1	Tec	hnica	al Note	e: Simultane	ous m	leasur	emen	t of sedi	mentary
2	N_2	and	N ₂ O	production	and	new	¹⁵ N	isotope	pairing
3	tec	hniqu	e						

4

5	Ting-Chang Hsu	^{1,2} and Shuh-Ji Kao ²	,3
---	-----------------------	---	----

- 6 [1]{Earth System Science Program, Taiwan International Graduate Program,
 7 Academia Sinica, Taipei, Taiwan}
- 8 [2]{Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan}

9 [3]{State Key Laboratory of Marine Environmental Science, Xiamen University,10 Xiamen, China}

- 11
- 12
- 13 Correspondence to: Shuh-Ji Kao (sjkao@gate.sinica.edu.tw)
- 14 Present Addresses: Research Center for Environmental Changes, Academia Sinica,
- 15 128 Sec. 2, Academia Rd., Nankang Taipei, Taiwan 115 ROC
- 16

570 Appendix

571 Appendix A: Equivalence of Eq. (13) and (15)

572 Below, we prove that the Eq. (13) is equal to Eq. (15). First of all, Eq. (15) can be 573 rewritten as the following equation which represents individual datum point instead of 574 slope from pooled data (Trimmer and Nicholls, 2009).

575
$$ra = \frac{2 - 2 \cdot \frac{qN_2}{qN_2O}}{2 - \frac{qN_2}{qN_2O}}.$$
 (A1)

577
$$ra = \frac{A_{14}}{D'_{14-N_2} + A_{14}}.$$
 (A2)

578 By substituting D'_{14} and A_{14} with Eq. (5) and Eq. (6), respectively, we can express *ra* 579 as

$$ra = \frac{P_{29} - 2 \cdot r_{14 \cdot N_2 O} \cdot P_{30}}{P_{29} + P_{30} \cdot (1 - r_{14 \cdot N_2 O})}.$$
 (A3)

581 Since P_{29}/P_{30} equals to $2 \cdot r_{14-N_{2}O}$, the *ra* can be expressed in terms of r_{14} after the 582 numerator and the denominator being divided by P_{30} , which is

583
$$ra = \frac{2 \cdot r_{14-N_2} - 2 \cdot r_{14-N_2O}}{2 \cdot r_{14-N_2} - r_{14-N_2O} + 1}.$$
 (A4)

584 Substituting r_{14} with q using Eq. (14), and arranging the equation, we get Eq. (A1).

585 Appendix B: Discussions of Assumption 5 and 6

Assumption 5 assumes NO_3^- reduction is the only source of NO_2^- in anoxic sediment layer, that is, supplies from other potential sources, such as NO_2^- from 588 ammonia oxidation or downward diffusion from overlying water, are insignificant. Under this assumption, the fraction of ¹⁵N in nitrite will be equal to nitrate. This 589 590 assumption is indispensable for all versions of IPT; however, it is difficult to test specifically via IPT itself (see below). Several studies focused particularly on NO₂⁻ 591 production showed that NO_2^- in anoxic sediment is mainly resulted from NO_3^- 592 593 reduction (De Beer, 2000; Meyer et al., 2005; Stief et al., 2002), which supports this 594 assumption. Although it is untestable via IPT itself, some phenomena caused by the 595 violation of the assumption can be recognized if slurry incubation is conducted.

Under condition of high anammox activity and significant NO2⁻ supply from 596 597 non-labelled sources to anammox, inconsistent outcomes will be obtained between 598 incubations of intact core and slurry sediment. For example, a significant anammox activity can be revealed in slurry incubation after adding ${}^{15}NH_4^+$; meanwhile, a 599 positive correlation between values of $D_{14-classic}$ and ${}^{15}NO_{3}^{-}$ concentrations should be 600 obtained from intact core experiment if all NO_2^- comes from labelled sources (e.g. Fig. 601 602 7c). On the contrary, if NO_2^- is largely supplied from non-labelled sources a constant value of $D_{14-classic}$ will be obtained in ¹⁵NO₃⁻ concentration series experiment because 603 N_2 produced from anammox will be supported by non-labelled NO_2^- . Note that the 604 violation of Assumption 6 below might result in the same inconsistency. 605

In general, nitrification which uses NH_4^+ as the substrate will not be affected by the addition of ${}^{15}NO_3^-$ (Assumption 6). However, an indirect effect might happen in $NO_3^$ addition experiment since high ${}^{15}NO_3^-$ concentration may stimulate anammox activity to deplete NH_4^+ thus limiting nitrification as a consequence. The decreased nitrification therefore diminishes the NO_3^- supply resulting in an underestimation of $P_{14}n$, the genuine gases production via coupled nitrification-denitrification. The underestimation of $P_{14}n$ of course leads to underestimate of $D_{14-classic}$. Apparently,

higher ${}^{15}NO_3$ additions will cause larger degree of underestimation in $D_{14-classic}$. On 613 the other hand, if this is the case anammox must be traceable; oppositely, the ${}^{29}N_2$ 614 produced from anammox will cause the overestimation of $D_{14-classic}$. This 615 overestimation of $D_{14-\text{classic}}$ is also enlarged as increasing ${}^{15}\text{NO}_3^-$ additions. To 616 summarise, the underestimation of $D_{14-classic}$ caused by diminishing nitrification will 617 be compensated by stimulating anammox in different ${}^{15}NO_3^{-}$ treatments. Such 618 compensation blocks a good positive correlation between $D_{14-classic}$ and the 619 concentration of ${}^{15}NO_3$ spike. Coupled with significant anammox activity observed in 620 slurry incubation by adding NH_4^+ , phenomena observed here thus resembles that 621 caused by the violation of Assumptions 5. 622

623 **Reference of Appendix**

- De Beer, D.: Potentiometric microsensors for *in situ* measurements in aquatic
 environments, in: In situ monitoring of aquatic systems: chemical analysis and
 speciation., edited by: Buffle, J., and Horvai, G., Wiley, 161-194, 2000.
- Meyer, R. L., Risgaard-Petersen, N., and Allen, D. E.: Correlation between anammox
 activity and microscale distribution of nitrite in a subtropical mangrove
 sediment, Appl. Environ. Microb., 71, 6142-6149, 2005.
- Stief, P., Beer, D., and Neumann, D.: Small-scale distribution of interstitial nitrite in
 freshwater sediment microcosms: the role of nitrate and oxygen availability, and
 sediment permeability, Microb. Ecol., 43, 367-377, 2002.
- Trimmer, M., and Nicholls, J. C.: Production of nitrogen gas via anammox and
 denitrification in intact sediment cores along a continental shelf to slope transect
 in the North Atlantic, Limnol. Oceanogr., 54, 577-589, 2009.