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Abstract

Computer simulations are widely used to support decision making and planning in the
agriculture sector. On the one hand, many plant growth models use simplified hydrolog-
ical processes and structures, e.g. by the use of a small number of soil layers or by the
application of simple water flow approaches. On the other hand, in many hydrological5

models plant growth processes are poorly represented. Hence, fully coupled models
with a high degree of process representation would allow a more detailed analysis of
the dynamic behaviour of the soil–plant interface.

We used the Python programming language to couple two of such high process
oriented independent models and to calibrate both models simultaneously. The Catch-10

ment Modelling Framework (CMF) simulated soil hydrology based on the Richards
equation and the van-Genuchten–Mualem retention curve. CMF was coupled with the
Plant growth Modelling Framework (PMF), which predicts plant growth on the basis of
radiation use efficiency, degree days, water shortage and dynamic root biomass allo-
cation.15

The Monte Carlo based Generalised Likelihood Uncertainty Estimation (GLUE)
method was applied to parameterize the coupled model and to investigate the re-
lated uncertainty of model predictions to it. Overall, 19 model parameters (4 for CMF
and 15 for PMF) were analysed through 2×106 model runs randomly drawn from an
equally distributed parameter space. Three objective functions were used to evaluate20

the model performance, i.e. coefficient of determination (R2), bias and model efficiency
according to Nash Sutcliffe (NSE).

The model was applied to three sites with different management in Muencheberg
(Germany) for the simulation of winter wheat (Triticum aestivum L.) in a cross-validation
experiment. Field observations for model evaluation included soil water content and25

the dry matters of roots, storages, stems and leaves. Best parameter sets resulted
in NSE of 0.57 for the simulation of soil moisture across all three sites. The shape
parameter of the retention curve n was highly constrained whilst other parameters
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of the retention curve showed a large equifinality. The root and storage dry matter
observations were predicted with a NSE of 0.94, a low bias of −58.2 kg ha−1 and a high
R2 of 0.98. Dry matters of stem and leaves were predicted with less, but still high
accuracy (NSE=0.79, bias=221.7 kg ha−1, R2 =0.87). We attribute this slightly poorer
model performance to missing leaf senescence which is currently not implemented in5

PMF. The most constrained parameters for the plant growth model were the radiation-
use-efficiency and the base temperature. Cross validation helped to identify deficits in
the model structure, pointing out the need of including agricultural management options
in the coupled model.

1 Introduction10

Plant growth and hydrological models are widely used to evaluate strategies such as
climate adaption, risk management of pesticide or fertilizer application in agricultural
sciences and politics. However modelling comes along with limitations. Different mod-
els can lead to deviating results although they are driven by the same input and forcing
data. Such effects are represented by model uncertainty. Furthermore, the selection15

of input parameter can change the results and also increase uncertainty. This effect
is commonly known as parameter uncertainty. Hence, a good knowledge about these
uncertainties is crucial, especially when plant growth models are used to project food
supply and hydrological models are applied to develop strategies for water resource
management. The importance of a comprehensive knowledge about the capabilities20

and limitations of such models applied in the field of decision making has also been
highlighted by Kersebaum (2007).

Most current plant growth models integrate plant growth and hydrological processes
tightly, leading to very complex models. Therefore, the calibration of such models is
often done step by step. In a number of studies (e.g. Pathak et al., 2012; Wang et al.,25

2005; Iizumi et al., 2009) the hydrological model has been calibrated in a first step and
the plant growth model in a second step to reduce the number of parameters varied in
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one calibration step. However, in such a setup feedbacks between biomass production
and hydrology are not considered (Pauwels et al., 2007). Alternatively, the past years
have seen modular model developments and the promotion of comprehensive model
coupling strategies (Priesack et al., 2006). Kraft et al. (2011) coupled the Catchment
Modelling Framework (CMF) (Kraft et al., 2011) with the Plant growth Modelling Frame-5

work (PMF) (Multsch et al., 2011) to simulate the direct feedbacks of soil hydrological
conditions on plant development. However, their coupled version of CMF and PMF has
only been used for virtual modelling experiments so far (Multsch et al., 2011; Kraft
et al., 2011), but not yet for real observed data.

Instead of calibrating single models step by step, we favour the use of a Monte Carlo10

algorithm to iterate many parameter combinations of the entire coupled model and ap-
ply the GLUE (Generalized Likelihood Uncertainty Estimation) method, a widespread
Bayesian technique to investigate model performance and parameter uncertainty
(Beven and Binley, 1992). The GLUE results in a range of parameter sets, which all
lead to acceptable model runs, rather than only one “optimal” calibrated parameter set15

(Candela et al., 2005). This behaviour is known as “equifinality”. Model realisations are
grouped into behavioural and non-behavioural model runs and associated parameter
sets. The former describes an acceptable model application, allowing some degree of
error in simulating a target value (defined in an a priori threshold criteria). The latter de-
scribes parameter sets which return unacceptable model outputs and can be deleted20

(Beven, 2006). A further distinction is made between constrained and unconstrained
parameters (Christiaens and Feyen, 2002). The more sensitive a model parameter for
predicting a given target value is, the more does it get constrained in the remaining
behavioural parameter sets.

The level of improvement of the model by the GLUE approach depends on the used25

likelihood function threshold criterion and the number of sampled parameters. How-
ever, the choice of the likelihood function itself has also a strong influence on the re-
sults, which has also been reported by He et al. (2010), who additionally highlight the
importance of the likelihood-function to ensure statistical validity. A number of likeli-
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hood functions have been applied, e.g. the inverse error variance with a shaping factor
(Beven and Binley, 1992), the Nash and Sutcliffe model efficiency (Freer et al., 1996),
scaled maximum absolute residuals (Keesman and van Straten, 1990) as well as the
index of agreement (Wilmott, 1981), model bias and coefficient of determination.

A number of studies applied the GLUE method to achieve a better understanding of5

plant growth models and their parameters. For example, Wang et al. (2005) utilized the
GLUE method for evaluation of the EPIC model with the mean squared error as a likeli-
hood function. He et al. (2010) tested the influence of different likelihood functions with
the crop-environmental-resource-synthesis (CERES)-Maize model. They used modi-
fications of the variance of model errors and mean squared error as likelihood func-10

tions. Mo and Beven (2004) applied the method with the index of agreement as a like-
lihood function for calibration of a soil-vegetation-atmosphere-transfer model. Pathak
et al. (2012) considered bias, root mean squared error and the index of agreement
as likelihood functions in the uncertainty assessment of the CSM-CROPGRO-cotton
model.15

In this study, the combined set of model parameters from a fully coupled plant growth
model (PMF) and a hydrological model (CMF) was calibrated parallelly. Hence, the
objectives of this study were as follows:

– In-depth analysis of the coupled model setup through a GLUE analysis to inves-
tigate the sensitivity of plant growth and hydrological model parameters and to20

derive a range of behavioural model runs.

– Cross validation of parameter transferability on three different sites against ob-
served soil moisture and biomass data for storages, roots as well as stems and
leaves (further summarized as plant dry matters) of winter-wheat.

To describe the “goodness-of-fit” of our model prediction, we used a set of three25

likelihood-functions (model efficiency, bias and coefficient of determination). Subse-
quently, we will distinguish between (i) forcing data (e.g. meteorological observations),
(ii) input data (e.g. soil information) and (iii) model parameters (e.g. plant coefficients).
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2 Materials and methods

2.1 Model set up

2.1.1 Catchment Modelling Framework (CMF)

A plot scale hydrological model for the unsaturated zone was built by using the Catch-
ment Modelling Framework (CMF) (Kraft, 2011). CMF is a computer software to set5

up individual hydrological models. A programming library facilitates the design of water
transport models between soil layers in up to three dimensions. It allows the devel-
opment of detailed mechanistic models as well as lumped large scale linear storage
based models. A model in CMF works as a network of storages and boundary con-
ditions, connected by flux calculating sub models. It works as an extension to Python10

and can easily be coupled with other models.
The specific realisation of CMF was done with a one dimensional setup. Water fluxes

were simulated with the Richard’s equation. We simulated the soil moisture with a van-
Genuchten–Mualem retention curve (van Genuchten, 1980) for 50 soil layers. The ksat
parameter was used to simulate the saturated conductivity. The porosity parameter is15

defined by pore volume per soil volume, while alpha and n as known van-Genuchten
parameters. The interaction of the lowest soil layer with the groundwater is modelled as
a Neumann boundary condition. To initiate the water content of CMF we used existing
climate data for the year 1992 and calibrated it for the years 1993–1994.

2.1.2 Plant growth Modelling Framework (PMF)20

As a plant growth model, we used the Plant growth Modelling Framework (PMF), devel-
oped by Multsch et al. (2011). PMF is a dynamic and integrative tool for setting up indi-
vidual plant models. In general, PMF consists of four core elements: (i) Plant Model, (ii)
Process Library, (iii) Plant Building Set and (iv) Crop Database. The basic idea of PMF
is to divide the plant into its physical components root, shoot, stem, leaf and storage25
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organs, which interact on a numerical level during the growth process. This structure
builds up the Plant Model. A process library contains mathematical formulations of bio-
physical processes, such as biomass accumulation, water uptake and development.
The user can connect the Plant Model with a set of biophysical processes by using the
Plant Building Set. The plant parameters are taken from the Crop Database.5

The biomass accumulation is affected by the radiation use efficiency (RUE). The
higher the RUE, the higher is the biomass accumulation. RUE is used to calculate the
biomass growth with the biomass radiation-use-efficiency concept (Monteith and Moss,
1977). The mathematical solution of the radiation-use-efficiency in PMF is based on
Acevedo et al. (2002). The photosynthetically active absorbed radiation is calculated10

by solar radiation and its intercepted fraction. The simulation of biomass accumula-
tion from photosynthetic active radiation is performed with the canopy extinction co-
efficient (k). The minimum temperature for plant development is defined by the base
temperature (tbase). It acts as a threshold temperature above which development oc-
curs. Each plant development step is defined by a temperature sum. If the temperature15

sum is reached, the developing process begins. If this parameter is too high, the plant
starts its growing process too late, and vice versa. For simplicity, the parameter tbase
is independent from further environmental influences. Development stages are used to
control biomass allocation between plant organs. The plant development is divided into
the eight stages by a thermal time threshold: emergence, leaf development, tillering,20

stem elongation, anthesis, seed fill, dough stage and maturity. Root elongation deter-
mines the daily root growth rate. The last group of parameters (kcbini, kcbmid, kcbend) is
used to assess plant transpiration from potential evapotranspiration. The simulation of
the evapotranspiration in PMF is based on the FAO Penman–Monteith approach (Allen
et al., 1998). All PMF parameters are chosen on the basis of their influence on roots,25

stems and leaves or storages dry matter outputs, based on one-parameter-at-a-time
sensitivity analyses and expert-knowledge.
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2.1.3 Coupling CMF-PMF

Both model frameworks provide interfaces for the communication with other models. In
case of PMF, an atmosphere and a soil interface from counterpart models are needed.
The interfaces define functions from the plant growth model which are used to obtain
data, e.g. temperature, rainfall or soil water content. Furthermore, PMF exposes prop-5

erties such as evapotranspiration or biomass which can be described by other models.
In case of CMF, a set of predefined functions can be used to obtain information on the
current status of the soil water balance such as matrix potential or soil water content.

A Python script was used to run and synchronize both models in a daily step and
to store output data. This synchronization in terms of evapotranspiration and available10

water for the plant was part of the run time loop. The models provided a wide range
of output results for plant information such as root carbon content, potential growth or
development stages (PMF) and hydrology such as deep percolation, flux and porosity
(CMF). Here, we used the outputs of soil moisture (CMF), root, stem and leaves as well
as storage dry matters (PMF). These output values were saved in an array for every15

daytime step.

2.2 GLUE set up

2.2.1 Likelihood functions

The performance of a parameter set to predict observations was evaluated by way of
a “goodness-of-fit” value, represented by the likelihood function. The choice of the like-20

lihood function depends on the situation and is often ambiguous, if no accurate infor-
mation about the probability distribution of the measurement errors is available (Beven
and Binley, 1992). But the choice of only one objective function for the calibration is in
most cases inaccurate (Vrugt et al., 2003). We therefore used a combination of three
likelihood functions:25
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(1) The bias function was used as a central statistical measurement to summarize
overall model performance:

L1(θ|Y ) = Bias =
1
N

−
N∑
i

Yi − Ŷi (1)

where L(θj |Y ) is the likelihood measure for each model run with parameter set θ, N is
the total number of measurements, Yi is the measured value for the i th measurement5

and Ŷi is the corresponding output of the model. The bias measures the differences
between measurements and model outputs. For under-predictions of the model, the
bias is positive, for over-predictions the bias is negative. Thus, it is a useful measure
for assessing whether structural changes of the model equations are necessary for
reducing the overall bias of the prediction (Wallach, 2006). However, bias alone is not10

sufficient to evaluate model errors, as a bias of zero could also be due to cancelation
of large errors with different signs (Wallach, 2006).

(2) In order to measure the deviation of model prediction and measurement data we
used the coefficient of determination, which is defined as:

L2(θ|Y ) = R2 =


N∑
i=1

[(
Yi − Ȳ

)(
Ŷi − ¯̂Y

)]
( N∑
i=1

(
Ŷi − Y

)2 N∑
i=1

(
Ŷi − ¯̂Y

)2
)0.5


2

(2)15

where Ȳ is the average of the measured and ¯̂Y is the average of the simulated data.
A maximum value of R2 = 1 indicates that a perfect linear relationship between mea-
sured and calculated values exists, while the minimum value of R2 = 0 indicates a low
performance of the model. R2 alone is also not a good measure of the model agree-
ment with the observations, as R2 could also be equal to 1 if the model systematically20

over- or under predicts.
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(3) Finally, we employed the Nash–Sutcliff index (Nash and Sutcliffe, 1970) for mea-
suring the model’s sensitivity to outliers. This widely used function (e.g. Garnier et al.,
2001; Beven and Binley, 1992) is calculated as follows:

L3(θ|Y ) = NSE = 1−

N∑
i=1

(
Yi − Ŷi

)2

N∑
i=1

(
Yi − Ȳ

)2
(3)

If the model predicts the measurements perfectly, we have Yi = Ŷi implying NSE=1.5

If Ŷi = Ȳ for all i , then NSE=0. Thus, a model which gives NSE=0 has the same
“goodness-of-fit” as using the average of the measured data for every situation (Wal-
lach, 2006).

The three proposed likelihood functions cover most aspects in an adequate manner.
They are widely used in hydrology (e.g. Li et al., 2010; Besalatpour et al., 2012; Pathak10

et al., 2012) with high explanatory power. It has to be noted that other choices for the
likelihood function would certainly be imaginable (Beven and Freer, 2001).

2.2.2 GLUE sequence

The general GLUE method proceeds in several consecutive steps (Beven and Binley,
1992), which were adapted to this specific study:15

1. Selection of sensitive parameters: A full list of all parameters considered in GLUE
from CMF and PMF are given in Table 1. Fifteen plant specific parameters from
PMF which influence plant development, transpiration and biomass production
were altered in the analysis. The hydrological parameters were given by the van-
Genuchten–Mualem parameters. These parameters were selected on the basis20

of a “one-parameter-at-a-time” sensitivity analysis, which is not presented in this
study.
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2. Creation of a priori distribution: A random function from the Python package
Numpy (Oliphant, 2006) was used to create 2×106 parameter sets, whereby each
parameter set consisted of nineteen parameters. Since their a priori distribution
was unknown, a uniform distribution was assumed. The parameter ranges were
selected on the basis of expert-knowledge and other publications.5

3. Execution of model runs: The 2×106realisations of the coupled CMF-PMF model
were forced with same climate data on three different sites by using a high perfor-
mance computing cluster.

4. Creation of posteriori distribution: The simulated variables of both models were
compared with observed data by using the three likelihood functions NSE, R2

10

and bias. The variables of PMF are root, stem and leaves as well as storage
dry matter and soil moisture in case of CMF, respectively. Three threshold crite-
ria were used to obtain parameter settings which fit the measured data equally
well. All parameter sets that resulted in a bias > ±500 kgha−1 for the plant dry
matters and > ±10 % soil moisture respectively, a NSE< 0 and a R2 < 0.3, were15

discarded.

These four steps resulted in behavioural parameter sets for the coupled model for each
study site. In order to test the limitations of the behavioural parameter sets a full cross-
validation on all three sites was conducted.

2.3 Study site and data20

Study site: The coupled CMF-PMF model was parameterized and evaluated using data
from three agricultural field sites. They are located at the Muencheberg experimental
stations, 50 km to the east of Berlin, Germany, where the ZALF (Leibniz Centre for
Agricultural Landscape Research) recorded a comprehensive experimental data set
(Mirschel, 2007). This extensive data set was used in several previous modelling stud-25

ies (e.g. Wegehenkel, 2000; Palosuo et al., 2011; Kersebaum et al., 2007). The three
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sites are characterized by a primarily sandy Eutric Cambisol, with volumetric sand con-
tent between 80 to 90 % and silt/clay content around 5 to 10 %. The bulk density was
found to be around 1.5 gcm−1and the organic matter in the first 0.3 m around 0.6 %
(Mirschel, 2007).

Forcing data: The climate data comprise daily sum of precipitation, minimum and5

maximum temperature, mean relative humidity, early morning vapour pressure, global
radiation and mean wind speed. During 1994 (the year for which winter wheat was culti-
vated), the conditions were relatively humid, with an annual precipitation of 714 mm and
an annual average temperature of 9.1 ◦C. During the growing season (May–October),
precipitation of 588 mm and average temperature of 15.8 ◦C were measured. The day10

of sowing and the day of harvest were set to observed dates (15 October 1993 and 29
July 1994).

Evaluation data: Soil moisture was measured on each site in three soil depths at
0.15 m, 0.45 m and 0.75 m on 33 days during the observation period from 1992–1998.
The average soil moisture ranged from 12.1 to 12.9 % on site 1–3, with a minimum of15

3 % and a maximum of 21.2 %. Soil moisture was very similar across all three sites. The
sites differed in their management strategies, with high level intensive (site 1), organic
(site 2) and extensive management (site 3) and in their winter wheat cultivar, namely
Busard, Ramiro, and Greif. Crop growth data for winter wheat are available for five
different days in 1994. Data on root dry matter [kg ha−1], stem and leaves dry matter20

[kgha−1] and storage dry matter [kgha−1] are given for all three sites.

3 Results and discussion

3.1 Parameter uncertainty

To assess the range of each parameter in the behavioural parameter sets, we need to
take a closer look at the parameter distributions for the different likelihood functions.25

Table 1 summarizes the results of the GLUE approach, providing the a priori and pos-
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teriori parameter ranges for the 19 model parameters as well as the reduction of the
parameter uncertainty. For five parameters we were able to substantially reduce their
uncertainty bounds by 30 to 70 %, while 11 parameters were rather unconstrained with
uncertainty reduction of less than 10 %. Out of the eight parameters that define the
growing stage through the thermal time requirement (◦days) only the parameter tiller-5

ing showed a large uncertainty reduction potential. This indicates that many of the
parameters identifying plant growth stages lead to a high grade of equifinality.

A selection of 8 model input parameters in terms of behavioural model runs is shown
in Fig. 1, where 4 CMF and 4 PMF parameters are given as interaction scatter plots.
It depicts the mean NSE (calculated of the single, equally weighted NSE for soil mois-10

ture, roots, stems and storages, as well as storage dry matter) on site 1 as an example
for constrained as well as non-constrained parameters of Table 1. On the interaction
scatter plots, no correlations between parameters of PMF and CMF can be detected
(Fig. 1). As the GLUE method cannot deal with such correlations, this is an impor-
tant precondition of the GLUE method (Jin et al., 2010). The interaction scatter plots15

also show a clear prediction boundary for the parameter n at 1.3 [–] and for RUE at
6 gMJ−1 PAR. A setting of RUE above 6 gMJ−1 PAR and n below 1.3 [–] can never
lead to an adequate model prediction for winter wheat and soil moisture in 1994 on
site 1 in Muencheberg, no matter which values are selected for other model input pa-
rameters.20

The most constrained parameter of PMF is RUE (Table 1, Fig. 1), which influences
biomass accumulation. Good settings for RUE were found from 1.5 to 4.9 gMJ−1 PAR
(Table 1). This range is in line with most other applications. Acevedo et al. (2002) sug-
gested a RUE of 3.0 gMJ−1 PAR for wheat, which was used in the setup of Multsch
et al. (2011). Calderini et al. (1997) found RUE across their investigated wheat cul-25

tivars between 1.08 and 1.16 g Mj-1 PAR. Lindquist et al. (2005) suggested a RUE
of 3.8 gMJ−1 PAR. The DSSAT version 4.0 uses RUE with a setting of 4.2 gMJ−1

PAR (Jones et al., 1998). Due to high influence of weather variability to the RUE re-
sponse, CERES-Maize developers do not recommend using RUE as a calibration pa-
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rameter (Ma et al., 2011). We therefore suggest fixing RUE at our found optimum of
2.02 gMJ−1 PAR for further applications of PMF.

The second most constrained parameter (Table 1, Fig. 1) is the CMF shape param-
eter of the retention curve n with a strict optimum at 1.45 [–] and a range reduction
of 60 % through the threshold criteria. Christiaens and Feyen (2002) found n being5

not much constrained from 1.2 to 1.6 for the MIKE SHE model. In contrast, Vogel
et al. (2000) reported the parameter to be quite sensitive. Ippisch et al. (2006) demon-
strated that the van-Genuchten–Mualem model caused convergence problems with n
close to 1.0 for the numerical solver, which we can confirm. They found a similar optimal
setting with n=1.47±0.04 for the A-Horizon in a haplic Calcisol.10

When looking at the density distribution of the behavioural model runs in Fig. 1, we
can locate an optimal parameter range with 0.015–0.025 [–] for alpha. But even within
this range there is no guarantee for a good model response. Several parameter values
in the considered range of alpha yield poor prediction with NSE< 0, depending on the
settings of other model parameters. The parameter tbase provides best results within15

the range of 1.5 to 2.5 ◦C (Table 1). These settings are higher than the value given
for PMF by Multsch et al. (2011) with 0 ◦C which was based on a study by McMaster
and Wilhelm (1997). A wide range from 0 and 10 ◦C for tbase can be found in literature,
strongly depending on cultivars (Porter and Gawith, 1999). The root growth shows
a local optimum at 0.6 and a global optimum at 2.4 cmday−1. Following our GLUE20

results the k parameter could not be confined, nevertheless, Pathak et al. (2012) found
the k parameter constrained to around 0.64 [–] for the CROPGRO-Cotton model. All
other investigated parameters are unconstrained within their boundaries to the outputs
of various plant dry matters and soil moisture (Table 1, Fig. 1).

Finding mainly insensitive parameters corresponds well to prior studies using the25

GLUE procedure for models with a similar large number of model parameters (e.g.
Viola et al., 2009; Rankinen et al., 2006). Part of the problem is that parameter rich
models allow for equifinality, levelling out the impact of certain parameters.
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3.2 Model performance

3.2.1 Soil water balance

Figure 2 summarizes the capability of the coupled CMF-PMF model for predicting the
soil moisture output in three depths. Along with the median of the GLUE derived be-
havioural model runs, we showed the 50 % and 95 % uncertainty bounds. Overall, ap-5

proximately 90 % of the observed data were within the predicted uncertainty bounds.
The distribution differs between all soil depths and remaining behavioural parameter
sets were found to be around 10 % with respect to the measured value. The uncer-
tainty of the prediction was higher during dry and wet days and lower during moderate
moisture conditions. But the GLUE method per se has the tendency to overestimate10

uncertainty during low and high simulation events (Vrugt et al., 2008). In the soil depth
from 0.3 to 0.6, as well as in the soil depth from 0.6 to 0.9 m, we have a constant un-
certainty in the prediction of around 5 %. The median of the behavioural model run in
the upper soil layer has a NSE of 0.57, bias of 2 % soil moisture and R2 of 0.84. Model
performance criteria in the soil depths below are of similar quality, with less good per-15

formance for R2 values but improved biases (Fig. 2).
Compared with other studies, the median output for soil moisture after calibration

was on the same quality level as previously reported findings. For example, Chris-
tiaens and Feyen (2002) published results of the GLUE method used for the MIKE
SHE model with an NSE close to zero. Jiménez-Martínez et al. (2009) found a van-20

Genuchten parameter-set for Hydrus-1-D model resulting in a high R2 of 0.9 and
0.029 % RMSE for soil moisture. They simulated the soil moisture under melons grow-
ing in southeast Spain. Scharnagl et al. (2011) found a RMSE of 0.009 % water content
and NSE of 0.87 for their Hydrus-1-D modelling a site at Selhausen, near Jülich, Ger-
many. Their uncertainty bounds for soil moisture varied around 3 %, with higher uncer-25

tainty during dry and wet situations, which is consistent with our findings. We obtained
similar model efficiencies as the best performing model CERES (NSE=0.66) in pre-
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dicting the soil water content over all soil depths as a study of Kersebaum et al. (2007)
on the same study site 1 in Muencheberg.

Despite the already good results, the prediction uncertainty could be further reduced
by using more model runs and a stricter setting of threshold likelihood function. How-
ever, single model run time and the number of model runs had already pushed the5

overall computer run time of the uncertainty estimation provided here to three months.
An efficient way might be the use of the DREAM-algorithm that is able to solve complex
posteriori probability density functions for a large number of parameters. This algorithm
could reduce model runs and the uncertainty of the posteriori distribution, but involving
the risk of finding local optima of some parameter (Vrugt et al., 2008).10

Nevertheless, the simulated parameter uncertainty can also depend on the chosen
likelihood function and is not independent of errors in measured data (Mo and Beven,
2004). Thus, instead of attributing remaining model predictive uncertainty to the cou-
pled CMF-PMF model structure itself, we should be aware that there are other sources
of global uncertainty impact on the overall model performance.15

3.2.2 Plant growth

Results for the root, stem and leaves as well as storage dry matters are given in Fig. 3.
This distribution shows very good results for the root dry matter simulation. All observed
values fall within the 50 % probability range. A high NSE of 0.94 and R2 of 0.98 along
with a very low bias of −58.2 kgha−1 indicate a very good model performance. The20

median of the stem and leaves dry matter simulation quality is lower (but still very good)
than for the other simulated outputs with NSE of 0.79, bias of 221.7 kgha−1 and R2 of
0.87. Looking at the uncertainty boundaries, we can locate a relatively large uncertainty
starting especially from July onwards and a somewhat lower uncertainty during the first
half of June, without matching the observed value on 14 June. The observed value on25

this day is even higher than the next observation on 26 July, which may however occur
in reality owing to decaying leaves (senescence). In the current model version PMF
the model cannot represent a reduction of biomass during the growing season due to
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leave senescence. GLUE in this sense even facilitates the investigation of the model
structure and identification of clear model limitations. The uncertainty of the prediction
is constant around 500 kgha−1 for the root dry matter, while the stem and leaves as well
as the storage dry matter has a mean uncertainty of around 2000 kgha−1. The storage
dry matter simulation fits the measured data within the 50 % probability boundary.5

In comparison to previously reported studies, we obtained very good results for
the prediction of plant dry matter. For example, Jégo et al. (2010) found a RMSE
of 1000 kgha−1 for spring wheat biomass simulation using the STICS model. Re-
sults are also excellent when compared to the model intercomparison study of plant
growth models that was realized for the same forcing and evaluation data set by Kerse-10

baum et al. (2007). Eight models were applied, resulting in RMSE from 773 kgha−1

to 3329 kgha−1 and NSE spanning from 0.19 to 0.96 in simulation of above ground
biomass on site 1. The best performing model was the AGROSIM (note that this was
the worst model in the intercomparisons project by Kersebaum et al. (2007) who looked
at soil moisture prediction), while the CANDY model returned the worst results.15

3.3 Cross-comparison of sites and parameter sets

We obtained reliable soil moisture and plant dry matter outputs for three experimental
sites in Muencheberg with our coupled CMF-PMF model. But the observed data set
is relatively small, as mostly the case in measured plant data analyses. Therefore it
is even more essential to evaluate model performance across different field sites. We20

therefore chose to apply a cross-validation method, where parameter settings for one
site were tested on another site and vice versa, to investigate the general model and
parameter transferability (Pathak et al., 2012). This procedure has become an estab-
lished method in dealing with small datasets in the course of model parameterization,
calibration and validation (Nassif et al., 2012).25

A comparison of the range of the behavioural parameter sets of the three sites is
shown in Fig. 4. We can see small and similar ranges for the most constrained param-
eters RUE, tbase, alpha and n over all sites. Site 1 shows in this case the widest range
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for the constrained parameters ksat, alpha, tbase and root growth. Medians shown as
red lines in the boxplots indicate optimal parameter settings for the constrained pa-
rameters. They are located more or less at the same position for the 4 constrained
parameters, while this position varies throughout the sites for the other parameters.
We conclude that in further applications of CMF-PMF ranges for the constrained pa-5

rameters as given in Table 1 can substantially be reduced to obtain improved model
runs. One could also consider fixing the parameter to the median and exclude them
from further calibration.

We deployed a cross-validation with each of the behavioural parameter sets we ob-
tained for one site on the other remaining two sites. As examples we show results of10

the cross-validation for soil moisture 0.3–0.6 m (%) (Fig. 5) as well as for stem and leaf
(Fig. 6). Transferability of model parameter sets worked well for soil moisture. In com-
parison to the other sites, we found the smallest uncertainty ranges on site 3. While site
1 has a mean uncertainty around 10 %, site 3 has only 5 %. Nevertheless, parameter
sets found for site 1 worked well for the other sites. The NSE dropped from a high level15

of 0.48 at site 1 to NSE=0.31 on site 2 and a NSE of 0.37 on site 3. The same cross-
validation on the other sites resulted in a small but constant range of NSE between
0.23 and 0.37. The bias remains the same across all sites ranging between very low
−0.6 to −1.0 % soil moisture.

Cross-validation for stem and leaves output of the CMF-PMF model worked well for20

sites 1 and 3, but less well for site 2 (Fig. 6). This is most likely related to the similar
observed values for the stem and leaves dry matter in intensively managed site 1 and
the extensively managed site 3, while the stem and leaves dry matter on the organi-
cally managed site 2 is significantly lower. Uncertainty boundaries for the organic site
growths during the simulation period up to 2000 kgha−1, while the uncertainty on the25

other sites increases up to 3000 kgha−1, with a very low uncertainty around the 14 June
1994. We found similar NSE’s of 0.79 on site 1 and 0.74 on site 2 and 3. Validated on
the other sites, parameter settings for site 1 resulted in an acceptable NSE of 0.35 for
site 2 and a very good NSE of 0.88 on the extensive site 3. R2 remains on the same

19526

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/19509/2013/bgd-10-19509-2013-print.pdf
http://www.biogeosciences-discuss.net/10/19509/2013/bgd-10-19509-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
10, 19509–19540, 2013

Monte Carlo based
calibration and

uncertainty analysis

T. Houska et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

level through all tested sites between 0.79 and 0.91 indicating that the general dynam-
ics of crop growth were captured for all sites. The variation of performance criteria in
the cross-validation experiment (i.e. stable R2 across all sites vs. a drop of NSE and
an increase of bias from one site to another) highlight the importance of using a set of
different likelihood functions.5

One source for uncertainty in the prediction quality of the coupled model with regard
to dry matter production is to be seen in our disregarding of further field management
strategies. Even though fertilization is considered in the simulation of crop growth in
the current model set up of CMF-PMF, we neglected other agricultural management
options that significantly influence biomass production, e.g. pesticide application in10

conventional field management or weeding in organic farming. Selection of cultivars
also has a significant impact on yields, which is also not considered in PMF. The rea-
son for this is simple: PMF does not have a management tool. Site 1 was managed
with a high level intensive, site 2 an organic and site 3 an extensive strategy. The win-
ter wheat cultivar was also adapted to these strategies with elite winter wheat Bussard15

on site 1, infrequently used Ramiro on site 2 and elite winter wheat Greif on site 3.
While these differences in management and cultivar lead to a high variability of plant
matter production across sites (Fig. 6), it does not impact soil moisture conditions to
a similar degree substantially (Fig. 5). Consequently, to apply PMF in the sense of a full
crop growth model for agricultural application, a management module is required that20

considers typical management strategies in agriculture. Instead of a full inclusion of
this management tool in the PMF model itself, we promote following the idea of the
framework strategy of PMF as well as CMF and apply an external farm management
model (Aurbacher et al., 2013; Windhorst et al., 2012).

4 Conclusions25

Staying in line with standards for the development and evaluation of environmental
models, our implementation of iterative steps for the validation of our coupled model
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is consistent with the postulations of Jakeman et al. (2006). Through the investiga-
tion of the parameter uncertainty, the CMF-PMF model performance was found to de-
pend crucially on the parameter values for n (CMF) and RUE (PMF). Their uncertainty
boundaries could be reduced by 60 and 77 %, respectively, through the GLUE analy-
ses. Other parameters, including k, emergence, stem elongation and anthesis showed5

only a minor influence on the model outputs. The performance of our CMF-PMF model
setup was found to be better than some previously tested models, given that model
performance was good for soil moisture and plant dry matters on the same site. Over-
all, approximately 90 % of the observed soil moisture data were within the predicted
uncertainty bounds that were determined through the GLUE method. The model per-10

formances for simulating observed plant dry matters was found to be in an uncertainty
range from 500 to 2000 kgha−1, with just one missed measured value. The found pos-
teriori parameter settings can be used for a more efficient calibration of the CMF-PMF
model in future case studies.

The cross-validation at different sites showed only slight reductions of the likelihood15

functions. From this, we conclude that the model is transferable in space, at least under
similar soil conditions. Next steps should include a model test over several growing
periods for which other crops need to be covered by PMF to be able to simulate crop
rotation patterns.

Structural model uncertainty was identified with regard to the need of including agri-20

cultural management options and the missing capability of representing senescence in
PMF. While the latter should be improved by considering processes reflecting senes-
cence within PMF, we promote to couple an agricultural management model to CMF-
PMF, an essential step to use PMF as a full crop growth model as well.
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Table 1. Parameter ranges of the Monte Carlo simulation for the coupled CMF-PMF for site 1
in Muencheberg. PAR stands for photosynthetically active radiation. Minimal to maximal input
is the range for the GLUE analysis, while the output is the constrained range of the observed
behavioural parameter sets (cf. Figs. 2 and 3). Uncertainty reduction in the output over 30 % is
reflected in bold type.

Parameter Definition Min.
input

Max.
input

Min.
output

Max.
output

Reduc-
tion [%]

CMF

alpha inverse of the air entry potential [cm−1] 0.001 0.1 0.007 0.1 6
ksat saturated conductivity [mday−1] 0.1 25 4.1 24.9 16
porosity pore volume per soil volume in [m3 m−3] 0.3 0.7 0.35 0.7 13
n shape parameter of retention the curve [–] 1 2 1.3 1.7 60

PMF

RUE radiation use efficiency [gMJ−1 PAR] 0 15 1.5 4.9 77
k canopy extinction coefficient in [–] 0.2 0.8 0.2 0.79 2
tbase min. temp. above growth can take place [◦C] −1 5 −0.2 3.8 33
root growth root elongation factor in [cmday−1] 0.1 3 0.15 2.9 5
emergence 144 176 144 174 6
leaf development 176 229 176 228 2
tillering 229 463 230 380 36
stem elongation total thermal time requirement 463 725 466 724 2
anthesis for each growing stage [◦days] 725 991 748 989 9
seed fill 991 1291 994 1284 3
dough stage 1291 1672 1292 1669 1
maturity 1672 1832 1683 1831 8
kcbini 0.05 0.4 0.08 0.22 60
kcbmid basal crop coefficient [–] 0.5 1.5 0.58 1.4 18
kcbend 0.075 0.225 0.077 0.223 3
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Fig. 1. Parameter uncertainty and interaction. The scatter plots show parameter interaction and
correlations for behavioural model runs coloured from yellow to red for NSE> 0 and grey for
NSE< 0 on site 1 in Muencheberg for the coupled CMF PMF model. PMF parameters are given
on the x-axis while CMF parameters are plotted on the y-axis. The density distributions on top
and to the right depict the parameter uncertainty. NSE are reported as mean, equally weighted
NSE for soil moisture, roots, stems and storages, as well as storage dry matter.
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Fig. 2. Probabilistic time series for the simulation of soil moisture with behavioural (NSE> 0,
bias< ±10 % soil moisture and R2 > 0.3) CMF-PMF model runs on site 1 for three soil depths.
Inserts: the likelihood functions quantify the median of the prediction range.
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Fig. 3. Probabilistic time series for the simulation of plant dry matters with behavioural (NSE> 0,
bias< ±500 kgha−1 plant dry matter and R2 > 0.3) CMF-PMF model runs on site 1. Inserts:
The likelihood functions quantify the median of the prediction range. Note differences in scale
of y-axis.
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Fig. 4. Range of behavioural parameter sets considering all three threshold criteria of the CMF-
PMF model for the three sites in Muencheberg. Results are shown for the same set of model
input parameters as in Fig. 1.
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Fig. 5. Cross-validation of soil moisture prediction with uncertainty boundaries. Grey shaded
sites are calibrated. Black dots are observed values, red dashed line is the median of the
behavioural boundary condition (NSE> 0, bias< ±10 % soil moisture and R2 > 0.3). The yellow
area is the 95 % probability range of the simulation, the orange area the 50 % probability range.
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Fig. 6. Cross-validation of stem and leaves prediction with uncertainty boundaries. Grey shaded
sites are calibrated. Black dots are observed values, red dashed line is the median of the
behavioural boundary condition (NSE> 0, bias< ±500 kgha−1 plant dry matter and R2 > 0.3).
The yellow area is the 95 % probability range of the simulation, the orange area the 50 %
probability range.
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