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Abstract

Since the advancement in CH4 gas analyser technology and its applicability to
eddy covariance flux measurements, monitoring of CH4 emissions is becoming more
widespread. In order to accurately determine the greenhouse gas balance, high qual-
ity gap-free data is required. Currently there is still no consensus on CH4 gap-filling5

methods, and methods applied are still study-dependent and often carried out on low
resolution daily data.

In the current study, we applied artificial neural networks to six distinctively different
CH4 time series from high latitudes in order to recover missing data points, explained
the method and tested its functionality. We discuss the applicability of neural networks10

in CH4 flux studies, the advantages and disadvantages of this method, and what infor-
mation we were able to extract from such models.

In keeping with the principle of parsimony, we included only five standard meteoro-
logical variables traditionally measured at CH4 flux measurement sites. These included
drivers such as air and soil temperature, barometric air pressure, solar radiation, and15

in addition wind direction (indicator of source location). Four fuzzy sets were included
representing the time of day. High Pearson correlation coefficients (r) of 0.76–0.93
achieved in the final analysis are indicative for the high performance of neural net-
works and their applicability as a gap-filling method for CH4 flux data time series. This
novel approach that we showed to be appropriate for CH4 fluxes is a step towards20

standardising CH4 gap-filling protocols.

1 Introduction

Methane is one of the most important long-lived greenhouse gases, second only to
CO2 (IPCC, 2007), with natural wetlands thought to be the biggest individual source
(IPCC, 2007; EPA, 2010). Since the advancement in CH4 gas analyser technology25

and its applicability to eddy covariance flux measurements (Hendriks et al., 2008;
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Eugster and Plüss, 2010; Dengel et al., 2011; McDermitt et al., 2011; Peltola et al.,
2013), monitoring of CH4 emissions is becoming more widespread in northern regions
(Mastepanov et al., 2008; Sachs et al., 2008; Zona et al., 2009; Sturtevant et al., 2012).
These measurements contribute to a better understanding of the greenhouse gas bal-
ance of the Arctic and subarctic. In order to accurately estimate annual greenhouse5

gas budgets, time series of high quality gap-free data are required (Falge et al., 2001;
Rinne et al., 2007).

Currently there is no consensus on CH4 gap-filling methods. Several studies (Zona
et al., 2009; Gažovič et al., 2010; Sturtevant et al., 2012) did not apply any gap-
filling to their CH4 flux data. Studies where gap-filling was applied were site dependent10

and often applied to low resolution daily mean values (Hargreaves et al., 2001; Rinne
et al., 2007; Riutta et al., 2007; Jackowicz-Korczyński et al., 2010; Long et al., 2010;
Tagesson et al., 2012), while Wille et al. (2008); Parmentier et al. (2011) and Forbrich
et al. (2012) employed a model in order to recover missing data in their daily, 3 hourly
and 30 min mean data, respectively.15

Hargreaves et al. (2001), Rinne et al. (2007), Long et al. (2010) and Tagesson
et al. (2012) identified a non-linear relationship between CH4 flux and peat temper-
ature at depths of 0 to 10 cm, 35 cm, and 50 cm in subarctic ecosystems, respectively.
During extended periods where no dependency on peat temperature was found, Rinne
et al. (2007) and Tagesson et al. (2012) applied a simple interpolation to gap-fill these20

datasets. In addition, Tagesson et al. (2012) applied an exponential regression be-
tween half-hourly CH4 fluxes and friction velocity measured after the soil was com-
pletely frozen. No dependency on water table position was found by the two studies
mentioned above. A similarly simple peat temperature relationship with CH4 emissions
was also found by Jackowicz-Korczyński et al. (2010). Wille et al. (2008) and Sachs25

et al. (2008) found strong relationships between CH4 flux, friction velocity and soil tem-
perature at a depth of 20 cm and 10 cm, respectively. Some of the above mentioned
studies considered nonlinear relationships to gap-fill their daily averaged CH4 fluxes,
while Parmentier et al. (2011) provide a method for gap-filling of higher resolution (3 h)
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data. This method applied a gap-filling model that includes the attenuating effect of
atmospheric stability on flux measurements, where methane production was related to
soil temperature and water level. Recently Forbrich et al. (2011) tested various models
where peat temperatures at various depths, water table level, barometric pressure, and
friction velocity were integrated in order to gap-fill their time series. Furthermore, large5

uncertainties in applied methods do still exist with no common protocol on missing data
recovery of CH4 eddy covariance flux data.

The application of neural networks (Jain et al., 1996; Svozil et al., 1997; Elizondo and
Góngora, 2005; Saxén and Pettersson, 2006) for data recovery and gap-filling (Aubi-
net et al., 2000; Gorban et al., 2002; Papale and Valentini, 2003; Ooba et al., 2006;10

Moffat et al., 2007; Schmidt et al., 2008) has proven to be a very reliable tool in several
scientific disciplines (Gardner and Dorling, 1998, 1999; Lek and Guégan, 1999; Lee
and Jeng, 2002; Toptygin et al., 2005). In atmospheric sciences (Gardner and Dorling,
1998; Toptygin et al., 2005; Chattopadhyay and Chattopadhyay, 2008), application of
neural networks in forecasting has become a standard application tool. Neural net-15

works have the reputation of being a “black box” where transparency is limited in most
cases (Elizondo and Góngora, 2005). This partly results from a neural network’s high
capacity in training itself where coefficients are distributed through fitted weights and
spread across several layers to accurately reproduce a given data set. In the current
study, we discuss the applicability of neural networks to gap-fill CH4 flux data from20

northern high latitude ecosystems (wet sedge tundra, sedge fen and polygonal tun-
dra), some driver dynamics, the advantages and disadvantages of this method, and
what information can be extracted from such a model.

Since CH4 is the second most potent long-lived greenhouse gas in the atmosphere
(IPCC, 2007), it is becoming increasingly important to introduce a method which is ca-25

pable of dealing with such high resolution data combined with auxiliary measurements,
and which is easy to implement across a variety of ecosystems. Regarding Arctic and
subarctic regions, it is very important to work with time series where data gaps have
been filled using reliable methods in order to accurately determine CH4 emissions,
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potential annual budgets, and prediction of future emissions under a changing climate
(Anisimov, 2007; IPCC, 2007). The datasets introduced in the current study were cho-
sen, as they are showing distinctive differences in their emission patterns and originate
from high latitude ecosystems (Fig. 1) to assure the broad applicability of the introduced
methods/results.5

The aim of the current study is to find a gap-filling tool that is applicable to Arctic
and subarctic ecosystems where CH4 flux data are reported at 30 min/1 h time res-
olution including a limited number of standard meteorological variables measured at
all sites that act as drivers for methane emissions in such dynamic ecosystems. This
novel approach in CH4 studies is a first step towards standardising CH4 gap-filling and10

a contribution to standardising CH4 measurement protocols.

2 Materials and methods

2.1 Methane flux and meteorological data

The CH4 eddy covariance flux data used in the current study originates from five
distinctively different northern ecosystems (Fig. 1): the subarctic sites of Stordalen15

(68◦20′ N, 19◦03′ E), a mixed mire (Johansson et al., 2006) and Lompolojänkkä
a nutrient-rich sedge fen located in the aapa mire region of north-western Finland
(67◦59′ N, 24◦12′ E) (Aurela et al., 2009), and the tundra sites underlain by perma-
nent permafrost: Samoylov Island in the southern central Lena River Delta (72◦22′ N,
126◦30′ E) (Sachs et al., 2008, 2010), Kytalyk (70◦49′ N, 147◦29′ E) (Parmentier et al.,20

2011) and Barrow a wet sedge tundra in the northern part of the Arctic Coastal Plain
(71◦17′ N, 156◦36′ W) (Zona et al., 2009).

The CH4 fluxes were measured by the eddy covariance (EC) method (Baldocchi,
2003). Instrumentation used in these six studies were the three-dimensional sonic
anemometer R3-50 (Gill Instruments Ltd., Lymington, Hampshire, England) coupled25

with a closed path Fast Greenhouse Gas Analyser (FGGA, Los Gatos Research,
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Mountain View, California, USA) in Stordalen; the USA-1 (METEK, Elmshorn, Ger-
many) three-axis sonic anemometer/thermometer and the closed-path DLT-100 fast
response CH4 gas analyser (Los Gatos Research, Mountain View, California, USA) in
Lompolojänkkä, and the three-dimensional Solent R3 sonic anemometer (Gill Instru-
ments Ltd., Lymington, Hampshire, UK) and the TGA 100 tunable diode laser spec-5

trometer (Campbell Scientific Ltd., USA) in the Lena River Delta. At the Kytalyk site,
a three-dimensional Solent R3-50 sonic anemometer (Gill Instruments Ltd., Lyming-
ton, Hampshire, UK) and a closed-path DLT-100 fast response CH4 gas analyser
(Los Gatos Research, Mountain View, California, USA) were used in both years, while
a WindMasterPro sonic anemometer (Gill Instruments Ltd., Lymington, Hampshire, UK)10

and the closed-path DLT-100 fast response CH4 gas analyser (Los Gatos Research,
Mountain View, California, USA) was used in Barrow.

The reader is advised to consult Jackowitz-Korczynski et al. (2010), Aurela
et al. (2009), Sachs et al. (2008), Parmentier et al. (2011) and Zona et al. (2009),
for more details about the sites, measurements and further instrumentation. All five15

sites recorded standard meteorological variables, such as air temperature, solar radi-
ation, soil temperature at various depths, wind speed and wind direction. CH4 eddy
covariance flux data from Lompolojänkkä and Barrow were u* filtered, while the data
from Kytalyk was filtered for occurrences of high atmospheric stability, prior to including
in the current study. Data introduced in the current study was not previously gap-filled20

at 30 min/1 h (Lena River Delta) resolution.

2.2 Artificial neural networks

The topology of a simple multi-layer feed-forward neural network includes non-linear
elements (neurons) that are arranged in successive layers (Fig. 2). The information
flows unidirectionally, from the input (covariates) layer to the output (response) layer,25

through the hidden layer(s) (Jain et al., 1996; Svozil et al., 1997; Elizondo and Góngora,
2005; Saxén and Pettersson, 2006).
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In the initial phase, a set of input and target data is used for training and presented to
the network many times. A training set should have sufficient data to be representative
of the overall dataset. Training is carried out by constantly adjusting the fitted weights
so that the network output matches the target data. During the testing phase, a new
set of input data is fed into the network and the desired output compared with those5

predicted by the network. The agreement or disagreement of these two data sets is
an indication of the performance of the neural network model. A chosen error function
measures the difference between predicted and observed output.

One of the drawbacks of neural networks is the non-uniqueness of the global mini-
mum (Hammerstrom, 1993; Nguyen and Chan, 2004) which changes, as each training10

run achieves different weights and results (it is important to find a set of weights that
processes data accurately enough for the application). Another issue with neural net-
works is the possibility of under- or over-fitting of networks (Hansen and Salamon,
1990; Jain et al., 1996; Svozil et al., 1997). This can happen when data presented in
the training phase is not representative enough for the entire observation span, not15

the correct number of hidden layers or neurons, if the global minimum is overshot or
when the network learns the training pattern well but is underperforming in the testing
phase (poor generalisation) (Jain et al., 1996; Gardner and Dorling, 1998; Nguyen and
Chan, 2004; Wang et al., 2005; Saxén and Pettersson, 2006; Stathakis, 2009). To avoid
this from happening, one can remove redundant input data (Gunaratnam et al., 2003;20

Saxén and Pettersson, 2006) and use the appropriate generalisation such as early
stopping or cross-validation (Hansen and Salamon, 1990; Amari et al., 1997; Svozil
et al., 1997; Wang et al., 2005), which has been implemented in the current study.

2.3 Pre-processing of data

Recently, several studies (Zhang and Qi, 2005; Klevecka and Lelis, 2009) pointed out25

an ongoing debate on whether data should be de-seasonalised prior to applying neural
networks. Nelson et al. (1999) showed better results for de-seasonalised time series,
while others (Sharda and Patil, 1992; Franses and Draisma, 1997) found that neural
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networks are able to model seasonality directly and prior de-seasonalisation is not
necessary. Regarding gap-filling of atmospheric trace gas fluxes (Wijk and Bouten,
1999; Aubinet et al., 2000; Carrara et al., 2003; Papale and Valentini, 2003; Ryan
et al., 2004; Ooba et al., 2006; Schmidt et al., 2008), no de-seasonalisation of data
was carried out prior to applying neural networks. In the current study, we decided to5

follow this method, so no de-seasonalisation of data was carried out.
As has been mentioned above, we are dealing with seasonal and diurnal data that

experience regular and predictable changes. In order to add this seasonal and diurnal
effect to their neural network, Papale and Valentini (2003) added several fuzzy sets
reflecting the diurnal and seasonal variation to reduce the linear cumulative numer-10

ical weight of time in relation to other variables. Adding this type of input to neural
networks does not always increase the neural network performance, and has been
shown by Schmidt et al. (2008) to have sometimes little effect. We have decided to
follow the method by Papale and Valentini (2003) and have included four fuzzy sets
representing the diurnal effect but not the seasonal. This has been excluded as none15

of the datasets were long enough. We kept the model simple following the principle of
parsimony (Beck, 1943; Bugmann and Martin, 1995). The predictive ability of a model
initially increases with complexity but they do also have the tendency to decline once
a model becomes too complicated (Bugmann and Martin, 1995).

The meteorological, soil, and CH4 flux data as well as the fuzzy data sets consist of20

different magnitudes and units. In order to generalise the data, we have scaled all data
from 0 to 1 as has been previously applied by Wijk and Bouten (1999), Papale and
Valentini (2003) and Nguyen and Chan (2004). Furthermore, the range between 0 and
1 is also necessary as we are applying a sigmoid activation function (Cybenko, 1989),
which has a range of 0 to 1. By scaling the data that we are feeding into the network, all25

data is being treated equally and weights can be distributed evenly. A sigmoid function
was also used in the output layer (Fig. 2), as has been previously applied by Papale
and Valentini (2003).
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2.4 Statistical analysis

In order to examine all input variables and their effect on methane fluxes, we applied
a simple stepwise regression (a combination of backward elimination and forward se-
lection) in R (R Development Core Team, 2012), in order to search for the best predic-
tors or combinations of predictors from among all available 30 min and 1 h (Lena River5

Delta) resolution data. Thereafter, we chose those variables that appeared important
and available in all datasets. Following the principle of parsimony, and by keeping the
model simple, we decided on fife meteorological variables (see Fig. 2) and four fuzzy
sets representing morning (FL M), afternoon (FL A), evening (FL E) and night (FL N)
(Fig. 2). This selection helped to prune the network by avoiding insignificant input data10

(Gunaratnam et al., 2003; Saxén and Pettersson, 2006). Furthermore it did help to
standardise the method and make it applicable to all six different datasets in the same
way. Adding u* as an input variable in the current study would lead to uncertainties,
as u* filtered data do not provide the information necessary for the network to train
and learn such conditions in order to predict CH4 fluxes occurring under similar con-15

ditions. Furthermore, precipitation and water table depths, which can also act as CH4
drivers (Whalen and Reeburgh, 1992; Roulet et al., 1992; Christensen, 1993), were
excluded in the current study, as their resolution is often of a different scale, and can
have a lagged effect on CH4 emissions (Bubier et al., 1995).

In order to verify these five drivers, we applied a simple generalised additive model20

(GAM) (Hastie and Tibshirani, 1986; Wood, 2001), to each of the sites, commonly used
in ecological research. They are models where a relationship between the response
variable and explanatory variables is established. A smoothing function is applied,
where each predictor variable is separated into sections and a polynomial function is
fitted (Hastie and Tibshirani, 1986; Wood, 2001; Guisan et al., 2002). The confidence25

interval (distributed density) in each GAM figure (bottom part) is an indication of the
relationship between the predictor and the response variable. On the one hand such
models are rarely used as they are difficult to interpret since no parameter values are
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retuned. On the other hand, such models are very good for prediction and explanatory
analysis in estimating the functional nature of a response. Such a model does improve
our understanding of the dynamics of CH4 emissions and the respective meteorological
drivers. Furthermore, such models combined with tree models (interactions between
the explanatory variables), can visualise precise dynamics at each site. Figure 3 (a–5

c) illustrate both types of models for each of the six datasets. The longer the branch
of a tree, the greater the deviance explained. The values at the end of the branches
are the mean CH4 fluxes in nmolm−2 s−1. Both models were performed using R (R
Development Core Team, 2012).

In order to validate the performance of each network we estimated the mean Pearson10

correlation coefficient (r) (at 95 % confidence level) as a goodness of fit indicator of
the measured and predicted fluxes during the training and testing/validation phase.
A further error function applied is the simple root mean square error (RMSE) to indicate
the range of the error for each scenario, each site and across sites.

2.5 Applying artificial neural networks to data15

Introducing the neural network topology (Fig. 2) used in the current study, input vari-
ables (left side of the network) are fed into the network with weights fitted and spread
across the two layers with information flowing unidirectionally (grey arrows) to the 4
nodes (marked as circles) within the hidden layer, where a bias (offset) (marked with
“1”) is added.20

In this case, the underlying function is simply written as:

o = f
(
b+

∑
i
wixi

)
(1)

where xi represents the input variables (x1, . . . ,x9 – in our case), wi denotes the fitted
weights (w1, . . . ,w4 – for each input variable) and b denotes the bias (or offset) that
is added to the weighted sum (

∑
i wixi ) prior to applying the sigmoid activation func-25

tion (f ), leading further to the next layer, where a new set of weights are distributed,
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together with a bias and the sigmoid activation function before making an estimation
of the output values. These output values also have a range of 0 to 1 which were then
rescaled to their appropriate unit (nmolm−2 s−1).

In order to select the training data set, several choices were traditionally available:
choosing blocks of data or choosing random data rows of complete data pairs (input5

variables and target data). Using non-continuous data sets for training is a common
approach (Moffat et al., 2007; Schmidt et al., 2008). As we are testing artificial neural
networks as a gap-filling method for CH4 eddy covariance flux data, we utilised the
artificial gap length scenarios introduced in Moffat et al. (2007, Appendix A) and ap-
plied them to all six datasets. We have chosen three scenarios per gap length (Figs. 410

and 5). These gap lengths represented very short gaps (v) of random 30 min values;
short gaps (s) of random 4 h gaps, medium (m) of 1.5 days, long (l ) of 12 full days and
a mixed scenario (x), representing a mix of the above mentioned gap lengths. There
were cases where artificial gap data points coincided with already existing gaps, re-
sulting in a non-uniform length of testing data sets (artificial gaps). Nevertheless, each15

scenario extended the already existing gaps by a further 8–14 %. The artificial gap
scenarios introduced in Moffat et al. (2007) are for 30 min resolution files which were
adjusted for the Lena River Delta dataset, where a 30 min artificial gap was applied to
the respective hour value.

The mixed scenario, which represents the most realistic gap scenario in flux data,20

was then chosen to be used in order to gap-fill the existing measured methane data. All
complete data pairs (meteorological and CH4 data), excluding those 30 min values (or
1 h in the case of the Lena River Delta dataset) coinciding with created artificial gaps,
were used for training (∼90 % of data). Those data rows coinciding with artificial gap
values were then used for testing (∼10 % of data) (Figs. 4 and 5).25

Several learning algorithms are available for neural network training; in the current
study we applied the resilient backpropagation algorithm (Riedmiller, 1993; Riedmiller
and Braun, 1994). It is a first-order optimization algorithm that acts on each weight
separately. It modifies the weights in order to find a local minimum of the error function.
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The weights are modified going in the opposite direction of the partial derivatives until
a local minimum is reached, leading to an efficient and transparent adaptation process
(Riedmiller and Braun, 1993; Günther and Fritsch, 2010). In order to test the network’s
performance, various error functions can be applied. We chose the sum of squared er-
rors (SSE) and assembled the neural network by implementing the neuralnet package5

(Fritsch et al., 2010; Günther and Fritsch, 2010) in R Statistical Language (R Develop-
ment Core Team, 2012) and modifying it accordingly to suit our purposes (adjustment
of the learning rate, maximum number of iterations and threshold value for the partial
derivatives of the error function (early stopping)).

There is currently no consensus in the scientific community on the number of neu-10

rons that should be used (Svozil et al., 1997; Saxén and Pettersson, 2006; Stathakis,
2009) when applying neural networks to data series. In order to apply the appropriate
number of neurons, 25 repetitions were run for a selection of neurons (1–12) to help in
choosing the appropriate number of neurons (Järvi et al., 2012) within the hidden layer
for the final process.15

One of the advantages of applying the neuralnet package mentioned above is the
possibility to choose an integer specifying the threshold for the partial derivatives of
the error function (summed square error) as a stopping criteria (Günther and Fritsch,
2010) that should be achieved during the training phase, along with the maximum
number of iterations (epochs) the network should run in order to fulfil our requirements20

(convergence of the network and finding the local minimum).
Once we were satisfied with the performance of the networks (no further improve-

ment could be realised in terms of goodness of fit), and their ability to predict relatively
accurate CH4 flux values (see Pearson’s correlation coefficient (r) and the root mean
square error (RMSE) values achieved when testing the trained network in Figs. 4–6,25

respectively), we re-introduced the entire dataset of gap-free input variables to the net-
works in order to estimate flux values for those time periods where CH4 flux values
were missing.
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3 Results

We applied artificial neural networks to six different CH4 flux datasets originating from
Arctic regions of Scandinavia, Siberia and Alaska. The input variables (listed in Fig. 2)
were air temperature (Air T), soil temperature at the depth of 10 cm (Soil T), wind
direction (WD), Solar radiation (Sol rad, substituted with photosynthetic active radiation5

where not available), barometric air pressure (Air P) and the fuzzy transformation of
the time of day represented by the four time periods morning (FL M), afternoon (FL A),
evening (FL E) and night (FL N).

The results from the generalised additive model and the respective tree model in
Fig. 3 (a–c), visualise the dynamics of CH4 fluxes at each site. Stordalen (Fig. 3a)10

and Kytalyk (Fig. 3b, c) show distinctive wind direction dependent fluxes. Stordalen is
located on the shores of Villasjön Lake, while Kytalyk is located in a heterogeneous
polygonal tundra environment. In Lompolöjänkkä (Fig. 3a) the highest mean fluxes
were observed when soil temperature was above 13.5 ◦C and barometric air pressure
below 974 hPa while in Barrow in Alaska (Fig. 3c), results show the significance of15

air temperature up to 15 ◦C and north-easterly wind directions, shown by the densely
distributed confidence intervals, as well as all the other variables. The respective tree
model makes it possible to interpret these dynamics further by suggesting that the
highest mean CH4 fluxes occurred when (in this case) photosynthetic active radiation
was above 711 µmolm−2 s−1, when soil temperature was above 4.42 ◦C, and air tem-20

perature above 10 ◦C.
For each neuron applied, Fig. 4 shows the distribution of the mean Pearson’s corre-

lation coefficient for all runs and gap scenarios in black and the results from the training
step in grey. Their training distribution shows an increase in coefficient value with each
added neuron, while some of the training results show no improvement with increase in25

neurons added. The scatter shows that from 4 neurons onwards no real improvement
is visible, be it for the short, long or mixed gap length scenario. This is also confirmed
by the lack of statistical significance at the 95 % confidence level beyond 4 neurons.
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Figure 5 illustrates the achieved root mean square error (RMSE) values for the train-
ing (in black) and testing (in grey) datasets for each scenario for the respective applied
neurons. Here again, no improvement is visible beyond 4 neurons, leading to the as-
sumption that 4 neurons were ideal within the hidden layer to be included in the final
process where the entire dataset was applied in order to gap fill missing CH4 values in5

all six datasets.
In order to visualise the performance of the applied neural networks, we illustrated

the goodness of fit of the predicted and actually measured CH4 flux data for all six
datasets showing their distribution along the 1 : 1 regression line in Fig. 6 with little
scatter in some of the datasets. High Pearson correlation coefficients of 0.80–0.92 were10

achieved during the training phase, while values of 0.76–0.93 were achieved during the
testing phase.

4 Discussion

Artificial neural networks that have previously been successfully implemented as a gap-
filling method (Falge et al., 2001; Moffat et al., 2007) for carbon dioxide flux time series15

(Aubinet et al., 2000; Carrara et al., 2003; Papale and Valentini, 2003; Schmidt et al.,
2008) have been described as a robust, reliable and versatile tool. Nevertheless, their
application is time consuming, particularly in finding the appropriate input variables,
the appropriate number of hidden layers, and neurons/nodes within these layers, as
well as the choice of training and testing/validation datasets (data rows). Furthermore,20

the global minimum (Hammerstrom, 1993; Nguyen and Chan, 2004) is not unique,
and changes with each training run because every training run achieves different fit-
ted weights and results (it is important to find a set of weights that processes data
accurately enough for the application).

In the current study, we tested the applicability of neural networks as a gap-filling tool25

for methane flux data and also made an attempt to standardise the method by including
the same input variables for all datasets and using the same number of neurons within
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the hidden layer for each data scenario. In order to test their applicability, we applied the
method to various ecosystems by including six distinctively different datasets from high
latitudes, one showing diurnal and seasonal variation, two possibly only diurnal, one
only seasonal while a fifth data set does not show any diurnal or seasonal variation.
The sixth dataset (Stordalen) reflected its position on the shores of Villasjön Lake in its5

emission patterns.
The chosen input variables (four commonly recorded meteorological parameters that

act as CH4 drivers and wind direction) as well as four fuzzy sets representing time of
day appear to be the right choice. Figure 3 (a–c) highlight the complex interaction and
dependency of CH4 fluxes on these drivers. Reducing the number of chosen input10

variables any further would not comply with the principle of parsimony anymore, of
keeping a model simple but not too simple, leading to an underperformance of the
network as predicted fluxes did not reach the full range which means the networks were
underestimating the fluxes. The chosen meteorological variables included in the current
study belong to the main drivers as shown in previous studies (see Introduction part).15

Hydrological properties, such as precipitation and water table depths, can sometimes
have a lagged effect on methane emissions (Bubier et al., 1995) and are not always
recorded, or not recorded with the same time resolution as the CH4 fluxes.

Some of the Pearson correlation coefficients achieved in the current study appear
low (Figs. 4 and 6), compared to those achieved for CO2 fluxes when applying the20

same method (Moffat et al., 2007). Much higher correlation coefficients (r > 0.95)
were achieved in the current study when comparing trained data versus actual mea-
sured data, but resulted frequently in no acceptable values (r < 0.70) during the test-
ing/validation stage of the analysis. Outliers were introduced in places where there
were no high or low fluxes. Such results also indicate that the global minimum was25

overshot and that the network did not converge (see extremely low values in Fig. 4
and high error values in Fig. 5). RMSE error values are also indicative for an over-
fitting of the model as error values of the training stage are declining while those of the
testing/validation stage are rising. Such results could also be due to existing and gap
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scenario data distribution, as artificial gaps coincided with existing gaps, reducing the
number of test data points. None of the long gaps included an entire 12 days period
that could have been used as a classical “long gap” test data set, as introduced in Mof-
fat et al. (2007). Furthermore it is to be expected that predicting CH4 emission events
is more complex than predicting CO2 fluxes that undergo a regularity and predictability5

in respiration or CO2 uptake, respectively.
Figure 4 (Lena River Delta) displays the lowest mean correlation coefficient values.

These values indicated that some runs did not converge, thus resulting in such low
mean values. Simultaneously the RMSE values appeared much lower than those from
other sites. The extreme discrepancy in case of the Lena River Delta results are due10

to low CH4 fluxes recorded at the site with few significant emission events resulting in
higher CH4 fluxes. By increasing the number of runs or discarding iterations that did
not converge, this correlation coefficient could be increased in the final analysis (Fig. 6,
Lena River Delta). Furthermore the correlation coefficient values for the tested datasets
(Lena River Delta and Barrow) showed higher values than the training datasets. This15

could be due to the fact that Barrow experienced a diurnal trend and the data compos-
ing the test dataset did not include any specific events. In case of Lena River Delta the
artificial gaps included 2 little events that the network was capable to predict, having
learned about such events from similar conditions during the training phase.

Two other important aspects in the current study are the length of the time series,20

and thus consequently the sufficiency of available training data, and secondly the gap
length in the existing time series. Time series vary between 15 days (Kytalyk, 2008)
and 181 days (Lompolojänkkä), with Lompolojänkkä having the highest proportion of
gaps in the CH4 fluxes. We could show that the method we introduced in the current
study is applicable to short and longer time series. However, none of the time series25

included in the current study were gap free or included an entire year’s worth of data.
Therefore, no bias error to indicate the bias induced on the annual sums/budgets, as
referred to by Moffat et al. (2007), was calculated.
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Nevertheless, neural networks show excellent performance (Figs. 4–6), which proves
that this standardised method is easy to be implemented and applicable to many dif-
ferent ecosystems in the northern latitudes (Fig. 1). We have reliably reproduced and
predicted methane fluxes in a way that can be used as a substitute for missing val-
ues. This substitute showed a seamless fit into the original dataset where CH4 data5

had to be discarded, or was not collected in the first place due to instrument failure.
We find artificial neural networks to be recommendable as a reliable and robust gap-
filling method for high resolution CH4 flux data originating from various ecosystems as
estimated annual budgets rely on accurate gap-free or gap-filled data.

5 Challenges and recommendations10

A peculiar characteristic of CH4 is their higher emission variability than CO2 fluxes,
often connected to specific events such as those visible in the Lena River Delta dataset.
In our case, the network was able to reproduce these events (Fig. 6). In case such
events are triggered by other drivers or physical forcing (not included as input variables
in neural networks), predicted values do diverge from the actually measured values.15

Precipitation and water table depth can have a lagged effect on CH4 fluxes (Bubier
et al., 1995) with each rain event being different in intensity and length. The same
can be said of water table depths whose rise and fall are not equally predictable after
each such event. In addition further uncertainties in predicting/estimating accurate CH4
emissions do exist regarding the insufficiently understood “pressure pumping effect”20

(Zamolodchikov et al., 2003) and friction velocity (u* correction), a parameter known
to act as a driver for CH4 emissions but is also used as a filtering criterion for low
turbulence, both affecting methane emissions. These factors might have an influence
on how far neural networks are reproducing and predicting CH4 fluxes accurately.

In order to evaluate, carry out and apply standardised CH4 flux measurements, data25

post-processing and gap-filling methods in the future, standardised protocols and re-
quired auxiliary measurements are needed to be implemented. First steps towards
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such procedures have already been initiated during the international ESF explanatory
(Germany, April 2012) and FLUXNET CH4 (Finland, September 2012) workshops.
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 1 

Figure 1. Map of the Arctic and subarctic region, with Stordalen (Sweden), Lompolojänkkä 2 

(Finland) both Siberian sites of the Lena River Delta and Kytalyk in Russia and Barrow 3 

(Alaska) marked with an asterisk (*) at their respective location. 4 

  5 

Fig. 1. Map of the Arctic and subarctic region, with Stordalen (Sweden), Lompolojänkkä (Fin-
land) both Siberian sites of the Lena River Delta and Kytalyk in Russia and Barrow (Alaska)
marked with an asterisk (*) at their respective location.

7752

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/7727/2013/bgd-10-7727-2013-print.pdf
http://www.biogeosciences-discuss.net/10/7727/2013/bgd-10-7727-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
10, 7727–7759, 2013

Testing the
applicability of neural

networks as
a gap-filling method

S. Dengel et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 25

 1 

Figure 2. The architecture of the neural network topology used in the current study. Input 2 

variables  (left  side  of  the  network)  are  fed  into  the  network  with  weights  fitted  (along  grey  3 

arrows) with information flowing unidirectionally to the nodes (marked as circles) within the 4 

hidden layer, where a bias (offset) (marked with “1”) is added (along black arrows). Here a 5 

sigmoid function (activation function) is applied to the weighted sum, leading further to the 6 

next layer, the “output” layer where a new set of weights is distributed, together with a bias 7 

and the sigmoid activation function before making an estimate for the output value. As the 8 

output still has a range of 0 to 1, it is rescaled prior to replacing missing data values. Actual 9 

fitted weights and biases are removed from the graph for clarity. The input variables listed 10 

are:  air  temperature (Air T),  soil  temperature at  the depth of 10 cm (Soil  T),  wind direction 11 

(WD), solar radiation (Sol rad, substituted with photosynthetic active radiation where not 12 

available),  barometric  air  pressure  (Air  P)  and  the  fuzzy  transformation  of  the  time  of  day  13 

represented by the four time periods morning (FL M), afternoon (FL A), evening (FL E) and 14 

night (FL N). 15 

  16 

Fig. 2. The architecture of the neural network topology used in the current study. Input variables
(left side of the network) are fed into the network with weights fitted (along grey arrows) with
information flowing unidirectionally to the nodes (marked as circles) within the hidden layer,
where a bias (offset) (marked with “1”) is added (along black arrows). Here a sigmoid function
(activation function) is applied to the weighted sum, leading further to the next layer, the “output”
layer where a new set of weights is distributed, together with a bias and the sigmoid activation
function before making an estimate for the output value. As the output still has a range of
0 to 1, it is rescaled prior to replacing missing data values. Actual fitted weights and biases
are removed from the graph for clarity. The input variables listed are: air temperature (Air T),
soil temperature at the depth of 10 cm (Soil T), wind direction (WD), solar radiation (Sol rad,
substituted with photosynthetic active radiation where not available), barometric air pressure
(Air P) and the fuzzy transformation of the time of day represented by the four time periods
morning (FL M), afternoon (FL A), evening (FL E) and night (FL N).
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 1 

Figure 3(a). Overview of the generalised additive model outcome as well as the representative 2 

tree model applied to all 6 datasets. Results are indicative for a dependency of the CH4 3 

fluxes/emissions on the included driver parameters. Y-axis labels indicate the smooth function 4 

(parameter used) and how many degrees of freedom the term has. The dashed lines represent 5 

the 2 standard errors above and below the smooth function estimate, roughly the 95% 6 

confident limit. The longer the branch of a tree, the greater the deviance explained. The values 7 

at the end of the branches are the mean CH4 fluxes in nmol m-2s-1. 8 

  9 

Fig. 3a. Overview of the generalised additive model outcome as well as the representative
tree model applied to all 6 datasets. Results are indicative for a dependency of the CH4
fluxes/emissions on the included driver parameters. Y-axis labels indicate the smooth function
(parameter used) and how many degrees of freedom the term has. The dashed lines represent
the 2 standard errors above and below the smooth function estimate, roughly the 95 % confi-
dent limit. The longer the branch of a tree, the greater the deviance explained. The values at
the end of the branches are the mean CH4 fluxes in nmolm−2 s−1.
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 1 
Figure 3(b). Overview of the generalised additive model outcome as well as the representative 2 

tree model applied to all 6 datasets. Results are indicative for a dependency of the CH4 3 

fluxes/emissions on the included driver parameters. Y-axis labels indicate the smooth function 4 

(parameter used) and how many degrees of freedom the term has. The dashed lines represent 5 

the 2 standard errors above and below the smooth function estimate, roughly the 95% 6 

confident limit. The longer the branch of a tree, the greater the deviance explained. The values 7 

at the end of the branches are the mean CH4 fluxes in nmol m-2s-1. 8 

Fig. 3b. Overview of the generalised additive model outcome as well as the representative
tree model applied to all 6 datasets. Results are indicative for a dependency of the CH4
fluxes/emissions on the included driver parameters. Y-axis labels indicate the smooth function
(parameter used) and how many degrees of freedom the term has. The dashed lines represent
the 2 standard errors above and below the smooth function estimate, roughly the 95 % confi-
dent limit. The longer the branch of a tree, the greater the deviance explained. The values at
the end of the branches are the mean CH4 fluxes in nmolm−2 s−1.
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 1 

Figure 3(c). Overview of the generalised additive model outcome as well as the representative 2 

tree model applied to all 6 datasets. Results are indicative for a dependency of the CH4 3 

fluxes/emissions on the included driver parameters. Y-axis labels indicate the smooth function 4 

(parameter used) and how many degrees of freedom the term has. The dashed lines represent 5 

the 2 standard errors above and below the smooth function estimate, roughly the 95% 6 

confident limit. The longer the branch of a tree, the greater the deviance explained. The values 7 

at the end of the branches are the mean CH4 fluxes in nmol m-2s-1. 8 

Fig. 3c. Overview of the generalised additive model outcome as well as the representative
tree model applied to all 6 datasets. Results are indicative for a dependency of the CH4
fluxes/emissions on the included driver parameters. Y-axis labels indicate the smooth function
(parameter used) and how many degrees of freedom the term has. The dashed lines represent
the 2 standard errors above and below the smooth function estimate, roughly the 95 % confi-
dent limit. The longer the branch of a tree, the greater the deviance explained. The values at
the end of the branches are the mean CH4 fluxes in nmolm−2 s−1.
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Fig. 4. Output from several neural network iterations. Shown in black is the mean Pearson
correlation coefficient achieved for the training dataset for each scenario and for each number
of applied neurons (within the hidden layer) and in grey the achieved coefficients for the testing
(artificial gaps) dataset. Circles represent very short (v) gaps of random 30 min values; crosses
short gaps (s) of random 4 h gaps, full circles medium (m) of 1.5 days, squares long (l ) of 12
full days and as triangles mixed scenarios (x), representing a mix of the above mentioned gap
lengths.
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Fig. 5. Output from several neural network iterations. Shown in black are the root mean square
error values achieved for the training dataset for each scenario and for each number of applied
neurons (within the hidden layer) and in grey the achieved error values for the testing (artificial
gaps) dataset. Circles represent very short (v) gaps of random 30 min values; crosses short
gaps (s) of random 4 h gaps, full circles medium (m) of 1.5 days, squares long (l ) of 12 full days
and as triangles mixed scenarios (x), representing a mix of the above mentioned gap lengths.
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Figure  6.  Scatter  plots  showing  the  distribution  of  the  actually  measured  CH4 flux values 2 

against the mean predicted CH4 values for all six datasets, and their distribution along the 1:1 3 

regression  line.  All  units  are  in  nmol  m-2s-1.There is some scatter visible at some sites 4 

indicating that the networks did over- or underestimate fluxes at times. The goodness of fit (r) 5 

for all six sites was between 0.80 - 0.92 and 0.76 – 0.93 for the training and testing datasets, 6 

respectively. 7 

Fig. 6. Scatter plots showing the distribution of the actually measured CH4 flux values against
the mean predicted CH4 values for all six datasets, and their distribution along the 1 : 1 regres-
sion line. All units are in nmolm−2 s−1.There is some scatter visible at some sites indicating that
the networks did over- or underestimate fluxes at times. The goodness of fit (r) for all six sites
was between 0.80–0.92 and 0.76–0.93 for the training and testing datasets, respectively.
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