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Abstract  26 

Dissolved organic carbon (DOC) plays a critical role in the carbon (C) cycle of forest 27 

soils, and has been recently connected with global increases in nitrogen (N) deposition. 28 

Most studies on effects of elevated N deposition on DOC have been carried out in 29 

N-limited temperate regions, with far fewer data available from N-rich ecosystems, 30 

especially in the context of chronically elevated N deposition. Furthermore, 31 

mechanisms for excess N-induced changes of DOC dynamics have been suggested to 32 

be different between the two kinds of ecosystems, because of the different ecosystem 33 

N status. The purpose of this study was to experimentally examine how long-term N 34 

addition affects DOC dynamics below the primary rooting zones (the upper 20 cm 35 

soils) in typically N-rich lowland tropical forests. We have a primary assumption that 36 

long-term continuous N addition minimally affects DOC concentrations and effluxes 37 

in N-rich tropical forests. Experimental N addition was administered at the following 38 

levels: 0, 50, 100 and 150 kg N ha-1 yr-1, respectively. Results showed that seven years 39 

of N addition significantly decreased DOC concentrations in soil solution, and 40 

chemo-physical controls (solution acidity change and soil sorption) rather than 41 

biological controls may mainly account for the decreases, in contrast to other forests. 42 

We further found that N addition greatly decreased annual DOC effluxes from the 43 

primary rooting zone and increased water-extractable DOC in soils. Our results 44 

suggest that long-term N deposition could increase soil C sequestration in the upper 45 

soils by decreasing DOC efflux from that layer in N-rich ecosystems, a novel 46 

mechanism for continued accumulation of soil C in old-growth forests. 47 

 48 

Key words: Nitrogen deposition; Nitrogen saturation; N-rich; DOC efflux; Carbon 49 

cycle; Carbon sequestration; Soil solution; Tropical forest; Acidification 50 



 3

1  Introduction 51 

Terrestrial ecosystem carbon (C) cycling and storage are a global concern in the 52 

context of increasing atmospheric deposition of N in the biosphere, especially in 53 

recent decades (Schindler and Bayley, 1993; Nadelhoffer et al., 1999; Galloway et al., 54 

2004; LeBauer and Treseder, 2008; Hyvönen et al., 2008). Although it is generally 55 

known that N deposition can significantly alter terrestrial ecosystem C cycle, most 56 

studies on the responses of ecosystem C cycling to N enrichment focused on net 57 

primary productivity (NPP), net ecosystem productivity, net ecosystem CO2 exchange, 58 

and labile pools of C (LeBauer and Treseder, 2008; Hyvönen et al., 2008; de Vries et 59 

al., 2009; Liu and Greaver, 2010; Thomas et al., 2010). In contrast, effects of N on 60 

dissolved organic C (DOC) have received less attention, likely because these effluxes 61 

are small relative to the C fluxes associated with primary productivity or heterotrophic 62 

respiration in terrestrial systems (Kalbitz et al., 2000; Neff and Asner, 2001). However, 63 

the dynamics of DOC are receiving increased attention, considering their essential 64 

links in the bio-, hydro- and pedosphere (Kalbitz et al., 2000) and their central 65 

importance in soil-forming processes and carbon sequestration via DOC mobilization 66 

and transport for both temperate and tropical soils (McDowell, 1998; Monteith et al., 67 

2007; Cusack et al., 2010; Liu & Greaver, 2010; Kindler et al., 2011). 68 

Forest soils play a key role in the global C cycle (Lal, 2005). To explore the 69 

importance of DOC effluxes under elevated N deposition in forest ecosystems, 70 

ecologists have conducted such studies by the methods of simulating N deposition or 71 

using natural N deposition gradients (Evans et al., 2008; Sleutel et al., 2009). Until 72 

now, these studies are limited to DOC dynamics (e.g., concentrations or effluxes), and 73 

have not been linked to the possible C sequestration induced by N deposition in 74 

ecosystems. Meanwhile, these studies are mostly focused in temperate regions, 75 



 4

especially in North American and Europe, where ecosystems commonly belong to 76 

glaciated landscapes and are N-limited under natural conditions (e.g. Vitousek and 77 

Howarth, 1991; Aber et al., 1998, 2003; Magill et al., 2004). These studies often find 78 

that DOC concentration in soil solution increases with elevated N deposition (Yano et 79 

al., 2000; McDowell et al., 2004; Pregitzer et al., 2004; Adams et al., 2005; Findlay, 80 

2005; Sleutel et al., 2009; Rappe-George et al., 2012). 81 

Tropical forest ecosystems, which store approximately 13% of global soil C, 82 

contribute greatly to the global C cycle; thus, even relatively small fluctuations in C 83 

cycling can have global consequences (Post et al., 1982; Phillips et al., 1998; Findlay, 84 

2005; Townsend et al., 2011). In contrast to their temperate and boreal counterparts, 85 

many lowland tropical forests are typically N-rich ecosystems as compared with P 86 

availability, with high soil N availability, rapid rates of N cycling, and the lack of N 87 

limitation to NPP (Vitousek & Sanford, 1986; Matson et al., 1999; Hedin et al. 2009; 88 

Wright et al., 2011; Brookshire et al., 2012). However, our understanding of how N 89 

additions control DOC dynamics in these N-rich ecosystems remains far from 90 

complete. 91 

The purpose of this study was to examine the effects of how long-term (7 yr) 92 

experimental addition of N affects DOC dynamics in the N-rich tropical forests. In 93 

2002, we established long-term N deposition research plots in typical N-rich lowland 94 

tropical mature forests of Southern China (Mo et al., 2006. 2008; Fang et al., 2009; Lu 95 

et al., 2010), where atmospheric N deposition rates are commonly > 19 kg N ha-1 yr-1, 96 

and are expected to increase greatly in the future due to the rapid development of 97 

agricultural and industrial activities (Zhou and Yan, 2001; Galloway et al., 2004; Lü 98 

and Tian, 2007; Liu et al., 2011). Because soil solution chemistry can be considered as 99 

a sensitive indicator of biogeochemical processes within forest stands, responding 100 
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quickly to disturbances or stresses such as excess N (e.g. McDowell et al., 2004; 101 

Pregitzer et al., 2004; Michel et al., 2006; Gilliam and Adams, 2011), we mainly 102 

focused our study on the response of soil solution chemistry to N addition. Earlier 103 

measurements in these forests have indicated no changes in DOC dynamics in 104 

response to short-term (1 to 2 years) N deposition treatment (Fang et al., 2009). In the 105 

present study, we expected to find that long-term continuous N addition to N-rich 106 

tropical forests has minimal effect on DOC concentrations and effluxes, because 107 

highly weathered tropical soils commonly have high levels of N availability and rapid 108 

N cycling (Martinelli et al. 1999; Vitousek and Sanford, 1986; Fang et al., 2009). At 109 

the same time, we assumed that mechanisms for N-addition induced changes of DOC 110 

dynamics may be different from those of N-limited temperate forests, because of the 111 

different N status. 112 

 113 

2  Materials and methods 114 

2.1 Study Site 115 

We carried out our work in the Dinghushan Biosphere Reserve (DBR).  This site is 116 

part of the UNESCO/MAB network and is within the Guangdong Province of 117 

southern China (112º10' E, 23º10' N).  The DBR extends approximately 1,200 ha 118 

within the subtropical/tropical moist forest life zone. It was established in 1950 for the 119 

protection of remnant of undisturbed monsoon evergreen broadleaf forests in the 120 

lower subtropics, being the first National Natural Reserve in China in 1956. The 121 

monsoon climate of this site averages 1927 mm precipitation per year with 122 

approximately 75% occurring between March and August, and 6% between December 123 

and February (Huang & Fan, 1982).  Relative humidity averages 80% throughout the 124 

year. Mean annual temperature is 21.0 C, ranging from mean coldest in January (12.6 125 
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C) and hottest in July (28.0 C). Currently, the region surrounding DBR experiences 126 

high rates of atmospheric N deposition (21-38 kg N ha-1 yr-1 as inorganic N in bulk 127 

precipitation) (Huang et al., 1994; Zhou and Yan, 2001; Fang et al., 2008). In 128 

2004—2005 wet N deposition averaged ~33 kg N ha-1 y-1 (Fang et al. 2008). 129 

We established the research site at DBR in 2002 between 250 and 300 m above 130 

sea level. According to 14C measurement of forest soils, forest stands have been 131 

protected from direct human disturbance for > 400 years (Shen et al., 1999).  These 132 

support a rich assemblage of plant species, most of which are evergreen tree species 133 

native to the tropics and subtropics.  These include Castanopsis chinensis Hance, 134 

Schima superba Chardn. & Champ., Cryptocarya chinensis (Hance) Hemsl., 135 

Cryptocarya concinna Hance, Machilus chinensis (Champ. Ex Benth.) Hemsl., and 136 

Syzygium rehderianum Merr. & Perry (Cao et al., 2002). Canopy closure is typically 137 

above 95% (Lu et al., 2010).  Soils are oxisols (lateritic red earths) formed from 138 

sandstone approximately 30 cm to 70 cm in depth. 139 

 140 

2.2 Experimental treatments 141 

The experiments involving N amendments were established in July 2003 (Mo et al., 142 

2006), with four N addition rates used: Control (0 N added), Low-N (50 kg N ha-1 143 

yr-1), Medium-N (100 kg N ha-1 yr-1) and High-N (150 kg N ha-1 yr-1), which were 144 

based on the present atmospheric N deposition rate and the expected increase in the 145 

future due to the rapid development of agricultural and industrial activities (Galloway 146 

et al., 2004; Lü and Tian, 2007). Considering that any effects of chronic low level N 147 

addition are likely to be similar in direction, if not magnitude, to the short-term effects 148 

of high rates of N addition (e.g. Báez et al. 2007; Clark & Tilman 2008; Lu e al., 149 

2010), results from our present concentration gradients could be as a prediction for the 150 



 7

future changes. A 10 m wide buffer strip surrounded each of 12 10-m x 20-m plots, 151 

with plots and treatments replicated in triplicate and randomly located.  A 152 

hand-applied NH4NO3 solution was added each month to the forest floor of each plot 153 

as 12 equal, monthly applications per year.  Fertilizer was weighed and mixed with 154 

20 L of deionized water (equivalent of 0.1 mm rainfall), with solution added via 155 

backpack sprayer below the canopy. Two passes were made across each plot to ensure 156 

an even distribution of fertilizer. Control plots received an equivalent volume of 157 

deionized H2O. 158 

 159 

2.3 Field water sampling and laboratory analysis 160 

Precipitation and air temperature were monitored in an open area adjacent to the study 161 

plots. The data used in this study were from the weather station in the reserve 162 

(Appendix 1). 163 

Soil solution was collected at a 20 cm depth, a depth which represents the primary 164 

rooting zone, and containing >70% of fine root biomass and 68% of total root 165 

biomass (Liao et al., 1993; Wen et al., 1999). Soil solution was sampled with two 166 

replicate zero tension tray lysimeters (755 cm2 per tray) per plot, which were installed 167 

in April/May 2003 (i.e., 3-4 months prior to our experiment). Each lysimeter was 168 

connected with Tygon tubing to a 10-L bottle.  169 

Soil solution samples were taken after each rain event (particularly after heavy 170 

rainstorms) from July 2009 to June 2010. Soil solution volume was recorded and 171 

composited within a plot on data of collection. All collectors were washed with 172 

deionized H2O immediately following each collection. 173 

Within 24 to 48 hr of field collection, soil solution samples were filtered through 174 

0.45 mm micron filters in the laboratory, then stored in plastic bottles at 4°C until 175 
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chemical analysis, which included NH4
+-N, NO3

--N, DOC, and pH. A Shimadzu 176 

TOC-VCSH Total Organic Carbon analyzer was used to determine DOC, with 177 

samples combusted at 680°C via platinum catalyst and CO2 determined with a 178 

non-dispersive infrared (NDIR) detector. Samples were analyzed for dissolved 179 

inorganic nitrogen (NH4
+-N and NO3

--N) using a Lachat QC8000 Flow Injection 180 

Analyzer.  181 

 182 
2.4 Field soil sampling and laboratory analysis 183 

Samples of mineral soil were collected in August 2009 with a 5-cm diameter corer at 184 

0–10 and 10–20 cm depths. From 0–10 cm, cores were taken beneath the loose litter 185 

layer (Oi) and comprised Oe and Oa horizon plus mineral soil to a total depth of 10 186 

cm. Following this, the corer was driven to a 20 cm depth for sample collection. 187 

Sampling in each plot took place in three randomly-selected locations 188 

In the laboratory, roots and stones were removed by sieving soil to pass a 2-mm 189 

screen; sieved soils mixed thoroughly by hand. For water-extractable DOC (WDOC) 190 

measurements, one 10 g sub-sample from each sample was extracted with 50 ml of 191 

deionized H2O for 30 min and filtered through 0.45 μm cellulose–acetate filters, as 192 

modified from (Hagedorn et al., 2002). Water-extractable DOC was determined with a 193 

Shimadzu TOC analyzer as previously described. Other subsamples were air-dried 194 

and used to measure pH (soil:water = 1:2.5) and nutrient content. Total C (total soil 195 

organic C) was measured via titration with Fe2+ solution following dichromate 196 

oxidation (Liu et al., 1996). Total N was determined by determination of NH4
+ 197 

following semi-micro Kjeldahl digestion (Liu et al., 1996). Exchangeable Fe and Al 198 

were extracted with 0.1mol/L BaCl2 (50:1, solution:soil). Subsamples of soil were 199 

oven-dried at 105°C to a constant weight (at least 24 hr) to allow reporting soil results 200 

on an oven-dry basis. 201 
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2.5 Field litterfall sampling 202 

Two 1-m x 1-m litter traps with a 1-mm mesh size were placed randomly in each plot 203 

at an approximate 0.5-m height above ground surface. Traps were emptied each 204 

month during the year, with litterfall separated into three components: leaves, small 205 

woody material (branches and bark), and miscellaneous (mainly reproductive parts). 206 

 207 

2.6 Data analyses 208 

Monthly and annual C effluxes from the primary rooting zone for each plot were 209 

calculated by multiplying DOC concentrations of soil leachate by the recorded water 210 

volume for each sample collection and then summed appropriately.  We calculated 211 

mean values per month for NH4
+-N, NO3

--N, DOC and pH in water samples for 212 

further analysis. Effects of N treatments on soil solution chemistry (NH4
+-N, NO3

--N, 213 

DOC and pH) and litterfall during the study period were assessed with repeated 214 

measure analysis of variance (ANOVA). One-way ANOVA with Tukey's honestly 215 

significantly different (Tukey’s HSD) test was used to test N treatment effects on 216 

concentrations of NH4
+-N and NO3

--N, pH, and annual DOC effluxes for the whole 217 

study period. One-way ANOVA with Tukey’s HSD test was also employed to identify 218 

N treatment effects on soil properties (soil pH, concentrations of total C and N, C/N 219 

ratios, and extractable Fe and Al) and WDOC. Extractable Fe and Al pools were 220 

estimated by multiplying extractable concentrations by soil bulk density, which were 221 

taken from the Dinghushan research station.  We conducted the planned contrast 222 

analysis to test for differences between Control plots and N-treatment plots. 223 

We also used general linear models to analyze relationships between DOC 224 

concentrations and pH for soil solution sampled at 20 cm depth in all plots during the 225 

study period. Linear regression analysis was also used to examine the relationship 226 
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between mean DOC of cm soil solution at 20 cm depth and extractable Fe and Al 227 

pools in the upper 20 cm soil, respectively. All analyses were conducted using SPSS 228 

14.0 for Windows® (SPSS, Chicago, IL, USA), with significant differences set with P 229 

< 0.05, unless otherwise stated. 230 

 231 

3  Results  232 

During the study period (July 2009 to June 2010), the total precipitation was 1992 233 

mm, most falling during the March to August wet season (Appendix. 1). Mean 234 

monthly precipitation in wet season (245 mm) nearly three times that of dry season 235 

(88 mm). Mean monthly temperature was 22.2 °C. Total wet N deposition was 34.4 236 

kg N ha-1, with 18.2 kg ha-1 dissolved inorganic N (7.7 kg ha-1 NO3
--N and 10.5 kg 237 

ha-1 NH4
+-N, respectively) and 16.2 kg ha-1 dissolved organic N, respectively. 238 

 239 

3.1 DOC concentration and effluxes  240 

The repeated measures ANOVA revealed that N additions significantly decreased the 241 

DOC concentrations and DOC effluxes at 20 cm depth over the study period (df=3, 242 

F=21.4, P=0.001; df=3, F=6.8, P=0.02, respectively) (Figure 1a and c). There were 243 

also significant interaction effects between treatment and time (months) on DOC 244 

concentrations and effluxes (df=33, F=3.6, P<0.001; df=33, F=2.1, P=0.006, 245 

respectively). For DOC concentrations, the decreased trends were more pronounced in 246 

Medium-N and High-N plots than that of Low-N plots, and relative measures showed 247 

they decreased by 15%, 28% and 31% in the Low-N, Medium-N and High-N plots, 248 

respectively, relative to that of the Control plots over the whole year (Figure 1b). For 249 

DOC effluxes, they decreased by 44%, 34% and 18% in the Low-N, Medium-N, and 250 

High-N plots, respectively (Figure 1d). 251 



 11

Mean DOC concentrations in the Medium-N and High-N treatments were 252 

significantly lower than that of the Controls (P<0.05; Table 1). Further analysis 253 

showed that N additions decreased annual DOC effluxes at 20 cm, especially in the 254 

Low-N and Medium-N plots, where the decreases were significant (P<0.05; Table 1). 255 

Planned contrast analysis showed that there were significant N-treatment effects for 256 

both mean DOC concentrations and annual DOC effluxes. The annual DOC effluxes 257 

were 99.6, 63.6, 61.0, and 79.1 kg C ha-1 yr-1 in the Control, Low-N, Medium-N and 258 

High-N plots, respectively.  259 

 260 

3.2 NO3
--N, NH4

+-N and pH in soil solution 261 

The concentrations of NO3
--N in N-treatment plots were generally higher than that of 262 

the Controls (Fig. 2a), and the mean concentrations of NO3
--N across the whole study 263 

period increased, but not significant, in the N-treatment plots (P=0.099; Table 1), 264 

although repeated measures ANOVA revealed that N additions did not significantly 265 

increase concentrations of NO3
--N (df=3, F=2.4, P=0.16). 266 

    Concentrations of NH4
+-N (commonly less than 1 mg N L-1 as mean values for 267 

the whole period) were much lower than those of NO3
--N at all plots (Figure 2b). 268 

There were no significant responses to N treatments across all plots and sampling 269 

times. This is further confirmed by the result of repeated measures ANOVA (df=3, 270 

F=1.4, P=0.34). In addition, the mean concentrations of NH4
+-N across the whole 271 

study period also showed no significant differences between N treatments and 272 

Controls (Table 1). 273 

 Repeated measures ANOVA showed that N additions significantly decreased soil 274 

solution pH it at 20 cm depth (df=3, F=42, P<0.001). Similarly, across the whole 275 
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study period, N treatments changed significantly (P=0.001) the mean values of soil 276 

solution pH, especially in the High-N plots (Table 1). 277 

 278 

3.3 Soil chemistry and litterfall 279 

Total soil N and C and extractable Al and Fe showed increasing trends with elevated 280 

N addition (Table 2). Total N increased by 8%, 12%, 17% in the Low-N, Medium-N, 281 

and High-N treatment plots, respectively, compared to the Controls; total C increased 282 

by 10%, 13%, 17% in the Low-N, Medium-N, and High-N treatment plots, 283 

respectively, compared to Controls. High-N treatments also showed marginally 284 

significant effects on total C (P=0.08), and significant effects on extractable Fe 285 

(P=0.03). Soil pH values decreased with increasing N treatment levels, especially in 286 

the Medium-N and High-N plots (P<0.1). Further analysis showed that there were 287 

significantly linear relationships between treatment levels and pH across all plots 288 

(R2=0.54, N=12, P=0.006). There was no significant difference among treatments for 289 

soil C/N ratios. For WDOC, N additions increased their contents in this upper 0-20 290 

cm soil, where the increases were significant under N treatments compared to the 291 

Controls (P=0.032; Table 2).Annual litterfall was not significantly different among 292 

treatments (Figure 3). 293 

 294 

3.4 Relationships between DOC, extractable Fe and Al, and pH   295 

Linear model analysis showed that DOC concentrations were significantly and 296 

positively correlated with pH (R2=0.4; N=144; P<0.001) in soil solution across all 297 

sampling data (Figure 4). Meanwhile, extractable Al pool was not significantly 298 

correlated with mean DOC concentration in the soil solution at 20cm soils (R2=0.004, 299 

N=12, P=0.84; Figure 5a ), but extractable Fe pool exhibited significant and negative 300 
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correlations with DOC (R2=0.42, N=12, P=0.023) (Figure 5b).  301 

 302 

4  Discussions 303 

4.1 Effects of N addition on DOC leaching 304 

Earlier measurements in the year 2005 at our site showed that N addition had no 305 

significant effects on soil solution DOC concentrations below the primary rooting 306 

zone (Fang et al., 2009). Current results, however, indicate that N treatments 307 

significantly decreased DOC concentrations in soil solution from this layer, 308 

suggesting that responses of DOC dynamics to N addition may be time-dependent in 309 

N-rich tropical forests. This rejects our initial hypothesis, and also contrasts with other 310 

studies in primarily N-limited ecosystems. In N-limited forests, increased N 311 

availability generally results in more DOC production and subsequent leaching 312 

(Pregitzer et al., 2004; Findlay, 2005; Adams et al., 2005; Sleutel et al., 2009). Smemo 313 

et al. (2007) reported that deposition added as NaNO3 significantly increased soil 314 

solution DOC concentration and export from four different northern hardwood forests 315 

in the Great Lakes region. McDowell et al. (1998, 2004) found greater concentrations 316 

of DOC following the addition of 50-150 kg N ha-1 yr-1 as NH4NO3. Sleutel et al. 317 

(2009) provide additional evidence on higher concentrations of DOC in boreal forests 318 

of Belgium under historic high N deposition.  319 

Biological mechanisms (balance between processes that produce and consume 320 

DOC) are often suggested to explain changes of DOC concentrations in leachate with 321 

elevated N addition in typically N-limited ecosystems (Neff and Asner, 2001; Knorr et 322 

al., 2005; Zak et al., 2008; Evans et al., 2008). Pregitzer et al. (2004) suggested that 323 

increases in DOC were primarily biologically driven, resulting from changes in 324 

production of organic substrates and processing within soil food webs. Bragazza et al. 325 
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(2006) indicated that the increased release of DOC from litter peat was a consequence 326 

of enhanced enzymatic activity (e.g., phenol oxidase). In these studies, litterfall is the 327 

major source of DOC to the forest floor and thus deeper soil horizons with elevated N 328 

deposition (Currie et al., 1996; Magill and Aber, 2000; Park et al., 2002; Sleutel et al., 329 

2009). Gundersen et al. (1998) showed a significant correlation between DOC 330 

concentration beneath the forest floor (Oa horizon) and litterfall amount. In a 331 

meta-analysis from multiple terrestrial ecosystems, Liu & Greaver (2010) found that 332 

N addition increased soil DOC concentration by an average of 18%, although soil 333 

respiration was not altered, suggesting C leaching loss may increase in N-limited 334 

ecosystems.  335 

In our N-rich forest, however, there were no significant effects of N treatments on 336 

litterfall production (Mo et al., 2008; Figure 3); at the same time, there was no 337 

significant difference between N treatments in DOC dynamics in surface runoff (data 338 

not shown), suggesting that litterfall inputs may play a minor role in DOC production 339 

and subsequent fluxes into deeper soils under N treatments. Further studies showed 340 

that N addition significantly inhibited litter decomposition and decreased soil 341 

respiration in this forest (Mo et al., 2006, 2008). In addition, C mineralization, which 342 

is the conversion from the organic C form to inorganic compound as a result of 343 

decomposition reactions (Carter and Gregorich, 2008), is suggested to result in high 344 

absolute loss of DOC (Chantigny et al., 1999; Huang and Schoenau, 1998; Sjöberg et 345 

al., 2003).  An incubation experiment this forest soils, however, showed that N 346 

addition decreased organic C mineralization (Ouyang et al., 2008), indicating that 347 

elevated N inputs may contribute to soil DOC accretion in the deeper soil by 348 

decreasing DOC decomposition/consumption Our findings support this suggestion in 349 

that N addition greatly increased water-extractable DOC (Table 2), a finding also 350 
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supported by other studies (e.g. Hagedorn et al., 2002; Sinsabaugh et al., 2004; Gallo 351 

et al., 2005). Increases in extractable DOC under experimental N additions are 352 

generally suggested to increase regional and global DOC effluxes from terrestrial 353 

ecosystems to aquatic ecosystems (Pregitzer et al., 2004; Findlay, 2005; Mo et al., 354 

2008; Chapin et al., 2009). However, our results showed that N treatments decreased 355 

DOC concentrations in leachate solutions. Therefore, biological control mechanisms 356 

are unlikely responsible for declines in DOC in soil leachate of this N-rich tropical 357 

forest.  358 

Indeed, as suggested by Neff and Asner (2001), physical controls may also play an 359 

important role in dominating DOC transformations in soils. Here, we propose that 360 

both changes in solution acidity and soil sorption dynamics play a dominant role in 361 

regulating DOC losses from N-rich ecosystems.  362 

For example, acidity of soil solution may regulate the patterns of DOC responses. 363 

It has been recognized that the increase of soil solution pH (or acid neutralizing 364 

capacity) would lead to the net positive changes in DOC concentration by increasing 365 

DOC solubility in soil (Monteith et al., 2007; Evans et al., 2008). This was 366 

demonstrated by Evans et al. (2008) while reviewing field N addition experiments in 367 

Europe and North American. It has been widely accepted that high N deposition could 368 

accelerate soil acidification and have the potential to change the acidity of soil 369 

solution (Aber et al., 1989; Vitousek et al., 1997; Bowman et al., 2008; Van den Berg 370 

et al., 2008). In this study, we found that N treatments significantly decreased soil 371 

solution pH below the dominant rooting zone. Further analysis showed that there was 372 

a significant and positive relationship between soil solution pH and DOC 373 

concentration. 374 

It should be noted that the effect of pH on DOC dynamics may be confounded 375 
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with other mechanism related to soil properties, for example, sesquioxides in the 376 

mineral soil (Moore et al., 1992; Guggenberger, 1994; Michalzik et al., 2001). Thus, 377 

we suggest an alternative mechanism for our observations.  Soils containing high 378 

concentrations of extractable Fe or/and Al exhibit the capacity to adsorb DOC as 379 

water percolates down through the soil profiles thereby decreasing DOC 380 

concentrations (Boudot et al., 1989; Guggenberger, 1994; Kaiser and Guggenberger, 381 

2000; Sleutel et al., 2009). Corre et al. (2010) suggested that sorption by hydrous Al 382 

oxides could be an important reason for N -induced decreases of soil solution DOC. In 383 

our study, however, the extractable Al did not vary significantly among Controls and 384 

N-treatment plots, and there were no significant relationships between the extractable 385 

Al pool and mean DOC concentration (Table 2, Figure 4a). By contrast, N addition 386 

significantly increased extractable Fe. Also, there was a significant negative 387 

relationship between extractable Fe pool and mean DOC concentration at 20 cm soil 388 

solution (Figure 4b). Accordingly, it is possible that extractable Fe, rather than 389 

extractable Al, may play a key role in DOC adsorption in N-treatment plots after 390 

long-term N inputs. A better understand how Fe and Al oxides control DOC dynamics 391 

in tropical forests merits further study. 392 

 393 

4.2 Effects of N addition on annual DOC effluxes 394 

Annual DOC effluxes below the 20-cm rooting zones in our study ranged from 395 

60-100 kg C ha-1 yr-1, well within the range (30-139 kg C ha-1 yr-1) reported for 396 

tropical forests by Aitkenhead and McDowell (2000). Our results demonstrated that 397 

long-term N addition decreased annual DOC effluxes from the primary rooting zones, 398 

especially in the Low-N and Medium-N plots. Considering that there were no 399 

significant differences for annual water effluxes among treatments (data now shown), 400 
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DOC concentration may dominate DOC effluxes, and lower DOC concentration led to 401 

the decreased DOC fluxes under N-treatments. The decreases in annual DOC effluxes 402 

indicated that soils may accumulate much more DOC with elevated N addition, 403 

consistent with the significant increase of water-extractable DOC at 0-20 cm soil layer 404 

in N-treatment plots (Table 2), and suggesting that elevated N deposition might 405 

enhance soil C sequestration by decreasing DOC effluxes in N-rich forests. 406 

Zhou et al. (2006) found that this old-growth forest could accumulate soil C 407 

(0–20cm depth) at about 610 kg C ha-1 yr-1 over the last two decades, but concluded 408 

that the reason for this accumulation was unclear.  Our results showed that 409 

N-induced net C sequestration (via reduced DOC efflux, calculated by the difference 410 

between N-treatment plots and the Controls) was about 36, 39, 21 kg C ha-1 yr-1 in the 411 

Low-N, Medium-N, and High-N plots respectively, with a mean value of 32 kg C ha-1 412 

yr-1 in N treatment plots, relative to controls (Table 1). In fact, we have found that N 413 

treatments significantly increased soil total C after long-term N addition (Table 2). 414 

Therefore, such decreases in annual DOC effluxes may explain, in part, this 415 

accumulation of soil C observed by Zhou et al. (2006) considering the high N 416 

deposition during the past decades in this region.  417 

 418 

4.3 Implications  419 

We have studied effects of long-term N additions on DOC dynamics of soil solution 420 

in N-rich lowland tropical forests under a warm and humid climate. Our results 421 

showed that long-term N additions significantly decreased DOC concentrations in soil 422 

solution of deeper soils. It was suggested that chemo-physical controls (solution 423 

acidity change and soil sorption) rather than biological controls could play a dominant 424 

role in regulating DOC losses from N-rich ecosystems, in contrast to that of N-limited 425 
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ecosystems.  We further found that N addition decreased greatly annual DOC 426 

effluxes below the primary rooting zones, and increased water-extractable DOC in 427 

soils. It is suggested that DOC constitutes an important carbon efflux to forested 428 

mineral soils (Schwesig et al., 2003), and DOC adsorbed by soils may contribute to 429 

the stock of organic C accumulating during soil development (Qualls and Bridgham, 430 

2005). Therefore, our results indicate that long-term N deposition could increase soil 431 

C sequestration in the upper soils by decreasing DOC efflux in N-rich forests, which 432 

may support a novel mechanism responsible for continuing to accumulate C in 433 

old-growth forests (Zhou et al., 2006; Luyssaert et al., 2008). Thus, this study may 434 

give us a new understanding on forests ecosystem C cycling and possible C 435 

sequestration, and also support data bases for model predictions in N-rich ecosystems, 436 

with the globalization of N deposition. Although our findings would be typical for 437 

other N-rich sites, however, our results and corresponding control mechanism should 438 

be further validated in various tropical ecosystems in the future with elevated N 439 

deposition. 440 
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Tables 704 

 705 

Table 1 Effects of N addition on average concentrations of DOC, NO3
--N, NH4

+-N, 706 

and pH, and annual DOC efflux in soil solutions below the primary rooting zones 707 

(0-20 cm soils) during the periods from July 2009 to June 2010. The different 708 

lowercase letters indicate significant differences at P<0.05 level, and no letters 709 

indicate no significant differences among N treatment levels, respectively (Tukey’s 710 

HSD test); Contrast Test is conducted between N treatments and the Controls using 711 

planned contrast analysis. Values are mean with S.E. in parentheses. 712 

N treatments DOC DOC efflux NO3
--N NH4

+-N pH 

 (mg L-1) kg C ha-1 yr-1 (mgL-1) (mg L-1)  

Control 23.96(2.18)a 99.61(2.63)a 9.74(0.92) 0.24(0.01) 3.81(0.01)a 

Low-N 20.19(1.16)ab 63.62(6.25)b 11.26(0.40) 0.23(0.01) 3.78(0.01)a 

Medium-N 17.10(0.92)b 60.99(8.87)b 11.74(0.82) 0.24(0.03) 3.78(0.00)a 

High-N 14.98(0.46)b 79.06(3.73)ab 14.04(2.05) 0.45(0.20) 3.70(0.01)b 

Contrast Test P=0.003 P=0.002 P=0.099 P=0.58 P=0.001 
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Table 2 Responses of soil chemistry in the primary rooting zones (0-20 cm soils) to N 713 

addition in the lowland tropical forest of southern China in August, 2009. The 714 

different lowercase letters indicate significant differences at P<0.05 level, and no 715 

letters indicate no significant differences among N treatment levels, respectively 716 

(Tukey’s HSD test). Contrast Test is conducted between N treatments and the 717 

Controls using planned contrast analysis.  718 

 719 

 N treatments  

Parameters Control Low-N Medium-N High-N Contrast Test

Total N (mg g-1) 1.90(0.11) 2.05(0.08) 2.13(0.09) 2.22(0.06) P=0.045 

Total C (mg g-1) 21.88(0.40) 24.17(0.97) 24.82(0.50) 25.64(1.44) P =0.023 

C/N ratio 11.27(0.45) 11.53(0.83) 11.45(0.59) 11.29(0.44) P =0.83 

WDOC(mg Kg-1) 107.43(8.24) 160.92(25.55) 140.10(10.97) 179.20(20.30) P =0.032 

Al3+ (m mol kg-1) 30.50(1.31) 30.54(2.78) 31.49(1.66) 31.54(1.60) P =0.67 

Fe3+ (m mol kg-1) 0.12(0.013)a 0.17(0.018)ab 0.17(0.020)ab 0.20(0.010)b P =0.012 

pH (H2O) 3.87(0.02) 3.84(0.00) 3.75(0.05) 3.75(0.04) P =0.045 
Notes: Total C means total soil organic carbon; WDOC means water-extracted 720 
dissolved organic carbon; Values are means with SE in parentheses. 721 
 722 
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Figure Legends 731 
 732 

Figure 1 Responses of DOC concentration (a) and its relative concentration (b), and 733 

DOC efflux (c) and its relative efflux (d) to long-term N addition below the 734 

primary rooting zone in the lowland tropical forests of Southern China. Soil 735 

leachate data were available from July 2009 to June 2010. Notes: Asterisk (*) 736 

indicates that there are significant differences at P<0.05 level between N 737 

treatments and the Controls using planned contrast analysis. 738 

Figure 2 Responses of NO3
--N (a), NH4

+-N (b) and pH (c) dynamics to long-term N 739 

addition in soil solution below the dominant rooting zone in the lowland tropical 740 

forests of Southern China. Asterisk (*) indicates that there are significant 741 

differences at P<0.05 level between N treatments and the Controls using planned 742 

contrast analysis. 743 

Figure 3 Monthly dynamics of litterfall with elevated N addition in the lowland 744 

tropical forests of Southern China during the study period. 745 

Figure 4 Relationships between DOC concentrations and pH in soil solutions across 746 

all plots during the study period. Notes: Triangles (∆) indicate DOC concentration 747 

at control plots, and solid circles (●) indicate DOC concentration at N-treatments 748 

plots. 749 

Figure 5 Relationships between mean DOC concentrations in soil solution during the 750 

study period and soil extractable Al and Fe pools in upper 0-20cm mineral soils. 751 
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Appendix 1 Monthly precipitation and monthly mean air temperature at Dinghushan 777 

Biosphere Reserve, southern China, during this study period. 778 


