Biogeosciences Discuss., 10, 19811–19865, 2013 www.biogeosciences-discuss.net/10/19811/2013/ doi:10.5194/bgd-10-19811-2013 © Author(s) 2013. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Biogeosciences (BG). Please refer to the corresponding final paper in BG if available.

Global land-atmosphere exchange of methane and nitrous oxide: magnitude and spatiotemporal patterns

H. Tian¹, G. Chen^{1,2}, C. Lu¹, X. Xu^{1,2}, W. Ren¹, K. Banger¹, B. Zhang¹, B. Tao¹, S. Pan¹, M. Liu^{1,3}, and C. Zhang^{1,4}

¹International Center for Climate and Global Change Research, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849, USA

²Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

³Department of Civil and Environmental Engineering, Washington State University, Pullman, WA 99164, USA

⁴Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China

Received: 31 October 2013 - Accepted: 28 November 2013 - Published: 17 December 2013

Correspondence to: H. Tian (tianhan@auburn.edu)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

Methane (CH₄) and nitrous oxide (N₂O) are two most important greenhouse gases after carbon dioxide, but their regional and global budgets are far from certain, which is largely owing to uncertainties in scaling up field measurements as well as the poor ⁵ model representation of processes and factors governing CH₄ and N₂O exchange between the terrestrial biosphere and atmosphere. In this study, we applied a processbased, coupled biogeochemical model (DLEM – the Dynamic Land Ecosystem Model) to estimate the magnitudes, spatial and temporal patterns of CH₄ and N₂O fluxes as driven by multiple environmental changes including climate variability, rising atmospheric CO₂, increasing nitrogen deposition, tropospheric ozone pollution, land use change and nitrogen fertilizer use. The estimated CH₄ and N₂O emissions from global land ecosystems were 169.43 ± 32.92 Tg C yr⁻¹ and 12.52 ± 1.52 Tg N yr⁻¹, respectively. Our simulations have indicated a significant (*P* < 0.01) increasing trend for CH₄ (0.75 ± 0.08 Tg C yr⁻¹) and N₂O (0.14 ± 0.02 Tg N yr⁻¹) during 1981–2010. CH₄ and

- N_2O emissions increased significantly in most climatic zones and continents, especially in tropical region and Asia. The most rapid increase in CH_4 emission was found in wetlands (including rice fields and natural wetlands) owing to increased rice field area and climate change; N_2O emission increased substantially for all the biome types and the largest increase occurred in upland crops owing to increasing air temperature
- ²⁰ and nitrogen fertilizer use. Given large increase in CH₄ and N₂O emission at global scale, we suggest that these two gases together with CO₂ have to be simultaneously considered when evaluating if a policy is effective or efficient to reduce global warming in the future.

1 Introduction

As two important greenhouse gases (GHG) contributing to climate warming, methane (CH_4) and nitrous oxide (N_2O) are receiving more and more attention (Prather and

Hus, 2010; Montzka et al., 2011; Kirschke et al., 2013; Saikawa et al., 2013; Tian et al., 2012a). Recent analyses indicated that the atmospheric CH_4 has increased by more than 100% since 1800 (Forster et al., 2007). Methane has a relative global warming potential 25 times that of CO_2 at a 100 yr time horizon, and contributes approximately 20% to the global radiative forcing (Forster et al., 2007). Net CH_4 fluxes from terrestrial ecosystems are primarily determined by two distinct microbial processes: methanogenesis (production) and methanotrophy (consumption) (Walter and Heimann 2000; Bloom et al., 2010). Methanogenesis occurs under anaerobic conditions, while methanotrophy occurs in aerobic or anaerobic condition. Many factors, such as water table deatth, aubstrate guality, and methanotrophy actions.

- table depth, substrate quality and quantity, soil pH, soil moisture, presence of permafrost, oxygen concentration, and ratio of methanogenic to methanotrophic bacteria, directly influence CH₄ production and consumption (Tian et al., 2010; Xu et al., 2010; Banger et al., 2012; Dijkstra et al., 2012). The dominant sources of CH₄ are natural wetlands, anthropogenic activities, and biomass burning (Dlugokencky et al., 2009; Ito and leasterni et al., 2010), while the major CLL with is the unleast cold.
- ¹⁵ and Inatomi et al., 2012), while the major CH_4 sink is the upland soils. Recent CH_4 budget estimation showed a global source of 548–678 Tg CH_4 yr⁻¹ during 2000–2009, nearly 50–60 % from anthropogenic origin (Kirschke et al., 2013).

Atmospheric N_2O has increased by 18% compared to the pre-industrial level, with a linear increasing rate of 0.26% per year during the recent few decades (Forster et al., 2007). Nitrous oxide has a relative global warming potential 298 times that of

20

- CO_2 at a 100 yr time horizon, and contributes approximately 7 % to the radiative forcing (Forster et al., 2007). Therefore, although its concentration is much less than that of CO_2 and CH_4 in the atmosphere, it is drawing more attention in recent years. The observed increase in atmospheric N₂O concentration was primarily attributed to reactive
- nitrogen inputs from synthetic nitrogen fertilizer and animal manure applications, cropland expansion, and processes associated with fossil-fuel combustion and biomass burning. The production and consumption of N₂O in soils involves both biotic and abiotic processes. Many microbial groups contribute to the production and consumption

of soil N_2O , but biological nitrification and denitrification are the dominant processes (Ussiri and Lal, 2012).

A number of studies using different modeling and statistical approaches were conducted to estimate regional or global CH_4 (e.g., Bousquet et al., 2006; Potter et al., 1996; Bloom et al., 2010; Tian et al., 2010; Xu et al., 2012; Zhuang et al., 2004; Schulze et al., 2009; Ito and Inatomi et al., 2012; Meng et al., 2012; Kirschke et al., 2013) and N₂O fluxes (e.g., Xu et al., 2008; Liu, 1996; Hirsch et al., 2006; Davidson 2009; US EPA 2010; Bouwman et al., 2002; Zhuang et al., 2012). However, the estimates are far from certain due to the complexity of the terrestrial ecosystems and the shortage of field and laboratory measurements to validate the modeled processes controlling gas emissions (Ito and Inatomi et al., 2012; Tian et al., 2012a; Melton et al., 2013). To simulate largescale CH_4 and N₂O fluxes, two approaches are generally used during past decades: bottom-up (e.g., inventory and process-based modeling, Cao et al., 1995; Walter et al., 2001; Zhuang et al., 2004; Xu et al., 2008; Tian et al., 2010) and top-down (e.g., atmo-

spheric inversion, Frankenberg et al., 2005; Bergamaschi et al., 2007, 2009; Kort et al., 2008; Bousquet et al., 2011; Spahni et al., 2011). Process-based modeling, as one of the bottom-up approaches, can simulate the spatial heterogeneity of ecosystem properties at relatively high resolution and identify the underlying mechanisms that control the magnitudes and variations of GHG fluxes (Spahni et al., 2011; Tian et al., 2010; Xu

²⁰ et al., 2010; Bousquet et al., 2011).

Many global change factors could affect the production and consumption of CH₄ and N₂O (Hutchin et al., 1995; Conrad, 1996; Huang et al., 2010; Toet et al., 2011). For instance, global warming was reported to increase both CH₄ and N₂O emissions (Dijkstra et al., 2012); elevated atmospheric CO₂ increased CH₄ emission (Dacey et al., 1994; Dijkstra et al., 2012), while decrease or increase N₂O emission (Ineson et al., 1998; Kettunen et al., 2005); ozone (O₃) pollution reduced CH₄ emission (Toet et al., 2011), while stimulated or reduced N₂O emission (Kanerva et al., 2008); nitrogen fertilization could dramatically decrease CH₄ consumption in grassland and forest (Mosier et al.,

1991; Steudler et al., 1989), while increase N_2O emissions (Del Grosso et al., 2006;

Mosier et al., 1998). Meanwhile, interactions among multiple factors also played an important role. For example, nitrogen deposition and elevated atmospheric CO_2 were reported to interactively reduce CH_4 emission from wetland (Pancotto et al., 2010); and another study concluded that temperature and elevated atmospheric CO_2 might inter-

- ⁵ actively change seasonal variation of CH₄ emission (Blankinship et al., 2010). Previous studies addressed the impacts of only one or a subset of environmental factors on either CH₄ or N₂O fluxes; however, few of them were conducted to fully estimate the effects of multiple environmental changes (such as climate, land use, land management practices, atmospheric CO₂, nitrogen deposition and tropospheric O₃, etc.) on
- ¹⁰ both gases. In addition, given the tight linkage between these two gases in both terrestrial origin (Raghoebarsing et al., 2006; Kort et al., 2008; Ettwig et al., 2010; Song et al., 2009; Dijkstra et al., 2012) and atmospheric chemistry (Prather and Hus, 2010), it is important to simultaneously estimate the CH₄ and N₂O fluxes at continental or global scale. In this study, we used a process-based model (the Dynamic Land Ecosystem based by the base of the ba
- ¹⁵ Model, DLEM; Tian et al., 2010) to estimate CH_4 and N_2O fluxes driven by multiple environmental changes in climate, atmospheric CO_2 , tropospheric O_3 concentration, nitrogen deposition, land use and nitrogen fertilizer use. The DLEM model has been applied to quantify and attribute the responses of non- CO_2 GHG fluxes to multiple environmental factors in China, North America and globe (Tian et al., 2010, 2011a, 2012a;
- ²⁰ Xu et al., 2010, 2012a; Melton et al., 2013; Wania et al., 2013). Built upon our previous work, the specific objectives in this study were to: (1) estimate the magnitude of CH_4 and N_2O fluxes from terrestrial biosphere and (2) explore the spatial and temporal variations in terrestrial CH_4 and N_2O fluxes as influenced by multiple environmental factors on regional and global scales.

2 Methodology

2.1 Data description

In this study, we developed a series of spatiotemporal data sets to represent environmental changes at a spatial resolution of $0.5^{\circ} \times 0.5^{\circ}$ during 1901–2010. These data include daily O₃ AOT40 index (an index of the accumulated hourly ozone concentra-5 tions above a threshold of 40 ppb), annual nitrogen deposition rate, daily climate conditions (minimum, average and maximum temperature, precipitation, and solar radiation), annual land use and land management practices (including nitrogen fertilizer use and irrigation). The climate data was downloaded from CRUNCEP website. O₃ AOT40 data were derived from the monthly AOT40 data developed by Felzer et al. (2005). EDGAR-HYDE 1.3 nitrogen emission data (Van Aardenne et al., 2001) were used to interpolate the three-time period nitrogen deposition data (1860, 1993, 2050; Dentener, 2006) to generate annual nitrogen deposition data set during 1900-2010 (Wei et al., 2013). Land use data (Cropland and urban area distribution) were from History Database of the Global Environment (HYDE 3.0) (Klein and van Drecht, 2006). Nitrogen fertilizer 15 use rate for China and the United States were developed from county-level census data (Tian et al., 2010, 2011b), while information in other regions were based on Food and Agriculture Organization (FAO) country-level statistical data (www.fao.org). Soil property data, including soil texture, pH, and bulk density, were from Global Soil Data Task (www.daac.ornl.gov). The annual atmospheric CO₂ concentration data before 1959 20 were from the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP), and the data thereafter were from the National Oceanic and Atmospheric Administration (NOAA) (www.esrl.noaa.gov). The potential vegetation (i.e., natural vegetation) map was developed from different data sources, including global land-cover data derived from Landsat imageries (De Fries et al., 1998), National Land Cover Dataset 2000 25 (www.usgs.gov), and global database of lakes, reservoirs, and wetland (Lehner and Döll, 2004). The contemporary global vegetation map in 2000 was shown in Fig. 1. All

to the lack of data after 2005, the land use and land cover pattern, O_3 AOT40, and nitrogen fertilizer use rate after 2005 were assumed the same as the level of 2005.

2.2 Model description

The DLEM model is designed to estimate carbon, nitrogen, and water fluxes and pool sizes in terrestrial ecosystems by coupling major physiological, biogeochemical and hydrological processes, and vegetation dynamics with spatial coverage ranging from site to region and globe, and time step from daily to monthly and yearly (Tian et al., 2010, 2011a, b, 2012a, b). One of important DLEM's features is that it can simultaneously estimate the responses of land-atmosphere exchange of CO₂, CH₄ and N₂O to multiple

- environmental changes in climate, atmospheric CO₂ concentration, tropospheric O₃ pollution, nitrogen deposition, land use and land management practices. Each plant functional type defined in DLEM (i.e., types shown in Fig. 1) was calibrated against various field observations collected from the Chinese Ecological Research Network (CERN), US Long-Term Ecological Research (LTER) network, AmeriFlux network, and
- other independent research sites. Here we briefly described the CH₄ and N₂O module in the DLEM. The more detailed information could be referred to Tian et al. (2010, 2011a, b, 2012b) and Xu et al. (2010, 2012).

In DLEM, CH_4 production, consumption, and transport processes are considered to estimate land-atmosphere gas exchange. Dissolved organic carbon (DOC) is the only

- ²⁰ CH₄ production substrate considered in DLEM. The DOC comes from gross primary productivity (GPP) allocation, and decomposition byproducts from soil organic matter and litterfall, which indirectly controlled by environmental factors including soil pH, temperature and soil moisture content. CH₄ oxidation is determined by CH₄ concentrations in the air or pore space of soil, as well as soil moisture, pH, and temperature. We
- ²⁵ consider three pathways for CH₄ transport from soil to the atmosphere (i.e., ebullition, diffusion, and plant-mediated transport) (Tian et al., 2010). It is assumed that methane-related biogeochemical processes only occur in the top 50 cm of soil profile. Overall, the net CH₄ exchange between the atmosphere and soil is calculated by the following

equation:

20

$$F_{CH_4} = F_P + F_D + F_E - F_{air, oxid} - F_{trans, oxid} - F_{soil, oxid}$$

where F_{CH_4} is the flux of CH₄ between soil and the atmosphere (gCm⁻²day⁻¹); F_P is plant-mediated transport from soil pore water to the atmosphere (gCm⁻²day⁻¹); F_D is the diffusive flux of CH₄ from water surface to the atmosphere (gCm⁻²day⁻¹); F_E is the ebullitive CH₄ emission to the atmosphere; $F_{air, oxid}$ is atmospheric CH₄ oxidation rate (gCm⁻²day⁻¹); $F_{trans, oxid}$ is the CH₄ oxidation during plant-mediated transport (gCm⁻²day⁻¹); $F_{soil, oxid}$ is the CH₄ oxidation rate in soil pore water.

Terrestrial nitrogen cycling processes considered in the DLEM model include nitro-¹⁰ gen input from the atmospheric deposition, agricultural fertilizer use, and biological fixation, plant nitrogen uptake, nitrogen transformation (e.g., mineralization and immobilization, nitrification and denitrification, adsorption/desorption), and nitrogen loss (e.g., nitrous gas emissions, nitrogen leaching, and other nitrogen loss pathways through fire, grazing, or other disturbances). The estimation of N₂O emissions (primarily from nitrification and denitrification) are closely interlinked with model representation of above processes.

In DLEM, all the products of nitrification and denitrification that leave the system are nitrogen-containing gases. We used the empirical equation reported by Davidson et al. (Davidson et al., 2000) to separate N₂O from other gases (mainly NO and N₂). The equations for calculating nitrification, denitrification and N₂O fluxes are:

$$F_{N_{2}O} = (0.001 \times N_{nit} + N_{denit}) \times \frac{10^{\left(\frac{vwc}{\vartheta} \times \times 0.026 - 1.66\right)}}{\left(1 + 10^{\left(\frac{vwc}{\vartheta} \times \times 0.026 - 1.66\right)}\right)}$$
(2)

where F_{N_2O} is the N₂O flux from soil to the atmosphere (gNm⁻³day⁻¹), which can be converted to the unit of gNm⁻²day⁻¹ by multiplying the soil depth (default: 0.5 m); 19818

(1)

 N_{nit} and N_{denit} are the nitrification and denitrification rates (gNm⁻³ day⁻¹), respectively; 0.001 is the proportion of nitrification product released as gaseous nitrogen (Lin et al., 2000); \emptyset is the soil porosity.

2.3 Model implementation and experimental design

- 0.1 gCm⁻², 0.1 gNm⁻² and 0.1 mm for carbon, nitrogen and water pools, respectively). After model reached equilibrium state, a spin-up run was implemented for 900 yr using de-trended climate data during 1901–1930 (i.e., 30 spins with 30 yr data each time). Finally, the model was run in transient mode with daily or annual environmental data from 1901 to 2010 to simulate CH₄ and N₂O fluxes. Model results from 1981 to 2010
 were used to analyze the spatial and temporal patterns of global CH₄ and N₂O fluxes in this study.

Two simulation experiments were designed to achieve the study goals: (1) Baseline experiment: transient input data during 1901–1980 for all environmental factors (i.e., climate, land use, nitrogen deposition, ozone pollution, atmospheric CO₂ concentration, and nitrogen fertilizer use) were fed into the DLEM model and then kept constant at the level of 1980 thereafter; (2) combined experiment: all environmental factors changed with time during 1901–2010. The effects of multiple environmental changes on CH₄ and N₂O fluxes were the difference between these two experiments. With this experiment design, the legacy effects of environmental factors before 1981 were excluded.

2.4 Model evaluation and uncertainty analysis

In this study, we estimated the modeled uncertainty ranges for CH_4 and N_2O resulting from variations in the most sensitive parameters. First, we conducted sensitivity analysis to identify the most sensitive parameters that affect terrestrial CH_4 and N_2O

- ⁵ fluxes. We selected about 10 parameters related to CH₄ and N₂O fluxes, respectively and assigned a variation range of ±20% for each parameter. According to the simulation results driven by these individual parameters, we selected the top 5 most sensitive parameters to conduct the uncertainty simulation. Second, we assumed that each parameter follows normal distribution. Combined with the prior knowledge of parameter range, we used improved Latin Hypercube Sampling (LHS) approach to randomly select an ensemble of 100 sets of parameter values to do model simulations. Finally, the
- outliers for the simulation results were excluded before analyzing the uncertainty range. The 95 % confidence intervals were calculated and reported.

The evaluations of DLEM simulation results against field investigations, regional in-¹⁵ ventory, and other modeling results for both CH₄ and N₂O fluxes were conducted in our previous studies (Tian et al., 2010, 2011a, 2012b, c; Xu et al., 2010, 2012; Ren et al., 2011 and Melton et al., 2013). These evaluations indicated that DLEM is able to capture the daily, annual, and spatial variation patterns of the observed CH₄ and N₂O fluxes. We showed the DLEM model evaluations (some were from our previous publi-²⁰ cations) against field experiments or observations worldwide in Table 1. The observed CH₄ and N₂O fluxes showed large variability within and among research sites, indicating the complex impacts of multiple environmental factors on CH₄ and N₂O fluxes. We found that most of the DLEM-simulated CH₄ and N₂O fluxes fell in the observation

range for different land cover types (i.e., forest, grassland, wetland, and cropland). We ²⁵ further added some regional comparisons with previous studies (see Discussion).

2.5 Statistical analysis

The multiple linear regression analyses were conducted to explore the long-term changing trends of input data and CH_4 and N_2O fluxes. The Pearson correlation was conducted to evaluate the correlations between input data and CH_4 and N_2O fluxes. All the statistical analyses were conducted by using the software R-program (www.r-project.org); and the figures and maps were generated by Origin 8.0 and ArcGIS 9.2.

3 Results

5

3.1 Global environmental change over past three decades

- ¹⁰ From 1981 to 2010, air temperature and precipitation significantly increased by $0.02 \degree \text{Cyr}^{-1}$ and 1.37 mm yr^{-1} , respectively (Table 2). Nitrogen fertilizer use, nitrogen deposition, atmospheric CO₂ concentration, cropland and urban land area continuously increased during the study period. The tropospheric O₃ concentration showed a slight increase before 1995 and a fast increase thereafter. Relative to a 30 yr (1961–
- 15 1990) average, precipitation increased in most areas during the period 1981–2010. The highest increase occurred in the South America, whereas large precipitation decrease was found in the southern Africa, the northern India, and the southeastern Australia (Fig. 2a). Air temperature increased in most areas, with the highest increases in the northern high-latitude region and a slight decrease in the South America and Ocea-
- nia (Fig. 2b). The highest nitrogen deposition rates were shown in the East and South Asia, while the highest nitrogen fertilizer use rates were shown in the eastern China. These regions experienced fast growth in population, urbanization, and industrialization during the past three decades. The highest tropospheric ozone concentrations in 2005 were distributed along the northern mid-latitude region, such as the southeastern United States, the southern Europe, the central Asia, and the western China.

At continental scales, air temperature increased in all continents except for Oceania, with the most rapid increase in Europe and Asia (Table 2). Precipitation significantly increased for Africa and South America, while no significant trends were found for other continents. Nitrogen deposition and O₃ concentration (AOT40 index) increased significantly for all continents, with the highest increasing rates in Asia over past three decades. Cropland area significantly changed for all continents, with a decreasing trend found in Europe and North America and rapid increase in Asia and Africa. Cropland fertilizer use significantly increased in the continents other than Europe and the most rapid increase occurred in Asia. Air temperature increased for all climate zones except the southern temperate zone, and the northern polar zone showed the most rapid in-

- crease (Table 3). Precipitation increased significantly in the northern polar, northern tropical and southern tropical zones. Nitrogen deposition increased significantly for all continents, with the fastest increase in the northern tropical zone. Cropland nitrogen fertilizer use amounts increased significantly for most climate zones except that the northern polar zone showed a significant decrease. Cropland area decreased signifi-
- ¹⁵ northern polar zone showed a significant decrease. Cropland area decreased significantly cantly in the northern polar and northern temperate zones, while increased significantly in other climate zones, with the most rapid growth in the northern tropical zone. Ozone concentration increased significantly in the tropical and northern temperate zones.

3.2 Global budget of terrestrial CH_4 and N_2O fluxes

²⁰ The estimated terrestrial CH₄ emission during 1981–2010 was averaged $169.43 \pm 32.92 \text{ TgCyr}^{-1}$ (1 Tg = 10^{12} g), ranging from $155.36 \pm 30.05 \text{ TgCyr}^{-1}$ in 1982 to $187.80 \pm 36.19 \text{ TgCyr}^{-1}$ in 2010. Among which, the upland soil uptake of CH₄ was $17.10 \pm 0.17 \text{ TgCyr}^{-1}$. The terrestrial N₂O emission was aver-²⁵ aged $12.52 \pm 1.89 \text{ TgNyr}^{-1}$, ranging from $10.53 \pm 1.52 \text{ TgNyr}^{-1}$ in 1982 to $16.65 \pm 2.80 \text{ TgNyr}^{-1}$ in 2010 (Fig. 3). Both CH₄ and N₂O showed a significant (*P* < 0.01) increasing trend of $0.75 \pm 0.08 \text{ TgCyr}^{-1}$ for CH₄ and $0.14 \pm 0.02 \text{ TgNyr}^{-1}$

for N₂O over the study period. The interannual variations in CH₄ and N₂O fluxes were roughly consistent ($R^2 = 0.88$; P < 0.01), indicating a close relationship between CH₄ and N₂O fluxes, which was found to be primarily controlled by climate variability. Significantly positive correlations between air temperature and the models estimated CH₄ ($R^2 = 0.73$, P < 0.01) and N₂O emissions ($R^2 = 0.71$, P < 0.01) was observed, implying a strong positive feedback between climate warming and CH₄/N₂O emissions.

In terms of global warming potential (100 yr horizon), the DLEM-estimated global CH_4 and N_2O emissions (i.e., $5.65 \pm 1.10 PgCO_2 eqyr^{-1}$ and $5.86 \pm 0.89 PgCO_2 eqyr^{-1}$, respectively) could completely offset the terrestrial CO_2 sink ($8.3 \pm 4.3 PgCyr^{-1}$ estimated by multiple process-based models, Le Quéré et al., 2012) over the recent three decades. It implies that global land ecosystem acted as a positive contributor to climate warming.

3.3 Spatial distribution of terrestrial CH_4 and N_2O fluxes

As expected from the distribution of wetlands and rice paddy fields, the South and 15 Southeast Asia, tropical wetlands and river flood plains (e.g., Amazonia and the Pantanal) were dominant hot-spots of CH_4 emission with values as high as $30 \,\mathrm{gCm}^{-2} \,\mathrm{yr}^{-1}$ (Fig. 4). In these regions, more CH_4 production precursor-DOC was produced due to the higher biomass, primary production, and litter decomposition rate. In contrast, the northern high-latitude region (e.g., Alaska, the northern Canada, West Siberia 20 and the northern Eurasia) that have large wetland areas, were less substantial CH_4 emission sources (~ $10 \text{ gCm}^{-2} \text{ yr}^{-1}$). Larger CH₄ sinks (i.e., > $0.15 \text{ gCm}^{-2} \text{ yr}^{-1}$) were found in the tropical and subtropical uplands due to more substrate and favorable climate conditions for methanotrophy. Similar to CH₄, N₂O released at rates of larger than $0.3 \,\mathrm{gNm^{-2} yr^{-1}}$ in most areas of the tropical region as well as intensively fertilized 25 cropland, while smaller emissions occurred in the high-latitude and sparse vegetated area. In general, N₂O emissions decreased with air temperature from the low- to high-

latitude region, indicating air temperature was one of the most important factors controlling N₂O emissions. To more clearly identify the spatial distribution patterns of CH₄ and N₂O fluxes, we further divided the globe into different latitudinal belts, biome types and continents.

$_{\rm 5}$ 3.4 Terrestrial CH₄ and N₂O fluxes and temporal trends along a latitudinal gradient

Along the latitudinal gradient, CH_4 emissions peaked (8.06 Tg Cyr⁻¹) at the latitudinal zones of $2 \sim 3^{\circ}$ S and $6 \sim 7^{\circ}$ S (Fig. 4), primarily due to large wetland area in Amazon river basin. Another smaller peak for CH₄ emissions displayed at the northern highlatitude region (around 60° N). N₂O emissions peaked at the latitude zone of 6-7° N 10 (0.43 TqNyr⁻¹), which is primarily due to large area of fertilized cropland. We further grouped the global terrestrial ecosystems into five major climate zones: the northern polar zone (> 60° N), the northern temperate zone (30° – 60° N), the northern tropical zone (0°-30° N), the southern tropical zone (0°-30° S), and the southern temperate zone (30°-60° S). All climate zones were net sources of CH₄ and N₂O emissions to 15 the atmosphere (Table 4). The largest CH_4 emissions occurred in the southern tropical zone, followed by the northern tropical zone, and the least in the southern temperate zone. The tropical zone (both southern and northern) totally accounted for about 80% of the total CH_4 emissions. The largest N₂O emissions occurred in the northern tropical zone, followed by the southern tropical zone, and the least was found in the southern 20 temperate zone. The tropical zone also accounted for about 75% of the total N_2O emissions.

Our simulation experiments indicated that temporal trends in the CH₄ and N₂O fluxes varied significantly among various climate zones (Fig. 5). Over the study period, the ²⁵ most rapid increase in CH₄ emission was observed in northern and southern tropical zone (0.22–0.37 TgCyr⁻¹), followed by northern temperate zone (0.12 TgCyr⁻¹) and northern polar zone (0.046 TgCyr⁻¹) while no significant changing trend was found

for the southern temperate zone. Similarly, faster increase in the N₂O emissions has occurred in northern tropical and southern tropical zones ($0.039-0.078 \text{ TgNyr}^{-1}$) than other zones. No significant changing trend in N₂O emission was observed for the southern temperate zone; however, larger interannual variations were found in this zone compared to other zones. The highest CH₄ and N₂O emissions occurred in 2010 for all the climate zones except for the northern polar and southern temperate zones.

3.5 Terrestrial CH_4 and N_2O fluxes and temporal trends for different biome types

5

We further compared the magnitude of CH_4 and N_2O fluxes and their temporal trends during 1981-2010 for different biome types (Table 5; Fig. 6). The largest 10 CH_4 emissions were from natural wetland (130.74 Tg Cyr⁻¹), followed by cropland $(54.37 \text{ TgCyr}^{-1})$. The highest CH₄ uptake occurred in forest (-6.43 TgCyr⁻¹) and shrubland (4.38 Tg Cyr⁻¹). Multiple environmental changes had caused wetland CH₄ emissions increased from $129.01 \text{ TgCyr}^{-1}$ in 1981 to $137.67 \text{ TgCyr}^{-1}$ in 2010. From 1981 to 2010, forest and shrubland showed a significant (p < 0.05) increasing trend in 15 CH_4 uptake, with a rate of 0.014 TgCyr⁻¹ and 0.0061 TgCyr⁻¹, respectively (Fig. 6). Wetlands and rice field showed a more significant (P < 0.01) increasing trend in CH₄ emission, with a rate of 0.25 TgCyr⁻¹ (P < 0.01) and 0.54 TgCyr⁻¹ (P < 0.01), respectively, while no significant change trend was found for grassland. Rice field expansion (15% as shown in Table 2) contributed to 12% of cropland CH_4 emissions increase 20 and the remaining 88% increase resulted from other environmental changes includ-

- and the remaining 88% increase resulted from other environmental changes including climate, atmospheric composition, and land management practices. It is notable that CH_4 uptake in upland ecosystems (i.e., forest, shrubland and grassland) exhibited a faster increase from 2000 to 2010 compared to previous two decades.
- The largest emissions of N₂O were from forest (4.28 TgNyr⁻¹), followed by cropland (3.36 TgNyr⁻¹), and the least was from grassland (0.82 TgNyr⁻¹). Most of the forest N₂O emissions came from tropical region. Compared to forests in other climatic zones,

tropical forests had larger area and higher nitrogen transformation rate. Nitrous oxide emissions significantly increased for all the biome types from 1981 to 2010 (Fig. 6). N₂O emissions kept a slight (P > 0.1) increase from 1981 to 2000 for forest, shrubland and grassland, but a significantly faster increase was found during 2000–2010. Cropland displayed the largest increase in N₂O emission (0.08 TgNyr⁻¹; $R^2 = 0.93$; P < 0.01), which was primarily due to rapid cropland expansion and increasing nitrogen fertilizer uses (Table 2). Cropland area has expanded by 7.8% (~ 11 million ha) since 1981, and nitrogen fertilizer uses have increased by 66% (~ 33 TgNyr⁻¹). Increased nitrogen deposition and air temperature were the major causes of increased N₂O emissions in the non-managed biomes.

3.6 Change trends in terrestrial CH₄ and N₂O fluxes for different continents

10

At continental scale, significant increasing trends (p < 0.01) in CH₄ emissions were found for all continents except Africa and Europe (Fig. 7). Asia showed the highest CH₄ emission and the most rapid increase (0.56 TgCyr⁻¹, p < 0.01). CH₄ emissions from Europe showed a large decrease since the early 1990s. Significant increasing 15 trends in N₂O emissions were found in all continents except Europe and Oceania. N₂O emissions had no obvious change trend before 2000 in Europe, but a rapid increase occurred since then. The most rapid N₂O emission increases in Asia $(0.056 \,\mathrm{TgNyr^{-1}})$, P < 0.01) was caused by larger rises in nitrogen fertilizer uses and nitrogen deposition compared to other continents (Table 2). Asia and South America acted as the largest 20 CH_4 and N₂O sources with the highest increasing trends, suggesting that these two continents will continue to play a major role in greenhouse gas budget in the future. It is also notable that the interannual variations of CH₄ and N₂O emissions were very similar ($R^2 = 0.89$; P < 0.01) in Asia, implying a close linkage between these two gases across this continent.

4 Discussion

4.1 Comparisons with other estimation of global CH_4 and N_2O budgets

The simultaneous estimation of global CH_4 and N_2O fluxes shown in this study were in-line with previous estimates (Table 6). The DLEM-estimated global CH_4 flux was $157-187 \text{ TgCyr}^{-1}$ for the 1990s, which fell in the range of $86-200 \text{ TgCyr}^{-1}$ estimated 5 by other investigators (Fung et al., 1991; Houweling et al., 1999; Ridgwell et al., 1999). This study estimated that the global natural wetland emitted $130.98 \text{ TgCyr}^{-1}$ in the 1990s, which is higher than $92 \text{ Tg} \text{Cyr}^{-1}$ estimated by Cao et al. (1998), but similar to the estimate by Liu (1996) and slightly lower than the average value from multiple process-based models (142.5 TgCyr⁻¹; Melton et al., 2013). Our study reported that 10 128.19 Tg CH₄ – Cyr⁻¹ was released from global natural wetland in the 1980s, slightly higher than a previous estimate of $110 \text{ Tg} \text{Cyr}^{-1}$ (Matthews and Fung, 1987). Our estimated CH_4 emission from rice field (51.42–62.4 Tg Cyr⁻¹) was higher than most previous estimates. It might be due to the expanding rice field and other input drivers (e.g., nitrogen fertilizer amounts and nitrogen deposition rate) considered in this study, but 15 omitted in previous work (Cao et al., 1998; Chen and Prinn 2005; Patra et al., 2009).

DLEM-estimated upland CH₄ uptake during 1996–2005 ($-15.01 \sim -13.45 \text{ TgCyr}^{-1}$) was slightly lower than the previous estimates.

In addition to divergent model representation of biogeochemical processes and pa-

- ²⁰ rameter values (Meng et al., 2012), different input data might be another reason responsible for the discrepancies among these CH₄ estimates (Meng et al., 2012; Ito and Inatomi et al., 2012; Zhu et al., 2011; Melton et al., 2013). For example, knowledge of wetland distribution and area was highly uncertain. Through multiple models comparisons, Melton et al. (2013) reported that the estimate of global wetland area ranged ²⁵ from 7.1 × 10⁶ to 26.9 × 10⁶ km². Even the inventory data largely varied among different
- data sources ranging from 4.3×10^6 to 12.9×10^6 km². In the future, there is a necessity to integrate all data sources into a most accurate data set for model use. In addition,

large uncertainty might be also resulted from various climate data. Several series of climate data were previously used by the global models to simulated GHG fluxes. For example, CRU (Mitchell and Jones, 2005), CRUNCEP (Wei et al., 2013) and NCEP reanalysis (Kalnay et al., 1996) data were used by different model simulations (e.g., Bousquet et al., 2011; Ito and Inatomi et al., 2012; Melton et al., 2013).

5

This study reported global N₂O emission in a range of $10.49-14.30 \text{ TgNyr}^{-1}$ during 1981–2000, which was close to an empirical estimate of 13.31 TgNyr^{-1} (Xu et al., 2008). The estimated N₂O flux during 1990–1994 (11.51–12.15 TgNyr⁻¹) was slightly higher than a process-based modeling result (11.33 TgNyr⁻¹; Liu, 1996) and an inverse modeling result (9.5 TgNyr⁻¹; Nevison et al., 1996). In our study, we considered the manure application (no livestock management), nitrogen fertilizer use, nitrogen deposition, nitrogen fixation and agricultural biomass burning, making our estimated cropland N₂O flux slightly higher than the estimates from FAO/IFA (2001), Davison (2009) and Bouwman et al. (2002), which did not consider the impacts of nitrogen deposi-

- tion and fixation. DLEM-estimated N₂O emissions from cropland were close to most of previous estimates (e.g., Davison 2009; Bouwman et al., 2002; US EPA 2010). Our estimates for natural land N₂O emissions were slightly higher than those from Bowden (1986), Saikawa et al. (2013), and US EPA (2010), and significantly higher than the estimate from the statistical extrapolation (Zhuang et al., 2012). DLEM estimated
- N₂O emission from global grassland and forest were consistent with the empirical extrapolations by Xu et al. (2008) and Zhang et al. (2010). The discrepancies in input datasets and estimation methods might be the major causes of these differences. DLEM used multiple environmental factors, including climate, nitrogen deposition, atmospheric CO₂, tropospheric ozone, nitrogen fertilization and land use change, as model input, while most previous studies only considered one or a subset of these
- ²⁵ model input, while most previous studies only considered one or a subset of these factors.

4.2 Regional difference in CH₄ and N₂O fluxes

Based on measurements and extrapolation, Bartlett and Harriss (1993) and US EPA (1993) estimated that 60.55 % of CH₄ emissions were from tropical wetland. Matthews and Fung (1987) estimated that only about 28.83 % was from tropical region, instead,
over 58.56 % was from the high-latitude region. However, with the same methods but more observations, Fung et al. (1991) updated their early estimate and reported that about 69.57 % of CH₄ emissions were from tropical region. Based on eight process-based ecosystem models, Melton et al. (2013) estimated that about 66.32 % of CH₄ emissions were from tropical region. The inverse modeling approach estimated an even higher emission from tropical region (81.01 %, Hein et al., 1997; 83.52 %, Wang et al., 2004; 70.75 %, Bousquet et al., 2006). Combining all these estimates, US EPA (2010) reached a consensus that about 75 % of CH₄ emissions were from the tropical region. Our estimate of 73.92 % (upland CH₄ uptake is not separated) is close to this value.

The increasing CH₄ emission from the northern high latitude and tropical region is also consistent with the estimate from Dlugokencky et al. (2009). We estimated that about 80 % of N₂O emissions were from the tropical region. Based on observations and inverse methods, Prinn et al. (1990) also reported that 52–68 % of the N₂O emissions were from the tropical region during 1978–1988. In contrast, using an inversing modeling approach, Hirsch et al. (2006) showed a lower estimate of N₂O emissions from 30° S to 90° S (0 to 4 %) and a higher N₂O emission from 0° to 30° N (50 to 64 %) during 1998 to 2001.

Due to different spatial and temporal change patterns of multiple environmental factors, the change trends of CH_4 and N_2O fluxes were greatly different among continents and climate zones. In Asia, land cover changed dramatically due to fast-growing popu-

lation and industrialization during the past three decades and was primarily characterized by conversions of upland natural ecosystems to rice fields, which was the major contributor to the increasing CH₄ emission. In addition, nitrogen fertilizer use amount in Asia increased the most rapidly compared to other continents (Table 2) and led to

substantial increase in N₂O emission. Based on inventory data, Kurokawa et al. (2013) found that CH₄ and N₂O increased by 32% and 18%, respectively from 2000 to 2008 in Asia. By using inversion modeling, Saikawa et al. (2013) also reported that N₂O emissions from agricultural soil increased by 56% (0.055 Tgyr⁻¹) in Asia (i.e., North-

- ⁵ ern Asia + Southern Asia) from 1995 to 2008. In North America, land use kept relatively stable and climate variability became the major contributing factors for CH_4 emissions, while both climate and nitrogen fertilizer uses contributed the most to N₂O emissions as indicated by our previous studies (i.e., Tian et al., 2010, 2012b; Xu et al., 2010, 2012a). DLEM simulations in Europe showed a slight decreasing trend in CH_4 emission, and
- ¹⁰ a less significant increase in N₂O compared to other continents. Over shorter period (1990–2011), Saikawa et al. (2013) and EEA (2013) reported that both agricultural and natural soil N₂O emissions had no significant changing trends in Europe.

4.3 Climate change and CH_4 and N_2O emissions

Previous studies indicated that climate variability and change determined inter-annual
 variations in terrestrial CH₄ and N₂O fluxes (Frolking and Crill, 1994; King, 1997; Xu et al., 2008, 2010, 2012a; Tian et al., 2010; Dijkstra et al., 2012). A field experiment found the hierarchical control on N₂O emission in forest, and concluded that precipitation controls the instant N₂O flux pattern while air temperature determines the relatively long-term regime (Brumme et al., 1999). Based on field experiments of 74 plots,

- ²⁰ Gundersen et al. (2012) found that increased air temperature and precipitation greatly increased CH_4 and N_2O emissions, with stronger impacts from increasing air temperature compared to increasing precipitation. A significant correlation was also found between air temperature and atmospheric CH_4 concentration during pre-industrial period (Wuebbles and Hayhoe 2002; Chappellaz et al., 1993a, b). An even stronger pos-
- ²⁵ itive feedback between N₂O emissions and air temperature (about $1 \text{ TgNyr}^{-1} \circ \text{C}^{-1}$) was found by Xu et al. (2012b). In this study, model simulation also revealed a high correlation ($R^2 = 0.73$ for CH₄ and 0.71 for N₂O; P < 0.01) between CH₄/N₂O and

air temperature, implying a strong positive feedback between climate warming and CH_4/N_2O emissions. Global air temperature significantly increased (0.024°C⁻¹; Tables 2 and 3) from 1981 to 2010, with the highest increase in the northern polar region (0.039°Cyr⁻¹). Climate warming in the northern high-latitude region was reported as the most important stimulating factor for increases in atmospheric CH_4 and N_2O (e.g., Mosier et al., 1998; Cantarel et al., 2011; Koven et al., 2011). In our study, we also found that the increases in both CH_4 and N_2O emissions were primarily (> 50%) attributed to air temperature change in the > 60° N climatic zone.

4.4 Temporal trends of CH₄ and N₂O fluxes for different biomes

In this study, we found that the increase in CH_4 emissions was primarily due to the 10 effects of multiple environmental changes on wetland and rice paddy land. Multiple environmental changes had led to an increase in natural wetland CH₄ emission from $129.01 \text{ TgCyr}^{-1}$ in 1981 to $137.67 \text{ TgCyr}^{-1}$ in 2010. Through data synthesis, Kirschke et al. (2013) also found a steady increase in wetland CH₄ emission from 1985 to 2010 based on the bottom-up estimation approach, with the highest increase 15 of about 15 TgCyr⁻¹ from 1985 to 2010. We found that rice field area has increased by 0.28×10^6 km² from 1981 to 2010, and CH₄ emission from paddy land increased by about 20 TgCyr⁻¹ (Fig. 6c). Many previous studies attributed the increased atmospheric CH_4 concentration to increased natural wetland emissions (e.g., Chen and Prinn, 2006; Kirschke et al., 2013; Saikawa et al., 2013), but our study suggested that 20 cropland was among the most important contributors. US EPA (2006) predicted rapid increases in CH₄ emissions from rice cultivation from 1990 (17.64 TgCyr^{-1}) to 2010 (20.37 TqCyr⁻¹), with a 15.5% increase. Kirschke et al. (2013) found an even more rapid increase in natural wetland CH₄ emissions from 2005 to 2010, which was also found in our study (Figs. 4a and 7c). For all the upland biomes (i.e., forest, shrubland 25 and grassland), our model estimation showed CH₄ uptake increase was larger after

2000, indicating an acceleration of both CH_4 emission and uptake in recent decade.

We found that cropland N_2O emissions constantly increased during 1981–2010, while natural biomes showed a more rapid increase during 2000-2010. By synthesizing most recent studies on global agricultural N₂O emissions, Reay et al. (2012) and US EPA (2011) indicated that N₂O emissions from agricultural soil increased by about $1 \text{ Tg} \text{Nyr}^{-1}$ from 1990 to 2010. We had a similar finding with agricultural N₂O 5 emission increasing by 1.4 TgNyr⁻¹ during the same period (Fig. 6e). By using inversion modeling, Saikawa et al. (2013) also estimated an N₂O emission increase of 1.27 TgNyr^{-1} (from 2.65 TgNyr⁻¹ in 1995 to 3.92 TgNyr⁻¹ in 2008) in global agricultural land. The increases in global cropland area and nitrogen fertilizer amounts, as well as climate change were the major causes for rapid N₂O emissions increase in 10 cropland (Mosier et al., 1998). Davidson (2009) combined both top-down and bottomup approaches and estimated that about 2.5% fertilized nitrogen was released during 1860 to 2005. Considering nitrogen fertilizer amount increasing from $\sim 50 \text{ Tg Nyr}^{-1}$ in 1981 to ~ 84 TgNyr⁻¹ in 2005, we can conclude that during 1981–2005, increase of about 0.85 Tg N₂O-N yr⁻¹ was directly derived from the rising nitrogen fertilizer use. The increases in N₂O emissions for natural biomes might be primarily due to climate warming and nitrogen deposition. Based on manipulative field experiments, Dijkstra et al. (2012) and Cantarel et al. (2011) found that climate warming significantly increase N₂O emissions in grassland. Nitrogen deposition could greatly increase carbon storage in the terrestrial ecosystems and in the meanwhile increasing N_2O emissions 20 for natural biomes (Liu et al., 2009; Lu et al., 2013).

4.5 Uncertainties and implications

Due to the complexity of the biogeochemical processes related to CH_4 and N_2O fluxes (Conrad, 1996; Xu et al., 2008; Tian et al., 2012a), some uncertainties need to be con-

 $_{\rm 25}$ sidered when interpreting the modeling results. First, uncertainties might be resulted from the simplification of modeling mechanisms for CH₄ and N₂O production and consumption. DLEM runs at daily time step and might miss pulses in CH₄ and N₂O fluxes

at sub-daily scale. These high pulses may substantially contribute to the annual fluxes (Brumme et al., 1999). Studies have found that the actual ebullition process may be different from the mechanisms applied in most current process-based models (Baird et al., 2004; Kellner et al., 2005; Strack et al., 2005). Although these studies pointed out the possible drawbacks of current modeling representations for this process, no more reliable method has been put forward yet. Additional field or experimental investigations are needed to improve model representation of CH₄ ebullition. Second, the parameters uncertainties might lead to estimation biases. For example, it is important

- to take into account differences of CH_4 production and oxidation in tropical and northern wetlands, which have not been well documented yet (Blais et al., 2005). Third, the uncertainties in input data also need to be considered. For example, CH_4 and N_2O fluxes have been reported at an order of magnitude difference among different wetland classes (Barlett and Harriss, 1993; Song et al., 2009), thus the small discrepancy in wetland area and wetland classification could lead to a substantial difference in re-
- gional estimation. Meanwhile, the varied wetland extent along the study period is one of the major factor influencing inter-annual variation in CH₄ fluxes (Ringeval et al., 2010; Melton et al., 2013). As pointed out in a recent model intercomparison project (Wania et al., 2013; Melton et al., 2013), to more accurately simulate CH₄ fluxes, current process-based models need to be improved in several aspects including the wetland
 extent dynamics, hydrological cycle, etc. N₂O emission from pasture management (i.e.,
- irrigation, fertilization, grazing rotation, etc.) may contribute a great portion to the global N_2O flux (Ambus and Robertson, 2006; Li et al., 1996); however, it is not considered in our study.

These findings have important implications for mitigation strategies, which include increasing efficiency of nitrogen use in crop production. In our previous studies (Tian et al., 2011a, 2012a; Lu et al., 2012), we found that some regions in the world are suffering from excessive nitrogen input. Less nitrogen input will maintain the same food productivity but reduce the risks for higher N₂O emissions, as well as soil and water nitrogen pollutions. To slow down future global warming, policy makers should

pay special attention to reducing CH₄ and N₂O emissions in the meanwhile increasing carbon sequestration. Currently, many management practices or governmental policies were implemented either for increasing carbon sequestrations or for reducing carbon emissions, such as intensive management in cropland and planted forests, as well as
⁵ expanding the area of energy crops to produce "clean" energy. These measures may effectively increase carbon sequestration or reduce carbon emission; however, their impacts on CH₄ and N₂O fluxes are still uncertain (Melillo et al., 2009; Murdiyarso et al., 2010; Tian et al., 2012b). Comprehensive considerations for the three most potent gases are necessary before putting forward any management practices or policies over large area. Future studies are also called for simultaneously investigating net fluxes of CO₂, CH₄ and N₂O in both field experiments and regional estimations.

5 Conclusions

Based on a process-based ecosystem model, this study concurrently estimated CH₄ and N₂O fluxes in the terrestrial biosphere during 1981–2010. As most of previous
studies addressed only one of these gases and include one or a subset of all these environmental factors, our study might significantly contribute to the accurate estimation of global CH₄ and N₂O budgets and spatiotemporal patterns. We found that both CH₄ and N₂O emissions greatly increased from 1981 to 2010, indicating global environmental changes could greatly increase CH₄ and N₂O emission to the atmosphere, which would in turn speed climate warming. Most of the CH₄ and N₂O emissions and the highest increasing rate were found in the tropical zone, suggesting this region could be the hot spots for future climate change research. Although climate change also enhanced CH₄ and N₂O emissions in the northern high-latitude region, the increasing rate was much less than that of the tropical region. Methane uptakes slightly increased for

the upland ecosystems (e.g., forest, dry cropland, shrubland and grassland) while CH_4 emission greatly increased in the lowland ecosystems (e.g., natural wetland and rice paddy land). N₂O emission increased in all the ecosystems with the highest increasing

rate found in cropland, which is primarily resulted from cropland management practices (e.g., fertilizer use, irrigation and manure application). Our estimates for global CH_4 and N_2O budgets as well as temporal and spatial variations were consistent with previous field experimental, regional and global studies. High correlations between air temperature and CH_4/N_2O emissions indicate a positive feedback between climate warming and terrestrial emissions of CH_4 and N_2O . Given large increase in CH_4 and N_2O emission at global scale, we suggest that these two gases together with CO_2 have to be simultaneously considered when evaluating if a policy is effective or efficient to reduce global warming in the future.

Acknowledgements. This study has been supported by NASA Atmospheric Composition: Modeling and Analysis Program (NNH10CC80C), NASA IDS Program (NNX10AU06G, NNG04GM39C), US National Science Foundation Grants (AGS-1243220, CNS-1059376). This study contributes to the Non-CO₂ Greenhouse Gases Synthesis of North American Carbon Program (NACP).

15 **References**

20

- Ambus, P. and Robertson, G. P.: Fluxes of CH₄ and N₂O in aspen stands grown under ambient and twice-ambient CO₂, Plant Soil, 209, 1–8, 1999.
- Baird, A. J., Beckwith, C. W., Waldron, S., and Waddington, J. M.: Ebullition of methanecontaining gas bubbles from near-surface Sphagnum peat, Geophys. Res. Lett., 31, L21505, doi:10.1029/2004GL021157, 2004.
- Banger, K., Tian, H., and Lu, C.: Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields?, Glob. Change Biol., 18, 3259–3267, 2012.
- Banin, A.: Global budget of N_2O : the role of soils and their change, Sci. Total. Environ., 55, 27–38, 1986.
- ²⁵ Bartlett, K. B. and Harriss, R. C.: Review and assessment of methane emissions from wetlands, Chemosphere, 26, 261–320, 1993.
 - Bergamaschi, P., Frankenberg, C., Meirink, J. F., Krol, M., Dentener, F., Wagner, T., Platt, U., Kaplan, J. O., Körner, S., Heimann, M., Dlugokencky, E. J., and Goede, A.: Satellite

chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations, J. Geophys. Res.-Atmos., 112, D02304, doi:10.1029/2006JD007268, 2007.

Bergamaschi, P., Frankenberg, C., Meirink, J. F., Krol, M., Villani, M. G., Houweling, S., Den-

tener, F., Dlugokencky, E. J., Miller, J. B., Gatti, L. V., Engel, A., and Levin, I.: Inverse modeling of global and regional CH₄ emissions using SCIAMACHY satellite retrievals, J. Geophys. Res.-Atmos., 114, D22301, doi:10.1029/2009JD012287, 2009.

Blais, A. M., Lorrain, S., and Tremblay, A.: Greenhouse gas fluxes (CO₂, CH₄ and N₂O) in forests and wetlands of boreal, temperate and tropical regions, in: Greenhouse Gas Emis-

sions – Fluxes and Processes, edited by: Tremblay, D. A., Varfalvy, D. L., Roehm, D. C., and Garneau, D. M., available at: http://link.springer.com/chapter/10.1007/978-3-540-26643-3_ 5, Springer, Berlin, Heidelberg, 87–127, 2005.

Blankinship, J. C., Brown, J. R., Dijkstra, P., and Hungate, B. A.: Effects of interactive global changes on methane uptake in an annual grassland, J. Geophys. Res.-Biogeo., 115, G02008. doi:10.1029/2009JG001097, 2010.

Bloom, A. A., Palmer, P. I., Fraser, A., Reay, D. S., and Frankenberg, C.: Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data, Science, 327, 322–325, 2010.

15

30

Bousquet, P., Ciais, P., Miller, J. B., Dlugokencky, E. J., Hauglustaine, D. A., Prigent, C., Van

der Werf, G. R., Peylin, P., Brunke, E.-G., Carouge, C., Langenfelds, R. L., Lathière, J., Papa, F., Ramonet, M., Schmidt, M., Steele, L. P., Tyler, S. C., and White, J.: Contribution of anthropogenic and natural sources to atmospheric methane variability, Nature, 443, 439– 443, doi:10.1038/nature05132, 2006.

Bousquet, P., Ringeval, B., Pison, I., Dlugokencky, E. J., Brunke, E.-G., Carouge, C., Cheval-

²⁵ lier, F., Fortems-Cheiney, A., Frankenberg, C., Hauglustaine, D. A., Krummel, P. B., Langenfelds, R. L., Ramonet, M., Schmidt, M., Steele, L. P., Szopa, S., Yver, C., Viovy, N., and Ciais, P.: Source attribution of the changes in atmospheric methane for 2006–2008, Atmos. Chem. Phys., 11, 3689–3700, doi:10.5194/acp-11-3689-2011, 2011.

Bouwman, A. F., Boumans, L. J. M., and Batjes, N. H.: Modeling global annual N₂O and NO emissions from fertilized fields, Global Biogeochem. Cy., 16, 28-1–28-9, 2002.

Bouwman, A. F., Drecht, G. V., and van der Hoek, K. W.: Surface N balances and reactive N loss to the environment from global intensive agricultural production systems for the period 1970–2030, Sci. China Ser. C, 48, 767–779, 2005.

 Tables
 Figures

 I
 ►I

 I
 ►I

 Back
 Close

 Full Screen / Esc

 Printer-friendly Version

 Interactive Discussion

BGD

10, 19811–19865, 2013

Global

land-atmosphere

exchange of methane

and nitrous oxide

H. Tian et al.

Title Page

Abstract

Conclusions

Introduction

References

Discussion

Paper

Discussion Paper

Discussion Paper

Discussion Paper

- Bowden, R. D., Steudler, P. A., Melillo, J. M., and Aber, J. D.: Annual nitrous oxide fluxes from temperate forest soils in the northeastern United States, J. Geophys. Res.-Atmos., 95, 13997–14005, 1990.
- Bowden, W. B.: Gaseous nitrogen emissions from undisturbed terrestrial ecosystems: an as-
- sessment of their impacts on local and global nitrogen budgets, Biogeochemistry, 2, 249– 279, doi:10.1007/BF02180161, 1986.
 - Bronson, K. F., Neue, H.-U., Abao, E. B., and Singh, U.: Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil: I. Residue, nitrogen, and water management, Soil Sci. Soc. Am. J., 61, 981–987, doi:10.2136/sssaj1997.03615995006100030038x, 1997.

10

20

30

Brumme, R., Borken, W., and Finke, S.: Hierarchical control on nitrous oxide emission in forest ecosystems, Global Biogeochem. Cy., 13, 1137–1148, doi:10.1029/1999GB900017, 1999.
Butterbach-Bahl, K., Gasche, R., Breuer, L., and Papen, H.: Fluxes of NO and N₂O from temperate forest soils: impact of forest type, N deposition and of liming on the NO and N₂O

emissions, Nutr. Cycl. Agroecosys., 48, 79–90, doi:10.1023/A:1009785521107, 1997.
 Cantarel, A. A. M., Bloor, J. M. G., Deltroy, N., and Soussana, J. F.: Effects of climate change drivers on nitrous oxide fluxes in an upland temperate grassland, Ecosystems, 14, 223–33, 2011.

Cao, M., Gregson, K., and Marshall, S.: Global methane emission from wetlands and its sensitivity to climate change, Atmos. Environ., 32, 3293–3299, 1998.

- Chen, G., Tian, H., Zhang, C., Liu, M., Ren, W., Zhu, W., Chappelka, A., Prior, S., and Lockaby, G.: Drought in the Southern United States over the 20th century: Variability and its impacts on terrestrial ecosystem productivity and carbon storage, Climatic Change, 114, 379–397, doi:10.1007/s10584-012-0410-z, 2012.
- ²⁵ Christensen, T. R., Prentice, I. C., Kaplan, J., Haxeltine, A., and Sitch, S.: Methane flux from northern wetlands and tundra, Tellus B, 48, 652–661, 1996.
 - Christensen, T. R., Friborg, T., Sommerkorn, M., Kaplan, J., Illeris, L., Soegaard, H., Nordstroem, C., and Jonasson, S.: Trace gas exchange in a high-Arctic valley: 1. Variations in CO₂ and CH₄ flux between tundra vegetation types, Global Biogeochem. Cy., 14, 701–713, doi:10.1029/1999GB001134. 2000.
 - Clymo, R. S. and Reddaway, E. J. F.: Productivity of *Sphagnum* (bog-moss) and peat accumulation, Hydrobiologia, 12, 1–192, 1971.

- 19838
- Del Grosso, S. J., Ogle, S. M., Parton, W. J., and Breidt, F. J.: Estimating uncertainty in N₂O emissions from US cropland soils, Global Biogeochem. Cy., 24, GB1009, doi:10.1029/2009GB003544, 2010.
- Del Grosso, S. J., Parton, W. J., Mosier, A. R., Walsh, M. K., Ojima, D. S., and Thornton, P. E.: DAYCENT national-scale simulations of nitrous oxide emissions from cropped soils in the United States, J. Environ. Qual., 35, 1451, doi:10.2134/jeg2005.0160, 2006.
- cision tree classifiers, Int. J. Remote Sens., 19, 3141–3168, doi:10.1080/014311698214235, 1998. De Laune, R. D., Smith, C. J., and Patrick, W. H.: Methane release from Gulf coast wetlands, Tellus B, 35, 8–15, 1983.
- Davidson, E. A., Nepstad, D. C., Ishida, F. Y., and Brando, P. M.: Effects of an experimental drought and recovery on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric 20 oxide in a moist tropical forest, Glob. Change Biol., 14, 2582-2590, 2008. De Fries, R. S., Hansen, M., Townshend, J. R. G., and Sohlberg, R.: Global land cover classifications at 8 km spatial resolution: the use of training data derived from Landsat imagery in de-
- 15 Davidson, E. A., Matson, P. A., Vitousek, P. M., Riley, R., Dunkin, K., Garcia-Mendez, G., and Maass, J. M.: Processes regulating soil emissions of NO and N_2O in a seasonally dry tropical forest, Ecology, 74, 130-139, doi:10.2307/1939508, 1993.
- Davidson, E. A.: The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860, Nat. Geosci., 2, 659-662, doi:10.1038/ngeo608, 2009.
- dioxide enrichment of marsh vegetation, Nature, 370, 47-49, 1994. 10 Dambreville, C., Morvan, T., and Germon, J.-C.: N₂O emission in maize-crops fertilized with pig slurry, matured pig manure or ammonium nitrate in Brittany, Agr. Ecosyst. Environ., 123, 201-210, 2008.
- Corre, M. D., Pennock, D. J., Kessel, C. V., and Kirkelliott, D.: Estimation of annual nitrous oxide emissions from a transitional grassland-forest region in Saskatchewan, Canada, Biogeochemistry, 44, 29-49, doi:10.1007/BF00992997, 1999.
- Dacey, J. W. H., Drake, B. G., and Klug, M. J.: Stimulation of methane emission by carbon

Conrad, R.: Soil microorganisms as controllers of atmospheric trace gases (H_2 , CO, CH₄, OCS,

Cochran, V. L., Sparrow, E. B., Schlentner, S. F., and Knight, C. W.: Long-term tillage and crop

residue management in the subarctic: fluxes of methane and nitrous oxide, Can. J. Soil Sci.,

N₂O, and NO), Microbiol. Rev., 60, 609–640, 1996.

77, 565–570, doi:10.4141/S96-089, 1997.

5

25

30

Discussion

Pape

10, 19811–19865, 2013

Global land-atmosphere exchange of methane and nitrous oxide

H. Tian et al.

- Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M., Dickinson, R. E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., da Silva Dias, P. L., Wofsy, S. C., and Zhang, X.: Couplings Between Changes in the Climate System and Biogeochemistry, in: Climate Change 2007: The Physical Science Basis, Contribution
- of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2007.

Dentener, F. J.: Global Maps of Atmospheric Nitrogen Deposition, 1860, 1993, and 2050, Data

- set, available at: http://daac.ornl.gov/ from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA, doi:10.3334/ORNLDAAC/830, 2006.
 - Dijkstra, F. A., Prior, S. A., Runion, G. B., Torbert, H. A., Tian, H., Lu, C., and Venterea, R. T.: Effects of elevated carbon dioxide and increased temperature on methane and nitrous oxide fluxes: evidence from field experiments, Front. Ecol. Environ., 10, 520–527, doi:10.1890/120059, 2012.
 - Dise, N. B.: Methane emission from Minnesota peatlands: spatial and seasonal variability, Global Biogeochem. Cy., 7, 123–142, doi:10.1029/92GB02299, 1993.

15

- Dlugokencky, E. J., Bruhwiler, L., White, J. W. C., Emmons, L. K., Novelli, P. C., Montzka, S. A., Masarie, K. A., Lang, P. M., Crotwell, A. M., Miller, J. B., and Gatti, L. V.: Observational
- constraints on recent increases in the atmospheric CH_4 burden, Geophys. Res. Lett., 36, L18803, doi:10.1029/2009GL039780, 2009.
 - EEA (European Environment Agency): Annual European Union Greenhouse Gas Inventory 1990–2011 and inventory report 2013, Technical report No 8/2013, available at: http://www.eea.europa.eu/publications/european-union-greenhouse-gas-inventory-2013, 2013.
- Erickson, H., Davidson, E. A., and Keller, M.: Former land-use and tree species affect nitrogen oxide emissions from a tropical dry forest, Oecologia, 130, 297–308, 2002.
- Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M., Schreiber, F., Dutilh, B. E., Zedelius, J., de Beer, D., Gloerich, J., Wessels, H. J. C. T., van Alen, T., Luesken, F., Wu, M. L., van de Pas-Schoonen, K. T., Op den Camp, H. J. M.,
- Janssen-Megens, E. M., Francoijs, K.-J., Stunnenberg, H., Weissenbach, J., Jetten, M. S. M., and Strous, M.: Nitrite-driven anaerobic methane oxidation by oxygenic bacteria, Nature, 464, 543–548, doi:10.1038/nature08883, 2010.

FAO/IFA: Global Estimates of Gaseous Emissions of NH₃, NO and N₂O from Agricultural Land, Food and Agriculture Organization of the United Nations (FAO)/International Fertilizer Industry Association (IFA), Rome, 106, 2001

Flessa, H., Dörsch, P., and Beese, F.: Seasonal variation of N_2O and CH_4 fluxes in differently

5 managed arable soils in southern Germany, J. Geophys. Res.-Atmos., 100, 23115–23124, doi:10.1029/95JD02270, 1995.

Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schultz, M., and Van Dorland, R.: Changes in Atmospheric Constituents and in Radiative Forcing, available at: http://doi.org/10.1016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.

¹⁰ //www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf, Cambridge University Press, Cambridge, UK, 2007.

Frankenberg, C., Meirink, J. F., Weele, M. van, Platt, U., and Wagner, T.: Assessing methane emissions from global space-borne observations, Science, 308, 1010–1014, doi:10.1126/science.1106644, 2005.

- ¹⁵ Frolking, S. and Crill, P.: Climate controls on temporal variability of methane flux from a poor fen in southeastern New Hampshire: measurement and modeling, Global Biogeochem. Cy., 8, 385–397, doi:10.1029/94GB01839, 1994.
 - Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele, L. P., and Fraser, P. J.: Threedimensional model synthesis of the global methane cycle, J. Geophys. Res.-Atmos., 96, 13033–13065, doi:10.1029/91JD01247, 1991.
 - Garcia-Montiel, D. C., Steudler, P. A., Piccolo, M., Neill, C., Melillo, J., and Cerri, C. C.: Nitrogen oxide emissions following wetting of dry soils in forest and pastures in Rondônia, Brazil, Biogeochemistry, 64, 319–336, doi:10.1023/A:1024968802018, 2003.
 - Goodroad, L. L. and Keeney, D. R.: Nitrous oxide production in aerobic soils under varying pH, temperature and water content, Soil Biol. Biochem., 16, 39–43, 1984.
 - Hadi, A., Inubushi, K., and Yagi, K.: Effect of water management on greenhouse gas emissions and microbial properties of paddy soils in Japan and Indonesia, Paddy Water Environ., 8, 319–324, doi:10.1007/s10333-010-0210-x, 2010.

Hao, X., Chang, C., Carefoot, J. M., Janzen, H. H., and Ellert, B. H.: Nitrous oxide emissions from an irrigated soil as affected by fertilizer and straw management, Nutr. Cycl. Agroecosys.,

60, 1–8, 2001.

20

25

Harriss, R. C., Gorham, E., Sebacher, D. I., Bartlett, K. B., and Flebbe, P. A.: Methane flux from northern peatlands, Nature, 315, 652–654, doi:10.1038/315652a0, 1985.

Hendriks, D. M. D., van Huissteden, J., Dolman, A. J., and van der Molen, M. K.: The full greenhouse gas balance of an abandoned peat meadow, Biogeosciences, 4, 411–424, doi:10.5194/bg-4-411-2007, 2007.

Hirsch, A. I., Michalak, A. M., Bruhwiler, L. M., Peters, W., Dlugokencky, E. J., and Tans, P. P.:

- Inverse modeling estimates of the global nitrous oxide surface flux from 1998–2001, Global Biogeochem. Cy., 20, GB1008, doi:10.1029/2004GB002443, 2006.
 - Hou, H., Peng, S., Xu, J., Yang, S., and Mao, Z.: Seasonal variations of CH₄ and N₂O emissions in response to water management of paddy fields located in southeast China, Chemosphere, 89, 884–892, 2012.
- Houweling, S., Kaminski, T., Dentener, F., Lelieveld, J., and Heimann, M.: Inverse modeling of methane sources and sinks using the adjoint of a global transport model, J. Geophys. Res.-Atmos., 104, 26137–26160, 1999.
 - Huang, J., Golombek, A., Prinn, R., Weiss, R., Fraser, P., Simmonds, P., Dlugokencky, E. J., Hall, B., Elkins, J., Steele, P., Langenfelds, R., Krummel, P., Dutton, G., and Porter, L.: Es-
- timation of regional emissions of nitrous oxide from 1997 to 2005 using multinetwork measurements, a chemical transport model, and an inverse method, J. Geophys. Res.-Atmos., 113, D17313, doi:10.1029/2007JD009381, 2008.
 - Huang, Y., Sun, W., Zhang, W., Yu, Y., Su, Y., and Song, C.: Marshland conversion to cropland in northeast China from 1950 to 2000 reduced the greenhouse effect, Glob. Change Biol., 16, 680–695, 2010.

20

- Hutchin, P. R., Press, M. C., Lee, J. A., and Ashenden, T. W.: Elevated concentrations of CO₂ may double methane emissions from mires, Glob. Change Biol., 1, 125–128, doi:10.1111/j.1365-2486.1995.tb00012.x, 1995.
- Ineson, P., Coward, P. A., and Hartwig, U. A.: Soil gas fluxes of N2O, CH4 and CO2 beneath
- Lolium perenne under elevated CO₂: the Swiss Free Air Carbon Dioxide Enrichment Experiment, Plant Soil, 198, 89–95, doi:10.1023/A:1004298309606, 1998.
 - Ito, A. and Inatomi, M.: Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty, Biogeosciences, 9, 759–773, doi:10.5194/bg-9-759-2012, 2012.
- ³⁰ Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–471, 1996.

Kanerva, T., Palojärvi, A., Rämö, K., and Manninen, S.: Changes in soil microbial community structure under elevated tropospheric O₃ and CO₂, Soil Biol. Biochem., 40, 2502–2510, 2008.

Keller, M. and Reiners, W. A.: Soil-atmosphere exchange of nitrous oxide, nitric oxide, and

- methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa Rica, Global Biogeochem. Cy., 8, 399–409, doi:10.1029/94GB01660, 1994.
 - Keller, M., Goreau, T. J., Wofsy, S. C., Kaplan, W. A., and McElroy, M. B.: Production of nitrous oxide and consumption of methane by forest soils, Geophys. Res. Lett., 10, 1156–1159, doi:10.1029/GL010i012p01156, 1983.
- Kellner, E., Waddington, J. M., and Price, J. S.: Dynamics of biogenic gas bubbles in peat: potential effects on water storage and peat deformation, Water Resour. Res., 41, W08417, doi:10.1029/2004WR003732, 2005.

Kessavalou, A., Doran, J. W., Mosier, A. R., and Drijber, R. A.: Greenhouse gas fluxes following tillage and wetting in a wheat-fallow cropping system, J. Environ. Quality, 27, 1105–1116, 1998.

Kettunen, R., Saarnio, S., Martikainen, P., and Silvola, J.: Elevated CO₂ concentration and nitrogen fertilization effects on N₂O and CH₄ fluxes and biomass production of *Phleum pratense* on farmed peat soil, Soil Biol. Biochem., 37, 739–750, 2005.

King, G.: Responses of atmospheric methane consumption by soils to global climate change,

²⁰ Glob. Change Biol., 3, 351–362, 1997.

15

- Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A., Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J., Krummel, P. B., Lamarque, J. F., Langenfelds, R. L., Le Quéré, C., Naik, V.,
- O'Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B., Prinn, R. G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D. T., Simpson, I. J., Spahni, R., Steele, L. P., Strode, S. A., Sudo, K., Szopa, S., van der Werf, G. R., Voulgarakis, A., van Weele, M., Weiss, R. F., Williams, J. E., and Zeng, G.: Three decades of global methane sources and sinks, Nat. Geosci., 6, 813–823, doi:10.1038/ngeo1955, 2013.
- ³⁰ Klein, G. K. and van Drecht, G. (Eds.): HYDE 3: Current and Historical Population and Land Cover MNP, Netherlands Environmental Assessment Agency (MN), Bilthoven, the Netherlands, 2006

Koehler, B., Corre, M. D., Veldkamp, E., Wullaert, H., and Wright, S. J.: Immediate and long term nitrogen oxide emissions from tropical forest soils exposed to elevated nitrogen input, Glob. Change Biol., 15, 2049–2066, 2009.

Kort, E. A., Eluszkiewicz, J., Stephens, B. B., Miller, J. B., Gerbig, C., Nehrkorn, T., Daube, B. C.,

- Kaplan, J. O., Houweling, S., and Wofsy, S. C.: Emissions of CH₄ and N₂O over the United States and Canada based on a receptor-oriented modeling framework and COBRA NA atmospheric observations, Geophys. Res. Lett., 35, L18808, doi:10.1029/2008GL034031, 2008.
- Le Quéré, C., Andres, R. J., Boden, T., Conway, T., Houghton, R. A., House, J. I., Marland, G., Peters, G. P., van der Werf, G. R., Ahlström, A., Andrew, R. M., Bopp, L., Canadell, J. G.,
- Ciais, P., Doney, S. C., Enright, C., Friedlingstein, P., Huntingford, C., Jain, A. K., Jourdain, C., Kato, E., Keeling, R. F., Klein Goldewijk, K., Levis, S., Levy, P., Lomas, M., Poulter, B., Raupach, M. R., Schwinger, J., Sitch, S., Stocker, B. D., Viovy, N., Zaehle, S., and Zeng, N.: The global carbon budget 1959–2011, Earth Syst. Sci. Data, 5, 165–185, doi:10.5194/essd-5-165-2013, 2013.
- Lehner, B. and Döll, P.: Development and validation of a global database of lakes, reservoirs and wetlands, J. Hydrol., 296, 1–22, 2004.
 - Lemke, R. L., Izaurralde, R. C., Malhi, S. S., Arshad, M. A., and Nyborg, M.: Division S-8 nutrient management & soil & plant analysis nitrous oxide emissions from agricultural soils of the boreal and parkland regions of Alberta, Soil Sci. Soc. Am. J., 62, 1096–1102, 1998.
- Li, C., Narayanan, V., and Harriss, R. C.: Model estimates of nitrous oxide emissions from agricultural lands in the United States, Global Biogeochem. Cy., 10, 297–306, doi:10.1029/96GB00470, 1996.
 - Liu, L. L. and Greaver, T. L.: A review of nitrogen enrichment effects on three biogenic GHGs: the CO₂ sink may be largely offset by stimulated N₂O and CH₄ emission, Ecol. Lett., 12, 1103–1117, 2009.

25

Liu, M., Tian, H., Chen, G., Ren, W., Zhang, C., and Liu, J.: Effects of land-use and land-cover change on evapotranspiration and water yield in China during 1900–2001, J. Am. Water Resour. As., 44, 1193–1207, 2008.

Lu, C. and Tian, H.: Spatial and temporal patterns of nitrogen deposition in China: synthesis

³⁰ of observational data, J. Geophys. Res.-Atmos., 112, D22S05, doi:10.1029/2006JD007990, 2007.

BGD					
10, 19811–	19865, 2013				
Glo	bal				
land-atm	losphere				
and nitro	ous oxide				
LL Tio	a et el				
H. Ha	n et al.				
Title	Page				
Abstract	Introduction				
Conclusions	References				
Tables	Figures				
_	_				
14	►I				
•	•				
Back	Close				
Full Screen / Esc					
Printer-frier	ndly Version				
Interactive	Discussion				

Discussion Paper

Discussion Pape

Discussion Pape

Discussion Paper

Lu, C. and Tian, H.: Net greenhouse gas balance in response to nitrogen enrichment: perspectives from a coupled biogeochemical model, Glob. Change Biol., 19, 571–588, doi:10.1111/gcb.12049, 2013.

Lu, C., Tian, H., Liu, M., Ren, W., Xu, X., Chen, G., and Zhang, C.: Effect of nitrogen deposition

on China's terrestrial carbon uptake in the context of multifactor environmental changes, Ecol. Appl., 22, 53–75, 2012.

Matson, A., Pennock, D., and Bedard-Haughn, A.: Methane and nitrous oxide emissions from mature forest stands in the boreal forest, Saskatchewan, Canada, Forest Ecol. Manag., 258, 1073–1083, 2009.

Matson, P. A., Vitousek, P. M., Livingston, G. P., and Swanberg, N. A.: Sources of variation in nitrous oxide flux from Amazonian ecosystems, J. Geophys. Res.-Atmos., 95, 16789–16798, 1990.

Matthews, E. and Fung, I.: Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources, Global Biogeochem. Cy., 1, 61–86, 1987.

- Melillo, J. M., Reilly, J. M., Kicklighter, D. W., Gurgel, A. C., Cronin, T. W., Paltsev, S., Felzer, B. S., Wang, X., Sokolov, A. P., and Schlosser, C. A.: Indirect emissions from biofuels: how important?, Science, 326, 1397–1399, 2009.
 - Melton, J. R., Wania, R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., Bohn, T., Avis, C. A., Beerling, D. J., Chen, G., Eliseev, A. V., Denisov, S. N., Hopcroft, P. O., Let-
- tenmaier, D. P., Riley, W. J., Singarayer, J. S., Subin, Z. M., Tian, H., Zürcher, S., Brovkin, V., van Bodegom, P. M., Kleinen, T., Yu, Z. C., and Kaplan, J. O.: Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP), Biogeosciences, 10, 753–788, doi:10.5194/bg-10-753-2013, 2013.

Mitchell, T. D. and Jones, P. D.: An improved method of constructing a database of monthly

climate observations and associated high-resolution grids, Int. J. Climatol.m 25, 693–712, doi:10.1002/joc.1181, 2005.

Montzka, S. A., Dlugokencky, E. J., and Butler, J. H.: Non-CO₂ greenhouse gases and climate change, Nature, 476, 43–50, 2011.

Moore, T., Roulet, N., and Knowles, R.: Spatial and temporal variations of methane flux from subarctic/northern boreal fens, Global Biogeochem. Cy., 4, 29–46, 1990.

30

Mosier, A. R. and Hutchinson, G. L.: Nitrous oxide emissions from cropped fields, J. Environ. Quality, 10, 169, 1981.

Conclusions References **Figures** Tables 14 Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

BGD

10, 19811–19865, 2013

Global

land-atmosphere

exchange of methane

and nitrous oxide

H. Tian et al.

Title Page

Abstract

Introduction

Discussion

Pape

Discussion Paper

Discussion Paper

Discussion Paper

Mosier, A. R., Hutchinson, G. L., Sabey, B. R., and Baxter, J.: Nitrous Oxide Emissions from Barley Plots Treated with Ammonium Nitrate or Sewage Sludge, J. Environ. Quality, 11, 78– 81, doi:10.2134/jeq1982.00472425001100010019x, 1982.

Mosier, A. R., Guenzi, W. D., and Schweizer, E. E.: Soil losses of dinitrogen and nitrous oxide from irrigated crops in northeastern Colorado, Soil Sci. Soc. Am. J., 50, 344–348, 1986.

- from irrigated crops in northeastern Colorado, Soil Sci. Soc. Am. J., 50, 344–348, 1986.
 Mosier, A., Schimel, D., Valentine, D., Bronson, K., and Parton, W.: Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands, Nature, 350, 330–332, 1991.
 - Mosier, A. R., Delgado, J. A., and Keller, M.: Methane and nitrous oxide fluxes in an acid Oxisol in western Puerto Rico: effects of tillage, liming and fertilization, Soil Biol. Biochem., 30, 2087–2098, 1998.
- Mosier, A. R., Morgan, J. A., King, J. Y., LeCain, D., and Milchunas, D. G.: Soil-atmosphere exchange of CH₄, CO₂, NOx, and N₂O in the Colorado shortgrass steppe under elevated CO₂, Plant Soil, 240, 201–211, 2002.

10

Murdiyarso, D., Hergoualc'h, K., and Verchot, L. V.: Opportunities for reducing greenhouse gas emissions in tropical peatlands, P. Natl. Acad. Sci. USA, 107, 19655–19660, 2010.

- emissions in tropical peatlands, P. Natl. Acad. Sci. USA, 107, 19655–19660, 2010.
 Pancotto, V. A., van Bodegom, P. M., van Hal, J., van Logtestijn, R. S. P., Blokker, P., Toet, S., and Aerts, R.: N deposition and elevated CO₂ on methane emissions: differential responses of indirect effects compared to direct effects through litter chemistry feedbacks, J. Geophys. Res.-Biogeo., 115, G02001, doi:10.1029/2009JG001099, 2010.
- Peng, S., Hou, H., Xu, J., Mao, Z., Abudu, S., and Luo, Y.: Nitrous oxide emissions from paddy fields under different water managements in southeast China, Paddy Water Environ., 9, 403– 411, doi:10.1007/s10333-011-0275-1, 2011.
 - Pérez, M. V. A., Castañeda, J. G., Frías-Hernández, J. T., Franco-Hernández, O., Cleemput, O. V., Dendooven, L., and Olalde, V.: Trace gas emissions from soil of the central high-
- Iands of Mexico as affected by natural vegetation: a laboratory study, Biol. Fert. Soils, 40, 252–259, 2004.
 - Potter, C. S., Matson, P. A., Vitousek, P. M., and Davidson, E. A.: Process modeling of controls on nitrogen trace gas emissions from soils worldwide, J. Geophys. Res.-Atmos., 101, 1361–1377, doi:10.1029/95JD02028, 1996.
- ³⁰ Prather, M. J. and Hsu, J.: Coupling of nitrous oxide and methane by global atmospheric chemistry, Science, 330, 952–954, doi:10.1126/science.1196285, 2010.

- 19846

Prinn, R., Cunnold, D., Rasmussen, R., Simmonds, P., Alyea, F., Crawford, A., Fraser, P., and Rosen, R.: Atmospheric emissions and trends of nitrous oxide deduced from 10 years of ALE-GAGE data, J. Geophys. Res.-Atmos., 95(11), 18369-18385, 1990.

Raghoebarsing, A. A., Pol, A., van de Pas-Schoonen, K. T., Smolders, A. J. P., Ettwig, K. F.,

Rijpstra, W. I. C., Schouten, S., Damsté, J. S. S., Op den Camp, H. J. M., Jetten, M. S. M., and 5 Strous, M.: A microbial consortium couples anaerobic methane oxidation to denitrification, Nature, 440, 918-921, 2006.

Reay, D. S., Davidson, E. A., Smith, K. A., Smith, P., Melillo, J. M., Dentener, F., and Crutzen, P. J.: Global agriculture and nitrous oxide emissions, Nat. Clim. Change, 2, 410-416, 2012.

- 10
 - Regina, K., Syväsalo, E., Hannukkala, A., and Esala, M.: Fluxes of N₂O from farmed peat soils in Finland, Eur. J. Soil Sci., 55, 591-599, 2004.

Ren, W., Tian, H., Liu, M., Zhang, C., Chen, G., Pan, S., Felzer, B., and Xu, X.: Effects of tropospheric ozone pollution on net primary productivity and carbon storage in terrestrial

- ecosystems of China, J. Geophys. Res.-Atmos., 112, D22S09, doi:10.1029/2007JD008521, 15 2007.
 - Ren, W., Tian, H., Xu, X., Liu, M., Lu, C., Chen, G., Melillo, J., Reilly, J., and Liu, J.: Spatial and temporal patterns of CO₂ and CH₄ fluxes in China's croplands in response to multifactor environmental changes, Tellus B, 63, 222-240, 2011.
- Ridgwell, A. J., Marshall, S. J., and Gregson, K.: Consumption of atmospheric methane by soils: 20 a process-based model, Global Biogeochem. Cy., 13, 59-70, doi:10.1029/1998GB900004, 1999.
 - Ringeval, B., de Noblet-Ducoudré, N., Ciais, P., Bousquet, P., Prigent, C., Papa, F., and Rossow, W. B.: An attempt to quantify the impact of changes in wetland extent on methane
- emissions on the seasonal and interannual time scales, Global Biogeochem. Cy., 24, 25 GB2003, doi:10.1029/2008GB003354, 2010.
 - Ruser, R., Flessa, H., Schilling, R., Beese, F., and Munch, J. C.: Effect of crop-specific field management and N fertilization on N₂O emissions from a fine-loamy soil, Nutr. Cycl. Agroecosys., 59, 177-191, doi:10.1023/A:1017512205888, 2001.
- Saikawa, E., Prinn, R. G., Dlugokencky, E., Ishijima, K., Dutton, G. S., Hall, B. D., Langenfelds, R., Tohjima, Y., Machida, T., Manizza, M., Rigby, M., O'Doherty, S., Patra, P. K., Harth, C. M., Weiss, R. F., Krummel, P. B., van der Schoot, M., Fraser, P. B., Steele, L. P.,

Aoki, S., Nakazawa, T., and Elkins, J. W.: Global and regional emissions estimates for N_2O , Atmos. Chem. Phys. Discuss., 13, 19471–19525, doi:10.5194/acpd-13-19471-2013, 2013.

Saikawa, E., Schlosser, C. A., and Prinn, R. G.: Global modeling of soil nitrous oxide emissions from natural processes, Global Biogeochem. Cy., 27, 972–989, doi:10.1002/gbc.20087, 2013.

5

10

25

- Schulze, E. D., Luyssaert, S., Ciais, P., Freibauer, A., Al, I. A. J. et, Soussana, J. F., Smith, P., Grace, J., Levin, I., Thiruchittampalam, B., Heimann, M., Dolman, A. J., Valentini, R., Bousquet, P., Peylin, P., Peters, W., Rödenbeck, C., Etiope, G., Vuichard, N., Wattenbach, M., Nabuurs, G. J., Poussi, Z., Nieschulze, J., and Gash, J. H.: Importance of methane and nitrous oxide for Europe's terrestrial greenhouse-gas balance, Nat. Geosci., 2, 842–850, 2009.
- Song, C., Xu, X., Tian, H., and Wang, Y.: Ecosystem–atmosphere exchange of CH₄ and N₂O and ecosystem respiration in wetlands in the Sanjiang Plain, northeastern China, Glob. Change Biol., 15, 692–705, 2009.

Spahni, R., Wania, R., Neef, L., van Weele, M., Pison, I., Bousquet, P., Frankenberg, C., Fos-

ter, P. N., Joos, F., Prentice, I. C., and van Velthoven, P.: Constraining global methane emissions and uptake by ecosystems, Biogeosciences, 8, 1643–1665, doi:10.5194/bg-8-1643-2011, 2011.

Steudler, P. A., Bowden, R. D., Melillo, J. M., and Aber, J. D.: Influence of nitrogen fertilization on methane uptake in temperate forest soils, Nature, 341, 314–316, 1989.

Strack, M., Kellner, E., and Waddington, J. M.: Dynamics of biogenic gas bubbles in peat and their effects on peatland biogeochemistry, Global Biogeochem. Cy., 19, GB1003, doi:10.1029/2004GB002330, 2005.

Svensson, B. H. and Rosswall, T.: In situ methane production from acid peat in plant communities with different moisture regimes in a subarctic mire, Oikos, 43, 341, doi:10.2307/3544151, 1984.

- Tian, H., Xu, X., Liu, M., Ren, W., Zhang, C., Chen, G., and Lu, C.: Spatial and temporal patterns of CH₄ and N₂O fluxes in terrestrial ecosystems of North America during 1979–2008: application of a global biogeochemistry model, Biogeosciences, 7, 2673–2694, doi:10.5194/bg-7-2673-2010, 2010.
- ³⁰ Tian, H., Melillo, J. M., Lu, C., Kicklighter, D. W., Liu, M., Ren, W., Xu, X., Chen, G., Zhang, C., Pan, S., Liu, J., and Running, S.: China's terrestrial carbon balance: contributions from multiple global change factors, Global Biogeochem. Cy., 25, GB1007, doi:10.1029/2010GB003838, 2011a.

- Tian, H., Xu, X., Lu, C., Liu, M., Ren, W., Chen, G., Melillo, J., and Liu, J.: Net exchanges of CO₂, CH₄, and N₂O between China's terrestrial ecosystems and the atmosphere and their contributions to global climate warming, J. Geophys. Res.-Biogeo., 116, G02011, doi:10.1029/2010JG001393, 2011b.
- ⁵ Tian, H., Lu, C., Chen, G., Tao, B., Pan, S., Del Grosso, S., Xu, X., Bruhwiler, L., Wofsy, S. C., Kort, E. A., and Prior, S. A.: Contemporary and projected biogenic fluxes of methane and nitrous oxide in North American terrestrial ecosystems, Front. Ecol. Environ., 10, 528–536, doi:10.1890/120057, 2012a.

Tian, H., Chen, G., Zhang, C., Liu, M., Sun, G., Chappelka, A., Ren, W., Xu, X., Lu, C.,

- Pan, S., Chen, H., Hui, D., McNulty, S., Lockaby, G., and Vance, E.: Century-scale response of ecosystem carbon storage to multifactorial global change in the southern United States, Ecosystems, 15, 674–694, 2012b.
 - Tian, H., Lu, C., Melillo, J., Ren, W., Huang, Y., Xu, X., Liu, M., Zhang, C., Chen, G., Pan, S., Liu, J., and Reilly, J.: Food benefit and climate warming potential of nitrogen fertilizer uses in China. Environ. Res. Lett., 7, 044020. doi:10.1088/1748-9326/7/4/044020. 2012c.
- China, Environ. Res. Lett., 7, 044020, doi:10.1088/1748-9326/7/4/044020, 2012c.
 Toet, S., Ineson, P., Peacock, S., and Ashmore, M.: Elevated ozone reduces methane emissions from peatland mesocosms, Glob. Change Biol., 17, 288–296, 2011.

Towprayoon, S., Smakgahn, K., and Poonkaew, S.: Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields, Chemosphere, 59, 1547–1556, 2005.

- ²⁰ US EPA (Environmental Protection Agency): Global Anthropogenic Non-CO₂ Greenhouse Gas Emissions: 1990–2020, available at: http://www.epa.gov/nonco2/econ-inv/international.html, 2006.
 - US EPA (US Environmental Protection Agency): Inventory of US Greenhouse-Gas Emissions and Sinks: 1990–2009, EPA 430-R-12-001, US Environmental Protection Agency, Washington, DC, 2011.

25

- US EPA (US Environmental Protection Agency): Methane and Nitrous Ox-US Environmental Protection Agency, Emissions from Natural Sources. ide DC. USA. Washington, available at: http://www.epa.gov/outreach/pdfs/ Methane-and-Nitrous-Oxide-Emissions-From-Natural-Sources.pdf, 2010.
- ³⁰ US EPA: Global Anthropogenic Non-CO₂ Greenhouse Gas Emissions: 1990–2020, US Environmental Protection Agency, available at: http://www.epa.gov/nonco2/econ-inv/ international.html, 2006.

- Ussiri, D. and Lal, R.: Soil Emission of Nitrous Oxide and its Mitigation, New York, 243–275, 2012.
- Van Aardenne, J. A., Dentener, F. J., Olivier, J. G. J., Goldewijk, C. G. M. K., and Lelieveld, J.: A 1° × 1° resolution data set of historical anthropogenic trace gas emissions for the period 1890–1990, Global Biogeochem. Cv., 15, 909–928, 2001.
- 1890–1990, Global Biogeochem. Cy., 15, 909–928, 2001.
 Veldkamp, E. and Keller, M.: Nitrogen oxide emissions from a banana plantation in the humid tropics, J. Geophys. Res.-Atmos., 102, 15889–15898, 1997.
 - Vitt, D., Bayley, S., Jin, T., Halsey, L., Parker, B., and Craik, R.: Methane and carbon dioxide production from wetlands in boreal Alberta, Report on Contract No. 90–0270 to Alberta Environment, 35 pp., 1990
- Walter, B. P. and Heimann, M.: A process-based, climate-sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters, and climate, Global Biogeochem. Cy., 14, 745–765, 2000.

10

30

Wania, R., Melton, J. R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., Bohn, T.,

- Avis, C. A., Chen, G., Eliseev, A. V., Hopcroft, P. O., Riley, W. J., Subin, Z. M., Tian, H., van Bodegom, P. M., Kleinen, T., Yu, Z. C., Singarayer, J. S., Zürcher, S., Lettenmaier, D. P., Beerling, D. J., Denisov, S. N., Prigent, C., Papa, F., and Kaplan, J. O.: Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP), Geosci. Model Dev., 6, 617–641, doi:10.5194/gmd-6-617-2013, 2013.
- Wei, Y., Liu, S., Huntzinger, D. N., Michalak, A. M., Viovy, N., Post, W. M., Schwalm, C. R., Schaefer, K., Jacobson, A. R., Lu, C., Tian, H., Ricciuto, D. M., Cook, R. B., Mao, J., and Shi, X.: The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project – Part 2: Environmental driver data, Geosci. Model Dev. Discuss., 6, 5375–5422, doi:10.5194/gmdd-6-5375-2013, 2013.
- Weitz, A. M., Veldkamp, E., Keller, M., Neff, J., and Crill, P. M.: Nitrous oxide, nitric oxide, and methane fluxes from soils following clearing and burning of tropical secondary forest, J. Geophys. Res.-Atmos., 103, 28047–28058, 1998.
 - Weitz, A., Linder, E., Frolking, S., Crill, P., and Keller, M.: N₂O emissions from humid tropical agricultural soils: effects of soil moisture, texture and nitrogen availability, Soil Biol. Biochem., 33, 1077–1093, 2001.
 - Whalen, S. C. and Reeburgh, W. S.: A methane flux time series for tundra environments, Global Biogeochem. Cy., 2, 399–409, 1988.

- Xu, X. and Tian, H.: Methane exchange between marshland and the atmosphere over China during 1949–2008, Global Biogeochem. Cy., 26, GB2006, doi:10.1029/2010GB003946, 2012.
- Xu, X., Tian, H., and Hui, D.: Convergence in the relationship of CO_2 and N_2O exchanges
- between soil and atmosphere within terrestrial ecosystems, Glob. Change Biol., 14, 1651– 1660, 2008.
 - Xu, X. F., Tian, H. Q., Zhang, C., Liu, M. L., Ren, W., Chen, G. S., Lu, C. Q., and Bruhwiler, L.: Attribution of spatial and temporal variations in terrestrial methane flux over North America, Biogeosciences, 7, 3637–3655, doi:10.5194/bg-7-3637-2010, 2010.
- Xu, X. F., Tian, H. Q., Chen, G. S., Liu, M. L., Ren, W., Lu, C. Q., and Zhang, C.: Multifactor controls on terrestrial N₂O flux over North America from 1979 through 2010, Biogeosciences, 9, 1351–1366, doi:10.5194/bg-9-1351-2012, 2012.
 - Yan, X., Akiyama, H., Yagi, K., and Akimoto, H.: Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Inter-
- ¹⁵ governmental Panel on Climate Change Guidelines, Global Biogeochem. Cy., 23, GB2002, doi:10.1029/2008GB003299, 2009.
 - Yu, K., Faulkner, S. P., and Baldwin, M. J.: Effect of hydrological conditions on nitrous oxide, methane, and carbon dioxide dynamics in a bottomland hardwood forest and its implication for soil carbon sequestration, Glob. Change Biol., 14, 798–812, 2008.
- Zhang, C., Tian, H., Chappelka, A. H., Ren, W., Chen, H., Pan, S., Liu, M., Styers, D. M., Chen, G., and Wang, Y.: Impacts of climatic and atmospheric changes on carbon dynamics in the Great Smoky Mountains National Park, Environ. Pollut., 149, 336–347, 2007.
 - Zhang, F., Qi, J., Li, F. M., Li, C. S., and Li, C. B.: Quantifying nitrous oxide emissions from Chinese grasslands with a process-based model, Biogeosciences, 7, 2039–2050, doi:10.5194/bg-7-2039-2010, 2010.
 - Zhuang, Q., Lu, Y., and Chen, M.: An inventory of global N₂O emissions from the soils of natural terrestrial ecosystems, Atmos. Environ., 47, 66–75, 2012.

25

- Zhuang, Q., Melillo, J. M., Kicklighter, D. W., Prinn, R. G., McGuire, A. D., Steudler, P. A., Felzer, B. S., and Hu, S.: Methane fluxes between terrestrial ecosystems and the at-
- ³⁰ mosphere at northern high latitudes during the past century: a retrospective analysis with a process-based biogeochemistry model, Global Biogeochem. Cy., 18, GB3010, doi:10.1029/2004GB002239, 2004.

Table 1. DLEM validation against site-level measurement of CH₄ and N₂O fluxes.

Location	Land cover type	DLEM	Observation	Reference
		CH_4 fluxes (g C m ⁻²)	۲r ⁻¹)	
19° E, 68° N	Mire	6.1737	0.13-30.5	Svensson et al. (1984)
147.85° W, 64.8667° N	Tundra	7.2921	0.47-8.05	Whalen et al. (1988)
47°32' N, 93°28' W	Peatland	19.15	3.5-65.7	Dise et al. (1993)
113° W, 55° N	Sedge meadow	18.92	21.7	Vitt et al. (1990)
66° W, 54° N	Fen	9.34	1.3–9.8	Moore et al. (1990)
4° W, 55° N	Bog	9.29	1.3–9.3	Clymo et al. (1971)
21° W, 74.5° N	Bog	7.44	0-66.96	Christensen et al. (2000)
2.90° S, 54.95° W	Forest	-0.17	-0.12 to -0.37	Davidson et al. (2008)
105° W, 53° N	Forest	-0.041	-0.063	Hatson et al. (2009)
5° E, 52° N	Peatland	28.23	14.5-68.9	Hendriks et al. (2007)
133°31' E, 47°35' N	Freshwater marsh	14.5 ± 3.0^{a}	11.8 ± 2.6^{a}	Lu et al. (2012)
112°11' E, 23°11' N	Tropical forest	-0.115 ^a	-0.145 ± 0.02 ^a	Lu et al. (2012)
90.11° W, 29.8°N	Woody wetland	21.18	-2.63-24.9	Yu et al. (2008)
84.67° W,45.57° N	Trembling aspen	-0.1 ± 0.07	0.271	Ambus et al. (1999)
122.23° W, 37.4° N	Grassland	-0.30 ± 0.01 to	-0.13 ± 0.01 to	Blankinship et al. (2010)
05 407° M 47 05° M	Disa	$-0.38 \pm 0.05^{\circ}$	-0.45 ± 0.14^{-1}	
95.167 W, 47.25 N	Rice	342.18 ± 38.05	369.75	Harriss et al. (1985)
118 E, 32 N	Rice paddles	22.99	18.14±21.17	Xiong et al. (2007)
91.55 W, 29.87 N	vvetiand	52-57	4.3-160	DeLaune et al. (1983)
		N_2O fluxes (g Nm ⁻²)	r ⁻¹)	
63° W, 10° S	Forest	0.1	0.05-0.322	Garcia (2003)
94° W, 3° S	Forest	0.13	0.08-0.22	Matson (1987)
48° E, 1° N	Agriculture	0.17	0.08-0.21	Dambreville (2008)
79° E, 9° N	Forest	0.17	0.09-0.73	Koehler (2009)
84° W, 10° N	Forest	0.17	0.08-0.58	Keller (1994)
76° W, 10° N	Forest	0.16	0.15-0.54	Matson (1987)
84° W, 10° N	Agriculture	0.38	0.029-0.75	Veldkamp (1997);
				Weitz (1998, 2001)
65° W, 17° N	Fallow	0.22	0.007-1.92	Ericson (2001)
65° W, 18° N	Forest	0.22	0.002-0.077	Erickson (2002)
98° W, 19° N	Agriculture	0.262	0.14-0.29	Luqueno (2009)
83° W, 19° N	Forest	0.03	0-0.022	Matson (1987)
105.03° W, 19.3° N	Forest	0.06	0.009-0.048	Davidson (1993)
100° W, 21° N	Agriculture	0.1	0.08-0.19	Perez (2004)
	3	-		(,

Table 1. Continued.

Location	Land cover type	DLEM	Observation	Reference
157° W, 21° N	Forest	0.04	0.002-0.007	Vitousek (1989)
91° W, 35° N	Agriculture	0.07	0.01-0.05	Cochran (1997)
104° W, 38.5° N	Agriculture	0.24	0.082-0.25	Bronson (1992); Delago
				(1996); Mosier (1986)
107° W, 39° N	Agriculture	0.02	0.198	Mosier and Hutchinson
				(1981)
104° W, 40° N	Agriculture	0.03	0.026-0.27	Mosier (1982)
102° W, 41° N	Agriculture	0.022	0.009-0.011	Kessavalou (1998)
72.5° W, 41.5° N	Forest	0.02	0.001-0.002	Bowden (1990)
72.5° W, 43.5° N	Forest	0.05	0.003-0.006	Castro (1993)
89.5° W, 43.5° N	Forest	0.08	0.019–0.21	Goodroad (1984)
71.5° W, 44° N	Deciduous	0.04	0.091	Keller (1983)
68.5° W, 44.5° N	Forest	0.03	0.001	Castro (1993)
11° E, 48° N	Agriculture	0.11	0.13–0.96	Flessa (1995);
				Ruser et al. (2001)
112° W, 49° N	Agriculture	0.02	0.025–0.157	Chang (1998);
	_			Hao (2001)
14° E, 51° N	Forest	0.06	0.004–0.12	Butterbach (1997)
106° W, 52° N	Agriculture	0.007	0.007	Corre (1999)
114° W, 53° N	Agriculture	0.026	0.011-0.071	Lemke (1998)
24° E, 60° N	Agriculture	0.03	0.03	Parela (2006)
26° E, 66° N	Agriculture	0.06	0.62-0.73	Regina (2004)
13° E, 100° N	Agriculture	0.26	0.033-0.051	Towprayoon (2005)
28.55° E, 111.3° N	Agriculture	0.6	0–0.21	Shang (2011)
1° E, 114° N	Agriculture	0.17	-5.03-2.9	Hadi (2010)
31° E, 118° N	Agriculture	0.03	0.003–0.18	Liu (2010); Wang (2011);
				Zou (2005)
31	Agriculture	0.43	0.18-2.53	Hou (2012); Peng (2011)
41° E, 122° N	Agriculture	0.09	0.046-0.057	Jiao (2005)
31° E, 136° N	Agriculture	0.229	0.34–1.2	Hadi (2010)

a Unit is g Cm⁻² growingseason⁻¹. ^b Unit is mg Cm⁻² day⁻¹.

BC 10, 19811–	BGD 10, 19811–19865, 2013			
Global land-atmosphere exchange of methane and nitrous oxide H. Tian et al.				
Title	Page			
Conclusions Tables	References Figures			
I⊲ ⊲ Back	►I ► Close			
Full Screen / Esc Printer-friendly Version				
	BC 10, 19811 Glo land-atm exchange o and nitro H. Tial Title Abstract Conclusions Tables I Back Full Scree Printer-frier Interactive			

(\mathbf{x})	۲
	BY

Table 2. Annual change rates of multiple environmental factors for different continents from 1981 to 2010.

Environmental factors	Asia	North America	Europe	Africa	South America	Oceania	Global
Air temperature (°Cyr ⁻¹)	0.035 ^b	0.030 ^b	0.039 ^b	0.032 ^b	0.016 ^b	0.0079	0.026 ^b
Precipitation (mm yr ^{-1})	0.78	0.51	0.56	2.26 ^b	3.50 ^b	2.01	0.97 ^a
Shortwave radiation (Wm ² yr ⁻¹)	0.002	-0.017	0.002	0.014	0.11 ^b	0.15 ^a	0.048 ^b
N deposition (mgNm ² yr ^{-1})	8.70 ^b	2.20 ^b	4.70 ^b	5.20 ^b	7.20 ^b	0.50 ^b	5.60 ^b
N fertilizer use (gNm ² yr ⁻¹)	0.27 ^b	0.05 ^a	-0.13 ^a	0.01 ^a	0.11 ^b	0.13 ^b	0.093 ^b
Ozone (ppb – hrmonth ⁻¹)	58.6 ^b	40.71 ^b	28.86 ^b	47.11 ^b	7.97 ^b	0.05 ^a	32.87 ^b
Cropland $(10^4 \mathrm{km}^2 \mathrm{yr}^{-1})$	2.52 ^b	-0.091 ^b	-1.45 ^b	1.96 ^b	0.72 ^b	0.17 ^b	4.01 ^b

Note: ^a indicates significant change trend at P < 0.05 and ^b indicates significant trend at P < 0.01.

Table 3. Annual change rates of multiple environmental factors for different climate zones from1981 to 2010.

Environmental factors	Northern polar	Northern temperate	Northern tropics	Southern tropics	Southern temperate
Air temperature (°Cyr ⁻¹)	0.039 ^b	0.034^{b}	0.033 ^b	0.016 ^b	0.007
Precipitation (mmyr ⁻¹)	0.42 ^a	0.066	2.68 ^b	3.42 ^b	-0.68
N deposition (mgNm ² yr ⁻¹)	0.26 ^b	5.07^{b}	8.57 ^b	2.75 ^b	0.72 ^b
N fertilizer use (gNm ² yr ⁻¹)	-0.082 ^b	0.068^{b}	0.10 ^b	0.040 ^b	0.02 ^b
Ozone (ppb – hr month ⁻¹)	-1.67	32.80^{a}	50.78 ^b	3.89 ^a	0.0008
Cropland (10^4 km ² yr ⁻¹)	-0.01 ^a	-0.42^{a}	2.72 ^b	0.83 ^b	0.70 ^b

Note: ^a indicates significant change trend at P < 0.05 and ^b indicates significant trend at P < 0.01.

Variables	Time period ^a	Northern polar zone	Northern temperate zone	Northern tropical zone	Southern tropical zone	Southern temperate zone
CH ₄ fluxes	1980s	9.89 ± 0.24^{b}	20.62 ± 0.44	54.55 ± 0.92	77.03 ± 0.92	0.16 ± 0.08
	2000s	10.80 ± 0.26	22.98 ± 0.57	61.31 ± 1.42	81.16 ± 1.12	0.23 ± 0.12
	Mean	10.30 ± 0.22	21.89 ± 0.51	58.15 ± 1.32	78.88 ± 0.92	0.21 ± 0.06
	Change rate (%)	9.22	11.44	12.39	5.37	47.53
N₂O fluxes	1980s	0.34 ± 0.01	2.47 ± 0.05	4.43 ± 0.19	3.93 ± 0.15	0.14 ± 0.01
	2000s Mean Change rate (%)	0.38 ± 0.02 0.35 ± 0.01 14.37	2.88 ± 0.11 2.63 ± 0.08 16.54	5.96 ± 0.36 5.11 ± 0.28 34.67	4.68±0.19 4.27±0.15 19.03	0.17 ± 0.01 0.15 ± 0.01 23.96

Table 4. Average terrestrial CH_4 (TgCyr⁻¹; 1Tg = 10^{12} g) and N₂O (TgNyr⁻¹) fluxes and their change rates (%) for different climate zones during 1981–2010 as simulated by the DLEM.

^a Mean annual fluxes in the period 1981–1990, 2001–2010 and 1981–2010. ^b The values are denoted as mean ± 2 SE (standard error).

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Pa	BC 10, 19811–1	GD 19865, 2013
aper Discussion	Glo land-atm exchange o and nitro H. Tiar	bal osphere of methane ous oxide n et al.
Paper	Title	Page
—	Abstract	Introduction
Disci	Conclusions	References
noissr	Tables	Figures
Раре	I.	►I.
	•	•
_	Back	Close
)iscuss	Full Scre	en / Esc
ion P	Printer-frier	dly Version
aper	Interactive	Discussion

Table 5. Average terrestrial CH_4 (TgCyr⁻¹) and N₂O (TgNyr⁻¹) fluxes for different biome types during 1981–2010 as simulated by the DLEM model.

Variables	Forest	Shrubland	Wetland	Grassland	Cropland
CH ₄ fluxes	-6.43 ± 0.11	-4.38 ± 0.04	130.74 ± 1.11	-1.90 ± 0.01	54.37 ± 1.98
N ₂ O fluxes	4.28 ± 0.10	2.82 ± 0.11	0.97 ± 0.03	0.82 ± 0.03	3.36 ± 0.28

CH ₄ flux (TgCyr ⁻¹)	Time period	This study	Others	Reference
Global	1990s	163.86–182.51	86–195	Fung et al. (1991); Houweling et al. (1999)
Global natural wetland	1993–2004 1990s 1990s	129.70–135.92 126.47–135.92 126.47–135.92	106–198 69.0–202.5 127	Melton et al. (2012) Cao et al. (1998); Bousquet et al. (2011); Riley et al. (2011) Liu (1996)
	2000s	130.90–137.67	78.75–208.50	US EPA (2011)
Global upland	1996–2005	-17.76 to -16.13	–19.5 to –25.0	Ito and Inatomi (2012); Potter et al. (1996); Ridgwell et al. (1999); Del Grosso et al. (2000)
Rice paddy land	1990s	51.42–62.40	19.2–84.0	Cao et al. (1998); Chen and Prinn (2005); Patra et al. (2009); Ito and Inatomi (2012); Yan et al. (2009)
High-latitude wetland (> 60° N)	1980s	9.47–10.56	15 (3–27)	Christensen et al. (1996)
High-latitude (> 60° N)	1990s	8.89–10.89	15.75	Zhuang et al. (2004)

Table 6. Comparison of global terrestrial CH_4 and N_2O fluxes estimated from multiple sources.

B(10, 19811–	BGD 10, 19811–19865, 2013				
Global land-atmosphere exchange of methane and nitrous oxide					
Title	Title Page				
Abstract	Introduction				
Conclusions	References				
Tables	Figures				
14	►I				
•	•				
Back	Close				
Full Scre	Full Screen / Esc				
Printer-friendly Version					
interactive	Interactive Discussion				

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Table 6. Continued.

N ₂ O flux (TgCyr ⁻¹)	Time period	This study	Other	Reference
Global	1980–2000 1990–1994 1990–1994 1997–2001 1998–2001 1990s	10.49–14.30 11.51–12.15 11.51–12.15 12.62–14.30 12.62–14.30 11.51–14.30	13.31 (8.19–18.43) 11.33 9.5 12.55 ^a 10.7–12.7 3–39	Xu et al. (2008) Liu, 1996 Nevison et al. (1996) Huang et al. (2008) Hirsch et al. (2006) Mosier et al. (1998); Banin (1986); Kroeze et al. (1999); Seiler and Conrad (1987)
Global natural land	2000 1990 Early 1980s 1995–2008	8.67 8.76 7.97–8.48 8.67–10.02	1.96–4.56 ^b 6.6 (3.3–9.0) ^c 7–16 5.27–8.28	Zhuang et al. (2012) FAO/IFA 2001; US EPA 2010 Bowden (1986) Saikawa et al. (2013)
Global cropland	1990 1995 2000 2000 1995–2008	3.00 3.29 3.50 3.50 2.86–4.39	2.9 ^d 2.8 4.4 ^e 2.6–3.5 ^f 2.65–3.96	FAO/IFA 2001 Bouwman et al. (2002) US EPA 2011 Davison (2009) Saikawa et al. (2013)
Global grassland	2000–2007 2000 2000–2008	0.85 0.78 0.85	0.92 1.31 1.52	Zhang et al. (2010) Zhuang et al. (2012) Xu et al. (2008)
Global forest	2000–2008 2000	4.44 4.18	6.99 1.30	Xu et al. (2008) Zhuang et al. (2012)

^a The emission from ocean (23%) is excluded.

^b Cropland is not included.

^c Natural wetland emission (~ 0.97 TgNyr⁻¹ as estimated by DLEM) is not included.

^d Including emissions from fertilizer use, crops, decomposition of crops, and biomass burning. ^e Including both direct and indirect emissions from fertilizer use.

^f Including fertilizer use, biomass burning and manure application.

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Fig. 1. Distribution of different land use and land cover types in the global terrestrial ecosystems in 2000.

Fig. 2. Spatial distribution of environmental factors in the terrestrial ecosystems. **(A)** Precipitation anomaly (1981–2010mean – 1961–1990mean); **(B)** air temperature anomaly; **(C)** nitrogen deposition rate in 2010; **(D)** cropland distribution and nitrogen fertilizer amount in 2005; **(E)** cumulative tropospheric ozone concentration above 40 ppb – hr (AOT40: ppm – hr) in July 2005.

Fig. 4. DLEM-simulated mean global distributions of CH_4 (top, $gCm^{-2}yr^{-1}$) and N_2O (bottom, m⁻² yr⁻¹) fluxes during 1981–2010. Note: The latitudinal (per degree latitude) distribution $(TgCyr^{-1} and TgNyr^{-1} for CH_4 and N_2O, respectively)$ patterns are shown at the right.

Discussion Paper

Fig. 5. Interannual variations of CH₄ (TgCyr⁻¹) and N₂O (TgNyr⁻¹) anomalies (relative to the mean value for the period 1981–2010) along a latitudinal gradient during 1981–2010. **(A)** The northern polar zone (60–90° N); **(B)** the northern temperate zone (30–60° N); **(C)** the northern tropical zone (0–30° N); **(D)** the southern tropical zone (0–30° S); **(E)** the southern temperate zone (30–60° S).

Fig. 6. Interannual variations of CH_4 (TgCyr⁻¹) and N₂O (TgNyr⁻¹) anomalies (relative to the mean value for the period 1981–2010) for different biome types during 1981–2010. **(A)** Forest; **(B)** wetland; **(C)** shrubland; **(D)** grassland; **(E)** cropland.

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Fig. 7. Interannual variations in CH_4 (TgCyr⁻¹) and N₂O (TgNyr⁻¹) anomalies (relative to the mean value for the period 1981–2010) for different continents during 1981–2010.

