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(1) Lidar Data Acquisition 

LVIS (Laser Vegetation Imaging Sensor) is a medium altitude waveform digitizing Lidar 

measuring canopy height, ground elevation, and the waveform representing the vertical 

profile or the distribution of intercepted surfaces within the Lidar footprint (Hofton et al., 

2002). Its expanded spatial coverage allows large scale mapping of topography, forest 

structure, and AGB (Weishampel et al., 2000; Drake et al., 2002a; Drake et al., 2002b).  

LVIS Lidar data were collected by NASA over BCI in 1998 (Blair et al., 1999; Dubayah 

and Drake, 2000). This 1998 Panama LVIS survey consists of 215,984 individual LVIS 

shots, of which 98,040 are located over BCI and used for this study. LVIS’s large 

footprint (~20 m) generally exceeds the average crown diameter of large trees (King, 

1996; Drake et al., 2003).  

The airborne discrete-return Lidar (DRL) that acquired data in 2009 was a small footprint 

instrument, ranging between 0.25m and 0.60m footprint.  It is a proven technique in 

quantifying sub-canopy topography and providing accurate vertical forest structure 

(Dubayah and Drake, 2000; Hyyppa et al., 2001; Lefsky et al., 2002).  The DRL data was 

collected at very low altitude (between 500 and 1500m) and included repeated passes, 

resulting in multiple measurements per square meter (up to 10 points or echoes per square 

meter) for precise characterization of vegetation structure.   

DRL data were collected by Blom Corporation and Northrop Grumman as part of an NSF 

funded project, using an Optech 3100 Lidar scanning at a rate of 70Khz.  The data were 



collected over 11 individual flights yielding a total of over 233 million laser shots, and 

over 528 million individual points, resulting in an average point density of 5.6 points per 

square meter (ppm2), and 8.1 returns per square meter (rpm2).  The DRL data was post-

processed by BLOM Corporation using Bentley’s MicroStation to calibrate and filter the 

data.  In addition to the automated filtering process, additional manual editing of the sub-

canopy DEM was performed to produce a bare-earth DEM product. To ensure accuracy 

and compliance with the precision requirements, the ground surface was tested using 36 

ground surveyed points on flat, hard, well defined surfaces, free of obstacles.  The results 

of the vertical accuracy assessment determined an average error in height of -0.069 m, an 

RMSE value of 0.076 m and a standard deviation of 0.032 m.   

 

(2) LVIS Calibration 

To compare LVIS and DRL Lidar data for changes in vegetation structure requires the 

data to be cross-calibrated.  We performed the cross-calibration of the sensors such that 

both provide the same ground elevation under forest canopy (Fricker et al., 2012).  LVIS, 

being a large footprint Lidar (20-25 m) has a limited ability to detect ground in dense 

canopy forests, particularly in complex topographies, thus affecting vegetation height 

metrics and potentially causing errors in AGB estimations (Dubayah et al., 2010).  In 

contrast, the DRL sensor provides an accurate estimate of ground elevation and 

vegetation height.  A shortened LVIS laser profile will result in a general underestimation 

of biomass and vertical stratification.  

We found that the average vertical difference between the 98,040 LVIS last-return points 

and the DRL ground surface across BCI was of 28.7 cm. Although the majority (82.3%) 



of all LVIS points matched discrete return elevations to 2 meters or less, significant LVIS 

last-return outliers were identified, ranging from 16.4 m below the ground surface, to 

last-return points over 35.7 m above the ground surface across the island. Also, areas of 

high terrain slope show consistently more error in large-footprint Lidar ground detection.  

Because our goal is to obtain optimal AGB estimations and to reduce errors due to the 

sensors, LVIS data had to be corrected before it was used in our AGB estimation 

algorithm. 

LVIS data was corrected using a method developed by Fricker et al (2012).  It uses slope 

to correct LVIS semi-automatically. They use the LVIS sub-canopy Digital Elevation 

Model (DEM) alone to estimate slope and apply the effects of terrain slope on sub-

canopy topography. However, for the present study we had high-resolution Lidar data 

(DRL) over the whole island, so we simply used the DRL DEM as a reference for sub-

canopy topography. The elevation difference between DRL and LVIS subcanopy 

topography was calculated for each LVIS shot by comparing the LVIS ground elevation 

to the DRL elevation. This difference (positive or negative) was then added to each LVIS 

vertical height metrics. The result is a more accurate LVIS digital elevation model and 

improved LVIS estimates of forest structure (Fig. S1). Note that it is difficult to quantify 

the improvements made by these corrections at the plot level on AGB estimations 

because there are only a few outliers in this part of the island.  



 

Figure S1 : LVIS ground correction. Raw LVIS ground returns (left) and corrected LVIS 
ground returns (right) using the DRL Digital Elevation Model. 
 

In spite of the above corrections, DRL and LVIS present too many differences to be used 

the same way to estimate AGB. They do not have the same footprint size, which makes it 

impossible to do a footprint to footprint comparison as done in Dubayah et al. (2010). 

Furthermore, LVIS height metrics were directly calculated for each shot during post-

processing, whereas we calculated the DRL height metrics using the vertical histogram of 

canopy height for a given pixel size (at 20m, 50m and 100m resolutions). For these 

reasons, intermediate height metrics are different for DRL and LVIS. Consequently, we 

used DRL and LVIS metrics independently in the determination of regression models for 

AGB estimations. 



(3) Lidar Height Metrics 
 
To develop the relative height (RH) metrics at each scale, LVIS and DRL data were 

extracted using shape files partitioning the 50ha plot into respectively, 1250, 200 and 50 

regions of interest representing the spatial scales of the analysis.  

From LVIS waveform data, relative height quartiles RH25, RH50, RH75 and RH100 

were produced for each Lidar shot, where the RH100 metric represents the canopy top 

height or the maximum height of trees within the Lidar footprint. We aggregated all the 

shots whose center coordinates fell into a given subplot to calculate the average of the 

LVIS RH metrics, rather than having their whole footprint contained in the plot, as done 

previously (Dubayah et al., 2010). This choice was based on the sizes of the ground 

subplots used in this study. Because LVIS footprint is approximately 20m, very few shots 

fall entirely in a 20m*20m subplot. In addition to RH100, which is the average of all the 

LVIS RH100 within a subplot, we also used RH100max, as the maximum of RH100s of 

LVIS shots falling in each subplot to get the “real” RH100 comparable to DRL RH100 

for each subplot. 

A similar approach was used to convert the canopy height data from DRL at 1 m 

resolution to waveforms at the same spatial scales. The relative height metrics (RH25, 

RH50, RH75 and RH100) were produced from these waveforms.  The least important 

height metric in explaining the overall variations of biomass is RH25, representing the 

height of the lowest part of the canopy to the forest floor. Although the RH metrics are 

individually correlated to the ground-based AGB, using the four of them improves the R2 

and the RMSE of the ground-based AGB vs. Lidar-based AGB (Fig. S2). Using the 

metrics RH25, RH50, RH75 and RH100 at the 1 ha scale (R2 = 0.71 and RMSE = 26.0 



for LVIS, R2 = 0.75 and RMSE = 24.8 for DRL,) gives more accurate results than when 

RH25 is left out of the models (R2 = 0.72 and RMSE = 26.2 for DRL and R2 = 0 .75 and 

RMSE = 26.1 for LVIS).  

 

Figure S2: The relationship between the DRL height metrics and the maximum height of 
the canopy derived at three spatial scales of 0.04, 0.25, and 1.0 ha (left to right). In all 
cases, the correlations among the height metrics are strong but with significant variations 
that allow all four metrics contribute to the biomass estimation.  
 

The analysis for relative contribution for height metrics and the stepwise analysis using 

the Akaike’s information criteria (AIC) suggest that the inclusion of RH25 at 1-ha spatial 

scale contributes similar to RH100 to explain the biomass variations. The relative 

contribution stays almost the same across scales with the four height metrics explaining 

about 75% of variations at 1-ha, 58% at 0.25 ha and about 32% at the 0.04 ha.   Using 

data from a much wider range of biomass such as low density secondary forests, may 

improve the correlation of one or two height metrics (RH50 and RH75) with biomass and 

reduce the effect of other metrics (RH100, RH25). However, concentrating on old growth 

forest alone, all four metrics contribute significantly to estimate forest biomass.  
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(4) Spatial Scale 

Fig. S3 illustrates why using small plots for estimating AGB in tropical forests may result 

in an improper AGB estimation. Because tree crowns can reach over 20m in diameter, 

chances are that a tree crown will significantly overlap several adjacent 20m*20m 

subplots, thus contributing to the Lidar signal of more than one subplot. This yields to 

serious problems when attempting to correlate the Lidar signal and ground-based AGB 

estimations because the ground measurement of a tree (i.e., the physical location of the 

stem) only contributes to the AGB of a single subplot. This border effect declines as the 

subplot size increases to 50m*50m and 100m*100m subplots, although edge effects are 

still expected to be present. At 1ha, the contribution to canopy heights from trees rooted 

outside the plot boundary becomes small compared to those that do not transgress the plot 

boundaries. 

 

Figure S3 : Effects of plot size on DRL canopy height share. At 0.04ha (a), a big tree is 
predominant in two subplots and present in two others. At 0.25ha (b), the big tree is 
mainly present in one subplot, but other trees are split between subplots. At 1ha (c), the 
edge effect is still there but it becomes negligible compared to the number of trees that 
are fully contained in the subplot. 
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(5) AGB estimation from ground measurements 

Above-ground biomass density was estimated using an allometric regression model for 

moist tropical forests (Chave et al., 2005). The allometric method is based on the 

argument that the total aboveground biomass (AGB, in kg) of a tree with diameter D, 

measured at the breast height (DBH) 1.3m above ground must be proportional to the 

product of wood specific gravity (ρ) and tree stem volume. Stem volume, in turn, is 

proportional to the product of stem basal area and total tree height (H): 

  !"# = exp −2.977+ ln !!!! ≅ 0.0509  ×  !!!!  (ES1)  

Where ≅ represents the mathematical identity meaning both formulas can be used in 

biomass estimation procedure.  In the above equation, D (in cm) is measured during the 

inventory census periods, ρ (in g/cm^2) is provided from an available table of 

measurements for 123 species available in BCI, and tree height H (in m).  Tree height 

measurements were not available for all the trees in the 50ha plot, so we developed a 

relationship between DBH and height of 1835 trees among them 1604 trees with DBH> 

10 cm, representing 154 species (Fig S4). The equation is provided in the log form for the 

entire range after testing different fits to the data with difference DBH range:  

! =   −11.731+ 22.766 log ! ,! > 10!"   (ES2) 

We then used the height estimations as estimated from equation (ES2) into equation 

(ES1) for AGB estimation. 



 

Figure S4 : Relationship between DBH (cm) and tree height H (in m). 

 

The census data was filtered for anomalous and erroneous DBH measurements by first 

identifying all trees with growth larger than 45 mm/year and less than -5 mm/yr. The 

DBH of these trees were replaced using growth rates equal to mean growth rate of trees 

in the same DBH class (Condit et al. 1993, 1999).  The approach was extended to 2000, 

2005, and 2010 when estimating biomass and biomass change from ground data.  We 

calculated the errors associated with biomass estimation for each census at the scale of 

analysis and used these errors when analyzing the Lidar estimation of biomass and 

biomass change. See Chave et al., (2003) for more details on census data trimming 

procedures.  
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