most important variable for determining biomass distribution in our study area (Fig. 6).
However, canopy height has been rarely used in previous estimations of regional-scale25

biomass and carbon storage, because this information was not available over large
areas in the past. The development of remote sensing techniques, especially LiDAR,
has provided high or medium resolution canopy height products at both regional and

19024

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/19005/2013/bgd-10-19005-2013-print.pdf
http://www.biogeosciences-discuss.net/10/19005/2013/bgd-10-19005-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
10, 19005–19044, 2013

Estimating spatial
variation in Alberta

forest biomass

J. Zhang et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

global scales (Lefsky et al., 2010; Simard et al., 2011), and provides an opportunity
to obtain more accurate estimates of biomass and carbon storage over large areas.
For example, based on 1 km resolution spaceborne LiDAR canopy height data (Lef-
sky et al., 2010) and ground inventory data, Saatchi et al. (2011) mapped the total
biomass carbon stocks in tropical regions across three continents with a forest area of5

2.5 billion ha. Therefore, the integration of plot-based measurements of biomass with
remotely-sensed observations of canopy height can provide a cost-effective method for
large-scale mapping. In addition, the LiDAR canopy height data are closely related to
logging and fire history, allowing recently logged and burned sites to be more accu-
rately accounted for in biomass carbon estimation.10

4.4 Biomass–climate relationships

Understanding biomass–climate relationships is important for biomass and carbon
mapping under past and current conditions as well as for making future projections
under a changing climate. Although climatic variables have been used in biomass es-
timations, we know relatively little about how climate influences variation in biomass15

stocks (Stegen et al., 2011). In this study, we found that climate explained relatively
little of the observed, stand-level variation in Alberta forest biomass (Table 1, Fig. 6),
which is consistent with Stegen et al. (2011)’s findings on biomass–climate relation-
ships in temperate and tropical forests. Disturbance regime is likely a better predictor
of biomass but these are often difficult to map at regional scales. Because canopy20

height is strongly influenced by time since the last stand-replacing disturbance (e.g.,
fire), high-resolution LiDAR data can play an important role in estimating biomass and
productivity at regional and national scales.

Species-level analysis on biomass–climate relationships showed that tree species
respond differently to how climate affects biomass distribution (Fig. 6). For lodgepole25

pine, chilling degree-days (DD0), mean coldest month temperature (MCMT) and grow-
ing degree-days (DD5) played a more important role than other climatic variables. This
strong correlation with degree-days is also supported by previous studies on lodgepole
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pine site index study in Alberta forests (Monserud et al., 2006). For trembling aspen,
four drought-related variables (MAP, MSP, DI and AHM) were much more important
than other climatic variables, which confirm previous studies about drought-related im-
pacts on aspen stand dynamics (e.g., Hogg et al., 2008; Michaelian et al., 2011).

4.5 Total carbon stocks in Alberta forests5

To map total carbon (C) storage of Alberta forests, we also need high quality data on
soil C in our study area. Boreal forest ecosystems contain vast C stocks in soil, most
of which is found in peatlands and permafrost soils (Deluca and Boisvenue, 2012). Soil
C in boreal ecosystems has been reported to account for about five times the total C
in the standing biomass or about 85 % of the total biome C (Malhi et al., 1999). The10

large-scale estimation of soil C stocks poses many challenges (Liu et al., 2013), and
was thus not specifically included in the current study. However, using the recent data
set of North American soil organic carbon content at 0.25 ◦ resolution (Liu et al., 2013),
we estimated the total soil carbon stocks in Alberta’s forests to be about 11.8×109 Mg,
with a high proportion in peatlands (Vitt et al., 2000). Our estimate of biomass carbon15

(1.56× 109 Mg, 50 % of total tree biomass) only accounted for 12 % of total carbon
stocks (13.36×109 Mg), while soil carbon accounted for 88 %. Clearly, more efforts are
needed to better understand spatial and temporal variation of biomass and soil carbon
stocks in the boreal forest.

Supplementary material related to this article is available online at20

http://www.biogeosciences-discuss.net/10/19005/2013/
bgd-10-19005-2013-supplement.pdf.
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Table 1. Pearson correlations of tree biomass and climatic variables, elevation, and observed
canopy height, after accounting for spatial autocorrelation.

ln(Biomass) Elevation Canopy height MAT MWMT MCMT MAP MSP AHM SHM DD0 DD5

Elevation 0.300c

Canopy height 0.752c 0.057
MAT 0.314b 0.341a 0.307c

MWMT −0.290b −0.943c −0.054 −0.272
MCMT 0.374b 0.787c 0.230a 0.829c −0.743c

MAP 0.276b 0.850c 0.103 0.459b −0.822c 0.791c

MSP 0.274b 0.748c 0.150a 0.613c −0.678c 0.823c 0.832c

AHM −0.129a −0.761c 0.065 0.071 0.788c −0.414c −0.831c −0.604c

SHM −0.322b −0.866c −0.157 −0.622c 0.828c −0.896c −0.877c −0.950c 0.659c

DD0 −0.372c −0.691c −0.260b −0.911c 0.636c −0.981c −0.721c −0.796c 0.285b 0.858c

DD5 −0.189b −0.898c 0.065 0.044 0.934c −0.511c −0.712c −0.546c 0.854c 0.677c 0.371b

DI −0.291b −0.950c −0.072 −0.368a 0.951c −0.797c −0.924c −0.815c 0.858c 0.919c 0.704c 0.881c

Notes: a < 0.05; b < 0.01; c < 0.001.
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Table 2. Validation statistics for four different approaches for total tree biomass estimation.

Methods for biomass estimation R2 MAE RMSE NRMSE
(Mgha−1) (Mgha−1) (%)

Spatial interpolation 0.29 66.77 85.08 84.20
Non-spatial regression model 0.60 48.38 64.08 63.15
Spatial regression model 0.61 48.39 64.09 63.16
Decision-tree modeling with 0.62 48.43 64.18 62.25
random forests algorithm

Notes: MAE: mean absolute error; RMSE: root mean square error; NRMSE: the normalized root
mean square error.
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Table 3. Total tree biomass estimated by decision-tree based modelling (RF approach) in dif-
ferent natural regions and subregions in Alberta forests.

Forest regions Summary based on Summary based on forest
1 km pixels inventory plots

Total Percentage Number Mean Range
(109 Mg) (%) of plots (Mgha−1) (Mgha−1)

Natural regions Boreal 1.81 58.17 571 126.66 0.01–613.82
Foothills 0.76 24.56 1137 192.57 0.49–534.08
Rocky Mountain 0.50 16.16 247 190.80 4.29–423.74
Canadian Shield 0.03 1.09 13 56.10 8.15–125.16
Total 3.11 100 1968 172.33 0.01–613.82

Natural subregions Central Mixedwood 0.91 29.23 349 134.47 0.01–613.82
Lower Foothills 0.47 15.18 677 197.01 0.49–534.08
Subalpine 0.36 11.61 216 191.60 4.29–432.74
Lower Boreal Highlands 0.34 10.94 80 139.48 0.93–486.63
Dry Mixedwood 0.30 9.70 82 129.97 5.90–335.92
Upper Foothills 0.29 9.38 460 186.05 1.54–461.15
Northern Mixedwood 0.12 3.73 20 95.73 4.74–302.41
Montane 0.11 3.55 30 185.34 51.23–348.82
Upper Boreal Highlands 0.06 2.00 9 49.01 4.29–158.81
Athabasca Plain 0.04 1.19 25 35.81 3.19–94.84
Boreal Subarctic 0.03 1.01 4 22.11 8.85–55.44
Alpine 0.03 1.00 1 – –
Kazan Uplands 0.03 1.09 13 56.10 8.15–125.16
Peace–Athabasca Delta 0.01 0.36 2 118.63 99.32–137.95
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Table 4. Total tree biomass of three major tree species estimated by decision-tree based ap-
proach.

Species Natural regions Summary based on Summary based on forest
1 km pixels inventory plots

Total Percentage Mean Range
(109 Mg) (%) (Mgha−1) (Mgha−1)

Lodgepole pine Boreal 0.12 15.87 4.56 0.00–224.51
Foothills 0.33 44.08 64.01 0.00–378.31
Rocky Mountain 0.30 39.96 100.01 0.00–406.45
Canadian Shield 0.01 0.06 0.00 0.00–0.00
Total 0.76 100.00 50.86 0.00–406.45

Aspen Boreal 0.52 77.53 60.26 0.00–486.02
Foothills 0.09 13.62 45.31 0.00–497.95
Rocky Mountain 0.05 6.75 5.70 0.00–217.14
Canadian Shield 0.01 2.08 26.22 0.00–124.93
Total 0.68 100.00 44.55 0.00–497.95

White spruce Boreal 0.27 58.11 29.69 0.00–389.88
Foothills 0.10 21.32 33.01 0.00–360.92
Rocky Mountain 0.09 18.34 46.20 0.00–406.45
Canadian Shield 0.01 2.20 19.86 0.00–111.75
Total 0.47 100.00 33.61 0.00–389.88
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Table 5. Biomass estimations in previous studies.

Reference Study Area Area Methodology or data source Total tree Mean Bio-
(Mha) biomass mass density

(×109 Mg) (Mgha−1)

Dixon et al. (1994) Boreal forests (Global) 1372 Inventory data (1987–1990) 176 128
Cao and Woodward (1998) Boreal forests (Global) 1210 Predicted from a global carbon

model (1990s)
111.32 92

Jarvis et al. (2001) Boreal forests (Global) 1381 Inventory data (1990s) 114.99 83
Myneni et al. (2001) Northern forests (Global) 1419.9 Remote sensing (NDVI; 1995–1999) 121.44 85.82
Pan et al. (2011) Boreal forests (Global) 1135 Inventory data and statistical or

process models (2007)
140 123.35

Bonnor (1985) Canadian forests 440.7 Volume Inventory data (1981) 35.48 80.24
Dixon et al. (1994) Canadian forests 436 Inventory data (1987–1990) 24 56
Penner et al. (1997) Canadian forests 440.7 Volume Inventory data (1991) 56.34 127.84
Kurz and Apps (1999) Canadian forests 404.2 Inventory data (1990s) 29.02 71.8
Pan et al. (2011) Canadian forests 229.4 Inventory data and statistical or

process models (2007)
38 165.65

Myneni et al. (2001) Canadian forests 239.5 Remote sensing (NDVI; 1995–1999) 21.12 88.18
Liski and Kauppi (2000) Canadian forests 244.6 Inventory data (mid–1990s) 23.78 97.22

Penner et al. (1997) Alberta forests 40.3 Volume Inventory data (1991) 4.28 106.08
Bonnor (1985) Alberta forests 40.3 Volume Inventory data (1981) 3.15 77.52
This study Alberta forests 40.3 Inventory data (2000–2012) and

LiDAR canopy height data (2006)
3.11 77.59

Notes: For the studies with aboveground biomass data only, belowground biomass is assumed to be 0.36 of the aboveground biomass (Jarvis et al., 2001).
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FIG. 1. 

44 
 

Fig. 1. Spatial distribution of 1968 inventory plots in Alberta forests, Canada.
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FIG. 2. 

   

45 
 

Fig. 2. Total tree biomass vs. canopy height and stand age of 1968 inventory plots.
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FIG. 3. 

Fig. 3. The estimates of total biomass density (Mgha−1) using spatial interpolation, spatial
multiple regression model, and decision-tree based modeling with random forests algorithm
(Projection: UTM zone= 11; spatial resolution: 1 km).
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FIG. 4. 

Fig. 4. Histogram of forest biomass density based on the estimate of decision-tree based mod-
eling.
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FIG. 5. 

Fig. 5. Total tree biomass density (Mgha−1) of three major tree species based on decision-tree
based modeling (Projection: UTM zone= 11; spatial resolution: 1 km).
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FIG. 6. 

 

 

Fig. 6. Relative importance of predictor variables for biomass estimation by decision-tree based
modeling with random forest algorithm. Variable importance is measured in mean decrease in
accuracy, which is the decrease in accuracy of a classification after the variable has been
randomly permuted. A higher mean decrease in accuracy means the variable contributes more
to the accuracy of the classification.
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