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Abstract

Microfossils preserved in marine sediments are at the centre of numerous proxies for
palaeoenvironmental reconstructions. Their precision is based on the assumption that
they accurately represent the overlying watercolumn properties and faunas. In this
paper, we assess the possibility of a pre-depositional bias in sediment assemblages
caused by horizontal drift, due to differential settling velocities of sedimenting particles
based on their shape, size and density. We calculate the lateral transport undergone
by planktic foraminifera and a range of other proxy carriers in several regions with high
current velocities. Lateral transport of different planktic foraminiferal species is minimal
due to high settling velocities; no significant shape- or size-dependent sorting occurs
before reaching the sediment, making planktic foraminiferal ideal proxy carriers. Di-
atoms, radiolaria and faecal pellets can be transported up to 500 km in some areas.
This transport bias suggests that sediment assemblages could contain different pro-
portions of local and imported particles, decreasing the precision of proxies based on
these groups and the accuracy of the temperature reconstruction. For example in the
Agulhas current, transport can lead to differences of up to 2°C in temperature recon-
structions between different proxies. For future palaeoenvironmental reconstructions,
further sediment-trapping studies and multi-proxy analyses should attempt to quantify
the margin of error associated with particle transport.

1 Introduction

Reconstructing the physical and chemical variables of past marine environments relies
on indirect proxies found in the marine sedimentary record. These proxies are usually
based on the abundance, morphology and chemistry of organisms whose skeletons
preserve in ocean-floor sediments, such as foraminifera, radiolaria and diatoms (Hen-
derson, 2002). Geochemical reconstructions make use of the differential incorporation
of a wide range of isotopes and elements into shells, whether actively selected for by
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the organisms or passively reflecting the state of the surrounding watercolumn, as well
as the ratios of organic molecules produced in metabolic processes modulated by the
environment (Henderson, 2002). The relative abundance and morphology of microfos-
sil species in sediment assemblages can be analysed mathematically, for example by
the establishment of transfer functions, which compare the assemblage composition to
calibration datasets of faunal counts from assemblages of known environmental condi-
tions (e.g. Chen and Prell, 1998; Kucera et al., 2005), allowing us to infer the conditions
under which the organisms found in the sediment assemblages lived.

Underlying all of these proxies is the assumption that the sediment assemblage anal-
ysed is a true representation of the overlying watercolumn ecosystem and microorgan-
ism population for a given location. Whilst attention has been paid to removing poten-
tial biases in assemblage composition such as dissolution of foraminiferal and diatom
species (e.g. Berger, 1970; Berger and Piper, 1972; Shemesh et al., 1989; Battarbee
et al., 2005) and post-depositional reworking of sediments, via re-suspension, sorting
and transport of sediments by ocean-floor currents (e.g. Berthois and Le Calvez, 1960;
Thiede, 1981; Kontrovitz et al., 1978), the possibility of pre-depositional bias whilst
sinking to the ocean floor is largely overlooked.

Yet, settling experiments of various organic and inorganic particles have shown that
differences in size, shape and density lead to differences in settling rates between par-
ticles (McNown and Malaika, 1950; Fok-Pun and Komar, 1983; Komar and Reimers,
1978; Caromel et al., in preparation). While some of the possible influences are intu-
itively predictable, others are more complicated to assess. For example, greater size
and density both increase the settling velocity; for particles of the same size, those
with flatter morphologies have lower sinking rates than more rounded shapes (Car-
omel et al., in preparation). As a result, particles from different organisms, species or
size fractions take varying lengths of time to reach the ocean floor and are therefore
affected differently by lateral currents. In general, we would expect horizontal drift to
transport particles with lower settling rates over greater distances. This could alter rel-
ative abundances of different species and size fractions of microfossils in the sediment
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assemblages, thereby biasing the perceived link between organisms and their environ-
ment and hence the explanatory power of transfer functions and geochemical proxies.
The respective settling velocities of the particles, combined with the distance to the
seafloor and the strength of the lateral currents encountered, will determine the impor-
tance of any sorting bias in the sediment assemblages.

Here, we consider the potential for bias in sediment assemblages by calculating the
distance of lateral transport undergone within a fossil group and by comparing and
contrasting different proxy carriers. We use planktic foraminifera as our model group
as they are widely used as proxy carriers, and a range of other microfossil groups and
particles of organic origin to assess potential biases in multi-proxy reconstructions at
several high-velocity current locations.

2 Materials and methods

The terminal settling velocities of nine species of planktic foraminifera (Table 1) rep-
resenting a range of foraminiferal morphologies and densities were determined exper-
imentally (see Caromel et al., in preparation, for full methodology). The settling ve-
locities of dead diatoms and radiolaria, and particles of marine snow, faecal pellets
and diatom aggregates were obtained from a number of literature sources (Table 2).
Coccoliths, which are the other major biotic contributors to sediments, are thought to
undergo dissolution before reaching the sediment in the undersaturated deep water-
column, unless exported within faecal pellets (Honjo, 1976). Settling velocities were
derived for dead organisms, not taking into account any positive buoyancy from resid-
ual cytoplasm, which would lengthen the time spent in the water column.

Kucera et al. (2005) identified the Benguela Current off the south-west coast of Africa
as a region where different transfer functions produce discrepancies in sea surface
temperature reconstructions. One possible reason could be advection from the Indian
Ocean into the Benguela Current. We have therefore chosen a site in the Benguela
Current (7.2°E —19.8°N) and in the Agulhas Current (32.4°E —34.2° N) to test this

6766

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
4 >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/6763/2013/bgd-10-6763-2013-print.pdf
http://www.biogeosciences-discuss.net/10/6763/2013/bgd-10-6763-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

hypothesis. Two further sites underlying high-velocity currents were selected, a Gulf
Stream-influenced location off the coast of Florida (—75.6° E 30.6° N) and one within
the Kuroshio Current along the western shore board of the Pacific (136.8° E 30° N).

The annual mean velocity depth profiles for the selected locations (Fig. 1) were ex-
tracted from a historical run (for the year 2000) of the UVic Earth System Climate Model
version 2.9, which replicates broad patterns of present-day ocean circulation (Weaver
et al., 2001). The UVic model couples a reduced complexity atmosphere model with
a 3-D general circulation ocean model, and has a grid resolution of 3.6 °(zonal) by
1.8 °(meridional) with 19 unequally spaced depth levels (Weaver et al., 2001). For each
depth interval, the eastwards and northwards components of the horizontal velocity
were obtained and used as constant throughout the depth interval in the transport cal-
culations. Eastwards and northwards lateral transport components over a given depth
interval were calculated separately as the vector sum of the settling velocity and the
horizontal current velocity. Total travel distance is the resultant of the total eastwards
and northwards transport components.

3 Results and discussion

Predicting water column behaviour is notoriously difficult because of the variety of fluid
motions, both organised and disorganised, that occur in the ocean and generate en-
ergy transfer and turbulence at a vast range of scales (Peters and Redondo, 1997).
Hence we simplified our analysis to derive some general idea about the impact of
transport on multi-proxy studies. Our model is a water column without turbulence or
stratification, created by temperature and salinity differences, though both are known
to influence the settling behaviour of particles. Turbulence has been shown to both
accelerate and retard particle settling by resuspension (Ross, 2006) and cause ac-
cumulation (Kiorboe, 1997) and disaggregation (Alldredge et al., 1990) of particulates
on different energy scales. Particles with the lowest settling velocities are more easily
entrained in resuspension (McCave et al., 1995), which would increase the time spent
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in the watercolumn by particles already travelling the furthest. Stratification results in
increased drag on particles at density interfaces (Yick et al., 2009), contributing to ac-
cumulation of particles there (Maclntyre et al., 1995). In addition, the decreasing water
density and increased water viscosity caused by decreasing temperature with depth,
slow down particle settling (Caromel et al., in preparation). Stratification is thus also
expected to extend the settling time of particles, with the amplitude of the effect being
governed by the sinking rate of the particles (Lande and Wood, 1987). The simplifica-
tions therefore leads to our estimates being minimum settling times, so calculations of
horizontal transport are at least as large as we suggest.

3.1 Influence on planktonic foraminiferal assemblages

The lateral displacement of any planktic foraminifer is smaller than 10km for all species
and sites (Fig. 2). This is due to their high settling velocities, causing them to fall out
of the watercolumn within two days at most. As expected, the more heavily calcified
species G. truncatulinoides, G. tumida and G. conglobatus travel the shortest distance,
as their settling velocities are highest. Orbulina universa exhibits the greatest range of
transport distances because of a wide range in settling velocities in this species, de-
spite similar ranges in size to other species (Table 1). This wide range can be attributed
to the variability in density in O. universa caused by resorption of the earlier chambers
and variable wall thickening (Bé et al., 1973).

At first glance, a shape-dependent differentiation in transport is not apparent. There
is significant overlap in the distances travelled for all foraminiferal species. As each
foraminiferal species has their own size range (Schmidt et al., 2004) though, the dis-
tance travelled is governed by the sinking speeds over the species-specific size range.
For example, a normal-sized flat G. menardii specimen of 950 um is twice as big as
typical rounded G. ruber and G. trilobus but exhibits similar settling velocities (Table
1). Considering specimens of similar sizes across species, as happens in the narrow
size fractions picked for trace elements for temperature reconstructions for example, a
G. menardii specimen would sink half as fast as one of a rounded species (Caromel
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et al., in preparation) and therefore cover twice the distance by lateral transport. Impor-
tantly, though, even with this bias in our settling experiments taken into account, the
overlap in the ranges of distances travelled between all species remains, which implies
that even at high-current velocities, no significant shape-dependent sorting occurs.

The specimens used in the settling experiments ranged 260—-1590 yum in size, there-
fore under-representing smaller size fractions and biasing our results towards higher
settling velocities. However, the size fraction generally used for assemblage recon-
structions is greater than 150 um and for geochemical analysis often around 300 um
(Al-Sabouni et al., 2007), therefore at the higher end of settling velocities. Extrapo-
lating from the settling data of the species with the lowest settling velocity, Orbulina
universa, we would expect at most a tripling of the maximum distance travelled for the
smaller specimens. Even in the Agulhas current, where the current velocities are high
and hence the maximum distance travelled, the smaller size fraction would reach a
maximum distance of 22.5 km, which should not be sufficient to create significant sort-
ing based on size. In addition, many of the smaller, juvenile stages of the foraminiferal
population are removed from the upper watercolumn in larger aggregates and faecal
pellets (Hemleben et al., 1989), leading to their export to the sediment faster than as
individual tests, reducing the potential for size-dependent sorting.

The very small lateral displacement overall by all shapes and sizes should conse-
quently not introduce a bias in the proportional representation of species and size
fractions in sediment assemblages. The discrepancies produced by different calibra-
tion techniques of transfer functions in the Benguela region is therefore not likely to
be caused by transport of a subset of dead foraminifera by the Agulhas current, but
rather by the presence of a displaced live foraminiferal population advected into the
region by a ring of Agulhas waters, diluting the local signal (Peeters et al., 2004).
Corrected for dissolution and post-depositional reworking, and allowing for variable
microenvironments such as the Agulhas ring, planktic foraminiferal assemblage com-
position can therefore be confidently used in proxies to represent the overlying water
column structure in all locations, and the geochemistry of different species from the
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same samples can reasonably be used to reconstruct different depths of the water
column.

3.2 Influence of settling velocity on multi-proxy studies

While settling does not seem to produce a bias in foraminiferal assemblage-based
transfer functions, settling velocities of other proxy carriers can range up to two orders
of magnitude lower (0.00007 to 0.0048ms‘1) than those of planktic foraminifera of
0.03t00.05ms™" (Table 2). Consequently, the scope for individual lateral displacement
and consequent bias between the different groups of proxy carriers due to sorting is
much greater than for foraminifera (Fig. 3). Whilst radiolaria, diatom aggregates, faecal
pellets and other particulate matter such as marine snow can rival planktic foraminifera
in size, their lower densities and weight result in lower sinking speeds (Takahashi and
Honjo, 1983; Alldredge and Gotschalk, 1988; Yoon et al., 2001) and hence greater
horizontal drift. Individual diatoms travel the furthest and have the greatest range of
distance covered, attributable to their generally small size and consequent very low
settling velocities (Table 2).

Overall the amount of transport undergone by diatoms found in sediment assem-
blages is difficult to assess, as their mode of transport, whether they are exported as
individual cells, or as part of flocs or faecal pellets, influences the amount of lateral
transport they experience (Fig. 3). In general, small particles are often scavenged by
larger ones through turbulence and differential settling (McCave, 1984). Specially, in
a bloom situation with high particle densities, mass flocculation into aggregates (All-
dredge and Gotschalk, 1989) results in rapid export of diatoms directly below their
production zone in surface waters (Kiorboe et al., 1994).

The low settling velocities in the different groups of proxy carriers result in potential
transport of tens of kilometres to over a thousand depending on location (Fig. 3). The
effect of the export of certain particle types from high-velocity locations is two-fold:
firstly, the proxies based on geochemistry or assemblage composition of radiolaria,
diatoms or organic signals and coccoliths derived from faecal pellets could be importing
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a signal from a distant location compared to proxies based on foraminifera, which will
record more local signals as they are transported just a few kilometres. This, in addition
to post-depositional sorting, can partly explain instances where temperatures derived
from co-occurring alkenones and foraminifera do not agree (Benthien and Mdller, 2000;
Ohkouchi et al., 2002).

Secondly, the wide range of distances travelled within particle types due to differ-
ences in current velocities means that, at different sites, assemblages will contain
varying proportions of local and imported particles, diluting the local signal to vary-
ing degrees, as has been established for example for terrigenous material (Franzese
et al., 2006). This implies that correcting the proxy signal for particle transport is not as
straightforward as identifying the source location of the imported particles, but requires
establishing how much imported and local particles each contribute to the sediment as-
semblage, also taking into account the proportion of the local population lacking due to
exportation. In effect, the signals from smaller or lighter proxy carriers will be smeared
over a greater distance and amalgamated with the other signals distributed over that
area. This reduces the precision with which variables can be reconstructed for specific
locations, which should be reflected in greater error ranges for measurements. In con-
trast, assemblages of larger and denser proxy carriers such as foraminifera will record
more discrete local signals, and precision is dictated solely by the analytical methods
used.

In addition to particle properties, variations in current velocity will dictate the geo-
graphical and temporal applicability of different proxies. Within the Benguela current
(Fig. 3), the distance travelled by all particles in a north-north-westerly direction does
not exceed 40km. Therefore, we would expect no sorting bias in the proxy recon-
structions, and sediment assemblages to predominantly reflect the overlying water col-
umn properties with minimal import. At the other tested locations, though, radiolaria
and faecal pellets can be transported up to 500km, individual diatoms over 1000 km,
whilst foraminifera, marine snow and diatom aggregates travel at most 150 km (Fig. 3).
These differences in transport distance result in a vastly different catchment area. For
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example, in the Agulhas current, particles travelling an intermediate distance (300 km)
from the tested site are displaced south-westerly by 1.8°W in longitude and 2.4°S
in latitude. In the present-day ocean, temperatures in the original site are consistently
2°C higher than in the catchment area (Locarnini et al., 2010); as a result, temperature
reconstructions at this new site could potentially have a large associated error. De-
spite the shallow water depth of the Florida site, the Gulf Stream can carry the lightest
radiolaria and other equivalent particles 2.5° in a northerly direction and 0.7°E. The
Kuroshio Current sees large eastwards velocities at shallow and intermediate depths,
transporting these particles 2.2° E, with a minimal northerly direction. In both of these
locations, temperature profiles with depth are similar at both sites (Locarnini et al.,
2010), suggesting that even with export of particles, no error would be introduced given
the current temperature distributions.

However, due to changing circulation patterns and intensity over time, for example
in glacial-interglacial cycles, transport and its effect on proxies will vary given changing
environmental conditions. For example, during the Last Glacial Maximum, shifts in the
Angola-Benguela front (Little et al., 1997) and the Kuroshio current (Ujiié et al., 2003)
changed local current configuration, making the assessment of the effect of transport
on these systems currently impossible due to the lack of detailed proxy reconstruc-
tions of their flow. In contrast, the Agulhas current and the Gulf Stream were weaker
(Franzese et al., 2006; Lynch-Stieglitz et al., 1999; Peeters et al., 2004), implying
shorter transport distances and less bias in our ability to reconstruct past environments
based on biological proxies.

4 Conclusions

The high settling velocities of planktic foraminifera result in minimal lateral advec-
tion of all species by horizontal currents. As a consequence, no size- or shape-
dependent sorting should occur in foraminiferal assemblages during deposition, mak-
ing foraminifera ideal proxy carriers after correcting for post-depositional biases.
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Different particle groups exhibit a range of transport distances, diatoms, radiolaria and
faecal pellets travelling up to 500 km in high-velocity areas, whilst foraminifera, marine
snow and diatom aggregates travel at most 150 km. This suggests that different proxies
based on a range of particle types could represent different catchment areas and hence
result in a bias in the reconstructed environmental parameter. With transport within di-
atoms, radiolaria and faecal pellets also covering a wide range of distances depending
on location, sediment assemblages will contain differing proportions of local and im-
ported particles, introducing a margin of error in proxy reconstructions. South of the
Agulhas current, this could lead to temperature reconstructions up to 2°C warmer in a
modern ocean.
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Table 1. Settling velocity and size of nine species of planktic foraminifera (data from Caromel =
et al. (in preparation)) &
3
S
Species Velocity ms™ Size (um) Velocity mday‘1 = ! !
mean min.-max. mean min.-max. mean min.-max. o
Globigerinoides ruber 0.024 0.018-0.033  550.1 319.3-742.9 2073.6 1555.2-2851.2 — ! !
Globigerinoides trilobus 0.026 0.019-0.039 437.5 259.2-680.3 2246.4 1641.6-3369.6
. . W)
Globigerinoides sacculifer 0.030 0.022-0.038 688.4  411.7-953.7 2592.0 1900.8-3283.2 = - -
Orbulina universa 0.030 0.012-0.050 636.1 430.2-817.9 2592.0 1036.8-4320.0 o
Globorotalia menardii 0.032 0.017-0.041 1088.2 712.6-1589.3 2764.8 1468.8-3542.4 n
Globorotalia hirsuta 0.032 0.015-0.039  628.1 369.4-999.1 2764.8 1296.0-3369.6 %- ! !
Globorotalia truncatulinoides 0.040 0.025-0.050 626.1 467.8-760.2 3456.0 2160.0-4320.0 =
Globorotalia tumida 0.051 0.038-0.058 946.0 740.5-1334.2 4406.4 3283.2-5011.2 E ! !
Globigerinoides conglobatus 0.053 0.035-0.068 597.7 468.6-794.6 4579.2 3024.0-5875.2 g ! !
O
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Table 2. Settling velocity of sedimenting particles of organic origin
Particle Velocity mday ™ Reference Velocity ms™"
Diatoms (dead) 6-60 0.00007-0.0007
Diatoms (giant, dead) <400 (Smayda, 1970) <0.0046
Diatom aggregates 117 (Alldredge and Gotschalk, 1989) 0.0014
Marine snow 74 (Alldredge and Gotschalk, 1988) 0.0009

Copepod fecal pellets
Euphausiid fecal pellets
Nassellarian radiolaria
Spumellarian radiolaria
Phaeodarian radiolaria

26.5-159.5 (avg 69.9)
16.1-341.1 (avg 122.3)
14-105
25—-177
13-416

(Yoon et al., 2001)

(Takahashi and Honjo, 1983)

0.0003-0.0018 (avg 0.0008)
0.0002-0.0039 (avg 0.0014)
0.0002-0.0012
0.0003-0.0020
0.0002-0.0048

6778

| J1edeq uoissnosiq | Jededq uoissnosiqg | Jeded uoissnasiqg

Jaded uoissnasiq

BGD
10, 6763-6781, 2013

Repercussions of
differential settling

A. G. M. Caromel et al.

(8
S

]
2


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/6763/2013/bgd-10-6763-2013-print.pdf
http://www.biogeosciences-discuss.net/10/6763/2013/bgd-10-6763-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

a) Benguela b) Agulhas
w velocity (m/s) E S velocity (m/s) N w velocity (m/s) E S velocity (m/s) N
-5.00€-02 0 200E02 -5.00E-02 0 2.00E02 15601 1.0E01 5.0E-02 0 15601 1.0E-01 5.0E-02 0
ENELUNEEEEEEEEEN
L ¢ LN
\
0
500 500 N Sk
| \
000 000 AREEEREREEREANE R
500 500
2 0008
000 000
00 200 ki PP
depth (m) depth (m) depth (m! depth (m
c) Florida d) Kuroshio
W velocity (m/s) E S velocity (m/s) N w velocity (m/s) E S velocity (m/s) N
500E02 0 500602  150E01  250E01 -5.00£02 0 500602  150E01  250E01 0 SO00E02 100601 150601 O 50002 100801 150601
0 7 0
/
/ 500 o 500
/ e
y
I /
,f 1000 1000
' 1500 1500
l !
2000 2000
2200 2200
depth (m) depth (m) depth (m) depth (m)

Fig. 1. Annual mean horizontal velocity depth profiles for the selected sites, extracted from a
historical run (for the year 2000) of the UVic Earth System Climate Model version 2.9 (Weaver
et al., 2001). The horizontal grey lines mark the depth intervals.
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Fig. 2. Range of distances travelled by nine species of planktic foraminifera at the selected

sites (green square represents the mean).
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Fig. 3. Range of distances travelled by sedimenting particles of organic origin at the selected
sites (green square represents a mean or single value in the case of marine snow and diatom

aggregates).
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