

1 Long-term nitrogen addition decreases carbon leaching in a
2 **nitrogen-rich forest ecosystem**

3

4 Xiankai Lu¹, Frank S. Gilliam², Guirui Yu³, Linghao Li⁴, Qinggong Mao¹, Hao Chen¹,
5 Jiangming Mo^{1*}

6

7 ¹Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems,
8 South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650,
9 China;

10 ²Department of Biological Sciences, Marshall University, Huntington, West Virginia,
11 25755-2510, USA;

12 ³Institute of Geographical Sciences and Natural Resources Research, Chinese
13 Academy of Sciences, Beijing 100101, China;

14 ⁴State Key Laboratory of Vegetation Environmental Change, Institute of Botany,
15 Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China.

16

17 ***Corresponding author:** Jiangming Mo; Tel: +86758-2621187; Fax:
18 +86758-2623242; E-mail: mojm@scib.ac.cn

19

20

21

22

23

24

25

26 **Abstract**

27 Dissolved organic carbon (DOC) plays a critical role in the carbon (C) cycle of forest
28 soils, and has been recently connected with global increases in nitrogen (N) deposition.

29 Most studies on effects of elevated N deposition on DOC have been carried out in
30 N-limited temperate regions, with far fewer data available from N-rich ecosystems,

31 especially in the context of chronically elevated N deposition. Furthermore,

32 mechanisms for excess N-induced changes of DOC dynamics have been suggested to

33 be different between the two kinds of ecosystems, because of the different ecosystem

34 N status. The purpose of this study was to experimentally examine how long-term N

35 addition affects DOC dynamics below the primary rooting zones (the upper 20 cm

36 soils) in typically N-rich lowland tropical forests. We have a primary assumption that

37 long-term continuous N addition minimally affects DOC concentrations and effluxes

38 in N-rich tropical forests. Experimental N addition was administered at the following

39 levels: 0, 50, 100 and 150 kg N ha⁻¹ yr⁻¹, respectively. Results showed that seven years

40 of N addition significantly decreased DOC concentrations in soil solution, and

41 chemo-physical controls (solution acidity change and soil sorption) rather than

42 biological controls may mainly account for the decreases, in contrast to other forests.

43 We further found that N addition greatly decreased annual DOC effluxes from the

44 primary rooting zone and increased water-extractable DOC in soils. Our results

45 suggest that long-term N deposition could increase soil C sequestration in the upper

46 soils by decreasing DOC efflux from that layer in N-rich ecosystems, a novel

47 mechanism for continued accumulation of soil C in old-growth forests.

48

49 **Key words:** Nitrogen deposition; Nitrogen saturation; N-rich; DOC efflux; Carbon

50 cycle; Carbon sequestration; Soil solution; Tropical forest; Acidification

51 **1 Introduction**

52 Terrestrial ecosystem carbon (C) cycling and storage are a global concern in the
53 context of increasing atmospheric deposition of N in the biosphere, especially in
54 recent decades (Schindler and Bayley, 1993; Nadelhoffer *et al.*, 1999; Galloway *et al.*,
55 2004; LeBauer and Treseder, 2008; Hyvönen *et al.*, 2008). Although it is generally
56 known that N deposition can significantly alter terrestrial ecosystem C cycle, most
57 studies on the responses of ecosystem C cycling to N enrichment focused on net
58 primary productivity (NPP), net ecosystem productivity, net ecosystem CO₂ exchange,
59 and labile pools of C (LeBauer and Treseder, 2008; Hyvönen *et al.*, 2008; de Vries *et*
60 *al.*, 2009; Liu and Greaver, 2010; Thomas *et al.*, 2010). In contrast, effects of N on
61 dissolved organic C (DOC) have received less attention, likely because these effluxes
62 are small relative to the C fluxes associated with primary productivity or heterotrophic
63 respiration in terrestrial systems (Kalbitz *et al.*, 2000; Neff and Asner, 2001). However,
64 the dynamics of DOC are receiving increased attention, considering their essential
65 links in the bio-, hydro- and pedosphere (Kalbitz *et al.*, 2000) and their central
66 importance in soil-forming processes and carbon sequestration via DOC mobilization
67 and transport for both temperate and tropical soils (McDowell, 1998; Monteith *et al.*,
68 2007; Cusack *et al.*, 2010; Liu & Greaver, 2010; Kindler *et al.*, 2011).

69 Forest soils play a key role in the global C cycle (Lal, 2005). To explore the
70 importance of DOC effluxes under elevated N deposition in forest ecosystems,
71 ecologists have conducted such studies by the methods of simulating N deposition or
72 using natural N deposition gradients (Evans *et al.*, 2008; Sleutel *et al.*, 2009). Until
73 now, these studies are limited to DOC dynamics (e.g., concentrations or effluxes), and
74 have not been linked to the possible C sequestration induced by N deposition in
75 ecosystems. Meanwhile, these studies are mostly focused in temperate regions,

76 especially in North American and Europe, where ecosystems commonly belong to
77 glaciated landscapes and are N-limited under natural conditions (e.g. Vitousek and
78 Howarth, 1991; Aber et al., 1998, 2003; Magill et al., 2004). These studies often find
79 that DOC concentration in soil solution increases with elevated N deposition (Yano et
80 al., 2000; McDowell et al., 2004; Pregitzer et al., 2004; Adams et al., 2005; Findlay,
81 2005; Sleutel et al., 2009; Rappe-George et al., 2012).

82 Tropical forest ecosystems, which store approximately 13% of global soil C,
83 contribute greatly to the global C cycle; thus, even relatively small fluctuations in C
84 cycling can have global consequences (Post et al., 1982; Phillips et al., 1998; Findlay,
85 2005; Townsend et al., 2011). In contrast to their temperate and boreal counterparts,
86 many lowland tropical forests are typically N-rich ecosystems as compared with P
87 availability, with high soil N availability, rapid rates of N cycling, and the lack of N
88 limitation to NPP (Vitousek & Sanford, 1986; Matson et al., 1999; Hedin et al. 2009;
89 Wright et al., 2011; Brookshire et al., 2012). However, our understanding of how N
90 additions control DOC dynamics in these N-rich ecosystems remains far from
91 complete.

92 The purpose of this study was to examine the effects of how long-term (7 yr)
93 experimental addition of N affects DOC dynamics in the N-rich tropical forests. In
94 2002, we established long-term N deposition research plots in typical N-rich lowland
95 tropical mature forests of Southern China (Mo et al., 2006. 2008; Fang et al., 2009; Lu
96 et al., 2010), where atmospheric N deposition rates are commonly $> 19 \text{ kg N ha}^{-1} \text{ yr}^{-1}$,
97 and are expected to increase greatly in the future due to the rapid development of
98 agricultural and industrial activities (Zhou and Yan, 2001; Galloway et al., 2004; Lü
99 and Tian, 2007; Liu et al., 2011). Because soil solution chemistry can be considered as
100 a sensitive indicator of biogeochemical processes within forest stands, responding

101 quickly to disturbances or stresses such as excess N (e.g. McDowell et al., 2004;
102 Pregitzer et al., 2004; Michel et al., 2006; Gilliam and Adams, 2011), we mainly
103 focused our study on the response of soil solution chemistry to N addition. Earlier
104 measurements in these forests have indicated no changes in DOC dynamics in
105 response to short-term (1 to 2 years) N deposition treatment (Fang et al., 2009). In the
106 present study, we expected to find that long-term continuous N addition to N-rich
107 tropical forests has minimal effect on DOC concentrations and effluxes, because
108 highly weathered tropical soils commonly have high levels of N availability and rapid
109 N cycling (Martinelli et al. 1999; Vitousek and Sanford, 1986; Fang et al., 2009). At
110 the same time, we assumed that mechanisms for N-addition induced changes of DOC
111 dynamics may be different from those of N-limited temperate forests, because of the
112 different N status.

113

114 **2 Materials and methods**

115 **2.1 Study Site**

116 We carried out our work in the Dinghushan Biosphere Reserve (DBR). This site is
117 part of the UNESCO/MAB network and is within the Guangdong Province of
118 southern China (112°10' E, 23°10' N). The DBR extends approximately 1,200 ha
119 within the subtropical/tropical moist forest life zone. It was established in 1950 for the
120 protection of remnant of undisturbed monsoon evergreen broadleaf forests in the
121 lower subtropics, being the first National Natural Reserve in China in 1956. The
122 monsoon climate of this site averages 1927 mm precipitation per year with
123 approximately 75% occurring between March and August, and 6% between December
124 and February (Huang & Fan, 1982). Relative humidity averages 80% throughout the
125 year. Mean annual temperature is 21.0 C, ranging from mean coldest in January (12.6

126 C) and hottest in July (28.0 C). Currently, the region surrounding DBR experiences
127 high rates of atmospheric N deposition (21-38 kg N ha⁻¹ yr⁻¹ as inorganic N in bulk
128 precipitation) (Huang et al., 1994; Zhou and Yan, 2001; Fang et al., 2008). In
129 2004—2005 wet N deposition averaged ~33 kg N ha⁻¹ yr⁻¹ (Fang et al. 2008).

130 We established the research site at DBR in 2002 between 250 and 300 m above
131 sea level. According to ¹⁴C measurement of forest soils, forest stands have been
132 protected from direct human disturbance for > 400 years (Shen et al., 1999). These
133 support a rich assemblage of plant species, most of which are evergreen tree species
134 native to the tropics and subtropics. These include *Castanopsis chinensis* Hance,
135 *Schima superba* Chardn. & Champ., *Cryptocarya chinensis* (Hance) Hemsl.,
136 *Cryptocarya concinna* Hance, *Machilus chinensis* (Champ. Ex Benth.) Hemsl., and
137 *Syzygium rehderianum* Merr. & Perry (Cao et al., 2002). Canopy closure is typically
138 above 95% (Lu et al., 2010). Soils are oxisols (lateritic red earths) formed from
139 sandstone approximately 30 cm to 70 cm in depth.

140

141 **2.2 Experimental treatments**

142 The experiments involving N amendments were established in July 2003 (Mo et al.,
143 2006), with four N addition rates used: Control (0 N added), Low-N (50 kg N ha⁻¹
144 yr⁻¹), Medium-N (100 kg N ha⁻¹ yr⁻¹) and High-N (150 kg N ha⁻¹ yr⁻¹), which were
145 based on the present atmospheric N deposition rate and the expected increase in the
146 future due to the rapid development of agricultural and industrial activities (Galloway
147 et al., 2004; Lü and Tian, 2007). Considering that any effects of chronic low level N
148 addition are likely to be similar in direction, if not magnitude, to the short-term effects
149 of high rates of N addition (e.g. Báez et al. 2007; Clark & Tilman 2008; Lu e al.,
150 2010), results from our present concentration gradients could be as a prediction for the

151 future changes. A 10 m wide buffer strip surrounded each of 12 10-m x 20-m plots,
152 with plots and treatments replicated in triplicate and randomly located. A
153 hand-applied NH₄NO₃ solution was added each month to the forest floor of each plot
154 as 12 equal, monthly applications per year. Fertilizer was weighed and mixed with
155 20 L of deionized water (equivalent of 0.1 mm rainfall), with solution added via
156 backpack sprayer below the canopy. Two passes were made across each plot to ensure
157 an even distribution of fertilizer. Control plots received an equivalent volume of
158 deionized H₂O.

159

160 **2.3 Field water sampling and laboratory analysis**

161 Precipitation and air temperature were monitored in an open area adjacent to the study
162 plots. The data used in this study were from the weather station in the reserve
163 (Appendix 1).

164 Soil solution was collected at a 20 cm depth, a depth which represents the primary
165 rooting zone, and containing >70% of fine root biomass and 68% of total root
166 biomass (Liao et al., 1993; Wen et al., 1999). Soil solution was sampled with two
167 replicate zero tension tray lysimeters (755 cm² per tray) per plot, which were installed
168 in April/May 2003 (i.e., 3-4 months prior to our experiment). Each lysimeter was
169 connected with Tygon tubing to a 10-L bottle.

170 Soil solution samples were taken after each rain event (particularly after heavy
171 rainstorms) from July 2009 to June 2010. Soil solution volume was recorded and
172 composited within a plot on data of collection. All collectors were washed with
173 deionized H₂O immediately following each collection.

174 Within 24 to 48 hr of field collection, soil solution samples were filtered through
175 0.45 mm micron filters in the laboratory, then stored in plastic bottles at 4°C until

176 chemical analysis, which included NH_4^+ -N, NO_3^- -N, DOC, and pH. A Shimadzu
177 TOC-VCSH Total Organic Carbon analyzer was used to determine DOC, with
178 samples combusted at 680°C via platinum catalyst and CO_2 determined with a
179 non-dispersive infrared (NDIR) detector. Samples were analyzed for dissolved
180 inorganic nitrogen (NH_4^+ -N and NO_3^- -N) using a Lachat QC8000 Flow Injection
181 Analyzer.

182

183 **2.4 Field soil sampling and laboratory analysis**

184 Samples of mineral soil were collected in August 2009 with a 5-cm diameter corer at
185 0–10 and 10–20 cm depths. From 0–10 cm, cores were taken beneath the loose litter
186 layer (O_i) and comprised Oe and Oa horizon plus mineral soil to a total depth of 10
187 cm. Following this, the corer was driven to a 20 cm depth for sample collection.
188 Sampling in each plot took place in three randomly-selected locations

189 In the laboratory, roots and stones were removed by sieving soil to pass a 2-mm
190 screen; sieved soils mixed thoroughly by hand. For water-extractable DOC (WDOC)
191 measurements, one 10 g sub-sample from each sample was extracted with 50 ml of
192 deionized H₂O for 30 min and filtered through 0.45 μm cellulose–acetate filters, as
193 modified from (Hagedorn et al., 2002). Water-extractable DOC was determined with a
194 Shimadzu TOC analyzer as previously described. Other subsamples were air-dried
195 and used to measure pH (soil:water = 1:2.5) and nutrient content. Total C (total soil
196 organic C) was measured via titration with Fe^{2+} solution following dichromate
197 oxidation (Liu et al., 1996). Total N was determined by determination of NH_4^+
198 following semi-micro Kjeldahl digestion (Liu et al., 1996). Exchangeable Fe and Al
199 were extracted with 0.1mol/L BaCl₂ (50:1, solution:soil). Subsamples of soil were
200 oven-dried at 105°C to a constant weight (at least 24 hr) to allow reporting soil results
201 on an oven-dry basis.

202 **2.5 Field litterfall sampling**

203 Two 1-m x 1-m litter traps with a 1-mm mesh size were placed randomly in each plot
204 at an approximate 0.5-m height above ground surface. Traps were emptied each
205 month during the year, with litterfall separated into three components: leaves, small
206 woody material (branches and bark), and miscellaneous (mainly reproductive parts).

207

208 **2.6 Data analyses**

209 Monthly and annual C effluxes from the primary rooting zone for each plot were
210 calculated by multiplying DOC concentrations of soil leachate by the recorded water
211 volume for each sample collection and then summed appropriately. We calculated
212 mean values per month for NH_4^+ -N, NO_3^- -N, DOC and pH in water samples for
213 further analysis. Effects of N treatments on soil solution chemistry (NH_4^+ -N, NO_3^- -N,
214 DOC and pH) and litterfall during the study period were assessed with repeated
215 measure analysis of variance (ANOVA). One-way ANOVA with Tukey's honestly
216 significantly different (Tukey's HSD) test was used to test N treatment effects on
217 concentrations of NH_4^+ -N and NO_3^- -N, pH, and annual DOC effluxes for the whole
218 study period. One-way ANOVA with Tukey's HSD test was also employed to identify
219 N treatment effects on soil properties (soil pH, concentrations of total C and N, C/N
220 ratios, and extractable Fe and Al) and WDOC. Extractable Fe and Al pools were
221 estimated by multiplying extractable concentrations by soil bulk density, which were
222 taken from the Dinghushan research station. We conducted the planned contrast
223 analysis to test for differences between Control plots and N-treatment plots.

224 We also used general linear models to analyze relationships between DOC
225 concentrations and pH for soil solution sampled at 20 cm depth in all plots during the
226 study period. Linear regression analysis was also used to examine the relationship

227 between mean DOC of cm soil solution at 20 cm depth and extractable Fe and Al
228 pools in the upper 20 cm soil, respectively. All analyses were conducted using SPSS
229 14.0 for Windows® (SPSS, Chicago, IL, USA), with significant differences set with P
230 < 0.05 , unless otherwise stated.

231

232 **3 Results**

233 During the study period (July 2009 to June 2010), the total precipitation was 1992
234 mm, most falling during the March to August wet season (Appendix. 1). Mean
235 monthly precipitation in wet season (245 mm) nearly three times that of dry season
236 (88 mm). Mean monthly temperature was 22.2 °C. Total wet N deposition was 34.4
237 kg N ha⁻¹, with 18.2 kg ha⁻¹ dissolved inorganic N (7.7 kg ha⁻¹ NO₃⁻-N and 10.5 kg
238 ha⁻¹ NH₄⁺-N, respectively) and 16.2 kg ha⁻¹ dissolved organic N, respectively.

239

240 **3.1 DOC concentration and effluxes**

241 The repeated measures ANOVA revealed that N additions significantly decreased the
242 DOC concentrations and DOC effluxes at 20 cm depth over the study period ($df=3$,
243 $F=21.4$, $P=0.001$; $df=3$, $F=6.8$, $P=0.02$, respectively) (Figure 1a and c). There were
244 also significant interaction effects between treatment and time (months) on DOC
245 concentrations and effluxes ($df=33$, $F=3.6$, $P<0.001$; $df=33$, $F=2.1$, $P=0.006$,
246 respectively). For DOC concentrations, the decreased trends were more pronounced in
247 Medium-N and High-N plots than that of Low-N plots, and relative measures showed
248 they decreased by 15%, 28% and 31% in the Low-N, Medium-N and High-N plots,
249 respectively, relative to that of the Control plots over the whole year (Figure 1b). For
250 DOC effluxes, they decreased by 44%, 34% and 18% in the Low-N, Medium-N, and
251 High-N plots, respectively (Figure 1d).

252 Mean DOC concentrations in the Medium-N and High-N treatments were
253 significantly lower than that of the Controls ($P<0.05$; Table 1). Further analysis
254 showed that N additions decreased annual DOC effluxes at 20 cm, especially in the
255 Low-N and Medium-N plots, where the decreases were significant ($P<0.05$; Table 1).
256 Planned contrast analysis showed that there were significant N-treatment effects for
257 both mean DOC concentrations and annual DOC effluxes. The annual DOC effluxes
258 were 99.6, 63.6, 61.0, and 79.1 kg C ha⁻¹ yr⁻¹ in the Control, Low-N, Medium-N and
259 High-N plots, respectively.

260

261 **3.2 NO₃⁻-N, NH₄⁺-N and pH in soil solution**

262 The concentrations of NO₃⁻-N in N-treatment plots were generally higher than that of
263 the Controls (Fig. 2a), and the mean concentrations of NO₃⁻-N across the whole study
264 period increased, but not significant, in the N-treatment plots ($P=0.099$; Table 1),
265 although repeated measures ANOVA revealed that N additions did not significantly
266 increase concentrations of NO₃⁻-N ($df=3$, $F=2.4$, $P=0.16$).

267 Concentrations of NH₄⁺-N (commonly less than 1 mg N L⁻¹ as mean values for
268 the whole period) were much lower than those of NO₃⁻-N at all plots (Figure 2b).
269 There were no significant responses to N treatments across all plots and sampling
270 times. This is further confirmed by the result of repeated measures ANOVA ($df=3$,
271 $F=1.4$, $P=0.34$). In addition, the mean concentrations of NH₄⁺-N across the whole
272 study period also showed no significant differences between N treatments and
273 Controls (Table 1).

274 Repeated measures ANOVA showed that N additions significantly decreased soil
275 solution pH it at 20 cm depth ($df=3$, $F=42$, $P<0.001$). Similarly, across the whole

276 study period, N treatments changed significantly ($P=0.001$) the mean values of soil
277 solution pH, especially in the High-N plots (Table 1).

278

279 **3.3 Soil chemistry and litterfall**

280 Total soil N and C and extractable Al and Fe showed increasing trends with elevated
281 N addition (Table 2). Total N increased by 8%, 12%, 17% in the Low-N, Medium-N,
282 and High-N treatment plots, respectively, compared to the Controls; total C increased
283 by 10%, 13%, 17% in the Low-N, Medium-N, and High-N treatment plots,
284 respectively, compared to Controls. High-N treatments also showed marginally
285 significant effects on total C ($P=0.08$), and significant effects on extractable Fe
286 ($P=0.03$). Soil pH values decreased with increasing N treatment levels, especially in
287 the Medium-N and High-N plots ($P<0.1$). Further analysis showed that there were
288 significantly linear relationships between treatment levels and pH across all plots
289 ($R^2=0.54$, $N=12$, $P=0.006$). There was no significant difference among treatments for
290 soil C/N ratios. For WDOC, N additions increased their contents in this upper 0-20
291 cm soil, where the increases were significant under N treatments compared to the
292 Controls ($P=0.032$; Table 2). Annual litterfall was not significantly different among
293 treatments (Figure 3).

294

295 **3.4 Relationships between DOC, extractable Fe and Al, and pH**

296 Linear model analysis showed that DOC concentrations were significantly and
297 positively correlated with pH ($R^2=0.4$; $N=144$; $P<0.001$) in soil solution across all
298 sampling data (Figure 4). Meanwhile, extractable Al pool was not significantly
299 correlated with mean DOC concentration in the soil solution at 20cm soils ($R^2=0.004$,
300 $N=12$, $P=0.84$; Figure 5a), but extractable Fe pool exhibited significant and negative

301 correlations with DOC ($R^2=0.42$, $N=12$, $P=0.023$) (Figure 5b).

302

303 **4 Discussions**

304 **4.1 Effects of N addition on DOC leaching**

305 Earlier measurements **in the year 2005** at our site showed that N addition had no
306 significant effects on soil solution DOC concentrations **below the primary rooting**
307 **zone** (Fang et al., 2009). Current results, however, indicate that N treatments
308 significantly decreased DOC concentrations in soil solution **from this layer**,
309 suggesting that responses of DOC dynamics to N addition may be time-dependent in
310 N-rich tropical forests. This rejects our initial hypothesis, and also contrasts with other
311 studies in primarily N-limited ecosystems. In N-limited forests, increased N
312 availability generally results in more DOC production and subsequent leaching
313 (Pregitzer et al., 2004; Findlay, 2005; Adams et al., 2005; Sleutel et al., 2009). Smemo
314 et al. (2007) reported that deposition added as NaNO_3 significantly increased soil
315 solution DOC concentration and export from four different northern hardwood forests
316 in the Great Lakes region. McDowell et al. (1998, 2004) found greater concentrations
317 of DOC following the addition of $50\text{-}150 \text{ kg N ha}^{-1} \text{ yr}^{-1}$ as NH_4NO_3 . Sleutel et al.
318 (2009) provide additional evidence on higher concentrations of DOC in boreal forests
319 of Belgium under historic high N deposition.

320 **Biological mechanisms** (balance between processes that produce and consume
321 **DOC**) are often suggested to explain changes of DOC concentrations in leachate with
322 elevated N addition in typically N-limited ecosystems (Neff and Asner, 2001; Knorr et
323 al., 2005; Zak et al., 2008; Evans et al., 2008). Pregitzer et al. (2004) suggested that
324 increases in DOC **were** primarily biologically driven, resulting from changes in
325 production of organic substrates and processing within soil food webs. Bragazza et al.

326 (2006) indicated that the increased release of DOC from litter peat was a consequence
327 of enhanced enzymatic activity (e.g., phenol oxidase). In these studies, litterfall is the
328 major source of DOC to the forest floor and thus deeper soil horizons with elevated N
329 deposition (Currie et al., 1996; Magill and Aber, 2000; Park et al., 2002; Sleutel et al.,
330 2009). Gundersen et al. (1998) showed a significant correlation between DOC
331 concentration beneath the forest floor (Oa horizon) and litterfall amount. In a
332 meta-analysis from multiple terrestrial ecosystems, Liu & Greaver (2010) found that
333 N addition increased soil DOC concentration by an average of 18%, although soil
334 respiration was not altered, suggesting C leaching loss may increase in N-limited
335 ecosystems.

336 In our N-rich forest, however, there were no significant effects of N treatments on
337 litterfall production (Mo et al., 2008; Figure 3); at the same time, there was no
338 significant difference between N treatments in DOC dynamics in surface runoff (data
339 not shown), suggesting that litterfall inputs may play a minor role in DOC production
340 and subsequent fluxes into deeper soils under N treatments. Further studies showed
341 that N addition significantly inhibited litter decomposition and decreased soil
342 respiration in this forest (Mo et al., 2006, 2008). In addition, C mineralization, which
343 is the conversion from the organic C form to inorganic compound as a result of
344 decomposition reactions (Carter and Gregorich, 2008), is suggested to result in high
345 absolute loss of DOC (Chantigny et al., 1999; Huang and Schoenau, 1998; Sjöberg et
346 al., 2003). An incubation experiment this forest soils, however, showed that N
347 addition decreased organic C mineralization (Ouyang et al., 2008), indicating that
348 elevated N inputs may contribute to soil DOC accretion in the deeper soil by
349 decreasing DOC decomposition/consumption Our findings support this suggestion in
350 that N addition greatly increased water-extractable DOC (Table 2), a finding also

351 supported by other studies (e.g. Hagedorn et al., 2002; Sinsabaugh et al., 2004; Gallo
352 et al., 2005). Increases in extractable DOC under experimental N additions are
353 generally suggested to increase regional and global DOC effluxes from terrestrial
354 ecosystems to aquatic ecosystems (Pregitzer et al., 2004; Findlay, 2005; Mo et al.,
355 2008; Chapin et al., 2009). However, our results showed that N treatments decreased
356 DOC concentrations in leachate solutions. Therefore, biological control mechanisms
357 are unlikely responsible for declines in DOC in soil leachate of this N-rich tropical
358 forest.

359 Indeed, as suggested by Neff and Asner (2001), physical controls may also play an
360 important role in dominating DOC transformations in soils. Here, we propose that
361 both changes in solution acidity and soil sorption dynamics play a dominant role in
362 regulating DOC losses from N-rich ecosystems.

363 For example, acidity of soil solution may regulate the patterns of DOC responses.
364 It has been recognized that the increase of soil solution pH (or acid neutralizing
365 capacity) would lead to the net positive changes in DOC concentration by increasing
366 DOC solubility in soil (Monteith et al., 2007; Evans et al., 2008). This was
367 demonstrated by Evans et al. (2008) while reviewing field N addition experiments in
368 Europe and North American. It has been widely accepted that high N deposition could
369 accelerate soil acidification and have the potential to change the acidity of soil
370 solution (Aber et al., 1989; Vitousek et al., 1997; Bowman et al., 2008; Van den Berg
371 et al., 2008). In this study, we found that N treatments significantly decreased soil
372 solution pH below the dominant rooting zone. Further analysis showed that there was
373 a significant and positive relationship between soil solution pH and DOC
374 concentration.

375 It should be noted that the effect of pH on DOC dynamics may be confounded

376 with other mechanism related to soil properties, for example, sesquioxides in the
377 mineral soil (Moore et al., 1992; Guggenberger, 1994; Michalzik et al., 2001). Thus,
378 we suggest an alternative mechanism for our observations. Soils containing high
379 concentrations of extractable Fe or/and Al exhibit the capacity to adsorb DOC as
380 water percolates down through the soil profiles thereby decreasing DOC
381 concentrations (Boudot et al., 1989; Guggenberger, 1994; Kaiser and Guggenberger,
382 2000; Sleutel et al., 2009). Corre et al. (2010) suggested that sorption by hydrous Al
383 oxides could be an important reason for N -induced decreases of soil solution DOC. In
384 our study, however, the extractable Al did not vary significantly among Controls and
385 N-treatment plots, and there were no significant relationships between the extractable
386 Al pool and mean DOC concentration (Table 2, Figure 4a). By contrast, N addition
387 significantly increased extractable Fe. Also, there was a significant negative
388 relationship between extractable Fe pool and mean DOC concentration at 20 cm soil
389 solution (Figure 4b). Accordingly, it is possible that extractable Fe, rather than
390 extractable Al, may play a key role in DOC adsorption in N-treatment plots after
391 long-term N inputs. A better understand how Fe and Al oxides control DOC dynamics
392 in tropical forests merits further study.

393

394 **4.2 Effects of N addition on annual DOC effluxes**

395 Annual DOC effluxes below the 20-cm rooting zones in our study ranged from
396 60-100 kg C ha⁻¹ yr⁻¹, well within the range (30-139 kg C ha⁻¹ yr⁻¹) reported for
397 tropical forests by Aitkenhead and McDowell (2000). Our results demonstrated that
398 long-term N addition decreased annual DOC effluxes from the primary rooting zones,
399 especially in the Low-N and Medium-N plots. Considering that there were no
400 significant differences for annual water effluxes among treatments (data now shown),

401 **DOC concentration may dominate DOC effluxes, and lower DOC concentration led to**
402 **the decreased DOC fluxes under N-treatments.** The decreases in annual DOC effluxes
403 indicated that soils may accumulate much more DOC with elevated N addition,
404 consistent with the significant increase of water-extractable DOC at 0-20 cm soil layer
405 in N-treatment plots (Table 2), and suggesting that elevated N deposition might
406 enhance soil C sequestration by decreasing DOC effluxes in N-rich forests.

407 Zhou et al. (2006) found that this old-growth forest could accumulate soil C
408 (0–20cm depth) at about $610 \text{ kg C ha}^{-1} \text{ yr}^{-1}$ over the last two decades, but concluded
409 that the reason for this accumulation was unclear. Our results showed that
410 N-induced net C sequestration (via reduced DOC efflux, calculated by the difference
411 between N-treatment plots and the Controls) was about $36, 39, 21 \text{ kg C ha}^{-1} \text{ yr}^{-1}$ in the
412 Low-N, Medium-N, and High-N plots respectively, with a mean value of $32 \text{ kg C ha}^{-1} \text{ yr}^{-1}$
413 in N treatment plots, relative to controls (Table 1). In fact, we have found that N
414 treatments significantly increased soil total C after long-term N addition (Table 2).
415 Therefore, such decreases in annual DOC effluxes may explain, in part, this
416 accumulation of soil C observed by Zhou et al. (2006) considering the high N
417 deposition during the past decades in this region.

418

419 **4.3 Implications**

420 We have studied effects of long-term N additions on DOC dynamics of soil solution
421 in N-rich lowland tropical forests under a warm and humid climate. Our results
422 showed that long-term N additions significantly decreased DOC concentrations in soil
423 solution of deeper soils. It was suggested that chemo-physical controls (solution
424 acidity change and soil sorption) rather than biological controls could play a dominant
425 role in regulating DOC losses from N-rich ecosystems, in contrast to that of N-limited

426 ecosystems. We further found that N addition decreased greatly annual DOC
427 effluxes below the primary rooting zones, and increased water-extractable DOC in
428 soils. It is suggested that DOC constitutes an important carbon efflux to forested
429 mineral soils (Schwesig et al., 2003), and DOC adsorbed by soils may contribute to
430 the stock of organic C accumulating during soil development (Qualls and Bridgham,
431 2005). Therefore, our results indicate that long-term N deposition could increase soil
432 C sequestration in the upper soils by decreasing DOC efflux in N-rich forests, which
433 may support a novel mechanism responsible for continuing to accumulate C in
434 old-growth forests (Zhou et al., 2006; Luyssaert et al., 2008). Thus, this study may
435 give us a new understanding on forests ecosystem C cycling and possible C
436 sequestration, and also support data bases for model predictions in N-rich ecosystems,
437 with the globalization of N deposition. Although our findings would be typical for
438 other N-rich sites, however, our results and corresponding control mechanism should
439 be further validated in various tropical ecosystems in the future with elevated N
440 deposition.

441

442 **Acknowledgements**

443 This study was founded by the National Basic Research Program of China
444 (2010CB833502), National Natural Science Foundation of China (No. 30900202,
445 30970521), and the Knowledge Innovation Program of the Chinese Academy of
446 Sciences (Grant No.KSCX2-EW-J-28). We wish to thank Dinghushan Forest
447 Ecosystem Research Station for the strong support in the field work, and Drs. Guoyi
448 Zhou, Deqiang Zhang, Sandra Brown, Zhi'an Li, Weixing Zhu, Wei Zhang and Juan
449 Huang for invaluable suggestions in this paper, and Ms. Shaowei Chen and Ms.
450 Hongying Li for their skilful assistance in laboratory work.

451 **References**

452 Aber, J., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G., Kamakea, M.,
453 McNulty, S., Currie, W., Rustad, L., and Fernandez, I.: 1998: Nitrogen saturation in
454 temperate forest ecosystems, *Hypotheses revisited*, Bioscience, 48(11), 921-934,
455 1998.

456 Aber, J. D., Goodale, C. L., Ollinger, S. V., Smith, M.-L., Magil, A. H., Martin, M. E.,
457 Hallett, R. A., and Stoddard, J. L.: Is nitrogen deposition altering the nitrogen status
458 of Northeastern forests?, *Bioscience*, 53,375-389, 2003.

459 Adams, A.B., Harrison, R.B., Sletten, R.S., Strahm, B.D., Turnblom, E.C., Jensen,
460 C.M.: Nitrogen-fertilization impacts on carbon sequestration and flux in managed
461 coastal Douglas-fir stands of the Pacific Northwest, *Forest Ecology and
Management*, 220, 313-325, 2005.

463 Aitkenhead, J. A., and McDowell, W. H.: Soil C:N ratio as a predictor of annual
464 riverine DOC flux at local and global scales, *Global Biogeochem. Cycles*, 14(1),
465 127-138, 2000.

466 Báez, S., Fargione, J., Moore, D. I., Collins, S. L. & Gosz, J.R.: Atmospheric nitrogen
467 deposition in the northern Chihuahuan Desert: temporal trends and potential
468 consequences, *Journal of Arid Environments*, 68, 640-651, 2007.

469 Brookshire, E.N.J., Gerber, S., Menge, D.N.L., Hedin, L.O.: Large losses of inorganic
470 nitrogen from tropical rainforests suggest a lack of nitrogen limitation, *Ecology
Letters*, 15(1), 9-16, 2012.

472 Boudot, J.P., Belhadjbrahim, A., Steiman, R., Seiglemurandi, F.: Biodegradation of
473 synthetic organo-metallic complexes of iron and aluminium with selected metal to
474 carbon ratios, *Soil Biology & Biochemistry*, 21, 961-966, 1989.

475 Bragazza, L., Freeman, C., Jones, T., Rydin, H., Limpens, J., Fenner, N., Ellis, T.,
476 Gerdol, R., Hájek, M., Hájek, T., Iacumin, P., Kutnar, L., Tahvanainen, T.,
477 Toberman, H.: Atmospheric nitrogen deposition promotes carbon loss from peat
478 bogs, *Proceedings of the National Academy of Sciences of the United States of*
479 *America*, 103(51), 19386-19389, 2006.

480 Cao, H.L., Huang, Z.L., Zhang, L.Y., Kong, G.H.: *Vegetation Map of Dinghushan*
481 *Nature Reserve*, In *Tropical and Subtropical Forest Ecosystem*, Vo 19 (ed.
482 Dinghushan Forest Ecosystem Research Station), pp. 1–9, China Environmental
483 Science Press, Beijing, 2002. (in Chinese with English abstract)

484 Carter, M.R. & Gregorich, E.G. (editors): *Soil Sampling and Methods of Analysis*,
485 second edition. CRC Press, Taylor & Francis, Boca Raton, FL. 1224 pp. ISBN
486 978-0-8493-3586-0. 2008.

487 Chapin III, F.S., McFarland, J.W., McGuire, A.D., Euskirchen, E.S., Ruess, R.W.,
488 Kielland, K.: The changing global carbon cycle: linking plant-soil carbon dynamics
489 to global consequences, *Journal of Ecology*, 97, 840–850, 2009.

490 Chantigny, M. H., Angers, D. A., Prévost, D., Simard, R. R., Chalifour, F.-P.: 1999.
491 Dynamics of soluble organic C and C-mineralization in cultivated soils with
492 varying N fertilization, *Soil Biol. Biochem.*, 31:543-550, 1999.

493 Clark, C. M. & Tilman, D.: Loss of plant species after chronic low-level nitrogen
494 deposition to prairie grasslands. *Nature*, 451, 712-715, 2008.

495 Currie, W.S., Aber, J.D., McDowell, W.H., Boone, R.D., Magill, A.H.: Vertical
496 transport of dissolved organic C and N under long-term N amendments in pine and
497 hardwood forests, *Biogeochemistry*, 35, 471–505, 1996.

498 Cusack, D.F., Torn, M.S., McDowell, W.H., Silver, W.: The response of heterotrophic
499 activity and carbon cycling to nitrogen additions and warming in two tropical soils,
500 *Global Change Biology*, 16 (9), 2555-2572, 2010.

501 Corre, M.D., Veldkamp, E., Arnold, J., Wright, S.J.: Impact of elevated N input on soil
502 N cycling and losses in lowland and montane forests in Panama, *Ecology*, 91,
503 1715-1729, 2010.

504 de Vries, W., Solberg, S., Dobbertin, M., Sterba, H., Laubhann, D., van Oijen, M.,
505 Evans C., Gundersen, P., Kros, J., Wamelink, G. W. W., Reinds, G. J. & Sutton, M.
506 A.: The impact of nitrogen deposition on carbon sequestration by European forests
507 and heathlands, *Forest Ecology and Management*, 258 (8), 1814-1823, 2009.

508 Evans, C.D., Goodale, C.L., Caporn, S.J.M., Dise, N.B., Emmett, B.A., Fernandez, I.J.,
509 Field, C.D., Findlay, S.E.G., Lovett, G.M., Meesenburg, H., Moldan, F., Sheppard, J.: Does
510 elevated nitrogen deposition or ecosystem recovery from acidification drive an
511 increased dissolved organic carbon loss from upland soil? A review of evidence
512 from field nitrogen experiments, *Biogeochemistry*, 91 (1), 13-35, 2008.

513 Fang, Y.T., Gundersen, P., Mo, J.M., Zhu, W.X.: Input and output of dissolved
514 organic and inorganic nitrogen in subtropical forests of South China under high air
515 pollution, *Biogeosciences*, 5, 339-352, 2008.

516 Fang, Y., W. Zhu, P. Gundersen, J. Mo, G. Zhou, M. Yoh, (2009), Large loss of
517 dissolved organic nitrogen in nitrogen-saturated forests in subtropical China,
518 *Ecosystems*, 12, 33-45, 2009.

519 Findlay, S.E.G.: Increased carbon transport in the Hudson River: unexpected
520 consequence of nitrogen deposition?, *Front Ecol Environ*, 3(3), 133-137, 2005.

521 Galloway, J.N., Dentener, F.J., Capone, D.G., Boyer, E.W., Howarth, R.W., Seitzinger,
522 S.P., Asner, G.P., Cleveland, C., Green, P., Holland, E., Karl, D.M., Michaels, A.F.,

523 Porter, J.H., Townsend, A. and Vörösmarty, C.: Nitrogen cycles: past, present, and
524 future, *Biogeochemistry*, 70, 153-226, 2004.

525 Gilliam, F.S. & Adams, M.B.: Effects of nitrogen on temporal and spatial patterns of
526 nitrate in streams and soil solution of a central hardwood forest, *ISRN Ecology*,
527 Article ID 138487, doi:10.5402/2011/138487, 2011

528 Guggenberger, G.: Acidification effects on dissolved organic matter mobility in
529 spruce forest ecosystems, *Environment International*, 20, 31-41, 1994.

530 Gundersen, P., Emmett, B.A., Kjønaas, O.J., Koopmans, C.J., Tietema, A.: Impact of
531 nitrogen deposition on nitrogen cycling in forest: a synthesis of NITREX data,
532 *Forest Ecology and Management*, 101, 37-55, 1998.

533 Hagedorn, F., Blaser, P., Siegwolf, R.: Elevated atmospheric CO₂ and increased N
534 deposition effects on dissolved organic carbon- clues from $\delta^{13}\text{C}$ signature, *Soil*
535 *Biology and Biochemistry*, 34, 355-366, 2002.

536 Hedin, L. O., Brookshire, E. N. J., Menge, D. N. L., and Barron, A. R.: The nitrogen
537 paradox in tropical forest ecosystems, *Annual Review of Ecology, Evolution and*
538 *Systematics*, 40, 613–635, 2009.

539 Huang, Z.F. and Fan, Z.G: The climate of Dinghushan (in Chinese with English
540 abstract), In: *Tropical and Subtropical Forest Ecosystem*, vol 1, pp 11-23, Science
541 Press, Beijing, 1982.

542 Huang, Z.L., Ding, M.M., Zhang, Z.P., Yi, W.M.: The hydrological processes and
543 nitrogen dynamics in a monsoon evergreen broad-leaved forest of Dinghushan,
544 *Acta Phytoecologica Sinica*, 18, 194-199, 1994. (in Chinese with English abstract)

545 Huang, W. Z., Schoenau, J. J.: Fluxes of water-soluble nitrogen and phosphorous in
546 the forest floor and surface mineral soil of a boreal aspen stand, *Geoderma*, 81,
547 251-264, 1998.

548 Hyvönen, R., Persson, T., Andersson, S., Olsso, B., Ågren, G.I. and Linde S.: Impact
549 of long-term nitrogen addition on carbon stocks in trees and soils in northern
550 Europe, *Biogeochemistry*, 89, 121–137, 2008.

551 Kalbitz, K., Solinger, S., Park, J.H., Michalzik, B., Matzner, E.: Controls on the
552 dynamics of dissolved organic matter in soils: a review, *Soil Science*, 165, 277-304,
553 2000.

554 Kaiser, K. and Guggenberger, G.: The role of DOM sorption to mineral surfaces in
555 the preservation of organic matter in soils, *Org. Geochem*, 31, 711–725, 2000.

556 Kindler, R., Siemens, J., Kaiser, K., et al.: Dissolved carbon leaching from soil is a
557 crucial component of the net ecosystem carbon balance, *Global Change Biology*, 17
558 (2): 1167-1185, 2011.

559 Knorr, M., Frey, S. D. and Curtis, P. S.: Nitrogen additions and litter decomposition: a
560 meta-analysis, *Ecology*, 86, 3252-3257, 2005.

561 Lal, R.: Forest soils and carbon sequestration, *Forest Ecology and Management*, 220,
562 242-258, 2005.

563 LeBauer, D.S. and Treseder, K.K.: Nitrogen limitation of net primary productivity in
564 terrestrial ecosystems is globally distributed, *Ecology*, 89, 371-379. 2008.

565 Liao, L.Y., Ding, M.M., Zhang, Z.P., Yi, W.M., Guo, G.Z., Huang, Z.L.: Root biomass
566 and its nitrogen dynamic of some communities in Dinghushan, *Acta Phytoecol
567 Geobot Sin*, 17, 56-60, 1993 (in Chinese with English abstract)

568 Liu, G.S., Jiang, N.H. and Zhang, L.D.: Soil physical and chemical analysis and
569 description of soil profiles, Beijing: Standards Press of China, 1996

570 Liu, L. and Greaver, T.L.: A global perspective on below-ground carbon dynamics
571 under nitrogen enrichment, *Ecology Letters*, 13, 819-828, 2010.

572 Liu, X., Duan, L., Mo, J., Du, E., Shen, J., Lu, X., Zhang, Y., Zhou, X., He, C. and
573 Zhang, F.: Nitrogen deposition and its ecological impact in China: An overview,
574 Environmental Pollution, 159, 2251-2264, 2011.

575 Lu, X., Mo, J., Gilliam, F.S., Zhou, G. and Fang, Y.: Effects of experimental nitrogen
576 additions on plant diversity in an old-growth tropical forest, Global Change Biology,
577 16, 2688–2700, 2010.

578 Lü, C. and Tian, H.: Spatial and temporal patterns of nitrogen deposition in China:
579 Synthesis of observational data, Journal of Geophysical Research, 112, D22S05,
580 doi:10.1029/2006JD007990, 2007.

581 Luyssaert, S., Schulze, E-D., Börner, A., Knöhl, A., Hessenmöller, D., Law, B.E.,
582 Ciais, P., and Grace, J.: Old-growth forests as global carbon sinks, Nature, 455,
583 213-215, 2008.

584 Magill, A.H. and Aber, J.D.: Dissolved organic carbon and nitrogen relationships in
585 forest litter as affected by nitrogen deposition, Soil Biology & Biochemistry, 32,
586 603-613, 2000.

587 Magill, A.H., Aber, J.D., Currie, W.S., Nadelhoffer, K.J., Martin, M.E., McDowell,
588 W.H., Melillo, J.M., and Steudler, P.: Ecosystem response to 15 years of chronic
589 nitrogen additions at the Harvard Forest LTER, Massachusetts, USA, Forest
590 Ecology and Management, 196, 7-28, 2004.

591 Michalzik, B., Kalbitz, K., Park, J.H., Solinger, S., Matzner, E.: Fluxes and
592 concentrations of dissolved organic carbon and nitrogen - a synthesis for temperate
593 forests, Biogeochemistry, 52, 173–205, 2001.

594 Martinelli, L. A., Piccolo, M. C., Townsend, A. R., Vitousek, P. M., Cuevas, E.,
595 McDowell, W., Robertson, G. P., Santos, O. C., and Treseder, K.: Nitrogen stable

596 isotopic composition of leaves and soil: tropical versus temperate forests,
597 *Biogeochemistry*, 46, 45–65, 1999.

598 Matson, P.A., McDowell, W.H., Townsend, A.R., Vitousek, P.M.: The globalization of
599 nitrogen deposition: ecosystem consequences in tropical environments,
600 *Biogeochemistry*, 46, 67–83, 1999.

601 McDowell, W.H., Currie, W.S., Aber, J.D., Yano, Y.: Effects of chronic nitrogen
602 amendment on production of dissolved organic carbon and nitrogen in forest soils,
603 *Water, Air, & Soil Pollution*, 105, 175–182, 1998.

604 McDowell, W.H., Magill, A.H., Aitkenhead-Peterson, J.A., Aber, J.D.; Merriam, J.L.,
605 Kaushal, S.S.: Effects of chronic nitrogen amendment on dissolved organic matter
606 and inorganic nitrogen in soil solution, *Forest Ecology and Management*, 196,
607 29-41, 2004.

608 Michel, K., Matzner, E., Dignac, M.F., Kögel-Knabner, I.: Properties of dissolved
609 organic matter related to soil organic matter quality and nitrogen additions in
610 Norway spruce forest floors, *Geoderma*, 130, 250-264, 2006.

611 Mo, J.M., Brown, S., Xue, J.H., Fang, Y. and Li, Z.: Response of litter decomposition
612 to simulated N deposition in disturbed, rehabilitated and mature forests in
613 subtropical China, *Plant and Soil*, 282,135-151, 2006.

614 Mo, J.M., Zhang, W., Zhu,W., Gundersen, P., Fang, F., Li,D., Wang, H.: Nitrogen
615 addition reduces soil respiration in a mature tropical forest in southern China,
616 *Global Change Biology*, 14, 403-412, 2008

617 Monteith, D.T., Stoddard, J.L., Evans, C.D., de Wit, H.A., Forsius, M., Högåsen, T.,
618 Wilander, A., Skjelkvåle, B.L., Jeffries, D.S., Vuorenmaa, J., Keller, B., Kopácek, J.,
619 Vesely, J.: Dissolved organic carbon trends resulting from changes in atmospheric
620 deposition chemistry, *Nature*, 450, 537-540, 2007.

621 Moore, T.R., Desouza, W., Koprivnijak, J.F.: Controls on the sorption of dissolved
622 organic carbon in soils, *Soil Science*, 154, 120–129, 1992.

623 Nadelhoffer, K.J., Emmett, B.A.; Gundersen, P., Kjonaas, O.J., Koopmans, C.J.,
624 Schleppi, P., Tietema, A., Wright, R.F.: Nitrogen deposition makes a minor
625 contribution to carbon sequestration in temperate forests, *Nature*, 398, 145-148,
626 1999.

627 Neff, J.C. and Asner, G.P.: Dissolved organic carbon in terrestrial ecosystems:
628 Synthesis and a model, *Ecosystems*, 4(1), 29-48, 2001.

629 Ouyang, X., Zhou, G., Huang, Z., Zhou, C., Li, J., Shi, J., Zhang, D.: Effect of N and
630 P addition on soil organic C potential mineralization in forest soils in South China,
631 *Journal of Environmental Sciences*, 20 (9), 1082-1089, 2008.

632 Park, J.H., Kalbitz, K., and Matzner, E.: Resource control on the production of
633 dissolved organic carbon and nitrogen in a deciduous forest floor, *Soil Biology &*
634 *Biochemistry*, 34, 813–822, 2002.

635 Phillips, O.L., Malhi, Y., Higuchi, N., Laurance, W.F., Nuñez, P.V., Vasquez, R.M.,
636 Laurance, S.G., Ferreira, L.V., Stern, M., Brown, S. and Grace, J.: Changes in the
637 carbon balance of tropical forests: evidence from long-term plots, *Science*, 282,
638 439-442, 1998.

639 Post, W.M., Emanuel, W.R., Zinke, P.J. and Stangenberger, A.G.: Soil carbon pools
640 and world life zones, *Nature*, 298, 156-159, 1982.

641 Pregitzer, K.S., Zak, D.R., Burton, A.J., Ashby, J.A. and MacDonald, N.W.: Chronic
642 nitrate additions dramatically increase the export of carbon and nitrogen from
643 northern hardwood ecosystems, *Biogeochemistry*, 68, 179–197, 2004.

644 Pregitzer, K.S., Burton, A.J., Zak, D.R., Talhelm, A.F.: Simulated chronic nitrogen
645 deposition increases carbon storage in northern temperate forests, *Global Change
646 Biology*, 14, 142-153, 2008.

647 Qualls, R.G., Bridgman, S.D.: Mineralization rate of ^{14}C -labeled dissolved organic
648 matter from leaf litter in soils of a weathering chronosequence, *Soil Biology &
649 Biochemistry*, 37, 905–916, 2005.

650 Rappe-George, M. O., Gärdenäs, A. I., and Kleja, D. B.: The impact of four decades
651 of annual nitrogen addition on dissolved organic matter in a boreal forest soil,
652 *Biogeosciences Discuss*, 9, 12433–12467, 2012.

653 Schindler, D.W. and Bayley, S.E.: The biosphere as an increasing sink for atmospheric
654 carbon – estimates from increased nitrogen deposition, *Global Biogeochemical
655 Cycles*, 7 (4), 717-733, 1993.

656 Schwesig, D., Kalbitz, K., Matzner, E.: Mineralization of dissolved organic carbon in
657 mineral soil solution of two forest soils, *Journal of Plant Nutrition and Soil Science*,
658 166, 585–593, 2003.

659 Shen, C.D., Liu, D.S., Peng, S.L., Sun, Y.M., Jiang, M.T., Yi, W.X., Xing, C.P., Gao,
660 Q.Z., Li, Z., Zhou, G.Y.: ^{14}C measurement of forest soils in Dinghushan Biosphere
661 Reserve, *Chinese Science Bulletin*, 44(3), 251-256, 1994.

662 Sinsabaugh, R.L., Zak, D.R., Gall, M. o, Lauber, C. and Amonette, R.: Nitrogen
663 deposition and dissolved organic carbon production in northern temperate forests,
664 *Soil Biology & Biochemistry*, 36, 1509-1515, 2004.

665 Sjöberg, G., Bergkvist, B., Berggren, D., Nilsson, S.I.: Long-term N addition effects
666 on the C mineralization and DOC production in mor humus under spruce, *Soil
667 Biology & Biochemistry*, 35, 1305–1315, 2003.

668 Sleutel S., Vandenbruwane, J., De Schrijver, A., Wuyts, K., Moeskops, B., Verheyen,
669 K. and De, Neve S.: Patterns of dissolved organic carbon and nitrogen fluxes in
670 deciduous and coniferous forests under historic high nitrogen deposition,
671 Biogeosciences, 6, 2743-2758, 2009.

672 Smemo, K.A., Zak, D.R., Pregitzer, K.S. and Burton, A.J.: Characteristics of DOC
673 exported from northern hardwood forests receiving chronic experimental NO_3^-
674 deposition, Ecosystems, 10, 369-379, 2007.

675 Thomas, R.Q., Canham, C.D., Weathers, K.C. and Goodale, C.L.: Increased tree
676 carbon storage in response to nitrogen deposition in the US, Nature Geoscience,
677 3(1), 13-17, 2010.

678 Townsend, A., Cleveland, C., Houlton, B., Alden, C., White, J.W.: Multi-element
679 regulation of the tropical forest carbon cycle, Frontiers in Ecology and the
680 Environment, 9, 9-17, 2011.

681 Vitousek, P.M. and Sanford, R.L.: Nutrient cycling in moist tropical forest, Annual
682 Review of Ecological Systems, 17, 137–167, 1986.

683 Vitousek, P.M. and Howarth, R.W.: Nitrogen limitation on land and in the sea. How
684 can it occur?, Biogeochemistry, 13, 87-115, 1991.

685 Wen, D.Z., Wei, P., Kong, G.H. and Ye, W.H.: Production and turnover rate of fine
686 roots in two lower subtropical forest sites at Dinghushan, Acta Phytoecol Sin, 23,
687 361-369, 1999. (in Chinese with English abstract)

688 Wright, S.J., Yavitt J.B., Wurzburger, N., Turner, B.L., Tanner, E.V., Sayer, E.J.,
689 Santiago, L.S., Kaspari, M., Hedin, L.O., Harms, K.E., Garcia, M.N., Corre, M.D.:
690 Potassium, phosphorus or nitrogen limit root allocation, tree growth and litter
691 production in a lowland tropical forest, Ecology, 92, 1616-1625, 2011.

692 Yano, Y., McDowell, W.H. and Aber, J.D.: Biodegradable dissolved organic carbon in
693 forest soil solution and effects of chronic nitrogen deposition, *Soil Biology &*
694 *Biochemistry*, 32, 1743-1751, 2000.

695 Zak, D.R., Holmes, W.E., Burton, A.J., Pregitzer, K.S. and Talhelm, A.F.:
696 Simulated atmospheric NO_3^- deposition increases soil organic matter by slowing
697 decomposition, *Ecological Applications*, 18, 2016-2027, 2008.

698 Zhou, G.Y. and Yan, J.H.: The influences of regional atmospheric precipitation
699 characteristics and its element inputs on the existence and development of
700 Dinghushan forest ecosystems, *Acta Ecologica Sinica*, 21, 2002-2012, 2001. (in
701 Chinese with English abstract)

702 Zhou, G.Y., Liu, S.G., Li, Z.A., Zhang, D.Q., Tang, X.L., Zhou, C.Y., Yan, J.H., Mo,
703 J.M.: Old-growth forests can accumulate carbon in soils, *Science*, 314, 1417, 2006.

704 **Tables**

705

706 **Table 1** Effects of N addition on average concentrations of DOC, NO_3^- -N, NH_4^+ -N,
 707 and pH, and annual DOC efflux in soil solutions below the primary rooting zones
 708 (0-20 cm soils) during the periods from July 2009 to June 2010. The different
 709 lowercase letters indicate significant differences at $P<0.05$ level, and no letters
 710 indicate no significant differences among N treatment levels, respectively (Tukey's
 711 HSD test); *Contrast Test* is conducted between N treatments and the Controls using
 712 planned contrast analysis. Values are mean with S.E. in parentheses.

N treatments	DOC (mg L ⁻¹)	DOC efflux kg C ha ⁻¹ yr ⁻¹	NO_3^- -N (mg L ⁻¹)	NH_4^+ -N (mg L ⁻¹)	pH
Control	23.96(2.18)a	99.61(2.63)a	9.74(0.92)	0.24(0.01)	3.81(0.01)a
Low-N	20.19(1.16)ab	63.62(6.25)b	11.26(0.40)	0.23(0.01)	3.78(0.01)a
Medium-N	17.10(0.92)b	60.99(8.87)b	11.74(0.82)	0.24(0.03)	3.78(0.00)a
High-N	14.98(0.46)b	79.06(3.73)ab	14.04(2.05)	0.45(0.20)	3.70(0.01)b
<i>Contrast Test</i>	<i>P</i> =0.003	<i>P</i> =0.002	<i>P</i> =0.099	<i>P</i> =0.58	<i>P</i> =0.001

713 **Table 2** Responses of soil chemistry in the primary rooting zones (0-20 cm soils) to N
 714 addition in the lowland tropical forest of southern China in August, 2009. The
 715 different lowercase letters indicate significant differences at $P<0.05$ level, and no
 716 letters indicate no significant differences among N treatment levels, respectively
 717 (Tukey's HSD test). *Contrast Test* is conducted between N treatments and the
 718 Controls using planned contrast analysis.

719

Parameters	N treatments				<i>Contrast Test</i>
	Control	Low-N	Medium-N	High-N	
Total N (mg g ⁻¹)	1.90(0.11)	2.05(0.08)	2.13(0.09)	2.22(0.06)	$P=0.045$
Total C (mg g ⁻¹)	21.88(0.40)	24.17(0.97)	24.82(0.50)	25.64(1.44)	$P=0.023$
C/N ratio	11.27(0.45)	11.53(0.83)	11.45(0.59)	11.29(0.44)	$P=0.83$
WDOC(mg Kg ⁻¹)	107.43(8.24)	160.92(25.55)	140.10(10.97)	179.20(20.30)	$P=0.032$
Al ³⁺ (m mol kg ⁻¹)	30.50(1.31)	30.54(2.78)	31.49(1.66)	31.54(1.60)	$P=0.67$
Fe ³⁺ (m mol kg ⁻¹)	0.12(0.013)a	0.17(0.018)ab	0.17(0.020)ab	0.20(0.010)b	$P=0.012$
pH (H ₂ O)	3.87(0.02)	3.84(0.00)	3.75(0.05)	3.75(0.04)	$P=0.045$

720 Notes: Total C means total soil organic carbon; WDOC means water-extracted
 721 dissolved organic carbon; Values are means with SE in parentheses.

722

723

724

725

726

727

728

729

730

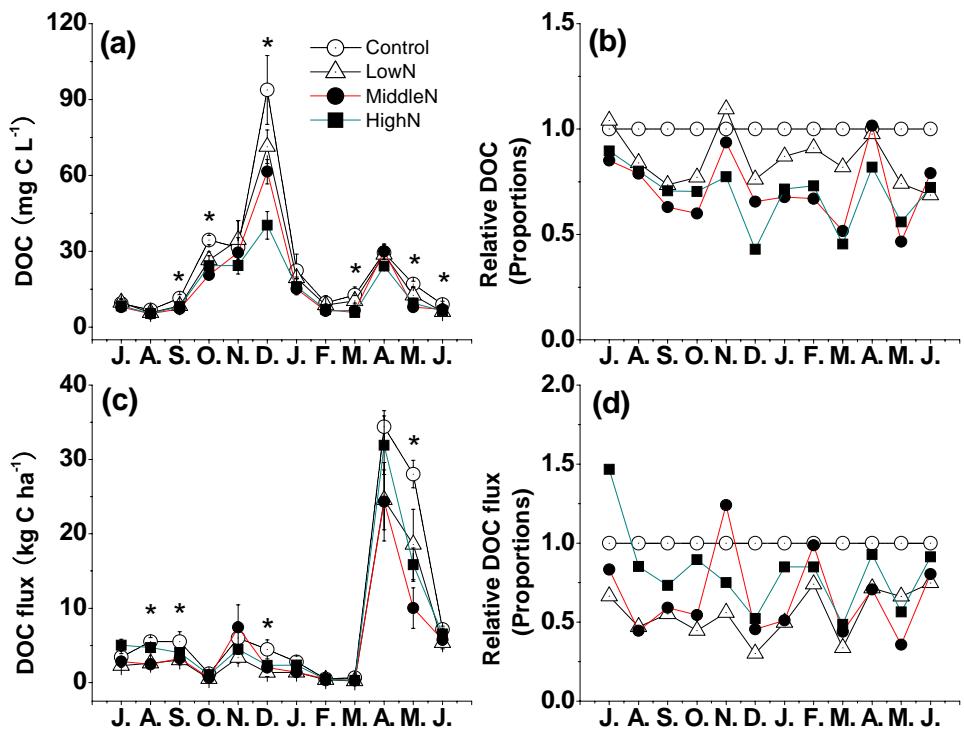
731 **Figure Legends**
732

733 **Figure 1** Responses of DOC concentration (a) and its relative concentration (b), and
734 DOC efflux (c) and its relative efflux (d) to long-term N addition below the
735 primary rooting zone in the lowland tropical forests of Southern China. **Soil**
736 **leachate data were available from July 2009 to June 2010.** Notes: Asterisk (*)
737 indicates that there are significant differences at $P<0.05$ level between N
738 treatments and the Controls using planned contrast analysis.

739 **Figure 2** Responses of NO_3^- -N (a), NH_4^+ -N (b) and pH (c) dynamics to long-term N
740 addition in soil solution below the dominant rooting zone in the lowland tropical
741 forests of Southern China. Asterisk (*) indicates that there are significant
742 differences at $P<0.05$ level between N treatments and the Controls using planned
743 contrast analysis.

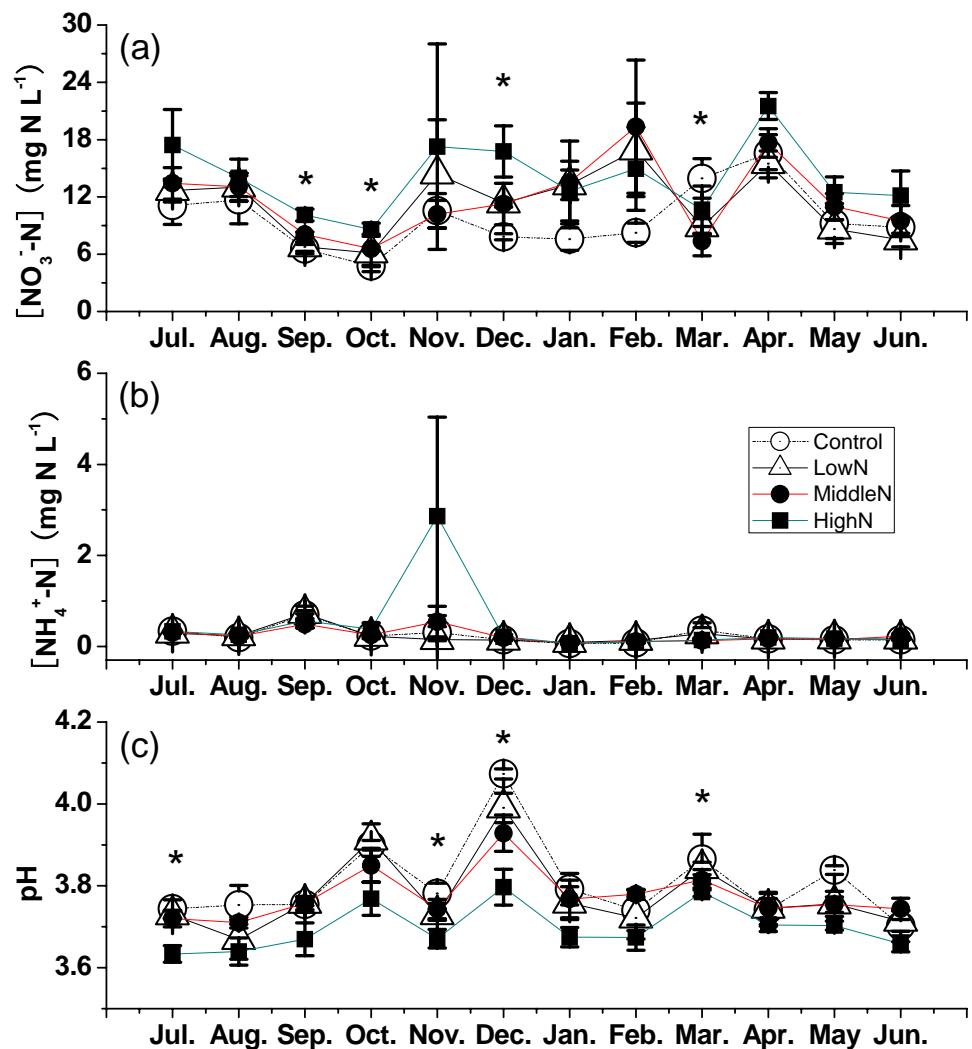
744 **Figure 3** Monthly dynamics of litterfall with elevated N addition in the lowland
745 tropical forests of Southern China during the study period.

746 **Figure 4** Relationships between DOC concentrations and pH in soil solutions across
747 all plots during the study period. Notes: Triangles (Δ) indicate DOC concentration
748 at control plots, and solid circles (\bullet) indicate DOC concentration at N-treatments
749 plots.

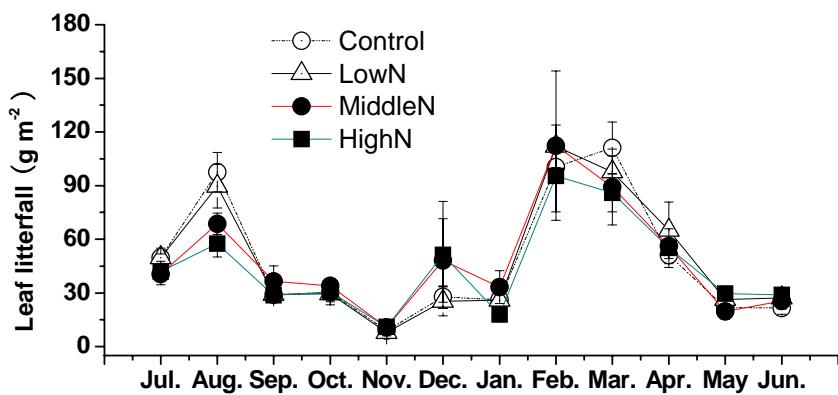

750 **Figure 5** Relationships between mean DOC concentrations in soil solution during the
751 study period and soil extractable Al and Fe pools in upper 0-20cm mineral soils.

752

753


754

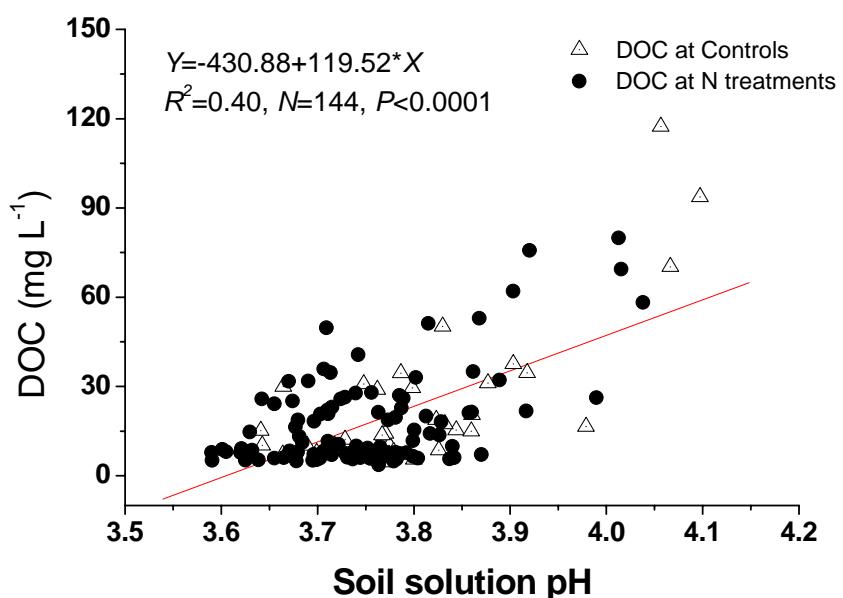
755


756

757 **Figure 1**

758
759

Figure 2

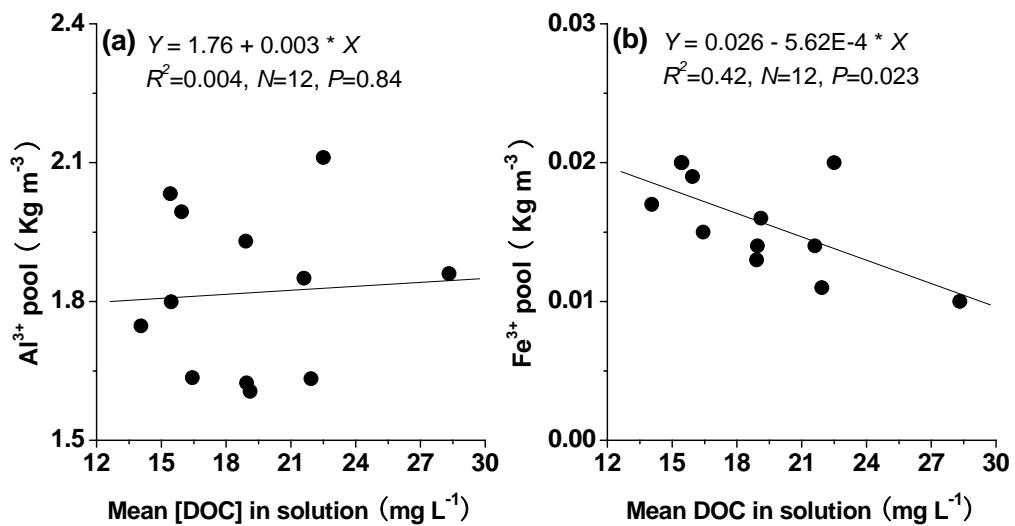

760

761 **Figure 3**

762

763

764



765

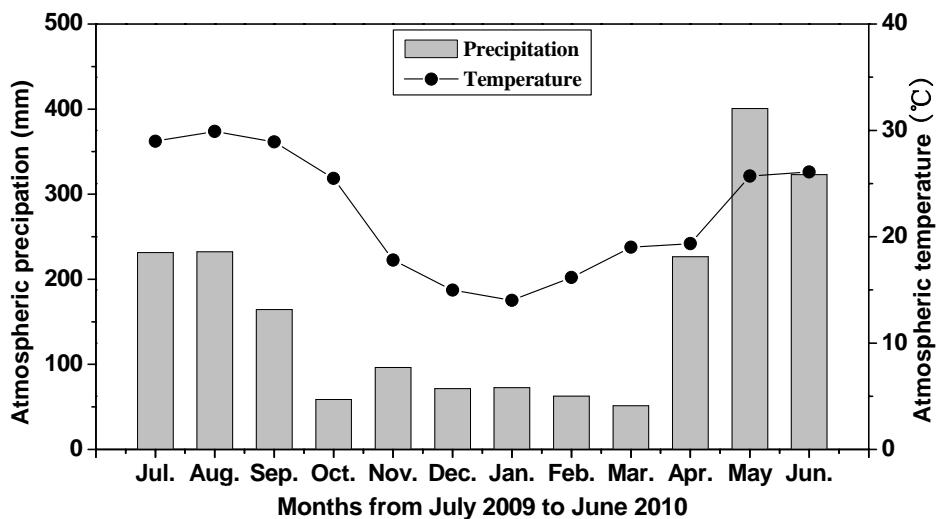
766

767 **Figure 4**

768

769
770

Figure 5


771

772

773

774

775

776
777

Appendix 1 Monthly precipitation and monthly mean air temperature at Dinghushan

778

Biosphere Reserve, southern China, during this study period.