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Abstract

The Atlantic Ocean is one of the most important sinks for atmospheric carbon dioxide
(CO2), but this sink is known to vary substantially in time. Here we use surface ocean
CO2 observations to estimate this sink and the temporal variability from 1998 to 2007 in
the Atlantic Ocean. We benefit from (i) a continuous improvement of the observations,5

i.e., the Surface Ocean CO2 Atlas (SOCAT) v1.5 database and (ii) a newly developed
technique to interpolate the observations in space and time. In particular, we use a 2
step neural network approach to reconstruct basin-wide monthly maps of the sea sur-
face partial pressure of CO2 (pCO2) at a resolution of 1◦×1◦. From those, we compute
the air–sea CO2 flux maps using a standard gas exchange parameterization and high-10

resolution wind speeds. The neural networks fit the observed pCO2 data with a root
mean square error (RMSE) of about 10 µatm and with almost no bias. A check against
independent time series data reveals a larger RMSE of about 17 µatm. We estimate
a decadal mean uptake flux of −0.45±0.15 PgCyr−1 for the Atlantic between 44◦ S and
79◦ N, representing the sum of a strong uptake north of 18◦ N (−0.39±0.10 PgCyr−1),15

outgassing in the tropics (18◦ S–18◦ N, 0.11±0.07 PgCyr−1), and uptake in the sub-
tropical/temperate South Atlantic south of 18◦ S (−0.16±0.06 PgCyr−1), consistent
with recent studies. We find the strongest seasonal variability of the CO2 flux in the
temperature driven subtropical North Atlantic, with uptake in winter and outgassing
in summer. The seasonal cycle is antiphased in the subpolar latitudes relative to the20

subtropics largely as a result of the biologically driven winter-to-summer drawdown
of CO2. Over the analysis period (1998 to 2007) sea surface pCO2 increased faster
than that of the atmosphere in large areas poleward of 40◦ N, but many other parts of
the North Atlantic increased more slowly, resulting in a barely changing Atlantic car-
bon sink north of the equator (−0.007 PgCyr−1 decade−1). Surface ocean pCO2 was25

also increasing less than that of the atmosphere over most of the Atlantic south of the
equator, leading to a substantial trend toward a stronger CO2 sink for the entire South
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Atlantic (−0.14 PgCyr−1 decade−1). The Atlantic carbon sink varies relatively little on
inter-annual time-scales (±0.04 PgCyr−1; 1σ).

1 Introduction

Over the last two decades, the Atlantic Ocean (44◦ S to 79◦ N and west of 19◦ E) has
taken up about 0.49±0.11 PgCyr−1 on average, with about half of it being driven by5

the uptake of anthropogenic CO2, while the other half represents an uptake flux of nat-
ural CO2 (Schuster et al., 2013; Gruber et al., 2009). This makes the Atlantic Ocean
one of the most important sinks for atmospheric CO2, and especially for anthropogenic
CO2 (Sabine et al., 2004; Mikaloff Fletcher et al., 2006, 2007; Gruber et al., 2009).
The Atlantic sink estimate was taken from a recent Regional Carbon Cycle Assess-10

ment and Processes (RECCAP) synthesis by Schuster et al. (2013) where the authors
reviewed different methodologies to estimate the air–sea CO2 fluxes and provided a
“best” estimate. The methods included estimates derived (i) using ocean surface par-
tial pressure of CO2 (pCO2) measurements (Takahashi et al., 2009), (ii) from ocean
general circulation models that include a full representation of the oceanic carbon cy-15

cle (e.g. Le Quéré et al., 2007; Graven et al., 2012; Doney et al., 2009), (iii) inversions
of ocean interior carbon measurements (e.g. Gruber et al., 2009) and (iv) from inver-
sions of atmospheric CO2 (e.g. Gurney et al., 2008). For the “best” estimate, only the
observationally based estimates were used, however, i.e., those relying on pCO2 ob-
servations and those derived from the ocean interior carbon observations through an20

inversion approach. These methods gave rather similar long-term mean values for the
whole basin, although with substantial sub-basin differences.

The Atlantic Ocean sink varies substantially by season, which is in part driven
by the seasonal variations in surface ocean pCO2 (Takahashi et al., 1993, 2002;
Schuster et al., 2013), but the sink strength is also affected by seasonal variations25

in surface ocean winds and atmospheric CO2. Surface ocean pCO2 varies over
a wide range above and below the atmospheric pCO2, with much of the seasonal

8801

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/8799/2013/bgd-10-8799-2013-print.pdf
http://www.biogeosciences-discuss.net/10/8799/2013/bgd-10-8799-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
10, 8799–8849, 2013

Variability of the
Atlantic Ocean

carbon sink

P. Landschützer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

amplitudedominated by temperature in the subtropical regions in both hemispheres
(Gruber et al., 2002; Takahashi et al., 2002; Sarmiento and Gruber, 2006), explaining
the summer maximum in surface ocean pCO2. In contrast, biological processes act-
ing in synergy with ocean mixing and circulation dominates the seasonal pCO2 cycle
in equatorial and high latitude regions (poleward of 40◦) (Takahashi et al., 1993; Ben-5

nington et al., 2009), explaining the summer minimum in oceanic pCO2. Due to their
opposite phasing, these two drivers cancel each other out along the regime boundaries
at around 40◦ (Takahashi et al., 2002), leading to a minimum in the seasonal amplitude
there. Schuster et al. (2013) identified a broad agreement among independent sea-
sonal flux estimates in the temperature driven subtropics, but not elsewhere.10

Long term trends and inter-annual variability of the Atlantic carbon sink represent
a source of substantial disagreement between the different methodologies and stud-
ies. Using surface ocean pCO2 observations, Schuster and Watson (2007) argued for
a decrease in the North Atlantic carbon sink and a reduction in the seasonal ampli-
tude in both the subtropical and temperate North Atlantic from the mid-1990s to the15

mid-2000s. They linked this reduction to the large changes that occurred in the climate
mode of the North Atlantic over this period, i.e., a shift of the North Atlantic Oscillation
(NAO) from very positive phases in the early 1990s to negative and near-zero phases
in the mid-2000s. Corbière et al. (2007) supported this conclusion on the basis of their
observations from the subpolar gyre over the 1993 to 2003 period, pointing out that the20

larger than expected increase in the observed pCO2 is mainly a result of rapid warming.
Further support for a decreasing North Atlantic sink comes from Lefèvre et al. (2004),
Lüger et al. (2006), Olsen et al. (2006), and Schuster et al. (2009), although each study
analyzed different regions and periods and also used different methods to determine
trends. Schuster et al. (2009), for example, analysed data from 1990 until 2006 in the25

eastern subpolar gyre and throughout most of the central North Atlantic, while Olsen
et al. (2006) only focused on the Nordic Seas, but looked at a more extended period,
i.e., from 1981 until 2002/2003.
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Based on the results of a global ocean biogeochemistry model, Thomas et al. (2008)
argued that this trend toward a smaller North Atlantic sink is transitory and is expected
to rebound in the near-term future, i.e. that this decrease is part of a “natural” fluctua-
tion and should not be interpreted as a signal of anthropogenic climate change. They
interpreted the decline in the sink strength to be the result of a NAO-driven reduction in5

the transport of water by the North Atlantic Current into the eastern subpolar gyre. In
a contrasting modeling study, Ullman et al. (2009) argued that the North Atlantic car-
bon sink actually increased from the mid-1990s to the mid-2000s. They proposed that
the declining trend in the NAO from the early to mid-1990s until the mid-2000s led to
reduced convective mixing in the subpolar gyre, counteracting the impact of warming.10

The initial year and period of data analyzed for trends are crucial aspects to consider
when resolving different perspectives (Gruber, 2009). McKinley et al. (2011) pointed
out that when the surface ocean trends in pCO2 are analysed over more than 25 yr,
all regions in the North Atlantic exhibit trends that are not statistically different from the
trend in atmospheric CO2, implying no change in the sink/source strength. However,15

when the periods of analyses were shortened to 10 yr and the beginning and ends
shifted, substantial trends emerged, largely reflecting inter-annual to decadal timescale
variability.

A major challenge in detecting trends in the Atlantic Ocean carbon sink is due to the
highly heterogeneous distribution of the surface ocean pCO2 observations in time and20

space. Different approaches have been employed to overcome this limitation and to
create basin or sub-basin wide estimates. These include the binning of data to 4◦ ×5◦

bins in latitude and longitude followed by an advection-based interpolation method
(Takahashi et al., 1999, 2003, 2009), binning of data to large-scale biogeochemical
provinces (McKinley et al., 2011), multi-linear regression models (e.g. Chierici et al.,25

2009; Peng and Wanninkhof, 2010), and neural network-based methods (e.g. Lefèvre
et al., 2005; Friedrich and Oschlies, 2009; Telszewski et al., 2009). Each of these
approaches has its strengths and weaknesses. For example, the binning and inter-
polation scheme employed by Takahashi et al. (1999) is well suited for constraining
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monthly climatologies, however, its coarse resolution tends to smooth out small-scale
features. However, the method is very robust and it is not sensitive to outliers. The bin-
ning to large-scale biogeochemical provinces works well to determine long-term trends
(McKinley et al., 2011), but its resolution is even more coarse. The multi-linear regres-
sion models allow very finely resolved estimates, however, the explained variance in5

these statistical models is often relatively low, causing substantial uncertainties in the
estimated fields.

Here, we overcome most of these limitations by presenting a new neural network-
based approach, which determines the non-linear relationships between the surface
ocean pCO2 observations and a set of independent observations to produce basin-10

wide sea surface maps of pCO2 on a monthly basis. Our network gathers information
from similar ocean biogeochemical regimes and provides us with regional estimates,
which we use to investigate the changing distribution of the sea surface pCO2 in the
Atlantic Ocean. We benefit from the recent publication of the Surface Ocean CO2 Atlas
(SOCAT), which provides the to-date largest a global data set of surface ocean fugacity15

of CO2 observations (Pfeil et al., 2013; Sabine et al., 2013), which we converted to
pCO2. We validate our results using independent data from time series stations and
we show that our results are in good agreement with these observations. Our basin-
wide pCO2 maps provide a basis to calculate the air–sea fluxes for the entire Atlantic
and to quantify the seasonal to inter-annual variability in its sink strength.20

2 Data and methods

We combine two neural network methods to reconstruct the sea-surface partial pres-
sure of CO2 (pCO2) for the period 1998 to 2007 on a monthly 1◦ ×1◦ resolution. In
particular, we use a two stage approach to establish numerical relationships between
pCO2 and a suite of independent predictors that are known to drive its variability. In25

the first stage, we use a neural network clustering algorithm to define a discrete set of
biogeochemical provinces that share a common relationship between the independent
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variables and pCO2. In the second stage, we derive for each biogeochemical province
a non-linear and continuous relationship between pCO2 and the input parameters on
the basis of a feed-forward network (FFN) method. This input-output relationship is
then used to estimate surface ocean pCO2 for each month and each pixel. For both
stages we use the global data sets, as this permits us to take advantage of the fact that5

biogeochemical provinces with limited coverage in a particular ocean basin can learn
from observations in the same biogeochemical province in another ocean basin. Here,
we evaluate and discuss only the results for the Atlantic Ocean. The resulting surface
ocean pCO2 distribution is then combined with corresponding atmospheric pCO2 data
and wind-speed based estimates of the gas transfer velocity to construct the mean and10

variability of the Atlantic Ocean carbon sink from 1998 to 2007.

2.1 Data

The gridded observations of the surface ocean fugacity of CO2 (fCO2) from the Surface
Ocean CO2 Atlas (SOCAT) Version 1.5 (Sabine et al., 2013) form the basis for our
computations. This data set includes global observations over the period 1970 to 200715

and was homogenized by an extensive series of automatic and manual secondary
quality controls (Pfeil et al., 2013). The fCO2 data distribution in the Atlantic Ocean in
time and space is highly skewed. The number of 1◦×1◦ pixels with fCO2 measurements
per year varies from as low as ∼180 per year in 1999 and 2000 to over 4000 in 2006
and 2007. The last two years together account for about 40 % of all measurements.20

The global data in the other ocean basins are more homogeneously distributed in time.
In contrast, the Atlantic has a good spatial coverage, while this is not the case for many
of the other ocean basins.

The reported fCO2 estimates were converted to pCO2 using the formulation (see
e.g. Körtzinger, 1999):25

pCO2 = fCO2 ·exp
(
P surf

atm

B+2 ·δ
R · T

)−1

(1)
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where P surf
atm is the total atmospheric surface pressure, B and δ are viral coefficients

(Weiss, 1974), R is the gas constant and T is the absolute temperature. National Cen-
ters for Environmental Prediction (NCEP) monthly mean sea level pressure was used
for P surf

atm (Kalnay et al., 1996).
A crucial choice concerns the selection of the independent input variables used5

for the training of the networks. We chose sea surface temperature (SST), chloro-
phyll a concentration (CHL), ocean mixed layer depth (MLD), sea surface salinity (SSS)
and the atmospheric CO2 mole fraction (xCO2,atm). These parameters represent phys-
ical, chemical and biological proxies determining the distribution of pCO2 in the sea
surface layer. For SST, we use the National Oceanic and Atmospheric Administra-10

tion (NOAA) Optimum Interpolation (OI) sea surface temperature v.2 (Reynolds et al.,
2002), for CHL the SeaWiFS mapped chlorophyll (SeaWiFSProject, http://oceancolor.
gsfc.nasa.gov/cgi/l3), for MLD the mixed layer depth data from the Estimating the Circu-
lation and Climate of the Ocean, Phase II (ECCO2) project (Menemenlis et al., 2008),
for SSS the Simple Ocean Data Assimilation (SODA) sea surface salinity data (Carton15

and Giese, 2008) and for xCO2,atm the monthly atmospheric CO2 from GLOBALVIEW-
CO2 (2011). Furthermore, the monthly pCO2 climatology of Takahashi et al. (2009) is
used as an additional input parameter for defining the biogeochemical provinces. Due
to their strongly skewed distribution, mixed layer depth (MLD) and chlorophyll a (CHL)
were log-transformed before use as predictor values.20

Our analysis is restricted to the time period from 1998 to 2007 due to the temporal
limitations of the data. No satellite chlorophyll data are available before the 1997 launch
of the SeaWiFS mission, and the CO2 observations in SOCAT v1.5 extend to the year
2007.

Data with an original resolution finer than the required 1◦ ×1◦ were binned onto the25

desired grid (by averaging over every data point within the new bin), whereas input data
with a coarser resolution were interpolated using a bilinear interpolation. We further
took monthly averages of all inputs with a finer temporal resolution.

8806

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/8799/2013/bgd-10-8799-2013-print.pdf
http://www.biogeosciences-discuss.net/10/8799/2013/bgd-10-8799-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3
http://oceancolor.gsfc.nasa.gov/cgi/l3


BGD
10, 8799–8849, 2013

Variability of the
Atlantic Ocean

carbon sink

P. Landschützer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

After co-locating the input variables to the same points in time and space, they are
organized as input vectors (pn) and the corresponding pCO2 observations are orga-
nized as corresponding targets (t). Every vector consists of data points at the same
geographical location on a 1◦ ×1◦ grid at the same point in time. Input vectors with
empty vector elements were removed from the datasets.5

To highlight anomalies and year-to-year trends within our data sets, we further pro-
duced de-seasonalised sets of our input variables by removing their long-term mean
seasonal cycle from 1990 to 2010 (1998 to 2010 in the case of chlorophyll a and 1992
to 2010 in case of MLD and SSS) from the original dataset.

Where no chlorophyll a satellite data are available, due to cloud cover, we estimate10

the sea surface pCO2 only with the remaining input parameters.
Independent timeseries data to validate our results are derived from the combined

record from BATS (Bermuda Atlantic Time Series Station) and Hydrostation “S” (Bates,
2007; Gruber et al., 2002) and the European Station for Time Series in the Ocean
(ESTOC) (e.g. González-Dávila et al., 2007).15

2.2 Methods

We use a self-organizing map (SOM) method (Kohonen, 1987, 2001) to partition
the global ocean into 16 regimes of similar patterns, i.e., biogeochemical provinces.
The choice of 16 provinces represents a subjectively determined optimum between
too many regions with too little data and a high degree of correlation between the20

provinces, and too few regions with a lot of data, but too high variance in the data. The
monthly SST, log(MLD), SSS, and climatological pCO2 data of Takahashi et al. (2009)
were used as input for the SOM (see Table 1). We chose not to include chlorophyll, i.e.,
log(CHL), due to missing values from cloud cover. Details on the SOM method can be
found in the Appendix.25

Despite their strong seasonal dynamics in space (Fig. 1a) and time (Fig. 1b), the
estimated biogeochemical provinces exhibit a coherent large-scale behavior, reflecting
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the well known oceanic structures such as the gyres, the equatorial regions, and the
high-latitude North Atlantic.

As a second step we use a feed-forward network (FFN) method to reconstruct the
non-linear relationship between our input variables and the target, i.e., pCO2, sepa-
rately for each of the 16 biogeochemical provinces. The FFN method is a type of back-5

propagation network method that is capable of approximating any function with a finite
number of discontinuities (Demuth et al., 2008). The established relationship is further
used to predict the pCO2 for each point in time and space where no observations are
available.

The feed-forward network was trained with the FINP dataset that included all input10

variables including their deseasonalised representation (see Table 1). To this end the
dataset was split into the 16 ocean provinces (FINPk , FINP2k , with k = 1, . . .,16) and
each of them was processed separately. Due to the temporal and spatial variability
of the regimes and the heterogeneous distribution of the pCO2 data, large differences
exist in the number of observations within the different provinces. Details on the settings15

used for the FFN can be found in the Appendix.
The air–sea flux was then calculated from the estimated pCO2 for each grid cell

and month, using the quadratic windspeed dependence of the gas transfer velocity of
Wanninkhof (1992) with the gas transfer coefficient from Sweeney et al. (2007) and
monthly mean windspeeds from the Cross-Calibrated Multi-Platform (CCMP) product20

by Atlas et al. (2011). More details are provided in the Appendix.

3 Results

3.1 Residuals and validation

The combined SOM-FFN method obtains very good fits to the data with an overall
mean r2 between the fitted pCO2 and the gridded Atlantic Ocean SOCAT v1.5 data of25

0.87 and a root mean squared error (RMSE) of about 10 µatm (Table 2). The overall
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bias is small (−0.10 µatm). These results apply also to each year individually, indicating
that the temporally inhomogeneous data distribution does not have a measurable effect
on the estimates for each year.

The residuals are not entirely randomly distributed in space. As shown in Fig. 2a, the
temporal mean residuals in each pixel show generally low values in open ocean region,5

but tend to increase toward the fronts. The strongest model-observation discrepancies
occur in the equatorial Atlantic, along the Gulf Stream and North Atlantic Current as
well as in the Norwegian, Greenland and the North Seas, i.e., mostly in regions with
relatively strong horizontal gradients in surface ocean pCO2.

The standard deviation of the residuals (Fig. 2b) shows that the strongest temporal10

errors occur again in the high latitudes of the North Atlantic, in particular the Norwegian
and North Sea, as well as along the North American coastline and in the eastern
South Atlantic between 0 and 30◦ S. This indicates that the model input parameters
are not able to predict all the temporal variability occurring in these regions with known
biogeochemical complexity.15

The residuals are independent of the magnitude of the estimated pCO2, and also
do not show any dependence on the magnitude of the independent variables (Fig. 3).
Each bin mean of the residuals is close to zero, with the strongest spreading occurring
in the low pCO2 areas around 275 µatm which coincides with low SST at around 5 ◦C
and high log(CHL) concentrations at around −0.25 to 1.25 mgm−3.20

In conclusion, the residuals indicate that the combined SOM-FFN method fulfils most
tests for a good fit and does not contain any major hidden biases. In particular, there
is no indication of a substantial degeneration of the fits as a function of data density,
neither in time nor in space. Regions with high spatial or temporal variability are the
least well fitted, while the fits for most of the open ocean are very good.25

3.2 Validation with independent observations

A second check on how well the model is able to generalize is to validate the outputs
against independent data. To this end, we compare the network-based pCO2 estimates
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with observations from two timeseries stations in the subtropical North Atlantic, i.e., the
combined record from BATS (Bermuda Atlantic Time Series Station) and Hydrostation
“S” (Bates, 2007; Gruber et al., 2002) which is located in the northwestern Sargasso
Sea near Bermuda (32◦10′ N , 64◦30′ W ) and the European Station for Time Series
in the Ocean (ESTOC) (e.g. González-Dávila et al., 2007) located in the eastern sub-5

tropical gyre near the Canary Islands (29.04◦ N, 15.5◦ W). These stations provide near
monthly coverage over the time period estimated by the model. As we do not have
estimates centred at the exact geographical position of both timeseries stations, we in-
terpolate the 4 closest surrounding grid-boxes, weighted by their distance, to compare
our results.10

Figure 4 shows the comparison between the neural network estimates with both
timeseries for the period between 1998 to 2007 and additionally the mean seasonal
cycle within this period. While the mean seasonal cycle is captured fairly well, Fig. 4
shows that the neural network estimates in general underestimate the winter minima
at Bermuda from January to April and the autumn maxima at ESTOC from August to15

November. This underestimation of the seasonal amplitude is consistent with previous
neural network studies (e.g. Telszewski et al., 2009). The neural network estimates
further show a decrease in the summer sea surface pCO2 from 2005 onwards which
is not seen in the ESTOC data. The decadal mean difference between BATS data
and neural network estimates is 7.56 µatm with a root mean squared error (RMSE) of20

17.53 µatm. Similar to BATS, the decadal mean difference between the estimates in
this study and the ESTOC data is −8.06 µatm with an RMSE of 16.85 µatm.

3.3 Uncertainty of the air–sea flux

The uncertainty of the flux product stems from the error in the estimated ∆pCO2 and
the uncertainty of the gas transfer coefficient (Takahashi et al., 2009). We estimate25

this uncertainty for the integrated flux over the 4 considered RECCAP/Ocean Inversion
regions (see Table 3 for region boarders) rather than for each 1◦ ×1◦ grid-cell.
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The ∆pCO2 estimate is subject to two main sources of errors, i.e., the error derived
from discretizing the original observations into 1◦ ×1◦ bins and the error of the neural
network method to interpolate the data in time and space. For the discretizing error we
use a value of 5 µatm as reported by Sabine et al. (2013), while we adopt our RMSE
value of 9.89 µatm (see Table 2) for the interpolation error. When computing next the5

error of the mean over a larger scale region, it would be inappropriate to assume that
each of the estimates is independent, as these errors are spatially correlated.

To estimate the discretization error associated with gridding for each REC-
CAP/Ocean Inversion region, we use the spatial decorrelation length scale of 400 km
estimated by Jones et al. (2012) to compute the effective degrees of freedom. The10

uncertainty of the mean is then estimated by dividing the standard deviation by the
square root of the effective degrees of freedom. This results in an uncertainty of be-
tween 1.02 µatm and 2.01 µatm for the individual regions.

To estimate the spatial mean of the neural network error for each RECCAP/Ocean
Inversion region, we estimate the spatial correlation by analysing the semi-variogram15

of the residuals (see e.g. Kalkhan, 2011) (for details see Appendix). While in some
regions the spatial correlation of the residuals fall very quickly, the correlation of the
residuals within one bin is substantial, yielding a substantial reduction in the effective
degrees of freedom. The uncertainty between different regions ranges from 0.99 µatm
to 3.72 µatm.20

Adding the error from the gridding and the neural network together, and assuming
a mean error of 0.2 µatm for the atmospheric pCO2, yields a total ∆pCO2 error for
the 4 regions between 2.21 and 5.93 µatm. With a mean gas transfer rate in the At-
lantic Ocean of 0.05 molCm−2 yr−1 µatm−1 this results in a flux error between 0.03 and
0.06 PgCyr−1 and an overall basin error of 0.07 PgCyr−1 calculated by standard error25

propagation.
Furthermore, following Sweeney et al. (2007), we assume a random error of 30 %

in the gas-transfer velocity. For our long term mean estimate of the Atlantic Ocean
(−0.45 PgCyr−1) the error due to the piston velocity uncertainty is 0.13 PgCyr−1. This
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results in a total uncertainty estimate for the Atlantic Ocean of ±0.15 PgCyr−1, or
roughly 33 %, with the largest contribution stemming from the uncertain gas transfer
velocity.

3.4 Decadal mean pCO2 and air–sea CO2 flux

The lowest decadal mean sea surface pCO2 values are found in the northern North5

Atlantic, especially the Labrador Sea, the Greenland Sea and the Norwegian Sea with
pCO2 below 320 µatm and in the mid-latitudes, along the Gulf stream and North At-
lantic Current and the South Atlantic south of 30◦ S (Fig. 5a). The highest pCO2 values
can be identified in the equatorial Atlantic, in the North Atlantic along the Caribbean
Current and the tropical and subtropical South Atlantic northwards of 30◦ S. Further10

high values are estimated at 60◦ N around the Irminger basin and 30◦ N in the subtrop-
ical North Atlantic along the Portugal Current, and in the eastern North Atlantic along
the Canaries Current.

The decadal mean pCO2 distribution from the neural network method is generally
very similar to that estimated by Takahashi et al. (2009), with some important excep-15

tions (Fig. 6). To produce this comparison plot, we first binned our estimates to the
same resolution (4◦×5◦) as the original climatology of Takahashi et al. (2009). We then
corrected our estimates to the year 2000 by subtracting 4.5 µatm on the basis of the
assumption that the surface ocean follows the atmospheric trend of 1.5 µatm per year
and the fact that our estimate is centered around mid-2003. The strongest differences20

can be identified in the high latitudes of the North Atlantic within the Labrador Sea,
the Greenland Sea and the Norwegian Sea. For the entire Atlantic we derive a mean
difference of 0.38 µatm and a RMSE of 6.45 µatm.

Given the overall small bias and the low RMSE between the two very different meth-
ods to interpolate the data, it appears that the long-term mean surface ocean pCO225

can be very robustly estimated from the available observations.
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The CO2 flux density (Fig. 5b) largely follows the pCO2 pattern, although with some
notable differences. Overall, the North Atlantic is a strong sink for atmospheric CO2 in
the mid and high latitudes, whereas the lower latitudes act as a source for atmospheric
CO2. The strongest CO2 uptake in the North Atlantic occurs along the Gulf Stream and
the North Atlantic Current, as well as in the Labrador, Norwegian, and Greenland Sea,5

and in the South Atlantic south of 30◦ S.
We estimate a decadal mean flux of −0.44±0.15 PgCyr−1 for the Atlantic Ocean

from 44◦ S to 76◦ N and 100◦ W to 19◦ E (−0.45±0.15 PgCyr−1 from 44◦ S to 79◦ N and
west of 30◦ E). This is in good agreement with Schuster et al. (2013) who provided a
“best” estimate of −0.49±0.11 PgCyr−1 (derived from the mean fluxes of the pCO210

climatology and the Ocean Inversion fluxes within the RECCAP project).
Table 3 lists the long-term mean fluxes for the Atlantic Ocean as well as for the

four individual ocean RECCAP/Ocean Inversion regions considered by Schuster et al.
(2013). While the basin average flux is well within the uncertainty range of the best es-
timate from Schuster et al. (2013), the subtropical North Atlantic (18◦ N to 49◦ N) mean15

flux is just outside the uncertainty range of the RECCAP best estimate. In general, the
neural networks fluxes are closest to those of the pCO2 climatology of Takahashi et al.
(2009) with the exception of the subtropical South Atlantic (44◦ S to 18◦ S) where the
long term mean flux is closest to the results of the Ocean Inversion and the Ocean Bio-
geochemical Models. We estimate the main carbon sink region to be the high latitude20

North Atlantic with strong uptake throughout the year and a decadal average uptake of
−0.20±0.07 PgCyr−1.

3.5 Seasonality

The 10 yr mean sea surface pCO2 seasonal cycle exhibits strong latitudinal differences
(Fig. 7). While we find the weakest seasonal signals north of 60◦ N, south of 40◦ S and25

near the equator from 10◦ S to 10◦ N, the temperate North Atlantic (40◦ to 60◦ N) has
a distinct seasonal cycle with high pCO2 from October to April and low values from
May to September. The opposite cycle occurs in the subtropical North Atlantic between
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10◦ N to 40◦ N and 10◦ S to 40◦ S with low partial pressures in winter and a seasonal
maximum in the warmer summer months.

The mean seasonal cycle of our neural network-based estimates of pCO2 agrees rel-
atively well with the seasonal cycle estimated by Takahashi et al. (2009), but substantial
differences exist at the regional level (Fig. 8). As above, we corrected our estimate to5

the year 2000 in order to have better comparable estimates. The strongest difference
can be identified in the high latitude North Atlantic, where we estimate a stronger sea-
sonal cycle with higher values in the winter and lower values in the summer, with dif-
ferences of more than 10 µatm. In comparison, the differences throughout the Atlantic
Ocean are mostly within the calculated RMSE of our method.10

To determine the drivers behind the seasonal cycles, we split the long-term mean
seasonal cycle at each grid cell into a thermal and into a non-thermal component (Taka-
hashi et al., 2002; Sarmiento and Gruber, 2006). The latter is driven by the seasonal
changes in temperature and is computed on the basis of the well known temperature
sensitivity of pCO2 (Takahashi et al., 1993) and the non-thermal component is com-15

puted by the difference.
The seasonal cycles of the thermally and non-thermally driven partial pressures tend

to cancel each other (Fig. 9), consistent with previous analyses (Takahashi et al., 2002;
Sarmiento and Gruber, 2006). In detail, we find in both hemispheres the non-thermally
driven pCO2 starts to decrease due to increasing biological production and reduced20

vertical mixing resulting in increased stratification in the warmer months. The thermally
driven seasonal cycle on the other hand follows the increase in sea surface temper-
ature and causes an increase in the sea surface pCO2 due to a reduced solubility.
Comparing Fig. 9 with Fig. 7 reveals that the non-thermal seasonal cycle of the sea
surface pCO2 dominates over the thermally driven seasonal cycle polewards of 40◦ N.25

In contrast, the seasonal cycle in the subtropical North and South Atlantic is driven by
the thermal pCO2 component. The thermal and non-thermal driven seasonal cycle of
the equatorial band and in the South Atlantic south of 35◦ S compensate each other,
resulting in little variability within each band.
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The seasonal cycle of the CO2 flux is largely driven by the seasonal cycle of the
sea surface pCO2 with only modest modifications by the seasonal cycles of wind and
solubility (Fig. 7b). The temperature driven solubility and the wind lead to a larger
outgassing of CO2 in large areas in the high latitudes in winter, where the sea surface
pCO2 is supersaturated, and to an increasing uptake of CO2 in the subtropics and low5

latitudes and vice versa in summer. Throughout the entire Atlantic, the flux densities
are considerably larger during the Northern Hemisphere winter season, compared to
the summer. The neural network estimates shows a strong seasonal CO2 outgassing
in summer in the northern subtropics, driven by the increasing pCO2, with a 6-month
difference in the Southern Hemisphere.10

3.6 CO2 trends and inter-annual variability

Across large areas of the Atlantic, the 10 yr trend of surface ocean pCO2 is estimated
to be lower than the atmospheric trend (Fig. 10a), but there are notable exceptions. In
this plot, the atmospheric trend has been subtracted from the long-term mean trends
for each 1◦ ×1◦ pixel, so that positive values indicate a rate of increase faster than of15

the atmosphere and vice versa for negative values.
The strongest increase in ocean surface pCO2 relative to that in the atmosphere is

found in the North Atlantic poleward of 40◦ N along the Gulf Stream and North Atlantic
Current. Here, the neural network output suggests an increase in sea-surface pCO2
of more than 2 times the atmospheric increase. Metzl et al. (2010) investigated the20

sink trend over a similar time period (2001 to 2008) in the North Atlantic subpolar
gyre (53◦ N to 57.5◦ N, 45◦ W to 35◦ W and 57.5◦ N to 62◦ N, 40◦ W to 25◦ W). These
authors found a particularly strong increase in the winter sea surface fCO2 of 5.8±1.1
and 7.2±1.3 µatmyr−1. While this is much stronger than suggested here (see Fig. 10)
both studies agree on the North Atlantic subpolar gyre having a trend toward lower25

undersaturation over the ∼2000 to ∼2007 period. McKinley et al. (2011) found a similar
trend toward a weaker undersaturation in their subtropical seasonally-stratified region
around 40◦ N for the period 1993 until 2005, but did not identify a significant trend in the
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subpolar gyre over the same period. This may reflect differences in the time period, as
their analyses with an earlier start, i.e., pre 1990, suggest also a trend toward a weaker
undersaturation.

Decadal trends in surface ocean pCO2, in the Labrador Sea and some parts of
the Icelandic Seas were much smaller than that in the atmosphere, leading to an5

overall relatively small trend for the entire region north of 40◦ N. As the low latitudes
of the North Atlantic (0 to 40◦ N) have close to zero trend relative to that of the at-
mosphere, the entire North Atlantic pCO2 trend is also very close to that of the at-
mosphere, i.e., 1.80 µatmyr−1 versus 1.90 µatmyr−1 for the atmosphere. As expected
from the uptake of anthropogenic CO2 by the surface ocean, the majority of the ocean10

pCO2 trend stems from the non-thermal part, i.e., the increase in surface ocean DIC
(1.46 µatmyr−1). However, the overall warming trend in the North Atlantic over this
decade further enhances the ocean pCO2 trend quite considerably (with on aver-
age stronger than atmospheric increases of 2.25 µatmyr−1 from 40◦ N to 60◦ N and
east of 50◦ W and 4.03 µatmyr−1 at 60◦ N to 70◦ N and 0◦ to 10◦ W). Splitting the15

trend into thermal and non-thermal component shows on average a linear trend of
1.46 µatmyr−1 for the non-thermal component, while the thermal driven trend is on
average 0.37 µatmyr−1). The small differential increase in surface ocean pCO2 re-
sults in an almost steady strength of the Atlantic carbon sink north of the equator
(−0.007 PgCyr−1 decade−1).20

Trends for the South Atlantic show a slower increase in the sea surface pCO2 rel-
ative to that in the atmosphere with the exception of the eastern South Atlantic and
parts along the South American coast. On average, surface ocean pCO2 increased
only by 0.98 µatmyr−1 over the 1998 through 2007 period, resulting in a carbon flux
increase of −0.14 PgCyr−1 decade−1. Similar to the North Atlantic, the main driving25

force for the trend is the non-thermal component of the pCO2 with an average trend of
0.76 µatmyr−1 compared to 0.19 µatmyr−1 of the thermal component.
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Taking the North and South Atlantic together, the trend over the entire study re-
gion is one toward a stronger sink over the 10 yr period with an overall mean trend of
1.26 µatmyr−1 and a flux trend of −0.15 PgCyr−1 decade−1.

It is not possible to conclude from our data whether the 10-yr trends we identify are
part of a longer term trend (Schuster et al., 2009) or whether they are part of a decadal5

time-scale variability (Thomas et al., 2008; Gruber, 2009; McKinley et al., 2011). The
most recent study by (McKinley et al., 2011) suggest the latter to be the case, but
reported 50-yr trends in heat storage (Levitus et al., 2012) and interior ocean oxygen
changes in the North Atlantic (Stendardo and Gruber, 2012) indicate that the North
Atlantic and in particular its subpolar gyre has been subject to multi-decadal changes. It10

is also tempting to point out that the resulting pattern of a decreasing sink in large areas
of the North Atlantic and increasing sink in the South Atlantic appears to be mirrored
in the observation of a faster rate of accumulation in anthropogenic CO2 in the South
compared to the North Atlantic (Wanninkhof et al., 2010). One needs to be careful,
though, as the surface ocean trends are for the sum of natural and anthropogenic CO2,15

while the ocean interior trends are for anthropogenic CO2 only.
The sea surface pCO2 exibits substantial year-to-year variability within the North

Atlantic north of 40◦ N and the eastern Equatorial and South Atlantic. In contrast, the
subtropics in both hemispheres show much less year-to-year variability.

Integrating our monthly air–sea CO2 flux estimates for each year over the Atlantic20

ocean reveals small but significant inter-annual variability (Fig. 11a). In particular, we
find the strongest variability during the second half of our study period. Annual mean
fluxes range from −0.39±0.13 PgCyr−1 in 2001 up to −0.56±0.18 PgCyr−1 in 2006.
Figure 11b illustrates the inter-annual variabilities (IAV) for both hemispheres and the
entire Atlantic Ocean. The IAV, calculated as a 12 month running average, is fairly25

constant from 1998 to 2004 with a weak flux decrease in the Northern Hemisphere
counterbalanced by a weak increase in the Southern Hemisphere. After 2004 the At-
lantic Ocean sink increases mainly due to increases in the Southern Hemisphere. The
standard deviations of the IAV (calculated as a 12 month running average and further
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detrended) for the Northern Hemisphere, Southern Hemisphere and Atlantic Ocean
are 0.02 PgCyr−1, 0.02 PgCyr−1 and 0.04 PgCyr−1 respectively. This result indicates
only limited inter-annual variability in both hemispheres on a basin scale.

Inter-annual variability of the sea-surface pCO2 in the North Atlantic is often linked
to variations in the North Atlantic Oscillation (NAO) (e.g. Gruber et al., 2002; Schuster5

and Watson, 2007; Thomas et al., 2008). The NAO is the dominant large-scale cli-
mate mode in the Atlantic Ocean (e.g. Hurrel, 1995) and impacts sea-surface pCO2
via changes in the driving parameters. During positive NAO phases, sea surface tem-
perature shows a tripole pattern with cold anomalies in the subpolar region and warm
anomalies in the mid-latitudes and corresponding changes in vertical mixing and nu-10

trient supply (Marshall et al., 2001). Corbière et al. (2007) found an increase in sea
surface pCO2 in the subpolar gyre between the mid-1990s and mid-2000s linked to an
increase in SST due to a shift from positive to negative NAO. We investigate the effect
of the NAO by focusing on two 10◦ ×10◦ boxes, one in the subtropical North Atlantic
(20◦ N to 30◦ N and 40◦ W to 50◦ W) and the other in the subpolar North Atlantic (50◦ N15

to 60◦ N and 30◦ W to 40◦ W). Figure 12 illustrates the pCO2 estimate and their anoma-
lies for each box together with the NAO index. We find a weak but significant (p ≤ 0.05)
positive correlation in the subtropics (R = 0.32) and negative correlation in the subpolar
box (R = −0.31). This pattern is consistent with that identified by Thomas et al. (2008)
on the basis of a modeling study (see also summary by Gruber (2009) and recent20

multi-model analysis by Keller et al. (2012), and the available time-series analyses (e.g
Gruber et al., 2002; Bates, 2007) from the BATS site). Clearly, an important driver are
the NAO-associated SST anomalies, but strongly modified by the various physical and
biogeochemical changes that are driven by the NAO-induced changes in heat fluxes
and windstress (see e.g. Keller et al., 2012).25
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4 Summary and conclusions

Our study suggests a decadal mean CO2 flux from 1998 to 2007 of 0.45±0.15 PgCyr−1

for the Atlantic Ocean from 44◦ S to 79◦ N and west of 30◦ E. This result is in good
accordance with recent findings from the RECCAP project (Schuster et al., 2013). We
find the strongest seasonal variability of the sea surface pCO2 and the air–sea fluxes5

within the subtropics in the northern and Southern Hemisphere, i.e. the zones where
the temperature effect dominates the seasonal cycle of the sea surface pCO2. Trends
in the sea surface pCO2 suggest that in large areas polewards of 40◦ N the sea surface
pCO2 increased faster than the atmospheric pCO2, leading to a regional reduction in
the carbon sink. However, this is counterbalanced on basin scale by slower increasing10

trends elsewhere in the North Atlantic. The South Atlantic in contrast shows an increase
of the basin carbon sink throughout the study period. In total, the Atlantic Ocean carbon
sink increased at about −0.15 PgCyr−1 decade−1. The standard deviation of the inter-
annual variability of the spatially integrated CO2 flux within the study period in the
Atlantic Ocean was 0.04 PgCyr−1 with both low inter-annual variability in the Southern15

Hemisphere (0.02 PgCyr−1) and in the Northern Hemisphere (0.02 PgCyr−1).
It would be beneficial to extend the study period to further investigate responses to

climate modes such as the NAO and to investigate multi-decadal variabilities. Currently
however, we are limited to 1997 since no basin-wide chlorophyll a measurements are
available before and chlorophyll a is a simple, but important proxy representing the re-20

lation between biology and pCO2. Modelled chlorophyll a is available before the launch
of satellite observations, but these products to-date do not have achieved sufficient re-
liability as yet. Our product shows that the the data collection and synthesis effort of the
marine carbon community makes it possible to investigate the seasonal to inter-annual
variability of the ocean carbon sink on a basin-scale based on observations. Future25

measurements are expected to increase the accuracy of observation based estimates,
such as our neural network approach, providing better historical estimates and more
accurate products to evaluate ocean biogeochemical models.
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Appendix

A1 Dividing the global ocean into biogeochemical regimes using a
self-organizing map

A map with 16 neurons was chosen, organized on a 2 dimensional 4×4 point hexagonal5

grid. This results in the separation of the world ocean into 16 biogeochemical provinces.
The Euclidean distance between a neuron and the datapoints under consideration was
used for the distance function. The weight matrix (Wm,n) was randomly initialized.

After initialization, the training vectors are introduced to the SOM with each training
parameter as 1 element of the vector. For the j -th input vector pj

n with the length n the10

Euclidean distances to each of the i = 1, . . .,16 neurons represented by each row i of
the weight matrix are calculated:

d j
i =

√√√√ n∑
l=1

(
Wi ,l −p

j
l

)2
(A1)

d
j
m comprises a vector containing the Euclidean distances to each neuron i of the input

vector pj
n. The neuron i , gets updated by moving towards the average position of all15

the training vectors j it was identified as a winner, or a close neighbour of the winner.
This sort of training is called “batch training”. This is done by adjusting the i -th row of
the initial weights matrix after the iterative step q following Vesanto et al. (2000):

Wi ,n(q+1) =

∑r
j=1S

(
dneighbour −d j

i

)
·pj

n∑r
j=1S

(
dneighbour −d j

i

) (A2)

where W(i ,n) is the i -th row of the input weight matrix, d j
i is the Euclidean dis-20

tance between the neuron i and the presented j -th input vector and dneighbour is the
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neighbourhood radius. S describes the step function. Neighbouring neurons will only be
updated if S(dneighbour −d j

i ) > 0. During the training of our SOM we decrease dneighbour
in 2 steps from an initial coarse training phase where we update the surrounding near-
est neighbours that lie within a neighbourhood radius of 3, which lasts for the first 100
iterations, to a final fine training phase where only the winning neuron is updated.5

After q = 200 iterations (presenting all our input vectors to the SOM 200 times) we
stop the training and the input vectors are re-introduced, without updating the SOM.
In return every vector receives the neuron number i of the winning neuron, where
d j
i = min(d j

m), until every training vector is labelled with a number between 1 and 16,
representing the regime the vector belongs to. Since every training vector has a geo-10

graphical location we can now divide the global ocean into these 16 regimes, i.e., the
16 biogeochemical provinces.

We forced the relative weights of the input data toward the pCO2 data, in order to
minimize the variance of pCO2 within each biogeochemical province. We do this by
only log-normalizing MLD as input. As a consequence the range between the lowest15

and highest value of pCO2 is one order of magnitude larger than that for SST, and about
another order of magnitude larger than the remaining input parameters (log(MLD),
SSS). This was done to reduce the biases in the second stage of the fitting, i.e., in
the feed-forward network. As a consequence, the biogeochemical provinces follow the
seasonal pattern of the pCO2 climatology, meaning that the seasonality of pCO2 at20

any given location will be mostly determined by the seasonal changes of the biogeo-
chemical provinces and to a lesser degree by the seasonal cycle of the input data in
the second state. In addition, owing to the climatological nature of the used pCO2 data,
there are little inter-annual shifts in the distribution of the biogeochemical provinces.

A2 Reconstructing the sea surface pCO2 using a feed-forward network25

Our feed-forward network uses 2 layers of neurons, 1 hidden layer of neurons using
a sigmoid transfer function and 1 linear output layer. The hidden layer response to the
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input vector pj
n can be written as follows:

ai =
2

1+exp
(
−2 ·

(
Wi ,n ·p

j
n +bi

)) −1 (A3)

where ai is the hidden layer response of i -th neuron. The response of all neurons m
then forms the output vector of the hidden layer am. This vector serves as input for the
second layer of neurons, the linear output layer.5

pCO2, est
j = Wm ·am +b (A4)

Equations (A3) and (A4) show how the network calculates the scalar output pCO2, est
j

for the j -th input vector pj
n in 2 steps, each step referring to 1 layer of the network. In

the hidden layer the input vectors are multiplied with the weight matrix of the hidden
layer Wm,n and added to the layer bias vector bm. The output vector of the hidden layer10

am is created using a tangents-sigmoid transfer function, that computes elements of
am in the range from −1 to +1. Similar to the SOM, the size of Wm,n is determined by
the size n of the input vector and the number m of neurons in the hidden layer. The
length of bm and am is as well determined by the number of neurons m. In the linear
output layer am is processed the same way as p

j
n in the hidden layer, with the exception15

that the output layer only consists of 1 neuron to produce one scalar target for every
input vector. Furthermore, the linear output layer allows pCO2, est

j to have any value
between −inf and +inf. During the training the weights and biases of each layer get
iteratively adjusted to minimize the error between the network output target pCO2, est

j

and the scalar target element t j that corresponds to p
j
n. Therefore, the network can20

only be trained by those input vectors which do have co-located observations.
Before the training starts, the training vectors with corresponding observations from

our FINPk dataset are provided to initialize the network layer size. We randomly gen-
erate the networks initial weights and biases. An important parameter that has to be
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provided before training starts is the number of neurons. Too few neurons are not able
to reproduce realistic results, whereas too many neurons decrease the computational
performance and cause over-fitting and therefore the network is not able to generalize
(Demuth et al., 2008). Since the number of inputs and targets varies per regime, we
can not provide one best number of neurons to use for all 16 regimes. We therefore5

perform a pre-training, increasing the number of hidden neurons paraboloidal starting
from 2 neurons up to a number where the ratio between of the training sample size
to the number of weights does exceed 30. Amari et al. (1997) proposed this ratio to
prevent artificial neural networks from over-fitting.

During every pre-training process the FINPk set is divided into 2 separate sub-sets.10

The first (FITRk) is used to train the network and the second (FIVALk) is used for
validation. Amari et al. (1997) suggested an optimal split (ropt) between training and
validation data as a function of the sample number m:

ropt =
1

√
2 ·m

(A5)

During every pre-training process the FITRk training vectors and the corresponding15

FITRk targets are introduced to the network and the weights and biases are iteratively
updated in the direction where the performance function, which is the mean squared
error between network outputs pCO2, est

j and FITRk targets tj , decreases most rapidly.
Our feed-forward network uses the Levenberg–Marquardt (Marquardt, 1963) algorithm
to update weights and biases in every iteration step to reduce the mean squared error20

between outputs and targets. The application of the algorithm in neural networks is
described in more detail in (Hagan and Menhaj, 1994; Hagan et al., 1996).

After every iteration of each pre-training the network is validated by using the FIVALk

sub-set. The updated weights and biases are used to simulate outputs from the FIVALk

inputs and the mean squared error between these outputs and the FIVALk targets is25

calculated. Every pre-training of the network stops automatically when 6 consecutive it-
erations do not reduce the network’s error on the FIVALk targets to prevent the network
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from over-fitting. After the pre-trainings with increasing number of neurons we select
the one where the mean squared error of the validation data set FIVAL is a minimum
and receive the optimal number of neurons for the actual training process.

During the actual training process the number of neurons is adjusted according to
the best pre-training performance for each of the 16 regimes separately. We perform 105

trainings where we randomly pick validation data according to Eq. (A5) out of the entire
pool of observations to validate the network output. After every training we use the
trained network to simulate pCO2, est

j from the FINPk dataset and average the output
of the 10 training cycles, to end up with 1 estimate for our time period between 1998
to 2007 for each regime. After 16 FFN runs we can now combine our results of the 1610

regions to retrieve our pCO2 estimates from 1998 to 2007 on a global 1◦ ×1◦ grid.

A3 Air-sea CO2 flux calculation

We calculate the air–sea flux density in molCm−2 yr−1 for each month and 1◦×1◦ pixel
from

FCO2
= −kw ·SCO2

· (1− fice) · (pCO2,atm,wet −pCO2) (A6)15

where SCO2
is the mainly temperature driven solubility of CO2 (calculated in

molCm−3 µatm−1) in and kw is the gas transfer velocity (calculated in myr−1) and where
the flux is defined positive upward, i.e., outgassing is positive, and uptake is negative.
fice refers to the percent of ice cover within a region derived from Rayner et al. (2003).
For the gas transfer velocity (here calculated in cmh−1) we decided to use the formu-20

lation of Wanninkhof (1992) with the scaling factor of Sweeney et al. (2007), i.e.,

kw = 0.27 · (Sc/660)−
1
2 ·u2 (A7)

where Sc the dimensionless Schmidt number and u the monthly mean Cross-
Calibrated Multi-Platform (CCMP) wind speed (Atlas et al., 2011) at a height of 10 m
above the sea surface.25
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The solubility of CO2 is calculated according to Weiss (1974) and the Schmidt num-
ber according to Wanninkhof (1992) using the same SST and SSS data we used for
the training of our network.

The partial pressure of atmospheric CO2, i.e., pCO2,atm,wet, was computed from the
dry air mixing ratio xCO2 of GLOBALVIEW-CO2 (2011), taking into account the water5

vapor correction according to Dickson et al. (2007):

pCO2,atm,wet = xCO2,atm · [Patm,surf − PH2O] (A8)

where Patm,surf is the sea-level pressure from NCEP (Kalnay et al., 1996), and PH2O
describes the water vapor pressure.

A4 Accounting for spatial autocorrelation in flux uncertainty analysis10

For each RECCAP/Ocean Inversion region (see Table 3 for region boarders), we first
divide the residuals into 5 randomly chosen mutually-exclusive ensembles, with the ex-
ception of the subtropical North Atlantic, where we use 10 ensembles, due to the larger
amount of data. For each ensemble, we compute the semi-variance of the residuals
and their point-to-point Haversine distance matrix, and then fit an exponential function15

of the form

a+b ·exp
(−x

c

)
(A9)

to the semi-variogram in order to estimate the correlation length (parameter c) between
the residuals. We find that the semi-variograms are very sensitive to extreme values of
the residuals, forcing us to use Chauvenet’s criterion to reject them prior to the compu-20

tation and the fit. By using several different ensembles per region, we will account for
the potential biasing effect of their removal.

Figure A1 shows the semi-variograms of all ensembles in the Atlantic Ocean. Corre-
lation lengths of the residuals vary between 9 km, where the ensembles are well below
the distance between 2 neighbouring grid boxes, and 532 km. However, in all cases25
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the semi-variogram shows a large lag 0 correlation, (semi-variance at 0 distance varies
between 20–60 µatm2 within the different ensembles in the different regions) indicating
the residuals within one grid cell are correlated with each other, leading to a substantial
reduction of the degrees of freedom.
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Table 1. Input and target vector elements for each subset used within our method. The sub-
script ds describes de-seasonalised data, which are computed by subtracting the long-term
mean seasonal cycle from the original dataset as explained in the text. Additionally, log(CHL)
was excluded from sets FINP, FITR, FIVAL and FINP2 to estimate pCO2 where no satellite
chlorophyll a is available due to cloud cover.

Set name Elements n of the j -th input vectors p
j
n Targets (t j )

SINP SST, log(MLD), SSS, pCO2,Takahashi –
FINP, FITR, FIVAL SST, log(CHL), log(MLD), SSS, xCO2,atm, SSTds, CHLds, MLDds, SSSds, xCO2,atm,ds pCO2,SOCAT
FINP2 SST, log(CHL), log(MLD), SSS, xCO2,atm, SSTds, CHLds, MLDds, SSSds, xCO2,atm,ds –
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Table 2. Statistical measures of the comparison of the neural network-based estimates of pCO2
with the SOCAT v1.5 gridded observations in the Atlantic Ocean from 44◦ S to 79◦ N and west
of 30◦ E.

Period r2 RMSE [µatm] bias [µatm] # data

1998–2007 0.87 9.89 −0.10 20 003
1998 0.93 7.15 −0.18 583
1999 0.89 9.35 1.62 186
2000 0.78 11.14 −0.19 178
2001 0.83 11.48 −0.87 566
2002 0.87 8.98 0.22 1941
2003 0.87 7.47 −0.11 1963
2004 0.87 8.13 −0.14 2729
2005 0.88 9.52 −0.43 3575
2006 0.85 11.51 −0.10 4280
2007 0.87 10.89 0.12 4002
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Table 3. Comparison of regional and basin-wide decadal mean CO2 fluxes in PgCyr−1 from the
neural network-based method (column I) compared to a range of other methods. This includes
(II) the pCO2 climatology of Takahashi et al. (2009) and the Tier 1 methodologies described
in Schuster et al. (2013) which include (III) Ocean Inversion (Gruber et al., 2009) (IV) Atmo-
spheric inversion (Peylin et al., 2013) (V) Ocean Biogeochemical models as well as observation
based results including (VI) a SOCAT v1.5 based multi parameter regression (Schuster et al.,
2013) and (VII) an estimate based on the pCO2 database of Takahashi et al. (2009) updated
by McKinley et al. (2011). (VIII) lists the best estimate from combining the different RECCAP
methodologies as described in Schuster et al. (2013).

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)
Region Neural pCO2 Ocean Atmospheric OBGC SOCAT pCO2 RECCAP

Network climatology Inversion Inversion models MPR database best estimate
[PgCyr−1] [PgCyr−1] [PgCyr−1] [PgCyr−1] [PgCyr−1] [PgCyr−1] [PgCyr−1] [PgCyr−1]

49◦ N–76◦ N −0.20 −0.23 −0.19 −0.28 −0.17 −0.07 −0.30 −0.21
(West of 19◦ E) ±0.07 ± 0.12 ±0.06 ±0.03 ±0.02 ±0.04 ±0.13 ±0.06
18◦ N–49◦ N −0.19 −0.19 −0.34 −0.31 −0.13 −0.18 −0.24 −0.26

±0.07 ±0.09 ±0.08 ±0.03 ±0.03 ±0.09 ±0.16 ±0.06
18◦ S–18◦ N 0.11 0.11 0.13 0.12 0.15 0.10 0.12 0.12

±0.07 ±0.05 ± 0.06 ±0.05 ±0.06 ±0.05 ±0.14 ±0.04
44◦ S–18◦ S −0.16 −0.10 −0.17 −0.13 −0.17 −0.25 −0.21 −0.14

± 0.06 ±0.05 ±0.05 ±0.02 ±0.01 ±0.12 ±0.23 ±0.04
Atlantic Ocean −0.44 −0.42 −0.56 −0.60 −0.32 −0.40 −0.63 −0.49

±0.15 ±0.17 ±0.13 ±0.07 ±0.07 ±0.16 ±0.34 ±0.11
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Peter Landschützer: Variability of the Atlantic Ocean Carbon Sink 5

Table 1. Input and target vector elements for each subset used within our method. The subscript ds describes de-seasonalised data, which
are computed by subtracting the long-term mean seasonal cycle from the original dataset as explained in the text. Additionally, log(CHL)
was excluded from sets FINP, FITR, FIVAL and FINP2 to estimate pCO2 where no satellite chlorophyll-a is available due to cloud cover.

Set name Elements n of the jth input vectors pj
n Targets (tj)

SINP SST, log(MLD), SSS, pCO2,Takahashi -
FINP, FITR, FIVAL SST, log(CHL), log(MLD), SSS, xCO2,atm, SSTds, CHLds, MLDds, SSSds, xCO2,atm,ds pCO2,SOCAT

FINP2 SST, log(CHL), log(MLD), SSS, xCO2,atm, SSTds, CHLds, MLDds, SSSds, xCO2,atm,ds -

Fig. 1. Map of the biogeochemical provinces in the Atlantic Ocean identified by the Self-Organizing Map (SOM) method: (a) Province
number of the mode (i.e., most frequent occurrence). Provinces 1 and 2 do not occur in the Atlantic Ocean. (b) The number of provinces
every pixel belongs to from 1998 to 2007.

Atlantic, i.e., the combined record from BATS (Bermuda
Atlantic Time Series Station) and Hydrostation ”S” (Bates,
2007; Gruber et al., 2002) which is located in the northwest-
ern Sargasso Sea near Bermuda (32◦ 10’N, 64◦ 30’W) and
the European Station for Time Series in the Ocean (ESTOC)
(e.g. Gonzalez-Davila et al., 2007) located in the eastern sub-
tropical gyre near the Canary Islands (29.04◦N, 15.5◦W).
These stations provide near monthly coverage over the time
period estimated by the model. As we do not have estimates
centred at the exact geographical position of both timeseries
stations, we interpolate the 4 closest surrounding grid-boxes,
weighted by their distance, to compare our results.

Figure 4 shows the comparison between the neural net-
work estimates with both timeseries for the period between
1998 to 2007 and additionally the mean seasonal cycle within
this period. While the mean seasonal cycle is captured fairly

well, Fig. 4 shows that the neural network estimates in gen-
eral underestimate the winter minima at Bermuda from Jan-
uary to April and the autumn maxima at ESTOC from August
to November. This underestimation of the seasonal ampli-
tude is consistent with previous neural network studies (e.g.
Telszewski et al., 2009). The neural network estimates fur-
ther show a decrease in the summer sea surface pCO2 from
2005 onwards which is not seen in the ESTOC data. The
decadal mean difference between BATS data and neural net-
work estimates is 7.56 µatm with a root mean squared error
(RMSE) of 17.53 µatm. Similar to BATS, the decadal mean
difference between the estimates in this study and the ES-
TOC data is -8.06 µatm with an RMSE of 16.85 µatm.

Fig. 1. Map of the biogeochemical provinces in the Atlantic Ocean identified by the Self-
Organizing Map (SOM) method: (a) province number of the mode (i.e., most frequent occur-
rence). Provinces 1 and 2 do not occur in the Atlantic Ocean. (b) The number of provinces
every pixel belongs to from 1998 to 2007.
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6 Peter Landschützer: Variability of the Atlantic Ocean Carbon Sink

Fig. 2. (a) Temporal mean residuals and (b) standard deviation of the residuals in µatm between neural network estimates and SOCAT v1.5
gridded observations (Sabine et al., 2013) for the period from 1998-2007.

Table 2. Statistical measures of the comparison of the neural
network-based estimates of pCO2 with the SOCAT v1.5 gridded
observations in The Atlantic Ocean from 44◦S to 79◦N and west of
30◦E

Period r2 RMSE [µatm] bias [µatm] # data

1998-2007 0.87 9.89 -0.10 20003
1998 0.93 7.15 -0.18 583
1999 0.89 9.35 1.62 186
2000 0.78 11.14 -0.19 178
2001 0.83 11.48 -0.87 566
2002 0.87 8.98 0.22 1941
2003 0.87 7.47 -0.11 1963
2004 0.87 8.13 -0.14 2729
2005 0.88 9.52 -0.43 3575
2006 0.85 11.51 -0.10 4280
2007 0.87 10.89 0.12 4002

3.3 Uncertainty of the air-sea flux

The uncertainty of the flux product stems from the error in
the estimated ∆pCO2 and the uncertainty of the gas trans-
fer coefficient (Takahashi et al., 2009). We estimate this un-
certainty for the integrated flux over the 4 considered REC-
CAP/Ocean Inversion regions (see Table 3 for region board-
ers) rather than for each 1◦×1◦ grid-cell.

The ∆pCO2 estimate is subject to two main sources of

errors, i.e., the error derived from discretizing the original
observations into 1◦×1◦ bins and the error of the neural net-
work method to interpolate the data in time and space. For
the discretizing error we use a value of 5 µatm as reported by
Sabine et al. (2013), while we adopt our RMSE value of 9.89
µatm (see Table 2) for the interpolation error. When comput-
ing next the error of the mean over a larger scale region, it
would be inappropriate to assume that each of the estimates
is independent, as these errors are spatially correlated.

To estimate the discretization error associated with grid-
ding for each RECCAP/Ocean Inversion region, we use the
spatial decorrelation length scale of 400 km estimated by
Jones et al. (2012) to compute the effective degrees of free-
dom. The uncertainty of the mean is then estimated by divid-
ing the standard deviation by the square root of the effective
degrees of freedom. This results in an uncertainty of between
1.02 µatm and 2.01 µatm for the individual regions.

To estimate the spatial mean of the neural network error
for each RECCAP/Ocean Inversion region, we estimate the
spatial correlation by analysing the semi-variogram of the
residuals (see e.g. Kalkhan, 2011) (for details see Appendix).
While in some regions the spatial correlation of the residu-
als fall very quickly, the correlation of the residuals within
one bin is substantial, yielding a substantial reduction in the
effective degrees of freedom. The uncertainty between dif-
ferent regions ranges from 0.99 µatm to 3.72 µatm.

Adding the error from the gridding and the neural network
together, and assuming a mean error of 0.2 µatm for the at-

Fig. 2. (a) Temporal mean residuals and (b) standard deviation of the residuals in µatm between
neural network estimates and SOCAT v1.5 gridded observations (Sabine et al., 2013) for the
period from 1998–2007.
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Peter Landschützer: Variability of the Atlantic Ocean Carbon Sink 7

Fig. 3. Residuals as a function of (a) fitted pCO2, (b) atmospheric pCO2, (c) sea-surface temperature (SST,) (d) natural log of surface
chlorophyll (log(CHL)), (e) natural log of mixed layer depth (log(MLD)), and (f) sea-surface salinity (SSS). The upper plot in each panel
shows the residuals, while the lower one shows the relative number of observations within each bin.

mospheric pCO2, yields a total ∆pCO2 error for the 4 re-
gions between 2.21 and 5.93 µatm. With a mean gas trans-
fer rate in the Atlantic Ocean of 0.05 mol C · m−2 · yr−1

· µatm−1 this results in a flux error between 0.03 and 0.06

Pg C · yr−1 and an overall basin error of 0.07 Pg C · yr−1

calculated by standard error propagation.
Furthermore, following Sweeney et al. (2007), we assume

a random error of 30% in the gas-transfer velocity. For our

Fig. 3. Residuals as a function of (a) fitted pCO2, (b) atmospheric pCO2, (c) sea-surface tem-
perature (SST,) (d) natural log of surface chlorophyll (log(CHL)), (e) natural log of mixed layer
depth (log(MLD)), and (f) sea-surface salinity (SSS). The upper plot in each panel shows the
residuals, while the lower one shows the relative number of observations within each bin.
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8 Peter Landschützer: Variability of the Atlantic Ocean Carbon Sink

Fig. 4. Long term seasonal cycle and mean seasonal cycle of the neural network estimates compared to BATS Hydrostation ”S” (Bates, 2007;
Gruber et al., 2002) (a)-(b) and ESTOC (Gonzalez-Davila et al., 2007) (c)-(d) timeseries stations. Grey shading shows the uncertainty based
on the RMSE of the NN estimate. Pink shading shows the standard deviation of the the mean seasonal cycle for each timeseries station.

long term mean estimate of the Atlantic Ocean (-0.45 Pg C ·
yr−1) the error due to the piston velocity uncertainty is 0.13
Pg C · yr−1. This results in a total uncertainty estimate for
the Atlantic Ocean of ± 0.15 Pg C · yr−1, or roughly 33%,
with the largest contribution stemming from the uncertain
gas transfer velocity.

3.4 Decadal mean pCO2 and air-sea CO2 flux

The lowest decadal mean sea surface pCO2 values are found
in the northern North Atlantic, especially the Labrador Sea,
the Greenland Sea and the Norwegian Sea with pCO2 below
320 µatm and in the mid-latitudes, along the Gulf stream and
North Atlantic Current and the South Atlantic south of 30◦S
(Fig. 5a). The highest pCO2 values can be identified in the
equatorial Atlantic, in the North Atlantic along the Caribbean
Current and the tropical and subtropical South Atlantic north-
wards of 30◦S. Further high values are estimated at 60◦N
around the Irminger basin and 30◦N in the subtropical North
Atlantic along the Portugal Current, and in the eastern North
Atlantic along the Canaries Current.

The decadal mean pCO2 distribution from the neural net-
work method is generally very similar to that estimated by
Takahashi et al. (2009), with some important exceptions (Fig.
6). To produce this comparison plot, we first binned our es-
timates to the same resolution (4◦×5◦) as the original clima-

tology of Takahashi et al. (2009). We then corrected our es-
timates to the year 2000 by subtracting 4.5 µatm on the basis
of the assumption that the surface ocean follows the atmo-
spheric trend of 1.5 µatm per year and the fact that our esti-
mate is centered around mid-2003. The strongest differences
can be identified in the high latitudes of the North Atlantic
within the Labrador Sea, the Greenland Sea and the Norwe-
gian Sea. For the entire Atlantic we derive a mean difference
of 0.38 µatm and a RMSE of 6.45 µatm.

Given the overall small bias and the low RMSE between
the two very different methods to interpolate the data, it ap-
pears that the long-term mean surface ocean pCO2 can be
very robustly estimated from the available observations.

The CO2 flux density (Fig. 5b) largely follows the pCO2

pattern, although with some notable differences. Overall, the
North Atlantic is a strong sink for atmospheric CO2 in the
mid and high latitudes, whereas the lower latitudes act as
a source for atmospheric CO2. The strongest CO2 uptake
in the North Atlantic occurs along the Gulf Stream and the
North Atlantic Current, as well as in the Labrador, Norwe-
gian, and Greenland Sea, and in the South Atlantic south of
30◦S.

We estimate a decadal mean flux of -0.44±0.15 Pg C ·
yr−1 for the Atlantic Ocean from 44◦S to 76◦N and 100◦W
to 19◦E (-0.45±0.15 Pg C · yr−1 from 44◦S to 79◦N and
west of 30◦E). This is in good agreement with Schuster et al.

Fig. 4. Long term seasonal cycle and mean seasonal cycle of the neural network estimates
compared to BATS Hydrostation “S” (Bates, 2007; Gruber et al., 2002) (a, b) and ESTOC
(González-Dávila et al., 2007) (c, d) timeseries stations. Grey shading shows the uncertainty
based on the RMSE of the NN estimate. Pink shading shows the standard deviation of the the
mean seasonal cycle for each timeseries station.
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Peter Landschützer: Variability of the Atlantic Ocean Carbon Sink 9

Fig. 5. (a) Decadal mean surface ocean pCO2 and (b) CO2 flux density in mol C ·m−2 · yr−1 for the Atlantic Ocean. Negative flux densities
indicate CO2 uptake by the ocean.

(2013) who provided a ”best” estimate of -0.49±0.11 Pg C ·
yr−1 (derived from the mean fluxes of the pCO2 climatology
and the Ocean Inversion fluxes within the RECCAP project).

Table 3 lists the long-term mean fluxes for the At-
lantic Ocean as well as for the four individual ocean REC-
CAP/Ocean Inversion regions considered by Schuster et al.
(2013). While the basin average flux is well within the uncer-
tainty range of the best estimate from Schuster et al. (2013),
the subtropical North Atlantic (18◦N to 49◦N) mean flux is
just outside the uncertainty range of the RECCAP best esti-
mate. In general, the neural networks fluxes are closest to
those of the pCO2 climatology of Takahashi et al. (2009)
with the exception of the subtropical South Atlantic (44◦S
to 18◦S) where the long term mean flux is closest to the re-
sults of the Ocean Inversion and the Ocean Biogeochemical
Models. We estimate the main carbon sink region to be the
high latitude North Atlantic with strong uptake throughout
the year and a decadal average uptake of -0.20± 0.07 Pg C ·
yr−1.

3.5 Seasonality

The 10 year mean sea surface pCO2 seasonal cycle exhibits
strong latitudinal differences (Fig. 7). While we find the
weakest seasonal signals north of 60◦N, south of 40◦S and
near the equator from 10◦S to 10◦N, the temperate North
Atlantic (40◦ to 60◦N) has a distinct seasonal cycle with
high pCO2 from October to April and low values from May

to September. The opposite cycle occurs in the subtropical
North Atlantic between 10◦N to 40◦N and 10◦S to 40◦S with
low partial pressures in winter and a seasonal maximum in
the warmer summer months.

The mean seasonal cycle of our neural network-based esti-
mates of pCO2 agrees relatively well with the seasonal cycle
estimated by Takahashi et al. (2009), but substantial differ-
ences exist at the regional level (Fig. 8). As above, we cor-
rected our estimate to the year 2000 in order to have better
comparable estimates. The strongest difference can be iden-
tified in the high latitude North Atlantic, where we estimate a
stronger seasonal cycle with higher values in the winter and
lower values in the summer, with differences of more than
10 µatm. In comparison, the differences throughout the At-
lantic Ocean are mostly within the calculated RMSE of our
method.

To determine the drivers behind the seasonal cycles, we
split the long-term mean seasonal cycle at each grid cell
into a thermal and into a non-thermal component (Takahashi
et al., 2002; Sarmiento and Gruber, 2006). The latter is
driven by the seasonal changes in temperature and is com-
puted on the basis of the well known temperature sensitivity
of pCO2 (Takahashi et al., 1993) and the non-thermal com-
ponent is computed by the difference.

The seasonal cycles of the thermally and non-thermally
driven partial pressures tend to cancel each other (Fig. 9),
consistent with previous analyses (Takahashi et al., 2002;

Fig. 5. (a) Decadal mean surface ocean pCO2 and (b) CO2 flux density in molCm−2 yr−1 for
the Atlantic Ocean. Negative flux densities indicate CO2 uptake by the ocean.
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10 Peter Landschützer: Variability of the Atlantic Ocean Carbon Sink

Table 3. Comparison of regional and basin-wide decadal mean CO2 fluxes in Pg C · yr−1 from the neural network-based method (column
I) compared to a range of other methods. This includes (II) the pCO2 climatology of Takahashi et al. (2009) and the Tier 1 methodologies
described in Schuster et al. (2013) which include (III) Ocean Inversion (Gruber et al., 2009) (IV) Atmospheric inversion (Peylin et al., 2013)
(V) Ocean Biogeochemical models as well as observation based results including (VI) a SOCAT v1.5 based multi parameter regression
(Schuster et al., 2013) and (VII) an estimate based on the pCO2 database of Takahashi et al. (2009) updated by McKinley et al. (2011). (VIII)
lists the best estimate from combining the different RECCAP methodologies as described in Schuster et al. (2013)

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)
Region Neural pCO2 Ocean Atmospheric OBGC SOCAT pCO2 RECCAP

Network climatology Inversion Inversion models MPR database best estimate
[Pg C/yr] [Pg C/yr] [Pg C/yr] [Pg C/yr] [Pg C/yr] [Pg C/yr] [Pg C/yr] [Pg C/yr]

49◦N-76◦N -0.20 -0.23 -0.19 -0.28 -0.17 -0.07 -0.30 -0.21
(West of 19◦E) ±0.07 ± 0.12 ±0.06 ±0.03 ±0.02 ±0.04 ±0.13 ±0.06
18◦N-49◦N -0.19 -0.19 -0.34 -0.31 -0.13 -0.18 -0.24 -0.26

±0.07 ±0.09 ±0.08 ±0.03 ±0.03 ±0.09 ±0.16 ±0.06
18◦S-18◦N 0.11 0.11 0.13 0.12 0.15 0.10 0.12 0.12

±0.07 ±0.05 ± 0.06 ±0.05 ±0.06 ±0.05 ±0.14 ±0.04
44◦S-18◦S -0.16 -0.10 -0.17 -0.13 -0.17 -0.25 -0.21 -0.14

± 0.06 ±0.05 ±0.05 ±0.02 ±0.01 ±0.12 ±0.23 ±0.04
Atlantic Ocean -0.44 -0.42 -0.56 -0.60 -0.32 -0.40 -0.63 -0.49

±0.15 ±0.17 ±0.13 ±0.07 ±0.07 ±0.16 ±0.34 ±0.11

Fig. 6. Difference in the surface ocean pCO2 in µatm between the
decadal mean neural network estimates (this study), corrected to
the year 2000, and the estimates from the climatology of Takahashi
et al. (2009). Positive differences indicate higher pCO2 for the neu-
ral network estimates.

Sarmiento and Gruber, 2006). In detail, we find in both hemi-
spheres the non-thermally driven pCO2 starts to decrease due

to increasing biological production and reduced vertical mix-
ing resulting in increased stratification in the warmer months.
The thermally driven seasonal cycle on the other hand fol-
lows the increase in sea surface temperature and causes an
increase in the sea surface pCO2 due to a reduced solubility.
Comparing Fig. 9 with Fig. 7 reveals that the non-thermal
seasonal cycle of the sea surface pCO2 dominates over the
thermally driven seasonal cycle polewards of 40◦N. In con-
trast, the seasonal cycle in the subtropical North and South
Atlantic is driven by the thermal pCO2 component. The ther-
mal and non-thermal driven seasonal cycle of the equatorial
band and in the South Atlantic south of 35◦S compensate
each other, resulting in little variability within each band.

The seasonal cycle of the CO2 flux is largely driven by
the seasonal cycle of the sea surface pCO2 with only modest
modifications by the seasonal cycles of wind and solubility
(Fig. 7b). The temperature driven solubility and the wind
lead to a larger outgassing of CO2 in large areas in the high
latitudes in winter, where the sea surface pCO2 is supersat-
urated, and to an increasing uptake of CO2 in the subtropics
and low latitudes and vice versa in summer. Throughout the
entire Atlantic, the flux densities are considerably larger dur-
ing the northern hemisphere winter season, compared to the
summer. The neural network estimates shows a strong sea-
sonal CO2 outgassing in summer in the northern subtropics,
driven by the increasing pCO2, with a 6-month difference in
the southern hemisphere.

3.6 CO2 trends and inter-annual variability

Across large areas of the Atlantic, the 10 year trend of surface
ocean pCO2 is estimated to be lower than the atmospheric

Fig. 6. Difference in the surface ocean pCO2 in µatm between the decadal mean neural net-
work estimates (this study), corrected to the year 2000, and the estimates from the climatology
of Takahashi et al. (2009). Positive differences indicate higher pCO2 for the neural network
estimates.
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Fig. 7. Hovmöller plot of the long term mean seasonal cycle of (a) pCO2 in µatm and (b) the CO2 flux density in mol C · m−2 · yr−1.

Fig. 8. Difference in the surface ocean pCO2 seasonal cycle be-
tween the long term mean seasonal neural network estimates (this
study), corrected to the year 2000 and the climatology of Takahashi
et al. (2009). Positive differences indicate higher partial pressures
of CO2 in the neural network based estimates.

trend (Fig. 10a), but there are notable exceptions. In this plot,
the atmospheric trend has been subtracted from the long-term
mean trends for each 1◦×1◦ pixel, so that positive values
indicate a rate of increase faster than of the atmosphere and
vice versa for negative values.

The strongest increase in ocean surface pCO2 relative to
that in the atmosphere is found in the North Atlantic pole-
ward of 40◦N along the Gulf Stream and North Atlantic Cur-
rent. Here, the neural network output suggests an increase
in sea-surface pCO2 of more than 2 times the atmospheric
increase. Metzl et al. (2010) investigated the sink trend over

a similar time period (2001 to 2008) in the North Atlantic
subpolar gyre (53◦N to 57.5◦N, 45◦W to 35◦W and 57.5◦N
to 62◦N, 40◦W to 25◦W). These authors found a particularly
strong increase in the winter sea surface fCO2 of 5.8 ±1.1
and 7.2 ± 1.3 µatm · yr−1. While this is much stronger than
suggested here (see Fig. 10) both studies agree on the North
Atlantic subpolar gyre having a trend toward lower undersat-
uration over the ∼2000 to ∼2007 period. McKinley et al.
(2011) found a similar trend toward a weaker undersatura-
tion in their subtropical seasonally-stratified region around
40◦N for the period 1993 until 2005, but did not identify a
significant trend in the subpolar gyre over the same period.
This may reflect differences in the time period, as their anal-
yses with an earlier start, i.e., pre 1990, suggest also a trend
toward a weaker undersaturation.

Decadal trends in surface ocean pCO2, in the Labrador
Sea and some parts of the Icelandic Seas were much smaller
than that in the atmosphere, leading to an overall relatively
small trend for the entire region north of 40◦N. As the low
latitudes of the North Atlantic (0 to 40◦N) have close to zero
trend relative to that of the atmosphere, the entire North At-
lantic pCO2 trend is also very close to that of the atmosphere,
i.e., 1.80 µatm · yr−1 versus 1.90 µatm · yr−1 for the at-
mosphere. As expected from the uptake of anthropogenic
CO2 by the surface ocean, the majority of the ocean pCO2

trend stems from the non-thermal part, i.e., the increase in
surface ocean DIC (1.46 µatm · yr−1). However, the overall
warming trend in the North Atlantic over this decade further
enhances the ocean pCO2 trend quite considerably (with on
average stronger than atmospheric increases of 2.25 µatm ·
yr−1 from 40◦N to 60◦N and east of 50◦W and 4.03 µatm ·
yr−1 at 60◦N to 70◦N and 0◦ to 10◦W). Splitting the trend
into thermal and non-thermal component shows on average a
linear trend of 1.46 µatm · yr−1 for the non-thermal compo-
nent, while the thermal driven trend is on average 0.37 µatm ·

Fig. 7. Hovmöller plot of the long term mean seasonal cycle of (a) pCO2 in µatm and (b) the
CO2 flux density in molCm−2 yr−1.
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Fig. 7. Hovmöller plot of the long term mean seasonal cycle of (a) pCO2 in µatm and (b) the CO2 flux density in mol C · m−2 · yr−1.

Fig. 8. Difference in the surface ocean pCO2 seasonal cycle be-
tween the long term mean seasonal neural network estimates (this
study), corrected to the year 2000 and the climatology of Takahashi
et al. (2009). Positive differences indicate higher partial pressures
of CO2 in the neural network based estimates.

trend (Fig. 10a), but there are notable exceptions. In this plot,
the atmospheric trend has been subtracted from the long-term
mean trends for each 1◦×1◦ pixel, so that positive values
indicate a rate of increase faster than of the atmosphere and
vice versa for negative values.

The strongest increase in ocean surface pCO2 relative to
that in the atmosphere is found in the North Atlantic pole-
ward of 40◦N along the Gulf Stream and North Atlantic Cur-
rent. Here, the neural network output suggests an increase
in sea-surface pCO2 of more than 2 times the atmospheric
increase. Metzl et al. (2010) investigated the sink trend over

a similar time period (2001 to 2008) in the North Atlantic
subpolar gyre (53◦N to 57.5◦N, 45◦W to 35◦W and 57.5◦N
to 62◦N, 40◦W to 25◦W). These authors found a particularly
strong increase in the winter sea surface fCO2 of 5.8 ±1.1
and 7.2 ± 1.3 µatm · yr−1. While this is much stronger than
suggested here (see Fig. 10) both studies agree on the North
Atlantic subpolar gyre having a trend toward lower undersat-
uration over the ∼2000 to ∼2007 period. McKinley et al.
(2011) found a similar trend toward a weaker undersatura-
tion in their subtropical seasonally-stratified region around
40◦N for the period 1993 until 2005, but did not identify a
significant trend in the subpolar gyre over the same period.
This may reflect differences in the time period, as their anal-
yses with an earlier start, i.e., pre 1990, suggest also a trend
toward a weaker undersaturation.

Decadal trends in surface ocean pCO2, in the Labrador
Sea and some parts of the Icelandic Seas were much smaller
than that in the atmosphere, leading to an overall relatively
small trend for the entire region north of 40◦N. As the low
latitudes of the North Atlantic (0 to 40◦N) have close to zero
trend relative to that of the atmosphere, the entire North At-
lantic pCO2 trend is also very close to that of the atmosphere,
i.e., 1.80 µatm · yr−1 versus 1.90 µatm · yr−1 for the at-
mosphere. As expected from the uptake of anthropogenic
CO2 by the surface ocean, the majority of the ocean pCO2

trend stems from the non-thermal part, i.e., the increase in
surface ocean DIC (1.46 µatm · yr−1). However, the overall
warming trend in the North Atlantic over this decade further
enhances the ocean pCO2 trend quite considerably (with on
average stronger than atmospheric increases of 2.25 µatm ·
yr−1 from 40◦N to 60◦N and east of 50◦W and 4.03 µatm ·
yr−1 at 60◦N to 70◦N and 0◦ to 10◦W). Splitting the trend
into thermal and non-thermal component shows on average a
linear trend of 1.46 µatm · yr−1 for the non-thermal compo-
nent, while the thermal driven trend is on average 0.37 µatm ·

Fig. 8. Difference in the surface ocean pCO2 seasonal cycle between the long term mean
seasonal neural network estimates (this study), corrected to the year 2000 and the climatology
of Takahashi et al. (2009). Positive differences indicate higher partial pressures of CO2 in the
neural network based estimates.
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12 Peter Landschützer: Variability of the Atlantic Ocean Carbon Sink

Fig. 9. Mean seasonal cycle of the sea surface pCO2 driven by (a) the non-thermal drivers, such as changes in circulation, mixing, and
biology, and (b) the thermal driver, i.e., the changes in temperature. The decadal mean pCO2 has been added to both components.

Fig. 10. Linear trends(a) in sea surface pCO2 relative to that in the atmosphere and (b) in the CO2 flux over the period 1998-2007. The
relative trend in sea surface pCO2 was computed by subtracting the atmospheric mean trend subtracted. Areas with cross-hatch indicate
where the trend is outside the 95% confidence level (p ≥ 0.05). Trends are derived by applying a 12 month running mean to each pixel and
are calculated as the slope of a linear fit.

yr−1). The small differential increase in surface ocean pCO2

results in an almost steady strength of the Atlantic carbon
sink north of the equator (-0.007 Pg C · yr−1 · decade−1).

Trends for the South Atlantic show a slower increase in
the sea surface pCO2 relative to that in the atmosphere with
the exception of the eastern South Atlantic and parts along

the South American coast. On average, surface ocean pCO2

increased only by 0.98 µatm · yr−1 over the 1998 through
2007 period, resulting in a carbon flux increase of -0.14 Pg
C · yr−1 · decade−1. Similar to the North Atlantic, the main
driving force for the trend is the non-thermal component of
the pCO2 with an average trend of 0.76 µatm · yr−1 com-

Fig. 9. Mean seasonal cycle of the sea surface pCO2 driven by (a) the non-thermal drivers,
such as changes in circulation, mixing, and biology, and (b) the thermal driver, i.e., the changes
in temperature. The decadal mean pCO2 has been added to both components.

8845

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/10/8799/2013/bgd-10-8799-2013-print.pdf
http://www.biogeosciences-discuss.net/10/8799/2013/bgd-10-8799-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
10, 8799–8849, 2013

Variability of the
Atlantic Ocean

carbon sink

P. Landschützer et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

12 Peter Landschützer: Variability of the Atlantic Ocean Carbon Sink

Fig. 9. Mean seasonal cycle of the sea surface pCO2 driven by (a) the non-thermal drivers, such as changes in circulation, mixing, and
biology, and (b) the thermal driver, i.e., the changes in temperature. The decadal mean pCO2 has been added to both components.

Fig. 10. Linear trends(a) in sea surface pCO2 relative to that in the atmosphere and (b) in the CO2 flux over the period 1998-2007. The
relative trend in sea surface pCO2 was computed by subtracting the atmospheric mean trend subtracted. Areas with cross-hatch indicate
where the trend is outside the 95% confidence level (p ≥ 0.05). Trends are derived by applying a 12 month running mean to each pixel and
are calculated as the slope of a linear fit.

yr−1). The small differential increase in surface ocean pCO2

results in an almost steady strength of the Atlantic carbon
sink north of the equator (-0.007 Pg C · yr−1 · decade−1).

Trends for the South Atlantic show a slower increase in
the sea surface pCO2 relative to that in the atmosphere with
the exception of the eastern South Atlantic and parts along

the South American coast. On average, surface ocean pCO2

increased only by 0.98 µatm · yr−1 over the 1998 through
2007 period, resulting in a carbon flux increase of -0.14 Pg
C · yr−1 · decade−1. Similar to the North Atlantic, the main
driving force for the trend is the non-thermal component of
the pCO2 with an average trend of 0.76 µatm · yr−1 com-

Fig. 10. Linear trends (a) in sea surface pCO2 relative to that in the atmosphere and (b) in the
CO2 flux over the period 1998–2007. The relative trend in sea surface pCO2 was computed
by subtracting the atmospheric mean trend. Areas with cross-hatch indicate where the trend
is outside the 95 % confidence level (p ≥ 0.05). Trends are derived by applying a 12 month
running mean to each pixel and are calculated as the slope of a linear fit.
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pared to 0.19 µatm · yr−1 of the thermal component.
Taking the North and South Atlantic together, the trend

over the entire study region is one toward a stronger sink
over the 10 year period with an overall mean trend of 1.26
µatm · yr−1 and a flux trend of -0.15 Pg C · yr−1 · decade−1.

It is not possible to conclude from our data whether the
10-year trends we identify are part of a longer term trend
(Schuster et al., 2009) or whether they are part of a decadal
time-scale variability (Thomas et al., 2008; Gruber, 2009;
McKinley et al., 2011). The most recent study by (McKinley
et al., 2011) suggest the latter to be the case, but reported 50-
year trends in heat storage (Levitus et al., 2012) and interior
ocean oxygen changes in the North Atlantic (Stendardo and
Gruber, 2012) indicate that the North Atlantic and in par-
ticular its subpolar gyre has been subject to multi-decadal
changes. It is also tempting to point out that the resulting
pattern of a decreasing sink in large areas of the North At-
lantic and increasing sink in the South Atlantic appears to be
mirrored in the observation of a faster rate of accumulation
in anthropogenic CO2 in the South compared to the North
Atlantic (Wanninkhof et al., 2010). One needs to be careful,
though, as the surface ocean trends are for the sum of natural
and anthropogenic CO2, while the ocean interior trends are
for anthropogenic CO2 only.

The sea surface pCO2 exibits substantial year-to-year vari-
ability within the North Atlantic north of 40◦N and the east-
ern Equatorial and South Atlantic. In contrast, the subtropics
in both hemispheres show much less year-to-year variability.

Integrating our monthly air-sea CO2 flux estimates for
each year over the Atlantic ocean reveals small but signifi-
cant inter-annual variability (Fig. 11a). In particular, we find
the strongest variability during the second half of our study
period. Annual mean fluxes range from -0.39 ± 0.13 Pg C ·
yr−1 in 2001 up to -0.56 ± 0.18 Pg C · yr−1 in 2006. Fig-
ure 11b illustrates the inter-annual variabilities (IAV) for both
hemispheres and the entire Atlantic Ocean. The IAV, calcu-
lated as a 12 month running average, is fairly constant from
1998 to 2004 with a weak flux decrease in the northern hemi-
sphere counterbalanced by a weak increase in the southern
hemisphere. After 2004 the Atlantic Ocean sink increases
mainly due to increases in the southern hemisphere. The
standard deviations of the IAV (calculated as a 12 month run-
ning average and further detrended) for the northern hemi-
sphere, southern hemisphere and Atlantic Ocean are 0.02 Pg
C · yr−1, 0.02 Pg C · yr−1 and 0.04 Pg C · yr−1 respectively.
This result indicates only limited inter-annual variability in
both hemispheres on a basin scale.

Inter-annual variability of the sea-surface pCO2 in the
North Atlantic is often linked to variations in the North At-
lantic Oscillation (NAO) (e.g. Gruber et al., 2002; Schus-
ter and Watson, 2007; Thomas et al., 2008). The NAO
is the dominant large-scale climate mode in the Atlantic
Ocean (e.g. Hurrel, 1995) and impacts sea-surface pCO2 via
changes in the driving parameters. During positive NAO
phases, sea surface temperature shows a tripole pattern with

Fig. 11. (a) Seasonal and annual mean fluxes from 1998-2007 in the
Atlantic Ocean (44◦S to 79◦N and west of 30◦E). Dark blue shows
the results for the northern hemisphere winter months (DJF), light
blue the spring months (MAM), light red the summer months (JJA),
dark red the autumn months (SON). The annual mean flux is plotted
as a black line on top. (b) inter-annual variability (calculated using
a 12 month running mean) for the northern hemisphere (blue line),
the southern hemisphere (red line) and the entire Atlantic Ocean
(black line).

cold anomalies in the subpolar region and warm anomalies
in the mid-latitudes and corresponding changes in vertical
mixing and nutrient supply (Marshall et al., 2001). Corbière
et al. (2007) found an increase in sea surface pCO2 in the
subpolar gyre between the mid-1990s and mid-2000s linked
to an increase in SST due to a shift from positive to negative
NAO. We investigate the effect of the NAO by focusing on
two 10◦×10◦ boxes, one in the subtropical North Atlantic
(20◦N to 30◦N and 40◦W to 50◦W) and the other in the sub-
polar North Atlantic (50◦N to 60◦N and 30◦W to 40◦W).
Figure 12 illustrates the pCO2 estimate and their anomalies
for each box together with the NAO index. We find a weak
but significant (p ≤ 0.05) positive correlation in the subtrop-
ics (R=0.32) and negative correlation in the subpolar box
(R=-0.31). This pattern is consistent with that identified by
Thomas et al. (2008) on the basis of a modeling study (see
also summary by Gruber (2009) and recent multi-model anal-
ysis by Keller et al. (2012), and the available time-series anal-
yses (e.g Gruber et al., 2002; Bates, 2007) from the BATS
site). Clearly, an important driver are the NAO-associated
SST anomalies, but strongly modified by the various physi-
cal and biogeochemical changes that are driven by the NAO-
induced changes in heat fluxes and windstress (see e.g. Keller
et al., 2012).

Fig. 11. (a) Seasonal and annual mean fluxes from 1998–2007 in the Atlantic Ocean (44◦ S
to 79◦ N and west of 30◦ E). Dark blue shows the results for the Northern Hemisphere winter
months (DJF), light blue the spring months (MAM), light red the summer months (JJA), dark
red the autumn months (SON). The annual mean flux is plotted as a black line on top. (b) Inter-
annual variability (calculated using a 12 month running mean) for the Northern Hemisphere
(blue line), the Southern Hemisphere (red line) and the entire Atlantic Ocean (black line).
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14 Peter Landschützer: Variability of the Atlantic Ocean Carbon Sink

Fig. 12. (a) Temporal evolution of the pCO2 (in µatm) in the sub-
tropical (20◦N to 30◦N; 40◦W to 50◦W) and (b) in the subpolar box
(50◦N to 60◦N; 30◦W to 40◦W). The black line shows the spatial
average pCO2 within each box. Red triangles illustrate the average
sea surface measured pCO2 within each box and the green trian-
gles show the average neural network pCO2 co-located to the mea-
surements. (c) pCO2 anomalies (left axis in µatm - detrended and
smoothed using a 12 month running average filter) compared to the
NAO index (right axis - smoothed using a 12 month running average
filter). The dashed line shows the anomaly for the subtropical box,
the dotted line for the subpolar box and the green line illustrates the
NAO index.

4 Summary and conclusions

Our study suggests a decadal mean CO2 flux from 1998 to
2007 of 0.45± 0.15 Pg C · yr−1 for the Atlantic Ocean from
44◦S to 79◦N and west of 30◦E. This result is in good accor-
dance with recent findings from the RECCAP project (Schus-
ter et al., 2013). We find the strongest seasonal variability of
the sea surface pCO2 and the air-sea fluxes within the sub-
tropics in the northern and southern hemisphere, i.e. the
zones where the temperature effect dominates the seasonal
cycle of the sea surface pCO2. Trends in the sea surface
pCO2 suggest that in large areas polewards of 40◦N the sea
surface pCO2 increased faster than the atmospheric pCO2,
leading to a regional reduction in the carbon sink. However,
this is counterbalanced on basin scale by slower increasing
trends elsewhere in the North Atlantic. The South Atlantic in
contrast shows an increase of the basin carbon sink through-
out the study period. In total, the Atlantic Ocean carbon sink
increased at about -0.15 Pg C · yr−1 · decade−1. The stan-
dard deviation of the inter-annual variability of the spatially
integrated CO2 flux within the study period in the Atlantic
Ocean was 0.04 Pg C · yr−1 with both low inter-annual vari-
ability in the southern hemisphere (0.02 Pg C · yr−1) and in
the northern hemisphere (0.02 Pg C · yr−1).

It would be beneficial to extend the study period to fur-

ther investigate responses to climate modes such as the NAO
and to investigate multi-decadal variabilities. Currently how-
ever, we are limited to 1997 since no basin-wide chlorophyll-
a measurements are available before and chlorophyll-a is
a simple, but important proxy representing the relation be-
tween biology and pCO2. Modelled chlorophyll-a is avail-
able before the launch of satellite observations, but these
products to-date do not have achieved sufficient reliability as
yet. Our product shows that the the data collection and syn-
thesis effort of the marine carbon community makes it pos-
sible to investigate the seasonal to inter-annual variability of
the ocean carbon sink on a basin-scale based on observations.
Future measurements are expected to increase the accuracy
of observation based estimates, such as our neural network
approach, providing better historical estimates and more ac-
curate products to evaluate ocean biogeochemical models.

Appendix A

A1 Dividing the global ocean into biogeochemical
regimes using a self-organizing map

A map with 16 neurons was chosen, organized on a 2 dimen-
sional 4 × 4 point hexagonal grid. This results in the sepa-
ration of the world ocean into 16 biogeochemical provinces.
The Euclidean distance between a neuron and the datapoints
under consideration was used for the distance function. The
weight matrix (Wm,n) was randomly initialized.

After initialization, the training vectors are introduced to
the SOM with each training parameter as 1 element of the
vector. For the jth input vector pj

n with the length n the Eu-
clidean distances to each of the i=1,...,16 neurons represented
by each row i of the weight matrix are calculated:

dj
i =

√√√√ n∑
l=1

(Wi,l−pj
l )2 (A1)

dj
m comprises a vector containing the Euclidean distances

to each neuron i of the input vector pj
n. The neuron i, gets

updated by moving towards the average position of all the
training vectors j it was identified as a winner, or a close
neighbour of the winner. This sort of training is called ”batch
training”. This is done by adjusting the ith row of the initial
weights matrix after the iterative step q following Vesanto
et al. (2000):

Wi,n(q+1) =

∑r
j=1S(dneighbour−dj

i ) ·pj
n∑r

j=1S(dneighbour−dj
i )

(A2)

where W(i,n) is the ith row of the input weight matrix, dj
i

is the Euclidean distance between the neuron i and the pre-
sented jth input vector and dneighbour is the neighbourhood

Fig. 12. (a) Temporal evolution of the pCO2 (in µatm) in the subtropical (20◦ N to 30◦ N; 40◦ W
to 50◦ W) and (b) in the subpolar box (50◦ N to 60◦ N; 30◦ W to 40◦ W). The black line shows
the spatial average pCO2 within each box. Red triangles illustrate the average sea surface
measured pCO2 within each box and the green triangles show the average neural network
pCO2 co-located to the measurements. (c) pCO2 anomalies (left axis in µatm – detrended and
smoothed using a 12 month running average filter) compared to the NAO index (right axis –
smoothed using a 12 month running average filter). The dashed line shows the anomaly for
the subtropical box, the dotted line for the subpolar box and the green line illustrates the NAO
index.
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Fig. A1. Empirical semi-variograms of randomly chosen ensembles of the residuals as a function of distance in (a) the subpolar North
Atlantic with a median decorrelation length of 430m, (b) subtropical North Atlantic with a median decorrelation length of 166m, (c) the
Equatorial Atlantic with a median decorrelation length of 530m and (d) the South Atlantic with a median decorrelation length of 9m. Region
boarders are listed in Table 3.
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