The influence of temperature and seawater carbonate saturation state on 13C-18O bond ordering in bivalve mollusks. Biogeosciences Discuss. 10, 157-194, 2013.

Authors response to reviewers.

Here we present responses to comments from Anonymous Referee #1 and Stefano Bernasconi. As the main comments from both reviewers concern the same issue we combine our response to these comments below. Reviewer #1 also had a number of minor comments, which we respond to below our response to the main comments of both reviewers.

Anonymous Referee #1 (Main Comment):

I have one major (?) concern and a handful of minor and technical comments. My concern has to do with the robustness of the derived slope, given the size and scatter of the new dataset. The authors mention that this dataset substantially expands existing data from modern mollusks (which it does), and they also explore the effect of removing from the regression several samples grown/collected at low temperatures. However, both with and without the low-temperature data, there is appreciable scatter in the mollusk data. In my opinion, this decreases confidence that the authors are, in fact, observing a slope significantly different from that of Ghosh et al. (2006) and the biogenic carbonate compilations.

Reviewer #2 Stefano Bernasconi (Main Comment):

The main problem I have is that I am not convinced that this dataset is really significantly different from the data of the Ghosh and Tripati calibrations, as concluded by the authors. Indeed when analyzed alone the obtained regression has a much shallower slope than the more extensive Tripati dataset. However, when plotted all together in the same diagram, (Figure 1, plotted from the data given in the tables and supplementary information), we observe that most new data overlap very well with the Tripati dataset, with only a one cultured and two natural samples sample at 10 C and two field samples at 0 C that have a significantly lower D47 and a couple of samples with higher D47 at 25 C. All other samples, hovever are essentially within the scatter of the Tripati data (Fig 1). When all data are plotted together, (figure 2) we obtain a temperature dependence of 0.0476‰ C which is lower than the Tripati et al. study but still higher than what is obtained by the mollusk data alone. Also this figure does not clearly show the presence of two different data populations. Considering that the scatter in the data from Mollusks is quite large, as seen in the dataset in this paper for the samples between about 15 and 25 C but also in the recent paper of Henkes et al. 2013 (GCA, 106, 307-325.), I think that the possibility that these new data just confirm the previous calibration of the CALTECH lab should be discussed in the text. The study of Henkes et al 2013 should be cited in this paper. Figures 3 and 4b should be redrawn with the data included, and not only with the regression line and the confidence intervals. This would be more useful to highlight that fact that these datasets may not be so different.

Author response:

Both reviewers highlight important issues relating to how well both our study and previous studies have really constrained the slope of calibration lines, how much variation (biological/ methodological/mineralogical) is present in the dataset and what effect that has on calibrations, and what extent calibration slopes could be biased by the inclusion/exclusion of certain samples.

To some extent we feel we did anticipate these issues in our original submission, for example in Section 3.3 we did present analyses of what effect excluding certain samples (namely mollusks from the coldest environments at Antarctica and one apparent outlier, the taxa Z. patagonica) had of the slope of regression line. We do note, as Reviewer 1 does in their review, that this exclusion of these samples does make the slope slightly less shallow (page 173 line 1 of the discussion paper). Additionally we do present a number of statistical tests in Sections 3.2 to 3.4 to demonstrate whether the slopes of different regression lines through our data and published data are statistically different (pages 169-173). For example from these stats test we are able to make the statistically robust conclusions that a regression line though all our mollusk data is significantly shallower than the original inorganic calibration of Ghosh et al., 2006, and that there is no statistically significant different between calcite and aragonite in our dataset (see section 3.4 of our discussion paper – page 173, line 13).

Nevertheless as both reviewers highlighted this as an area an area that they would like to see more work done in our manuscript we have made a number of modifications to expand on these points and address the areas the reviewers highlighted:

- 1. Added analysis in the text to compare how the residuals (variation from expected values) of our mollusk dataset compare to another datasets comparable is size, the calibration of foraminifera of Tripati et al., GCA, 2010 mentioned by reviewer Stefano Bernasconi, and deep-sea coral by Thiagarajan et al., GCA, 2011. Specifically both reviewers have a perception that the mollusk data has a level of "scatter" that makes the slope of regression lines uncertain, and so we analyzed whether the residuals from mollusk dataset were greater or similar to those of previously published datasets.
- 2. Including a comparison (including stats tests) of our mollusk data and subsets of the mollusk data to the biogenic compilation of Tripati et al., 2010 (with the coral data of Thiagarajan et al., 2011 also included), whereas before our analysis had mainly focused on a comparison between our data and the inorganic calcite calibrations of Ghosh et al., 2006 and Dennis and Schrag, 2010. In the revised manuscript we have now included a new Table (Table 5) that presents the results of statistical analysis (ANCOVA) of the mollusk linear regression lines and subsets of the mollusk datasets compared to inorganic calcite calibration as well a compilation of previously published biogenic data from our laboratory.

For point 1 our additional analysis suggests that the reviewers intuition that there is more scatter in the bivalve mollusk calibration than other previously published studies is supported by a comparison to other biogenic calibration datasets produced in our laboratory. The R^2 value of our mollusk linear regression is 0.7258 and the standard deviation of the residuals (SDR) from this line are 0.017. This compares to an R^2 value of 0.8998 and a SDR of 0.014 for the foraminifera calibration data of Tripati et al., GCA, 2010 and an R^2 value of 0.8703 and SDR of 0.015 for the study of corals presented by Thiagarajan et al., GCA, 2011. Therefore we have added the following text to section 3.2 the manuscript:

"The R² value of our bivalve mollusk calibration line is 0.0728 (Table 4) using data on the absolute reference frame, and the standard deviation of the residuals (SDR) is 0.017‰. This suggests that there is somewhat larger variability in bivalve Δ_{47} data compared to other biogenic calibration datasets. For example the linear regression through the foraminifera calibration of Tripati et al. has an R² value of 0.8998 and a SDR of 0.014, and for the study of corals by Thiagarajan et al. the R² value is 0.8703 with a SDR of 0.015 (Tripati et al., 2010; Thiagarajan et al., 2011). It is possible that this reflects very subtle biological or mineralogical effects on bivalve Δ_{47} data, although as we describe below we cannot resolve these effects in our dataset."

We do note however that whilst the reviewers are correct that the mollusk calibration has more variation in it than other datasets, this variation does not affect the validity of the statistical analysis of the difference and similarity of calibration slopes we present in our manuscript and in the table presented below as the statistical analysis does take into account the variability in each dataset being compared. Therefore in Section 3.3 we add the following text:

"We also note that the apparently higher variability in the bivalve mollusk dataset compared to other biogenic calibration datasets is taken into account by the statistical analysis of slopes presented in Table 5 and so this variability itself cannot explain the statistically significant differences in slopes we observe."

On point 2 we show in the new Table 5 in our revised manuscript (also reproduced below) that a statistical analysis of slopes indicates that our mollusk dataset is statistically different from both the inorganic calcite calibration of Ghosh et al., GCA, 2006 and the compilation of previously published biogenic data produced in our laboratory. We also add some additional discussion of Table 5 to section 3.3 and 3.4 of the revised manuscript. Therefore we feel we must stick with the conclusions that we advanced in our discussion paper that this mollusk clumped isotope calibration has a different slope to previously published datasets from our laboratory.

Table 5. ANCOVA p-values derived by comparing linear regressions through the dataset generated in this study to previously published data.

Dataset ^a	Inorganic calcite Ghosh et al, 2006	Inorganic calcite Dennis and Schrag, 2010	Published biogenic data Compilation ^d			
All bivalve mollusks, this study	p = 0.0035 (Y)	p = 0.7020 (N)	p < 0.0001 (Y)			
Bivalve mollusks minus Antarctic species ^b This study	p = 0.0139 (Y)	p = 0.5453 (N)	p = 0.0006 (Y)			
Calcitic bivalve mollusks this study ^c	p = 0.0196 (Y)	p = 0.9354 (N)	p = 0.0013 (Y)			
Aragonitic bivalve mollusks this study ^c	p = 0.1274 (N)	p = 0.4664 (N)	p = 0.0126 (Y)			

^aLinear regression lines through different subsets of our mollusk Δ_{47} calibration dataset in the first column are statistically compared to using analysis of covariance (ANCOVA) tests (Zar, 1984) to linear regressions through other previously published calibration studies datasets. Calculations are done with values on the absolute reference frame (ARF). The table displays the ANCOVA p-value and whether the two slopes being compared are statistically different; (Y) = Yes, (N) = No. In this case we consider a p value < 0.05 as indicating statistically significant differences between the two slopes.

^bExcluding the five specimens of *Laternula ellipica* and *Adamussium colbecki* (which are specimens from the coldest Antarctic environments) as a means for determining whether the calibration slope could be significantly influenced by these samples alone.

^cExcluding specimens with mixed mineralogy

^dIncludes coral data from Ghosh et al., 2006 (but excludes Red Sea *Porites*), and data from Ghosh et al., 2007; Came et al., 2007; Tripati et al., 2010; Eagle et al., 2010; Thiagarajan et al., 2011. See Table S1 for values for these data.

To further address point 2 we have modified the original Table 4 to include linear regression analysis on the bivalve mollusk calibration dataset if specimens from the coldest environments in Antarctica were excluded (in order to assess the potential affect these samples have on the linear regression slope as these specimens are the most different from previously published). However as we show in the new Table 5 (above), exclusion of these data points does not alter the conclusions from statistical analysis of our slopes; that they are different from both the previously published biogenic data from the Caltech lab and the inorganic calcite calibration.

We should also make a number of general observations on these points. Firstly it is correct to say that exclusion of certain samples - perhaps most notably five individuals of aragonitic and calcitic mollusks that grew in very cold (approx. -1°C) environments – does result in a steeper slope. This is a point worth making - as we did in the original text and now also in a revised Table 4 and new Table 5 – however it is also important to point out that at present we do not have a good justification for excluding these data in this way, and this is particularly true given one major area clumped isotope temperature estimates from mollusks will be used for is to study polar climates in the past. As we cite in the main text, previous research on these cold-water mollusk taxa has not revealed evidence for significant "vital effects" on their δ^{18} O values and so we don't at present have reason to believe they may have vital effects on the Δ_{47} values. Additionally we note that we have analyzed 5 individuals (each with 2-5 replicate analysis) of these cold water mollusk taxa, consistently finding Δ_{47} values of 0.72-0.74‰ (on the Caltech Intralab reference frame; see manuscript Table 3), substantially lower than the expected values of 0.80% predicted if they conformed the inorganic calcite calibration of Ghosh et al., GCA, 2006. Of course future work may resolve this issue further, but we do not think deviations of this size from the inorganic calibration can be ignored. We have added text to the main text to make these points.

We agree with the reviewers that there is scatter in the calibration data, and it is possible that this is indicative of small biological and/or mineralogical affects. However we do not yet have definitive evidence for these effects and so at present we cannot see a justification for doubting the shallower slope we have observed. We note that the mollusk calibration dataset we present is at least as large or larger in terms of specimens and analyses as previously published calibration studies (eg. Tripati et al., GCA, 2010; Thiagarajan et al., GCA, 2013) and comprises significantly more analysis than the inorganic calcite calibration studies (Ghosh et al., GCA, 2006; Dennis and Schrag, GCA, 2010) so we feel it is justified to analyze the slope of the mollusk data independent from other datasets, rather than binning them all together. Also we feel that we have to be guided by statistical analysis and so if in this case our ANCOVA tests are telling us that the slope of the mollusk calibration is significantly shallower than the inorganic calcite calibration studies are telling us that the slope of the compilation of previously published biogenic data from our laboratory we feel we have to go with this conclusion.

Finally we have also made note in our revised manuscript of another study that was published after our discussion paper appeared online that also reports a shallower slope for a calibration of brachiopods and mollusks (Henkes et al., GCA, 2013). Therefore this study tends to support our observation of a shallower slope. We add the following text to the discussion section of our manuscript:

"We also note that after this manuscript was published as a discussion paper another study of brachiopods and mollusks in a different laboratory also reported a similarly shallow slope (Henkes et al., 2013), although as these measurements were conducted using a very similar methodology to that described in the study presented here the similarity between our calibration slopes does not entirely resolve the possible methodological differences between calibration studies described below."

As we discuss at length in our manuscripts discussion section there are a number of possible reasons for these different clumped isotope calibration slopes, which could include methodological differences as well as small biological or mineralogical affects on isotopic composition. It will take careful work in the future to tease out these possible explanations.

Anonymous Referee #1 (Minor Comments):

Author response: Referee #1 had a number of minor spelling and grammatical corrections which have been addressed in our revised manuscript.

Minor comments:

C62

1. p 160, line 5: Comma missing after 'for example'.

2. p 161, lines12-13: The issue is not that the taxa deviate from the fluid _180 - this is, of course, expected. The issue is that they deviate from the _180 they are expected to have, given the _180 of the fluid and their growth temperature.

3. p 161, line 25: The word 'material' should be plural.

4. p 161, line 27: Comma missing before i.e.

5. p 162, lines 6-7: The 'e.g.' should be placed inside the parentheses, followed by a comma. This error appears several other times in the manuscript (see below and possibly other occurrences).

6. p 162, lines 17-21: The first sentence in this paragraph is long and awkward. Please consider rewriting it in short, clear sentences.

7. p 166, line 5: The phrase 'will vary' should probably be 'varies'.

8. p 166, lines 10-13: The sentence starting with 'Water temperatures' is grammatically incorrect.

9. p 168, line 10: There are some extra words in the sentence ('as was the'?).

10. p 168, line 13: Comma missing before, 'which'.

11. p 170, lines 4-9: This sentence is grammatically incorrect.

12. p 170, line 21: Missing 'by' between the words 'confirmed' and 'analysis'.

13. p 170, line 22: The word 'call' should be 'calls'.

14. p 170, line 24: A new sentence should be started with the word 'therefore' (end of the line).

C63

15. p 170, line 25: The words 'a summer months' should be 'the summer months'. 16. p 170, line 26: The word 'seam' should be 'seem'.

17. p 171, lines 13-15: The phrase 'the difference between these two slopes ... is not significantly different...' should probably be 'the difference between these two slopes ... is not significant...' or 'these two slopes are not significantly different...'. 18. p 172, line 4: Missing 'do' between the words 'and' and 'not'.

19. p 172, line 14: The word 'effected' should be 'affected'.

20. p 172, line 18: 'carbonate as for example the rate' should be 'carbonate, as, for example, the rate'.

21. p 172, line 25: The word 'to' is missing between the words 'order' and 'assess'. 22. p 172, lines 27-end: Awkward wording. Please consider ending the sentence with the reported slope and intercept and starting a new sentence along the lines of 'This slope is slightly steeper, but within the 95% confidence interval...'.

23. In several places in the manuscript, verbs related to the noun 'data' are singular. They should be plural.

24. p 174, line 24: The word 'less' should be 'fewer'.

25. p 175, lines 5-7: Two 'between' in the same sentence.

26. p 175, line 28: See comment 5.

27. p 176, line 3: The word 'effect' should be 'affect'.

28. p 176, line 9: The word 'revolve' should be plural.

C64

29. p 176, lines 14-18: This sentence is awkward and difficult to understand.

30. p 176, line 24: Please consider adding 'This is' before the words 'In contrast'. 31. p 176, line 25: See comment 5.

32. Figure 1 caption: In the second to last sentence, the word 'thank' should be 'that'. A pox on autocorrect!

Interactive comment on Biogeosciences Discuss., 10, 157, 2013.

C65

The influence of temperature and seawater carbonate saturation state on ¹³C-¹⁸O bond ordering in bivalve mollusks

R. A. Eagle^{1,2*}, J. M. Eiler², A. K. Tripati^{1,3}, J. B. Ries⁴, P. S. Freitas⁵, C. Hiebenthal⁶, A. D. Wanamaker Jr.⁷, M. Taviani^{8,9}, M. Elliot¹⁰, S. Marenssi¹¹, K. Nakamura¹², P. Ramirez¹², and K. Roy¹³

[1]{Department of Earth and Space Sciences, University of California, Los Angeles, CA 90095, USA}

[2] {Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA}

[3] {Department of Atmospheric and Oceanic Sciences, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA }

[4] {Department of Marine Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA}

[5]{Departamento de Geologia Marinha, Laboratório Nacional de Energia e Geologia,

Estrada da Portela - Zambujal, 2721-866 Alfragide, Portugal}

[6] {Helmholtz Centre for Ocean Research (GEOMAR), Düsternbrooker Weg 20, D-24105 Kiel, Germany}

[7] {Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA 50011, USA}

[8]{ISMAR-CNR, Via Gobetti 101, 40129 Bologna, Italy}

[9]{Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA}

[10]{Université de Nantes, Laboratoire de Planétologie et Géodynamique, rue de la Houssinière, Nantes, France}

[11] {Instituto Antártico Argentino, Cerrito 1248, C1010AAZ Buenos Aires, Argentina.}

[12] {Department of Geological Sciences, California State University, Los Angeles, CA 90032, USA}

[13] {Division of Biological Sciences, University of California, San Diego, CA 92093, USA}

Correspondence to: R. A. Eagle (rob.eagle@gmail.com)

Abstract

The shells of marine mollusks are widely used archives of past climate and ocean chemistry. Whilst the measurement of mollusk δ^{18} O to develop records of past climate change is a commonly used approach, it has proven challenging to develop reliable independent paleothermometers that can be used to deconvolve the contributions of temperature and fluid composition on molluscan oxygen isotope compositions. Here we investigate the temperature dependence of ¹³C-¹⁸O bond abundance, denoted by the measured parameter Δ_{47} , in shell carbonates of bivalve mollusks and assess its potential to be a useful paleothermometer. We report measurements on cultured specimens spanning a range in water temperatures of 5 to 25°C, and field-collected specimens spanning a range of -1 to 29°C. In addition we investigate the potential influence of carbonate saturation state on bivalve stable isotope compositions by making measurements on both calcitic and aragonitic specimens that have been cultured in seawater that is either supersaturated or undersaturated with respect to aragonite. We find a robust relationship between Δ_{47} and growth temperature. We also find that the slope of a linear regression through all the Δ_{47} data for bivalves plotted against seawater temperature is significantly shallower than previously published inorganic and biogenic carbonate calibration studies produced in our laboratory and go on to discuss the possible sources of this difference. We find that changing seawater saturation state does not have significant effect on the Δ_{47} of bivalve shell carbonate in two taxa that we examined, and we do not observe significant differences between Δ_{47} -temperature relationships between calcitic and aragonitic taxa.

1 Introduction

Molluscan carbonate was amongst the first biologically precipitated materials investigated during the development of the oxygen isotope paleotemperature scale (Epstein et al., 1953). Subsequently fossil mollusks have been widely used as an archive of past environmental change and seawater chemistry (Keith et al., 1964;Killingley and Berger, 1979;Grossman and Ku, 1986;Veizer et al., 1999;Tripati et al., 2001;Tripati and Zachos, 2002;Ivany et al., 2008;Wanamaker et al., 2011;Taviani and Zahn, 1998).

However it has proven challenging to develop robust independent paleothermometers in mollusk carbonate; for example, approaches using trace element partitioning (Mg/Ca, Sr/Ca) into mollusk shell carbonate are often hampered by strong biological controls and high inter- and intra-specimen variability (Dodd, 1965;Lorens and Bender, 1980;Klein et al., 1996;Gillikin et al., 2005;Freitas et al., 2006;Freitas et al., 2008;Freitas et al., 2009;Heinemann et al., 2011;Wanamaker et al., 2008). Therefore it has not yet been possible to reliably partition the contributions of temperature and seawater δ^{18} O to bivalve mollusk carbonate δ^{18} O with a high level of confidence in environments where both parameters could be expected to vary.

"Clumped" isotope paleothermometry is an emerging approach for reconstructing the temperatures of carbonate mineral precipitation (Eiler, 2011). The technique is founded on the principle that rare isotopes of carbon and oxygen have a thermodynamically driven tendency to bond with each other, or "clump", and that this effect increases as temperature decreases (Wang et al., 2004; Schauble et al., 2006). In practice the abundance of ¹³C-¹⁸O bonds in carbonate minerals is measured from the abundance of mass-47 CO₂ (predominantly ¹³C¹⁸O¹⁶O) liberated on phosphoric acid digestion of carbonate minerals (Ghosh et al., 2006). Measured values are compared to a reference frame where isotope abundances from sample gases are compared to reference gases that have been heated to 1000°C, producing a nearly random distribution of isotopes among all isotopologues (Eiler and Schauble, 2004;Affek and Eiler, 2006; Huntington et al., 2009; Passey et al., 2010). More recently, standardization to CO₂ equilibrated with water at two or more controlled temperatures has been proposed as an "absolute reference frame" in an effort to reduce interlaboratory differences due to mass spectrometric effects such as bond breaking and reordering during sample gas ionization (Dennis et al., 2011). Here we refer to data presented relative to heated gases only as "relative to the stochastic distribution" (Ghosh et al., 2006; Huntington et al., 2009) and data presented relative to the newly proposed reference frame as in the "absolute reference frame" (Dennis et al., 2011). In both cases, we report data using the Δ_{47} parameter, which expresses the abundance of ¹³C-¹⁸O bonds found in a sample as an enrichment, in per mil, above that expected if isotopes were distributed randomly (Eiler and Schauble, 2004; Huntington et al., 2009).

Following the calibration of the clumped isotope thermometer in inorganically precipitated calcite (Ghosh et al., 2006) detailed calibration studies of foraminifera, coccoliths, tooth bioapatite, and corals from our laboratory have shown that these biologically precipitated materials appear to yield a relationship between Δ_{47} and temperature (Figure 1) that is very similar to inorganic calcite (Tripati et al., 2010;Eagle et al., 2010; Thiagarajan et al., 2011). The close relationship between the inorganic calcite calibration and Δ_{47} data from foraminifera, coccoliths, and corals - even in taxa that show deviations of up to ~4 per mil from the δ^{18} O values expected given the tempeature and δ^{18} O of the fluid from which they precipitate \checkmark suggests either that inorganic calcite and biogenic carbonates are close to equilibrium or that all exhibit non-equilibrium effects of similar magnitude. In contrast a study on otoliths, and data from a single Porites coral specimen exhibit deviations from the inorganic calibration line (Ghosh et al., 2006;Ghosh et al., 2007). In the case of otoliths this could be explained by uncertainties on the precise formation temperature of the samples, as appears to be also a factor in measurements on thermocline dwelling foraminifera (Tripati et al., 2010), or due to small systematic analytical errors that were likely more common early in the history of Δ_{47} measurements. The difference between Porites coral and the inorganic calibration in Ghosh et al. (Ghosh et al., 2006) is relatively large and remains unexplained.

It is unclear why some biogenic carbonates exhibit relationships between temperature and Δ_{47} that resemble the inorganic calibration of Ghosh et al. (Ghosh et al., 2006) whereas other biogenic materials do not. It is possible that this difference in behavior will shed new light on the long-standing problem concerning the origin of stable isotope "vital effects" (Weiner and Dove, 2003) ie_r differences in isotopic composition between biogenic materials and compositions expected for thermodynamic equilibrium with their environment. Two groups of explanations have been advanced for vital effects on the δ^{18} O of biogenic carbonates, one invoking kinetic isotope effects associated with processes such as the hydration and hydroxylation of CO₂ in solution or crystal growth rate eg. (McConnaughey, 1989); a second set of explanations invoke an equilibrium isotope fractionation associated with the fractionation of isotopes between species of dissolved inorganic carbon present in an organisms calcifying fluids (i.e. isotope Rob Eagle 4/27/13 8:28 PM **Deleted:** δ¹⁸O Rob Eagle 4/27/13 8:28 PM **Deleted:** of up to ~4 per mil

Rob Eagle 5/3/13 2:34 PM Deleted: ..

fractionation between CO_3^{2-} and HCO_3^{-}), which then gets preserved in the solid phase (eg. Spero et al., 1997;Zeebe, 1999;Adkins et al., 2003;Tripati et al., 2010). Other models have invoked kinetic effects associated with element partitioning or isotope effects at the surface of a growing crystal, which is influenced by both crystal growth rate and dissolved inorganic carbon (DIC) speciation (Watson, 2004;Tripati et al., 2010). Preliminary predictions suggested a difference in ¹³C-¹⁸O bonding between CO_3^{2-} and HCO_3^{-} that is small and would not necessarily be measurable were it to be preserved in the solid phase (Guo et al., 2008), whereas more recent solution phase *ab initio* calculations predict a slightly larger effect which may potentially be measurable in carbonates precipitating from a large pH range but is still probably too small to be measured across the typical range of pH seen in the modern ocean(Hill et al., 2012).

The similarity in Δ_{47} between inorganic calcite and some biogenic carbonates (foraminifera, coccoliths and some corals) is consistent with pH effects on carbonate isotopic composition, though the effects are not necessarily required (Tripati et al., 2010;Thiagarajan et al., 2011), and suggest that any kinetic isotope effects must have negligible influence on Δ_{47} values. Conversely the discrepant Δ_{47} values of a *Porites* coral (Ghosh et al., 2006) are more consistent with a larger kinetic isotope effect and not a pH effect. Here, we investigate the controls on ¹³C-¹⁸O bond abundance in the shells of bivalve mollusks, with the dual aim of providing an empirical proxy calibration for paleoclimate studies as well as giving some new perspectives on the fractionation of isotopes during carbonate biomineralization.

2 Methods

2.1 Mollusk culturing

We analyzed cultured bivalve specimens from several different laboratories. We briefly summarize the methods and materials of these culturing experiments here and refer to previous publications for more detailed descriptions of culturing conditions where appropriate.

Rob Eagle 5/3/13 2:34 PN

Deleted: (

Rob Eagle 5/3/13 2:47 PM **Deleted:** Thus, the

ciccui indo, die

5

Rob Eagle 5/3/13 2:47 PM **Deleted:** , Rob Eagle 5/3/13 2:47 PM **Deleted:**),

Specimens of Arctica islandica were cultured at 10.3 and 15°C at the Darling Marine Center in Walpole, Maine. Approximately 30 juvenile (~ 3 yr; shell height = ~ 40 mm) specimens of A. islandica were grown in muddy sediment in a temperaturecontrolled environment for 15 weeks. Ambient seawater (salinity = 30.4 to 30.7; Hydrolab[®] MiniSonde \pm 0.2) from 10 meters water depth was pumped into the flowing seawater labs, where the water flow was reduced (~ 6 L per minute) and the water was heated or cooled to maintain the desired temperature in the 1500-liter holding tank. Prior to the start of the growth experiment, individuals were immersed and marked with a biomarker stain, calcein, according to methods outlined previously (Beirne et al., 2012). The clams were exposed to 10°C seawater for five weeks (April 8 to May 12, 2011), then briefly removed from the growth experiment and re-marked with calcein stain. The animals were then reintroduced to the growth experiment and exposed to 15°C seawater for 10 weeks (May 14 to July 21, 2011). The clams were only exposed to ambient food. On July 21, 2011, all animals were harvested. The soft tissues were removed and the intact valves were rinsed and air-dried. Samples were then shipped to Iowa State University. Prior to sampling the aragonitic shell material, the periostracum was physically removed with a Dremel[®] hand drill. Although growth marks were visible on the shell surface for each temperature treatment, sampling was further guided by the calcein stains (Beirne et al., 2012). Approximately 50 mg of CaCO₃ was removed from the outer shell layer of the left valve of one shell with a Dremel[®] hand drill equipped with a diamond tipped bit on low speed.

5°C cultures of *A. islandica* and *Mytilus edulis* were conducted at the Helmholtz Centre for Ocean Research Kiel (GEOMAR) Germany. Young *M. edulis* specimens were collected in Kiel Fjord (southwestern Kiel Bight) where salinity is on average 16.3 (\pm 2.4 SD) and surface water temperatures range from 0.15°C in winter to 23.4°C (mean 10.48 \pm 6.13 SD) in summer. *A. islandica* specimens were collected at 24 m depth at the station Süderfahrt (54°32.6'N, 10°42.1' E) in central Kiel Bight where salinity is on average 21.8 (\pm 2.4 SD) and temperatures vary between 0.6 and 17.5°C (mean: 9.03 \pm 4.23 SD;. Bivalves were kept in temperature-insulated 4 l containers (with 10 ind. of *M. edulis*, and 7 ind. of *A. islandica* in each container) and were fed 0.5 ml ind.⁻¹ d⁻¹ of a concentrated living-phytoplankton suspension 5 times a week (DT's Premium Blend; DT's Plankton

Farm). Bivalve individuals were allowed to slowly acclimatize to the respective treatments. Temperature and Salinity were kept constant for the experimental duration of 15 wk. Salinity levels were set by admixing freshly collected Baltic Sea water with either ion-exchanged water or artificial marine salt (SEEQUASAL). Sample culturing setup is described in detail elsewhere (Hiebenthal et al., 2012). The here used shell material was grown at 5°C and a salinity of 35. Shell sizes were measured at the beginning of the culturing phase and again prior to sampling using a caliper so that new growth could be identified. After 15 weeks of culturing, the whole soft tissue of the bivalves was removed from the shells and the shells were air-dried (7 d at 20°C). Care was taken to remove approximately 10mg of Dremel[®] hand drill from the very outer shell layer, representing new shell growth.

M. edulis and Pecten maximus cultures between 10 and 20°C were carried out at the School of Ocean Sciences, Bangor University, U.K. All animals were acclimated to the laboratory environment at a temperature of ~13°C for more than two months. Animals of similar size (< 1 year) were then moved into separate aquaria and slowly acclimated to different but constant temperatures (maximum resolution of 1°C), constant dimmed-light conditions and controlled food conditions; the aquaria were routinely cleaned of all detritus. Animals were fed a mixed algae solution from containers with a drip-tap. For the duration of the experiments, animals were kept in individual plastic mesh cages within each aquarium. Natural seawater pumped from the Menai Strait was conditioned for a few days in settling tanks, and then pumped into holding tanks and introduced as a common supply into the laboratory aquaria. Due to variable growth rates, the duration of the experiments varied with species and aquarium temperature. Because of the limited number of aquaria available, separate temperature-controlled experiments were completed. Animals from the two species can be divided into three groups: one experiment with M. edulis at 12, 15 and 18°C; a second experiment with M. edulis and P. maximus at 10, 15 and 20°C; and a third with P. maximus and some M. edulis specimens at 18°C. Seawater temperature was monitored every 15 minutes in each aquarium using submerged temperature loggers. Samples for pH measurements were obtained manually every other day by immersing 20 ml plastic syringes below the surface of the seawater in all the aquaria. The samples were subsequently allowed to warm up to room temperature

 $(20 \pm 2^{\circ}C)$ in the dark before measurement with a commercial glass electrode (Mettler Toledo Inlab 412). The electrode was calibrated using NBS pH buffers 6.881 and pH 9.225 (20°C) and was then allowed to stand until a stable reading was obtained (~ 1 min). Shell calcite from each specimen was sampled across each growth interval along the main axis of growth, as described previously (Freitas et al., 2008).

Bivalve specimens cultured at 25°C and at different aragonite saturation states are described in Ries et al. (2009). Specimens of *Mytilus edulis, Mercenaria mercenaria, Argopecten irradians, Crassostrea virginica,* and *Mya arenaria* were collected from Nantucket Sound and then transferred into aquaria at the Woods Hole Oceanographic Institution. Briefly, seawater tanks were maintained at 25 ± 1 °C and were illuminated for 10 hours per day with 213 W/m² illuminance. 75% seawater changes were made approximately every 24 days. Air-CO₂ mixtures of 409 and 2856 ppm *p*CO₂ were introduced into the aquaria with 6-inch micro-porous air-stones. Salinity, temperature, and pH of aquarium seawater were measured weekly, and alkalinity biweekly using methods described previously(Ries et al., 2009). Aragonite saturation state, DIC, and *p*CO₂ were calculated from these parameters. Bivalve shells were sampled from their outermost growth line along their main axes of growth.

2.2 Field collected samples

Specimens were collected at the locations given in Table 2. The length of bivalve mollusk growing season will vary somewhat between taxa and this presents an additional source of uncertainty in the calibration. However, in the results section below we show that the slope of our calibration line is not significantly impacted by assumptions over the predominant season of field collected bivalve growth. In the figures and tables presented here we have assumed that there is a bias in the predominant season shell growth to the three warmest months of the year. <u>In order to obtain seawater temperatures at the sites</u> where specimens were collected from we used the Levitus database (Levitus and Boyer, 1994) or in the case of the specimen from San Diego data from the Scripps Pier coastal water monitoring project (http://www.nodc.noaa.gov/dsdt/cwtg/spac.html).

Rob Eagle 5/3/13 2:52 PMDeleted: WaterRob Eagle 5/3/13 2:52 PMDeleted: forRob Eagle 5/3/13 2:53 PMDeleted: specimens were

2.3 Cleaning protocols

To evaluate the necessity of sample cleaning 30-50mg of each specimen were lightly crushed and treated for 60 minutes in a 3% H₂O₂ solution. Samples were then washed three times in excess deionized water and dried in a 50°C oven overnight. The majority of samples in this study were not cleaned as this cleaning was not found to impact Δ_{47} values as described below.

2.4 Stable isotope measurements

Data was collected on two ThermoFinnegan MAT 253 gas source mass. Carbonate samples and standards were reacted on the online common acid bath system with automated sample gas purification described previously (Passey et al., 2010). Acid digestion of carbonate minerals was carried out at 90°C. For full details of analytical methods see previous publications (Huntington et al., 2009; Passey et al., 2010). In brief, 6-10mg of calcium carbonate samples were crushed and reacted in phosphoric acid on an automated online acid reaction system (Passey et al., 2010) where evolving CO_2 gas is immediately frozen in a liquid nitrogen trap. Sample gases are passed through a Porapak Q 120/80 mesh GC column held at -20°C to remove potential organic contaminants. Gases are also passed through silver wool to remove sulfur compounds. Δ_{48} values were measured and were used as an empirical indicator of potential organic contamination (not shown) as has been described previously (Huntington et al., 2009).

2.5 Data processing

 Δ_{47} values are defined as:

$$\Delta_{47} = \left[\left(R^{47} / R^{*47} - 1 \right) - \left(R^{46} / R^{*46} - 1 \right) - \left(R^{45} / R^{*45} - 1 \right) \right] - 1$$

Where R^i represents mass i/mass 44 and R^* represents isotopologues in the random (stochastic) distribution (Affek and Eiler, 2006).

As measurements were made on CO₂ liberated from carbonates by digestion with phosphoric acid heated to 90°C they are significantly offset from previous published data on carbonates reacted at 25°C. Passey et al., (2010) empirically determined a value of 0.08‰ for this offset based on measurement of carbonate standards and previous studies have assumed this offset to be constant (Passey et al., 2010;Eagle et al., 2010;Csank et al., 2011;Finnegan et al., 2011;Suarez et al., 2011;Eagle et al., 2011). Therefore, in order to compare mollusk data to previously published data reacted at 25°C on both the stochastic distribution and absolute reference frame a correction of 0.08‰ was made.

We report data using both the stochastic reference frame for Δ_{47} values (as reported in previous studies such as Ghosh et al., 2006) and the 'absolute reference frame' of Dennis et al., 2011 (Dennis et al., 2011) which assumes a certain value for the difference between heated gases and CO2 gas standards equilibrated at other temperatures. As the majority of data here was collected before the proposition of the absolute reference frame, we convert Δ_{47} values to this reference frame using carbonate standards that were analyzed over the analytical time period. Accepted Δ_{47} values for Carrara Marble and 102-GC-AZ01 on the absolute reference frame determined in our laboratory are 0.392‰ and 0.724‰ respectively (Dennis et al., 2011) and these were used to construct an empirical transfer function to generate Δ_{47} values on the absolute reference frame, as described previously(Dennis et al., 2011). For the conversion of the compilation of published biogenic data (Tripati et al., 2010; Thiagarajan et al., 2011) and inorganic data to the absolute reference frame we also used the secondary transfer function approach, using standard values given in each publication, or where no standard data was given a Carrara Marble or NBS-19 value of 0.392‰ was used (Dennis et al., 2011). All published data (Ghosh et al., 2006;Ghosh et al., 2007;Came et al., 2007;Eagle et al., 2010; Tripati et al., 2010; Thiagarajan et al., 2011) and new bivalve data converted to the absolute reference frame is given in Table 3 and Table S1, which includes the standard values and the slope and intercepts that were used in the transfer function used to convert from the 'stochastic reference frame' to the absolute reference frame.

Rob Eagle 5/5/13 10:10 AM

Deleted: We report data using both the Caltech intralab reference frame for Δ_{47} values (which assumes a certain value for the difference between heated gases and an intralaboratory CO₂ gas standard) and the 'absolute reference frame' of Dennis et al., 2011 (Dennis et al., 2011).

Rob Eagle 5/3/13 2:56 PM

Deleted: , as was the

Rob Eagle 5/5/13 10:11 AM Deleted: the Caltech intralab reference frame (also Rob Eagle 5/5/13 10:11 AM Deleted: here)

A carbonate standard was analyzed for every 5-6 samples of unknown isotopic composition. During the analytical period 44 analyses of Carrara Marble yielded a δ^{13} C value of 2.3‰ (V-PDB), δ^{18} O of -2.0‰ (V-PDB), and Δ_{47} of 0.349 ± 0.006 (1 standard error, versus the stochastic distribution). 20 analyses of the standard Carmel Chalk yielded a δ^{13} C value of -2.1‰, a δ^{18} O of -4.2‰, and Δ_{47} of 0.636 ± 0.005‰. 12 analyses of the standard 102-GC-AZ01 yielded a δ^{13} C value of 0.5‰, a δ^{18} O of -13.1‰, and Δ_{47} of 0.656 ± 0.006‰. 15 analyses of the standard TV01 yielded a δ^{13} C value of 0.1‰, a δ^{18} O of -8.6‰, and Δ_{47} of 0.653 ± 0.009‰.

For aragonite δ^{18} O calculations an acid digestion fractionation factor of 1.00854126 was used, calculated by extrapolation from a published calibration (Guo et al., 2009;Kim et al., 2007). For calcite a value of 1.00821000 was used (Swart et al., 1991).

3 Results

3.1 The effect of sample cleaning on stable isotope measurements from bivalve shell carbonate

Bivalves calcify onto a protein matrix (Addadi et al., 2006), which results in the interlocking of organic material and carbonate shell. Organic contamination has the potential to provide isobaric interferences with mass-47 CO₂ measurements, and so we investigated the effect of oxidative sample cleaning on measured Δ_{47} values using a treatment of 30 minutes in 3% H₂O₂. We found that cleaning did not impact measured Δ_{47} in several samples analyzed (Table 1), and so we conclude that the automated sample reaction and cleaning apparatus described in Passey et al., (2010) is sufficient to remove the levels of volatile organic contaminants generally produced from reaction of bivalve shell carbonate in phosphoric acid (Passey et al., 2010). It is also possible that the majority of the organic matter present in mollusk shell is refractory. This is a different result than seen in biogenic phosphate minerals where sample cleaning does seem to be necessary for accurate measurements (Eagle et al., 2010). This indicates either that

phosphates tend to have higher levels of contaminants that provide isobars for Δ_{47} measurements or that the larger sample size reacted to produce CO₂ from phosphate minerals tends to lead to higher levels of contaminants or incomplete reactions of uncleaned samples. Therefore in the remaining analysis presented here we did not perform any sample cleaning.

3.2 The relationship between temperature and Δ_{47} values in bivalve mollusks

An initial study of the temperature effects on Δ_{47} values in modern bivalve mollusks examined three samples (Came et al., 2007). Here we greatly expand the number of specimens measured as well as the range of temperatures encompassed by the calibration.

We present data both relative to the stochastic reference frame (to aid comparison with previously published data), and in the recently proposed absolute reference frame (Tables 1-6, Tables S1). The most direct analysis of our data (i.e. involving a minimum of calculations) is the empirical correlation between known growth temperature and Δ_{47} value of bivalve carbonate relative to the stochastic reference frame, using a 90°C phosphoric acid digestion reaction (Figure 2; Table 3). This is the temperature that is now standardly used on our automated online sample reaction and gas purification systems (Passey et al., 2010). We then applied the empirically determined acid digestion correction of 0.08‰ to derive data relative to the stochastic distribution and on the absolute reference frame that could be compared to previously published data collected on CO₂ produced by digesting carbonates in phosphoric acid at 25°C (Figure 2). Linear regressions through each dataset are presented in Figure 2, and are tabulated with calculated uncertainties and alongside previously published regression in Table 4.

Individual bivalve samples generally conform reasonably well to the temperature relationship defined by the total population of bivalve data. However a small number of samples, for example the specimen of *Zygoclamys patagonica*, show a significant departure from this relationship (i.e fall outside the 95% confidence intervals of the linear regression; Figure 2). This appears to represent a unique property of the sample (possibly

Rob Eagle 5/5/13 10:16 AM **Deleted:** Caltech intralab

_	Rob Eagle 5/5/13 10:11 AM
	Deleted: 5
	Rob Eagle 5/5/13 10:16 AM
	Deleted:
	Rob Eagle 5/5/13 10:11 AM
	Deleted: Caltech intralab
	Rob Eagle 5/3/13 3:09 PM
	Deleted: which is the

a "vital effect") on Δ_{47} rather than an imprecise measurement as the result is confirmed by analysis of CO₂ extracted from this specimen 6 times (Table 2). The Levitus Atlas of ocean temperatures also calls for a minor difference in mean annual temperature (~8°C) versus warm summer month (~9°C) temperature at the location and water depth on the Patagonian shelf where this sample was recovered from <u>Therefore if the database is</u> correct, then incorrect attribution of the season of growth to the summer months in Figure 2 does not <u>seem a likely explanation(Levitus and Boyer, 1994)</u>. Additional work on specific taxa will be needed to confirm this observation. Amongst the most significant departures from previous calibration lines are from both calcitic and aragonitic specimens forming in the coldest environments, near freezing shallow marine waters of the Ross Sea off Antarctica that do not reach significantly above 0°C all year.

The R² value of our bivalve mollusk calibration line is 0.0728 (Table 4) using data on the absolute reference frame, and the standard deviation of the residuals (SDR) is 0.017‰. This suggests that there is somewhat larger variability in bivalve Δ_{47} data compared to other biogenic calibration datasets. For example the linear regression through the foraminifera calibration of Tripati et al. has an R² value of 0.8998 and a SDR of 0.014‰ and for the study of corals by Thiagarajan et al. the R² value is 0.8703 with a SDR of 0.015‰ (Tripati et al., 2010; Thiagarajan et al., 2011). It is possible that this reflects very subtle biological or mineralogical effects on bivalve Δ_{47} data, although as we describe below we cannot resolve these effects in our dataset.

In the case of field-collected bivalves in the Figures and regression analysis presented we assumed that preferential growth occurred in the three warmest summer months. However we accept that many taxa do also grow at other times of year and so in order to assess the impact of our assumption on the resulting regression lines through Δ_{47} versus temperature data we also created a regression line using mean annual water temperatures (data not shown) for field collected specimens. The slope of a linear regression line through all bivalve data including field-collected specimens assumed to reflect mean annual temperature (rather than warm month average temperatures as in figures and tables) is 0.0350 on the absolute reference frame. This compares to a slope of 0.0362 assuming warm month average temperature is the predominant growing season

Rob Eagle 5/3/13 3:11 PM
Deleted: ,
Rob Eagle 5/3/13 3:11 PM
Deleted: t
Rob Eagle 5/3/13 3:16 PM
Deleted: a
Rob Eagle 5/3/13 3:16 PM
Deleted: seam

Rob Eagle 5/4/13 3:48 PM Formatted: Font:12 pt

Rob Eagle 5/4/13 3:48 PMFormatted: Font:12 ptRob Eagle 5/4/13 3:48 PMFormatted: Font:12 pt

for field collected bivalve shells (Table 4). These slopes are not significantly different in an analysis of covariance (ANCOVA) test (p=0.68). Therefore we conclude that our assumptions over the predominant growing season for bivalve mollusks do not significantly impact the slope of the linear regression lines presented here.

3.3 Comparison of bivalve Δ_{47} calibration with other theoretical and empirical calibrations

A linear regression through the plot of 1/T versus Δ_{47} values for our measurements from bivalves produces a significantly shallower slope than a regression through previously published calibration materials analyzed in our laboratory (Figure 3). Previous publications did not use the same software or approaches for calculating linear regressions eg. (Ghosh et al., 2006;Huntington et al., 2009). Therefore in order to compare regressions precisely, as in Figures 3 and 4, we recalculate all linear regressions using GraphPad Prism software (Zar, 1984) and it is these values that are presented in Table 4. In practice however these different methods do not yield slopes and intercepts that are markedly different; for example the linear regression presented by Ghosh et al., 2006 yielded a slope of 0.592, whereas using the software utilized here we yield a slope of 0.598. Linear regressions presented here do not take into account errors in carbonate formation temperatures or isotope measurements; in this dataset these tend to be quite similar on average and <u>do</u> not significantly impact the slope of the regression (data not shown).

The slopes of the bivalve calibration regression and the Ghosh et al. (2006) inorganic calcite regression are significantly different (Table 5). Additionally the bivalve mollusk calibration is shown to be significantly different than a compilation of published biogenic data from our laboratory (Table 5). The slopes of the bivalve calibration regression and the inorganic calibration regression of Dennis and Schrag (2010) are not significantly different (Table 5). However, the intercepts of the Dennis and Schrag regression and our bivalve data are significantly different (p = 0.0012). Thus, even though the slopes of these calibrations are statistically indistinguishable, there could be

Rob Eagle 5/3/13 3:20 PM Deleted:); Rob Eagle 5/3/13 3:20 PM Deleted: the Rob Eagle 5/3/13 3:20 PM Deleted: difference between these two Rob Eagle 5/3/13 3:21 PM Deleted: is

Rob Eagle 5/3/13 3:31 PM Deleted: here

 Rob Eagle 5/4/13 2:36 PM

 Deleted: p = 0.0059

 Rob Eagle 5/4/13 2:36 PM

 Formatted: Font:Not Italic

 Rob Eagle 5/4/13 2:42 PM

 Deleted: p = 0.702

 Rob Eagle 5/4/13 2:43 PM

 Formatted: Font:Not Italic

 Rob Eagle 5/4/13 2:43 PM

 Formatted: Font:Not Italic

 Rob Eagle 5/4/13 2:43 PM

an offset in the absolute values of the two. We also note that the apparently higher variability in the bivalve mollusk dataset compared to other biogenic calibration datasets is taken into account by the statistical analysis of slopes presented in Table 5 and so this variability itself cannot explain the statistically significant differences in slopes we observe.

In order to consider whether the slope of the bivalve linear regression could be significantly effected by a few anomalous datapoints we tested the effect of excluding the five specimens recovered from the coldest temperatures from Antarctica (Laternula elliptica and Adamussium colbecki) that are also amongst the most different from the calibration line of Ghosh et al. (Ghosh et al., 2006), yielding Δ_{47} values of 0.72-0.74‰ on the relative tot he stochastic distribution (Table 3) compared value of 0.80% which is predicted for carbonates growing at -1°C if they conformed to the calibration of Ghosh et al. (Ghosh et al., 2006). One possibility is that cold environments favor the expression of kinetic isotope effects on the ¹³C-¹⁸O bond abundance in carbonates, as, for example, the rate of reaction for the hydration of CO₂ in solution decreases significantly between 25 and 0°C and is a potential source of disequilibrium isotope effects in the dissolved inorganic carbon pool from which carbonate forms (Johnson, 1982;Zeebe, 2009). In order to assess potential bias from these datapoints on regression lines we recalculated the linear regression through our dataset excluding taxa that grow in coldest environments and give potentially anomalous Δ_{47} values. Exclusion of the specimens from Antarctica from the mollusk dataset does yield a steeper slope (Table 4) of 0.0402 ± 0.0050 (1 s. e.) on the absolute reference frame, however it does not change the results of our statistical analysis (Table 5) showing that the bivalve mollusk calibration dataset is has a significantly different slope to the previously published biogenic compilation produced in our laboratory and the inorganic calcite calibration of Ghosh et al. (Ghosh et al., 2006).

Whilst it is useful to examine the effect of excluding these samples on the regression line, it is also important to note that at present we do not have a good reason exclude these Antarctic specimens from the regression analysis in this way. There is some rationale for supposing that carbonates that form at low temperatures could be more prone to record kinetic isotope effects, as described above, however previously published

Rob Eagle 5/4/13 3:39 PM

Deleted: Rob Eagle 5/3/13 5:31 PM

Deleted: Z. patagonica, and

Rob Eagle 5/3/13 5:57 PM

Moved down [1]: Previously published studies on the cold-water bivalve taxa studied here report that their δ^{18} O values are close to equilibrium (Barrera et al., 1994;Barrera et al., 1990) which would tend to suggest this is not the case in the samples examined in this study, but we cannot conclusively rule this out here. Rob Eagle 5/3/13 6:51 PM

Deleted: apparently Rob Eagle 5/3/13 5:31 PM Formatted: Not Highlight

Rob Eagle 5/4/13 1:36 PM Formatted: Indent: First line: 0.4"

Rob Eagle 5/3/13 5:57 PM Moved (insertion) [1] Rob Eagle 5/3/13 5:58 PM Deleted: P

studies on *L. elliptica* and *A. colbecki*, from Antarctica report that their measured δ^{18} O are close to their expected equilibrium values (Barrera et al., 1994;Barrera et al., 1990). Whilst we cannot rule out disequilibrium effects in Δ_{47} that do not manifest as significant disequilibrium effects on δ^{18} O, this is perhaps unlikely. Therefore at present we regard the regression line through all our mollusk data as the most robust calibration.

3.4 Calcite versus aragonite

Theoretical calculations predict that there would be an offset between Δ_{47} values derived from calcite compared to aragonite (Schauble et al., 2006; Guo et al., 2009). However measurements from foraminifera and corals have not resolved any mineralogical effect (Tripati et al., 2010; Thiagarajan et al., 2011). In our mollusk dataset there is a slight offset between the slopes of regression lines between calcitic and aragonitic mollusks (Figure 4), however the offset is in the opposite direction to that predicted from theory (Schauble et al., 2006; Guo et al., 2009). The slopes of linear regressions through the temperature- Δ_{47} data for calcitic and aragonitic taxa (Figure 4) were not significantly different (p = 0.520). If a difference between calcitic and aragonitic mollusks exists, then it is not easily resolveable. In some cases bivalves which precipitate shells with mixed mineralogy were selectively sampled to only acquire the calcite phase, such as the M. edulis specimens grown at Bangor University (Freitas et al., 2008). However, in other cases this distinction was not made and both mineralogies were sampled and this is detailed in Table 4. For the calcite versus aragonite comparison samples with mixed mineralogy were excluded. When comparing the regression lines through the aragonite data to other calibrations (Table 5) it is worth noting that there does not appear to be enough data to statistically determine which of the two different inoganic calcite calibration lines (Ghosh et al., 2006; Dennis and Schrag, 2010) the aragonitic mollusk data fits best with. Therefore it remains possible that the lack of a mineraological difference in our study could be further resolved in the future with larger datasets.

Rob Eagle 5/3/13 6:05 PM Deleted: the cold-water Rob Eagle 5/3/13 6:05 PM Formatted: Font:Not Italic Rob Eagle 5/3/13 6:05 PM **Deleted:** bivalve taxa studied here Rob Eagle 5/3/13 6:01 PM Deleted: values Rob Eagle 5/3/13 6:05 PM Formatted: Not Highlight Rob Eagle 5/3/13 6:00 PM Formatted: Do not check spelling or grammar, Not Superscript/ Subscript Rob Eagle 5/3/13 6:01 PM Deleted: which would tend to suggest this is not the case in the samples examined in this study, but we cannot conclusively rule this out here. The slope and intercept of a regression line through our mollusk data (on the absolute reference frame) excluding specimens of L. elliptica and A. colbecki and the Z. patagonica, are 0.03956 ± 0.0047 and 0.2730 ± 0.0569 , which does yield a slightly steeper slope but is within error the 95% confidence interval of the entire dataset (Table 4). Thus these taxa cannot alone explain why the calibration slope in this study is shallower than that fort previou ... [1] Rob Eagle 5/3/13 3:32 PM Formatted: Highlight Rob Eagle 5/5/13 10:17 AM Formatted: Indent: First line: 0" Rob Eagle 5/5/13 10:17 AM Deleted: The t Rob Eagle 5/5/13 10:17 AM Deleted: of Guo et al. Rob Eagle 5/5/13 10:17 AM Deleted: ed Rob Eagle 5/5/13 10:27 AM Deleted: by Rob Eagle 5/5/13 10:18 AM Deleted: Guo et al. Rob Eagle 5/5/13 10:27 AM

Deleted: Therefore, our data do not su... [2]

3.5 The influence of seawater carbonate saturation state on bivalve stable isotopes

In a number of biogenic carbonates it has been suggested that changes in solution pH can influence carbonate δ^{18} O (Spero et al., 1997;Rollion-Bard et al., 2003;Adkins et al., 2003). The effect of changing solution pH and carbonate chemistry on ¹³C-¹⁸O bond abundance in carbonate minerals has not been explicitly investigated. Here we analyzed specimens of *Mya arenaria*, and *Agropecten irradians* that were cultured at 25°C and with CO₂ bubbled into the aquarium at either 409ppm or 2856ppm producing seawater that was either supersaturated or undersaturated with respect to aragonite (Ries et al., 2009). *M. arenaria* predominantly precipitates aragonite, whilst *A. irradians* precipitaes low-Mg calcite. Both species showed a reduction in calcification in undersaturated seawater, but care was taken to only sample new growth in each case (Ries et al., 2009). In both cases no significant effects on δ^{18} O and Δ_{47} values were observed in carbonate that was formed by specimens cultured in seawater undersaturated with respect to aragonite (Table <u>6</u>).

4 Discussion

The data presented here reaffirms the potential of Δ_{47} measurements to provide independent constraints on mineral formation temperatures and provides an empirical calibration that can be applied to paleoclimate studies using bivalve mollusks. We also show that changing solution pH should not be a confounding factor in the interpretation of bivalve based Δ_{47} or δ^{18} O measurements, at least in the taxa studied, and that there is no significant mineralogical difference between calcite and aragonite. The errors in slope and intercepts for linear regression lines given in Table 4 highlight that successful calibration of the carbonate "clumped isotope" thermometer is dependent on having large datasets. For example a linear regression through the initial inorganic calcite calibration dataset (Ghosh et al., 2006) has much larger uncertainties than a calibration line based on all the published biogenic calibration data from our laboratory due to having <u>fewer</u> datapoints. However we have shown statistically that the uncertainties in these calibration lines cannot alone explain the difference between our bivalve mollusk calibration line and Rob Eagle 5/3/13 3:45 PM Deleted: 5

Rob Eagle 5/3/13 3:50 PN Deleted: less

other data produced in our laboratory, which (i) highlights that empirical calibrations of the carbonate clumped isotope paleothermometer are vital for each type of material and experimental setup, and (ii) suggests that initial papers showing close similarity of some biogenic materials to the inorganic calcite calibration of Ghosh et al. (Ghosh et al., 2006;Eagle et al., 2010;Tripati et al., 2010;Thiagarajan et al., 2011) should not be assumed to hold in all cases. We also note that after this manuscript was published as a discussion paper another study of brachiopods and mollusks in a different laboratory also reported a similarly shallow slope (Henkes et al., 2013), although as these measurements were conducted using a very similar methodology to that described in the study presented here the similarity between our calibration slopes does not entirely resolve the possible methodological differences between calibration studies described below.

There are two possible explanations that are immediately apparent for the differences between calibration lines generated from different materials in our laboratory. First, the bivalve mollusk data presented here was obtained using the automated online sample reaction system described in Passey et al., 2010, whereas the in-depth calibration studies of corals, foraminifera and coccoliths were conducted using offline reactions with cryogenic and gas chromatography cleanup steps performed manually (Passey et al., 2010; Tripati et al., 2010; Thiagarajan et al., 2011). The calibration study on bioapatite (Eagle et al., 2010) was conducted on the automated system, but it did not examine specimens grown at temperatures lower than ~24°C and so would not necessarily have resolved a difference in slope that would be most apparent at low temperatures. Therefore we must consider the possibility that an experimental effect, such as fractionation of gases in either offline or online systems, or an effect due to the differences in acid digestion temperature between the two systems (25°C for the offline reactions, 90°C for the automated systems, which is presently addressed using a correction of 0.08‰) is not being correctly accounted for. Evidence against an experimental artifact from these two sources comes from the broadly comparable results that have been generated in different labs that use different systems for purifying CO₂ gas and different acid digestion temperatures as part of an interlaboratory comparison, which included measurements on a cold water coral standard in four laboratories that consistently yielded a Δ_{47} value in the range of 0.78-0.80% on the absolute reference frame (Dennis et al., 2011). Additionally a

 Rob Eagle 5/3/13 3:53 PM

 Deleted: between

 Rob Eagle 5/3/13 3:53 PM

 Deleted: generated

number of applied studies using the automated sample preparation system have found that the calibration of Ghosh et al., (Ghosh et al., 2006) generally yields plausible results including on modern specimens where we have good controls over growth temperature (eg. Passey et al., 2010;Eagle et al., 2010;Finnegan et al., 2011;Csank et al., 2011;Suarez et al., 2011;Eagle et al., 2011). Nevertheless most applied studies have focused on samples formed at temperatures of 20°C or more, and so there is a possibility that experimental differences such as small amounts of gas fractionation or equilibration during sample gas purification could preferentially effect samples with heavier Δ_{47} values (>0.75‰). This is an area that should be explored in the future. Another possibility is that there are variations in acid digestion fractionation factors for samples of different isotopic composition or of different mineralogy, and whilst the aragonitic cold-water coral did not show this <u>effect</u> (Dennis et al., 2011) it would be useful to check if this is the case in other materials.

A second possible explanation for the differences in calibration lines revolves around fundamental differences in shell calcification in bivalve mollusks compared to other biogenic carbonates that could result in "vital effects" on Δ_{47} . In this scenario the closer match of deep sea corals to the calibration of Ghosh et al. (Ghosh et al., 2006) at cold temperatures actually reflects the expression of a small kinetic isotope effect in all of these materials, one that is not found in mollusks. The data from foraminifera at cold temperatures is relatively sparse, with some samples from the Arctic Ocean showing deviations from the Caltech inorganic calcite calibration and so are analogous to the mollusk data presented here, but other datapoints from specimens from slightly warmer environments fall closer to the calibration of Ghosh et al. (Ghosh et al., 2006;Tripati et al., 2010). This highlights the relative paucity of data from carbonates forming at low temperatures and this is an obvious area to focus future calibration studies.

Bivalve mollusks frequently precipitate their shells close to equilibrium with maximum deviations typically in the range of 0.5% (eg. Horibe and Oba, 1972;Romanek and Grossman, 1989;Grossman and Ku, 1986;Barrera et al., 1994;Wanamaker et al., 2006). This is in contrast to deep-sea corals, which often exhibit nonequilibrium values of δ^{18} O of 4-5‰ in some cases e.g. (Adkins et al., 2003). Therefore we might expect that

Rob Eagle 5/3/13 4:01 PM

Deleted: eg. (

Rob Eagle 5/3/13 4:02 PM **Deleted:** effect

Rob Eagle 5/3/13 4:03 PM Deleted: ing

Rob Eagle 5/3/13 4:20 PM **Deleted:** (

cicui (

Rob Eagle 5/3/13 4:20 PM Deleted: In

bivalve mollusk derived Δ_{47} values may also record close to equilibrium values, unless there is a source of biological fractionation of Δ_{47} in bivalves that has not yet been identified. In this case, the calibration of Ghosh et al. (Ghosh et al., 2006) would have to also include a kinetic isotope effect that fortuitously matches "vital effects" in previously published biogenic data from temperature range of 0-10°C that falls close to the inorganic calcite values. Finally we note that even though a mineralogical difference between calcite and aragonite could not be resolved in our dataset it is still possible that very subtle mineralogical effects do exist and these effects contribute to the variability in measured Δ_{47} values. Larger datasets may be required to constrain this possibility with more certainty.

In conclusion if the experimental effects described above can be either ruled out or better constrained, we will be able to say more about whether there may be small biological fractionations in Δ_{47} that differ between corals, foraminifera, and bivalves, and why these fractionations are most apparent at cold temperatures.

Acknowledgements

This work was funded by National Science Foundation grants ARC-1215551 to RAE and AKT, EAR-1024929 to RAE and JME, and EAR-0949191 to AKT. AKT is also supported by the Hellman Fellowship program. We thank Chris Richardson (Bangor University) for provision of the field collected *Arctica islandica* specimens. Culture of bivalves in Kiel, Germany, was funded by the German Science Foundation (DFG Ei272/21-1, to Anton Eisenhauer) and the European Science Foundation (ESF) Collaborative Research Project CASIOPEIA (04 ECLIM FP08). ISMAR-CNR Bologna scientific contribution n. <u>1781</u>.

Rob Eagle 5/4/13 3:41 PN Deleted: xxx

Figure 1. Published calibrations of the carbonate clumped isotope thermometer.

The top panel shows previously published inorganic calibration lines relative to the stochastic distribution, as described by Huntington et al. (Huntington et al., 2009) as well as a recalculation of the regression through the data compilation of Tripati et al., (Tripati et al., 2010) which drew on several original sources (Ghosh et al., 2006;Ghosh et al., 2007;Came et al., 2007;Eagle et al., 2010;Tripati et al., 2010); and now has the data from Thiagarajan et al, included (Thiagarajan et al., 2011). Data from Zaarur et al., was not included due to uncertainties over exactly what environmental conditions the materials analyzed should reflect (Zaarur et al., 2011), and the *Porites* coral analyzed by Ghosh et al., 2006). Also shown is a regression through the same compilation of published materials now converted into the absolute reference frame (Table S1) via the secondary transfer function method (Dennis et al., 2011). Note that the $10^{6'}T^2$ scale with T in degrees Kelvin is the primary temperature scale used for data plots, with a secondary x-axis in degrees Celsius presented as a guide only. All regression lines were recalculated from original data (see methods for details).

Figure 2. Bivalve Δ_{47} calibration data. The top panel shows a linear regression with 95% confidence intervals through Δ_{47} measurements made on both cultured (circles) and field collected (triangles) mollusks grown at different temperatures. Shells were reacted with phosphoric acid heated to 90°C to produce analyte CO₂. These data are relative to the stochastic distribution as described previously (Huntington et al., 2009) and do not have the empirically derived acid digestion correction of 0.08‰ added (Passey et al., 2010), which is used to compare data to that derived from a 25°C acid digestion reaction. The middle panel is the data with this correction. The bottom panel is bivalve calibration data with the acid digestion correction, then converted into the absolute reference frame (Dennis et al., 2011) using a secondary transfer function. Equations for the relationship between measured Δ_{47} and bivalve growth temperature are given in each case.

Rob Eagle 5/5/13 10:35 AM **Deleted:** the Caltech intralab reference frame (relative to Rob Eagle 5/5/13 10:35 AM **Deleted:**)

Rob Eagle 5/3/13 4:21 PN Deleted: thank

Figure 3. Comparison of bivalve Δ_{47} measurements to previously published calibration data. Here we compare the linear regressions through our mollusk data shown in Figure 2 to published calibration lines, relative to both the stochastic distribution (left panels) and on the absolute reference frame (right panels). In all cases a correction of 0.08‰ was made to compare mollusk data to older data collected in our laboratory using 25°C acid digestion reactions. Mollusk calibration lines have a clearly shallower slope than the inorganic calcite calibration line of Ghosh et al., (Ghosh et al., 2006) and have a similar slope to the calibration of Dennis and Schrag, but with a slight offset to that calibration (Dennis and Schrag, 2010). The mollusk calibration line is also significantly shallower than the linear regression through the compilation of other published materials from our laboratory (bottom panels), with previously published data plotted in this graph given in Table S1.

Figure 4. Comparison of bivalve Δ_{47} data derived from calcitic and aragonitic taxa.

The top panel shows data split between calcitic (squares) and aragonitic (circles) mollusks, with a linear regression through each. Here cultured and field collected samples are not distinguished in the figure. The bottom panel shows linear regressions with 95% confidence intervals. There is an offset between the regressions between calcite and aragonite, but it is not statistically significant.

Addadi, L., Joester, D., Nudelman, F., and Weiner, S.: Mollusk Shell Formation: a Source of New Concepts for Understanding Biomineralization Processes, Chem. Eur. J., 12, 980-987, 2006.

Adkins, J. F., Boyle, E. A., Curry, W. B., and Lutringer, A.: Stable isotopes in deep-sea corals and a new mechanism for "vital effects", Geochem. Cosmochim. Acta, 67, 1129-1143, 2003.

Affek, H., and Eiler, J. M.: Abundance of mass 47 CO_2 in urban air, car exhaust, and human breath Geochim. Cosmochim. Acta, 70, 1-12, 2006.

Barrera, E., Tevesz, M. J. S., and Carter, J. G.: Variations in Oxygen and Carbon Isotopic Compositions and Microstructure of the Shell of *Adamussium colbecki* (Bivalvia), Palaios, 5, 149-159, 1990.

Barrera, E., Tevesz, M. J., Carter, J. G., and McCall, P. L.: Oxygen and Carbon Isotopic Composition and Shell Microstructure of the Bivalve *Laternula elliptica* from Antarctica, Palaios, 9, 275-287, 1994.

Beirne, E. C., Wanamaker, A. D., and Feindel, S. C.: Experimental validation of environmental controls on the delta C-13 of *Arctica islandica* (ocean quahog) shell carbonate, Geochem. Cosmochim. Acta, 84, 395-409, 2012.

Came, R. E., Eiler, J. M., Veizer, J., Azmy, K., Brand, U., and Weidman, C. R.: Coupling of surface temperatures and atmospheric CO₂ concentrations during the Palaeozoic era., Nature, 449, 198-201, 2007.

Csank, A. Z., Tripati, A. K., Patterson, W. P., Eagle, R. A., Rybczynski, N., Ballantyne, A. P., and Eiler, J. M.: Estimates of Arctic land surface temperatures during the early Pliocene from two novel proxies, Earth Planet. Sci. Lett., 304, 291-299, 2011.

Dennis, K. J., and Schrag, D. P.: Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration, Geochim. Cosmochim. Acta, 74, 4110-4122, 2010.

Dennis, K. J., Affek, H. P., Passey, B. H., Schrag, D. P., and Eiler, J. M.: Defining an absolute reference frame for 'clumped' isotope studies of CO₂, Geochim. Cosmochim. Acta, 75, 7117-7131, 2011.

Dodd, J. R.: Environmental control of strontium and magnesium in mytilus, Geochim. Cosmochim. Acta, 29, 385, 1965.

Eagle, R. A., Schauble, E. A., Tripati, A. K., Tütken, T., Hulbert, R. C., and Eiler, J. M.: Body temperatures of modern and extinct vertebrates from ¹³C-¹⁸O bond abundances in bioapatite, Proc. Natl. Acad. Sci. USA, 107, 10377-10382, 2010.

Eagle, R. A., Tutken, T., Martin, T. S., Tripati, A. K., Fricke, H. C., Connely, M., Cifelli, R. L., and Eiler, J. M.: Dinosaur Body Temperatures Determined from Isotopic (¹³C-¹⁸O) Ordering in Fossil Biominerals, Science, 333, 443-445, 2011.

Eiler, J. M., and Schauble, E.: ¹⁸O¹³C¹⁶O in Earth's atmosphere, Geochim. Cosmochim. Acta, 68, 4767-4777, 2004.

Eiler, J. M.: Paleoclimate reconstruction using carbonate clumped isotope thermometry, Quatern. Sci. Rev., 30, 3575-3588, 2011.

Epstein, S., Buchsbaum, R., Lowenstam, H., and Urey, H. C.: Revised carbonate water isotopic temperature scale., Bull. Geol. Soc. Amer., 64, 1315-1326, 1953.

Finnegan, S., Bergmann, K., Eiler, J. M., Jones, D. S., Fike, D. A., Eisenman, I., Hughes,N. C., Tripati, A. K., and Fischer, W. W.: The Magnitude and Duration of LateOrdovician-Early Silurian Glaciation, Science, 331, 903-906, 2011.

Freitas, P. S., Clarke, L. J., Kennedy, H., Richardson, C. A., and Abrantes, F.: Environmental and biological controls on elemental (Mg/Ca, Sr/Ca and Mn/Ca) ratios in shells of the king scallop *Pecten maximus*, Geochem. Cosmochim. Acta, 70, 5119-5133, 2006.

Freitas, P. S., Clarke, L. J., Kennedy, H. A., and Richardson, C. A.: Inter- and intraspecimen variability masks reliable temperature control on shell Mg/Ca ratios in laboratory- and field-cultured *Mytilus edulis* and *Pecten maximus* (bivalvia), Biogeosciences, 5, 1245-1258, 2008. Rob Eagle 4/28/13 6:13 PM Deleted: C-13-O-18 Freitas, P. S., Clarke, L. J., Kennedy, H., and Richardson, C. A.: Ion microprobe assessment of the heterogeneity of Mg/Ca, Sr/Ca and Mn/Ca ratios in *Pecten maximus* and *Mytilus edulis* (bivalvia) shell calcite precipitated at constant temperature, Biogeosciences, 6, 1209-1227, 2009.

Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W. F., Schauble, E. A., Schrag D., and Eiler, J. M.: ¹³C–¹⁸O bonds in carbonate minerals: a new kind of paleothermometer, Geochim. Cosmochim. Acta, 70, 1439-1456., 2006.

Ghosh, P., Eiler, J., Campana, S. E., and Feeney, R. F.: Calibration of the carbonate 'clumped isotope' paleothermometer for otoliths, Geochim. Cosmochim. Acta, 71, 2736-2744, 2007.

Gillikin, D. P., Lorrain, A., Navaz, J., Taylor, J. W., Keppens, E., Baeyens, W., and Dehairs, F.: Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells, Geochem. Geophys. Geosys., 6, Q05009, 2005.

Grossman, E. L., and Ku, T. L.: Oxygen and carbon isotope fractionation in biogenic aragonite - temperature effects, Chem. Geol., 59, 59-74, 1986.

Guo, W., Daeron, M., Niles, P., Genty, D., Kim, S. T., Vonhof, H., Affek, H., Wainer, K., Blamart, D., and Eiler, J.: ¹³C-¹⁸O bonds in dissolved inorganic carbon: Implications for carbonate clumped isotope thermometry, Geochem. Cosmochim. Acta, 72, A336, 2008.

Guo, W., Mosenfelder, J. L., Goddard III, W. A., and Eiler, J. M.: Isotopic fractionations associated with phosphoric acid digestion of carbonate minerals: insights from first-principles theoretical modeling and clumped isotope measurements, Geochim. Cosmochim. Acta, 73, 7203-7225, 2009.

Heinemann, A., Hiebenthal, C., Fietzke, J., Eisenhauer, A., and Wahl, M.: Disentangling the biological and environmental control of M. edulis shell chemistry, Geochem. Geophys. Geosys., 12, Q03009, 2011.

Henkes, G.A., Passey, B.H., Wanamaker, A.D., Grossman, E.L., Ambrose, W.G., Carroll, M.L. Carbonate clumped isotope compositions of modern marine mollusk and brachiopod shells. Geochim. Cosmochim. Acta, 106, 307-325, 2013.

Hiebenthal, C., Philipp, E. R. R., Eisenhauer, A., and Wahl, M.: Interactive effects of temperature and salinity on shell formation and general condition in Baltic Sea *Mytilus edulis* and *Arctica islandica*, Aquatic Biology, 14, 289-298, 2012.

Hill, P. S., Tripati, A. K., and Schauble, E. A.: Predicting ¹³C-¹⁸O clumped isotope fractionation in dissolved inorganiccarbon and rapidly precipitated carbonate minerals, American Geophysical Union - Fall Meeting, 2012.

Horibe, Y., and Oba, T.: Temperature scales of aragonite-water and calcite-water systems, Fossils, 23/24, 69-79, 1972.

Huntington, K. W., Eiler, J. M., Affek, H. P., Guo, W., Bonifacie, M., Yeung, L. Y., Thiagarajan, N., Passey, B., Tripati, A., Daëron, M., and Came, R.: Methods and limitations of 'clumped' CO₂ isotope (Delta47) analysis by gas-source isotope ratio mass spectrometry, J. Mass Spectrom., 44, 1318-1329, 2009.

Ivany, L. C., Lohmann, K. C., Hasiuk, F., Blake, D. B., Glass, A., Aronson, R. B., and Moody, R. M.: Eocene climate record of a high southern latitude continental shelf: Seymour Island, Antarctica, GSA Bulletin, 120, 659-678, 2008.

Johnson, K. S.: Carbon dioxide hydration and dehydration kinetics in seawater., Limnology and Oceanography, 27, 849-855., 1982.

Keith, M. L., Anderson, G. M., and Eichler, R.: Carbon and oxygen isotopic composition of mollusk shells from marine and fresh-water environments, Geochim. Cosmochim. Acta, 28, 1757-1786, 1964.

Killingley, J. S., and Berger, W. H.: Stable isotopes in a mollusk shell - detection of upwelling events, Science, 205, 186-188, 1979.

Kim, S.-T., Mucci, A., and Taylor, B.: Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75 deg C, Chem. Geol., 246, 135-146, 2007.

Klein, R. T., Lohmann, K. C., and Thayer, C. W.: Sr/Ca and ¹³C/¹²C ratios in skeletal calcite of *Mytilus trossulus*: Covariation with metabolic rate, salinity, and carbon isotopic composition of seawater, Geochim. Cosmochim. Acta, 60, 4207-4221, 1996.

Levitus, S., and Boyer, T.: World Ocean Atlas 1994: Temperature, edited by: NESDIS4, N. A., U.S. Department of Commerce, Washington DC, 1994.

Lorens, R. B., and Bender, M. L.: The impact of solution chemistry on *Mytilus edulis* calcite and aragonite, Geochim. Cosmochim. Acta, 44, 1265-1278, 1980.

McConnaughey, T.: ¹³C and ¹⁸O isotopic disequilibrium in biological carbonates. I. Patterns, Geochem. Cosmochim. Acta, 53, 151-162, 1989.

Passey, B. H., Levin, N. E., Cerling, T. E., Brown, F. H., and Eiler, J. M.: High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates, Proc. Natl. Acad. Sci. USA, 107, 11245-11249, 2010.

Ries, J. B., Cohen, A. L., and McCorckle, D. C.: Marine calcifiers exhibit mixed responses to CO₂-induced ocean acidification, Geology, 37, 1131-1134, 2009.

Rollion-Bard, C., Chaussidon, M., and France-Lanord, C.: pH control on oxygen isotopic composition of symbiotic corals, Earth Planet. Sci. Lett., 215, 275-288, 2003.

Romanek, C. S., and Grossman, E. L.: Stable isotope profiles of *Tridacna maxima* as environmental indicators, Palaios, 4, 402-413, 1989.

Schauble, E. A., Ghosh, P., and Eiler, J. M.: Preferential formation of ¹³C-¹⁸O bonds in carbonate minerals, estimated using first-principles lattice dynamics., Geochim. Cosmochim. Acta, 70, 2510-2529, 2006.

Spero, H. J., Bijma, J., Lea, D. W., and Bemis, B. E.: Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes, Nature, 390, 497-500, 1997.

Suarez, M. B., Passey, B. H., and Kaakkinen, A.: Paleosol carbonate multiple isotopologue signature of active East Asian summer monsoons during the late Miocene and Pliocene, Geology, 39, 1151-1154, 2011.

Swart, P. K., Burns, S. J., and Leder, J. J.: Fractionation of the stable isotopes of oxygen and carbon in carbon-dioxide during the reaction of calcite with phosphoric-acid as a function of temperature and technique, Chem. Geol., 86, 89-96, 1991.

Taviani, M., and Zahn, R.: The stable oxygen isotope record of Pleistocene and Miocene bivalves in the CRP-1 drillhole, Victoria Land Basin, Antarctica, Terra Antarctica, 5, 1998.

Thiagarajan, N., Adkins, J., and Eiler, J.: Carbonate clumped isotope thermometry of deep-sea corals and implications for vital effects, Geochim. Cosmochim. Acta, 75, 4416-4425, 2011.

Tripati, A., Zachos, J., Marincovich, L., and Bice, K.: Late Paleocene Arctic coastal climate inferred from molluscan stable and radiogenic isotope ratios, Paleogeog. Paleoclimatol. Paleoecol., 170, 101-113, 2001.

Tripati, A., and Zachos, J.: Late Eocene tropical sea surface temperatures: A perspective from Panama, Paleoceanography, 17, 1032, 10.1029/2000PA000605 2002.

Tripati, A. K., Eagle, R. A., Thiagarajan, N., Gagnon, A. C., Bauch, H., Halloran, P. R., and Eiler, J. M.: ¹³C–¹⁸O isotope signatures and 'clumped isotope' thermometry in foraminifera and coccoliths Geochim. Cosmochim. Acta, 74, 5697-5717, 2010.

Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G., and Strauss, H.: ⁸⁷Sr/⁸⁶Sr, delta-¹³C and delta-¹⁸O evolution of Phanerozoic seawater, Chem. Geol., 161, 59-88, 1999.

Wanamaker, A. D., Kreutz, K. J., Borns, H. W., Introne, D. S., Feindel, S., and Barber, B.
J.: An aquaculture-based method for calibrated bivalve isotope paleothermometry.,
Geochem. Geophys. Geosys., 7, Q09011, doi:09010.01029/02005GC001189(001189),
2006.

Wanamaker, A. D., Kreutz, K. J., Wilson, T., Borns, H. W., Introne, D. S., and Feindel, S.: Experimentally determined Mg/Ca and Sr/Ca ratios in juvenile bivalve calcite for *Mytilus edulis*: implications for paleotemperature reconstructions, Geo-Marine Letters, 28, 359-368, 2008.

Wanamaker, A. D., Hetzinger, S., and Halfar, J.: Reconstructing mid- to high-latitude marine climate and ocean variability using bivalves, coralline algae, and marine sediment

cores from the Northern Hemisphere, Paleogeog. Paleoclimatol. Paleoecol., 302, 1-9, 2011.

Wang, Z. G., Schauble, E. A., and Eiler, J. M.: Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases, Geochem. Cosmochim. Acta, 68, 4779-4797, 2004.

Watson, E. B.: A conceptual model for near-surface kinetic controls on the trace-element and stable isotope composition of abiogenic calcite crystals, Geochem. Cosmochim. Acta, 68, 1473-1488, 2004.

Weiner, S., and Dove, P. M.: An overview of biomineralization processes and the problem of the vital effect, Reviews in Mineralogy & Geochemistry, 54, 1-29., 2003.

Zaarur, S., Olack, G., and Affek, H. P.: Paleo-environmental implication of clumped isotopes in land snail shells, Geochem. Cosmochim. Acta, 75, 6859-6889, 2011.

Zar, J. H.: Biostatistical analysis, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1984.

Zeebe, R. E.: An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes, Geochem. Cosmochim. Acta, 63, 2001-2007, 1999.

Zeebe, R. E.: Hydration in solution is critical for stable oxygen isotope fractionation between carbonate ion and water., Geochim. Cosmochim. Acta, 73, 5283-5291, 2009.

Relative to the stochastic distribution

- Mollusk linear regression with 95% confidence intervals (this study)

----- Ghosh et al., 2006

-- Dennis and Schrag, 2010

Mollusk linear regression with 95% confidence intervals (this study)

--- Biogenic compilation with 95% confidence intervals

Table 1. Effect of oxidative sample cleaning on mollusk stable isotope data

Таха	Sample ID	Growth Temperature ¹ (°C)	Sample Treatment	Mineralogy ²	Total Number of Analyses ³	δ ¹³ C ‰ V-PDB	δ ¹⁸ Ο ‰ V-PDB	Δ ₄₇ ‰ (SD) ⁴	Δ ₄₇ ‰ (ARF) ⁵
Crassostrea virginica	JR-126	25	None	С	6	-0.5	-1.7	0.650 ± 0.005	0.716 ± 0.005
Crassostrea virginica	JR-126	25	3% H ₂ O ₂	С	6	-0.4	-1.2	0.651 ± 0.012	0.716 ± 0.012
Mya arenaria	JR-131	25	None	A>>C	3	-1.0	-3.3	0.648 ± 0.005	0.714 ± 0.005
Mya arenaria	JR-131	25	3% H ₂ O ₂	A>>C	3	-1.0	-3.3	0.644 ± 0.002	0.709 ± 0.002

¹Cultured specimen growth temperature is accurate to with 0.5°C on average (see methods). For field-collected specimens temperatures correspond to average temperatures for the three warmest months (assumed to be the predominant growing season) it is assumed that there is a 1°C error in growth temperatures on average. Ocean temperatures determined from the Levitus database. All temperatures are rounded to the nearest integer.

 ^{2}C = calcite, A = aragonite. >> refers to a mixed mineralogy with one mineral predominating. For the purpose of isotope calculations the dominant mineralogy is used.

³Represents the number of distinct extractions of CO₂ from a sample, that is then purified and analyzed.

 4 Relative to the stochastic distribution. Also referred to as data in the Caltech Intralaboratory reference frame. Includes the acid digestion correction of 0.08. \pm Values are one standard error.

⁵Values given on the absolute reference frame.

Taxa	Growth	Location	Mineralogy ²	Number	Total	Δ_{47}	Δ_{47}
	Temperature ¹			Individuals	Number	%0	‰
	(°C)			Analysed	of	$(SD)^4$	(ARF) ⁵
					Analyses ³		()
Cultured Specimens							
Arctica islandica	5	Kiel	А	4	4	0.738 ± 0.020	0.810 ± 0.02
Arctica islandica	10	Iowa State	А	1	2	0.673 ± 0.007	0.741 ± 0.00
Arctica islandica	15	Iowa State	А	1	3	0.661 ± 0.013	0.729 ± 0.01
Mytilus edulis	5	Kiel	C>A	3	3	0.732 ± 0.014	0.804 ± 0.01
Mytilus edulis	10	Bangor	С	3	3	0.710 ± 0.010	0.779 ± 0.01
Mytilus edulis	12	Bangor	С	4	4	0.703 ± 0.016	0.772 ± 0.01
Mytilus edulis	15	Bangor	С	4	4	0.677 ± 0.018	0.744 ± 0.01
Mytilus edulis	18	Bangor	С	3	4	0.677 ± 0.005	0.744 ± 0.00
Mytilus edulis	20	Bangor	С	4	4	0.662 ± 0.014	0.729 ± 0.01
Mytilus edulis	25	Woods Hole	C>A	2	2	0.683 ± 0.010	0.751 ± 0.01
Pecten maximus	10	Bangor	С	2	2	0.710 ± 0.003	0.779 ± 0.00
Pecten maximus	15	Bangor	С	4	5	0.673 ± 0.006	0.740 ± 0.00
Pecten maximus	18	Bangor	С	3	3	0.669 ± 0.006	0.735 ± 0.00
Pecten maximus	20	Bangor	С	3	3	0.684 ± 0.004	0.752 ± 0.00
Argopecten irradians	25	Woods Hole	С	2	8	0.670 ± 0.000	0.730 ± 0.00
Mercenaria mercenaria	25	Woods Hole	A>>C	2	10	0.664 ± 0.007	0.733 ± 0.00
Mya arenaria	25	Woods Hole	A>>C	2	7	0.649 ± 0.001	0.713 ± 0.00
Crassostrea virginica	25	Woods Hole	С	1	6	0.650 ± 0.000	0.716 ± 0.00
Field Collected Specime	ns						
Laternula elliptica	-1	Ross Sea	Α	3	11	0.725 ± 0.006	0.796 ± 0.00
Adamussium colbecki	-1	Ross Sea	С	2	6	0.727 ± 0.001	0.798 ± 0.00
Mytilus sp.	8	Ushuaia, Argentina	C>A	2	9	0.705 ± 0.009	0.775 ± 0.01
Mytilus sp.	8	Seno Otway, Chile	C>A	2	7	0.706 ± 0.002	0.776 ± 0.00
Arctica islandica	9	Flatey, Iceland	А	2	10	0.677 ± 0.004	0.745 ± 0.00
Zvgoclamvs patagonica	9	Patagonian shelf	С	1	6	0.681 ± 0.012	0.749 ± 0.01

Table 2. Average stable isotope data for all mollusk samples grown at seawater in equilibrium with present day pCO_2

Mytilus californianus	21	Scripps Pier, USA	C>A	2	2	0.685 ± 0.002	0.754 ± 0.002
Tridacna gigas	28	Great Barrier Reef	А	1	3	0.619 ± 0.013	0.683 ± 0.013
Tridacna gigas	28	Cocos Islands	А	1	3	0.637 ± 0.010	0.703 ± 0.010
Tridacna gigas	29	Papua New Guinea	А	1	5	0.645 ± 0.002	0.711 ± 0.002

¹Cultured specimen growth temperature is accurate to with 0.5°C on average (see methods). For field-collected specimens temperatures correspond to average temperatures for the three warmest months (assumed to be the predominant growing season) it is assumed that there is a 1°C error in growth temperatures on average. Ocean temperatures determined from the Levitus database. All temperatures are rounded to the nearest integer.

 ^{2}C = calcite, A = aragonite. >> = a mixed mineralogy with one mineral predominating. For the purpose of isotope calculations the dominant mineralogy is used. $^{3}Represents$ the number of distinct extractions of CO₂ from all samples analyzed sample, that is then purified and analyzed.

⁴ Relative to the stochastic distribution. Also referred to as data in the Caltech Intralaboratory reference frame. Includes the acid digestion correction of $0.08. \pm$ values are one standard error.

⁵Values given on the absolute reference frame.

Taxa	Sample ID	Growth Temperature ¹ (°C)	Location	Mineralogy ²	Total Number of Analyses ³	δ ¹³ C ‰ V-PDB	δ ¹⁸ Ο ‰ V-PDB	Δ ₄₇ ‰ (SD) ⁴	Δ47 ‰ (ARF) ⁵
Cultured Specimens									
Arctica islandica	A 5 35/2	5	Kiel	А	1	-1.6	-0.4	0.767 ± 0.009	0.840 ± 0.009
Arctica islandica	A 5 35/1	5	Kiel	А	1	-1.6	-0.3	0.776 ± 0.005	0.849 ± 0.005
Arctica islandica	A 5 35/4	5	Kiel	А	1	-1.8	-0.5	0.690 ± 0.009	0.759 ± 0.009
Arctica islandica	A 5 35/3	5	Kiel	А	1	-2.6	-0.4	0.721 ± 0.013	0.792 ± 0.013
Arctica islandica	AI-10.3	10	Iowa State	А	2	2.2	-1.3	0.673 ± 0.007	0.741 ± 0.007
Arctica islandica	AI-15	15	Iowa State	А	3	2.3	-1.2	0.661 ± 0.013	0.729 ± 0.013
Mytilus edulis	M 5 35/1	5	Kiel	C>A	1	-2.8	-0.4	0.715 ± 0.011	0.786 ± 0.011
Mytilus edulis	M 5 35/3	5	Kiel	C>A	1	-3.2	-0.4	0.720 ± 0.017	0.792 ± 0.017
Mytilus edulis	M 5 35/2 + 35/3	5	Kiel	C>A	1	-3.5	-0.3	0.760 ± 0.014	0.834 ± 0.014
Mytilus edulis	E2 T10 A3	10	Bangor	С	1	-1.0	1.7	0.730 ± 0.009	0.800 ± 0.009
Mytilus edulis	E2 T10 B2	10	Bangor	С	1	-1.3	1.2	0.696 ± 0.011	0.765 ± 0.011
Mytilus edulis	E2 T10 F2	10	Bangor	С	1	-1.4	1.2	0.704 ± 0.014	0.773 ± 0.014
Mytilus edulis	E1 T12 C2	12	Bangor	С	1	-0.1	1.0	0.748 ± 0.015	0.819 ± 0.015
Mytilus edulis	E2 T12 A3	12	Bangor	С	1	-0.3	0.7	0.695 ± 0.007	0.763 ± 0.007
Mytilus edulis	E1 T12 A2	12	Bangor	С	1	-0.1	1.0	0.694 ± 0.011	0.762 ± 0.011
Mytilus edulis	E1 T12 F4	12	Bangor	С	1	-0.1	1.5	0.676 ± 0.009	0.743 ± 0.009
Mytilus edulis	E2 T15 B1	15	Bangor	С	1	-1.1	0.1	0.686 ± 0.008	0.754 ± 0.008
Mytilus edulis	E1 T15 F1	15	Bangor	С	1	-1.0	0.1	0.652 ± 0.010	0.718 ± 0.010
Mytilus edulis	E1 T15 A3	15	Bangor	С	1	-1.2	0.1	0.647 ± 0.013	0.712 ± 0.013
Mytilus edulis	E2 T15 E4	15	Bangor	С	1	-0.8	0.3	0.724 ± 0.009	0.794 ± 0.009
Mytilus edulis	E1 T18 E4	18	Bangor	С	1	-1.1	-0.2	0.689 ± 0.013	0.757 ± 0.013
Mytilus edulis	E1 T18 A1	18	Bangor	С	1	-0.9	-0.4	0.673 ± 0.008	0.740 ± 0.008
Mytilus edulis	E3 T18 A4	18	Bangor	С	2	-0.8	-0.2	0.669 ± 0.004	0.735 ± 0.004
Mytilus edulis	E2 T20 D3	20	Bangor	С	1	-0.8	-0.7	0.671 ± 0.009	0.738 ± 0.009
Mytilus edulis	E2 T20 C1	20	Bangor	С	1	-0.8	-0.8	0.674 ± 0.008	0.741 ± 0.008
Mytilus edulis	E2 T20 A4	20	Bangor	С	1	-0.1	-1.2	0.683 ± 0.012	0.751 ± 0.012
Mytilus edulis	E2 T20 A2	20	Bangor	С	1	-0.8	-0.5	0.621 ± 0.016	0.685 ± 0.016

Table 3. Stable isotope data for individual mollusk specimens grown at ambient carbonate saturation state and with no cleaning

Mytilus edulis	JR-107	25	Woods Hole	C>A	1	-0.5	-1.2	0.693 ± 0.006	0.761 ± 0.006
Mytilus edulis	JR-108	25	Woods Hole	C>A	1	-2.9	-2.4	0.673 ± 0.013	0.740 ± 0.013
Pecten maximus	E2 T10 P6	10	Bangor	С	1	0.9	1.8	0.713 ± 0.008	0.782 ± 0.008
Pecten maximus	E2 T10 P4	10	Bangor	С	1	0.9	1.4	0.706 ± 0.008	0.775 ± 0.008
Pecten maximus	E2 T15 P7	15	Bangor	С	1	0.5	0.3	0.681 ± 0.008	0.749 ± 0.008
Pecten maximus	E2 T15 P10	15	Bangor	С	1	0.6	0.3	0.683 ± 0.007	0.751 ± 0.007
Pecten maximus	E2 T15 P8	15	Bangor	С	1	0.5	0.4	0.657 ± 0.012	0.723 ± 0.012
Pecten maximus	E2 T15 P3	15	Bangor	С	2	0.5	0.4	0.670 ± 0.013	0.737 ± 0.013
Pecten maximus	E2 T18 P2	18	Bangor	С	1	0.4	-0.1	0.680 ± 0.008	0.747 ± 0.008
Pecten maximus	E2 T18 P7	18	Bangor	С	1	0.2	-0.2	0.666 ± 0.007	0.733 ± 0.007
Pecten maximus	E2 T18 P5	18	Bangor	С	1	0.3	-0.4	0.660 ± 0.009	0.726 ± 0.009
Pecten maximus	E2 T20 P2	20	Bangor	С	1	0.4	-0.7	0.679 ± 0.006	0.746 ± 0.006
Pecten maximus	E2 T20 P3	20	Bangor	С	1	0.3	-1.0	0.681 ± 0.009	0.749 ± 0.009
Pecten maximus	E2 T20 P9	20	Bangor	С	1	0.5	-0.4	0.692 ± 0.008	0.760 ± 0.008
Argopecten irradians	JR-113	25	Woods Hole	С	4	-2.6	-2.0	0.677 ± 0.011	0.728 ± 0.003
Argopecten irradians	JR-114	25	Woods Hole	С	4	-1.7	-1.6	0.661 ± 0.003	0.745 ± 0.011
Mercenaria mercenaria	JR-119	25	Woods Hole	A>>C	6	-1.3	-1.4	0.671 ± 0.009	0.739 ± 0.009
Mercenaria mercenaria	JR-120	25	Woods Hole	A>>C	4	0.0	-2.3	0.660 ± 0.006	0.727 ± 0.006
Mya arenaria	JR-131	25	Woods Hole	A>>C	3	-1.0	-2.9	0.648 ± 0.005	0.714 ± 0.005
Mya arenaria	JR-132	25	Woods Hole	A>>C	4	-0.8	-2.5	0.650 ± 0.008	0.716 ± 0.008
Crassostrea virginica	JR-126	25	Woods Hole	С	6	-0.5	-1.7	0.650 ± 0.005	0.715 ± 0.005
Field Collected Specime	ne								
Laternula elliptica	LE #1	-1	Ross Sea, Antarctica	А	4	1.3	44	0.721 ± 0.006	0 791 + 0 006
Laternula elliptica	LE #2	-1	Ross Sea, Antarctica	A	3	1.4	4.4	0.721 ± 0.000 0.718 + 0.021	0.789 ± 0.021
Laternula elliptica	LE #3	-1	Ross Sea, Antarctica	A	4	1.3	4.5	0.716 ± 0.021 0.736 ± 0.016	0.808 ± 0.016
Adamussium colbecki	AC #1	-1	Ross Sea, Antarctica	C	4	1.7	4.5	0.736 ± 0.010 0.726 + 0.004	0.796 ± 0.004
Adamussium colbecki	AC #2	-1	Ross Sea, Antarctica	Č	2	1.9	4 1	0.720 ± 0.001 0.727 ± 0.005	0.799 ± 0.005
Mytilus sp.	MTM #1	8	Ushuaia, Argentina	C>A	5	1.3	0.7	0.696 + 0.004	0.765 ± 0.004
Mytilus sp.	MTM #2	8	Ushuaia, Argentina	C>A	4	-1.2	0.4	0.714 + 0.003	0.785 ± 0.003
Mytilus sp.	MTM #3	8	Seno Otway, Chile	C>A	3	0.0	-0.3	0.708 ± 0.028	0.778 ± 0.028
Mytilus sp.	MTM #4	8	Seno Otway, Chile	C>A	4	1.6	03	0.704 ± 0.007	0.774 ± 0.007
Arctica islandica	AI-060967	9	Flatey, Iceland	A	3	1.4	3.5	0.681 ± 0.010	0.754 ± 0.002
Arctica islandica	AI-060971	9	Flatey, Iceland	А	7	1.9	3.1	0.674 ± 0.004	0.741 ± 0.004
Zvgoclamvs patagonica	Zygoclamys	9	Patagonian shelf	С	6	1.9	2.2	0.681 ± 0.012	0.749 ± 0.012
Mytilus californianus	KN-9	21	Scripps Pier, USA	C>A	1	0.6	-0.7	0.687 ± 0.016	0.756 ± 0.016
Mytilus californianus	KN-10	21	Scripps Pier, USA	C>A	1	0.5	-0.3	0.683 ± 0.017	0.752 ± 0.017
Tridacna gigas	TG GBR	28	Great Barrier Reef	А	3	2.4	-1.1	0.637 ± 0.010	0.683 ± 0.013

Tridacna gigas	TG Cocos	28	Cocos Islands	А	3	2.0	-1.4	0.619 ± 0.013	0.703 ± 0.010
Tridacna gigas	MT7	29	Papua New Guinea	А	5	2.0	-1.4	0.645 ± 0.002	0.711 ± 0.002

¹Cultured specimen growth temperature is accurate to with 0.5°C on average (see methods). For field-collected specimens temperatures correspond to average temperatures for the three warmest months (assumed to be the predominant growing season) it is assumed that there is a 1°C error in growth temperatures on average. Ocean temperatures determined from the Levitus database. All temperatures are rounded to the nearest integer.

 ${}^{2}C$ = calcite, A = aragonite. >> = a mixed mineralogy with one mineral predominating. For the purpose of isotope calculations the dominant mineralogy is used. ${}^{3}Represents$ the number of distinct extractions of CO₂ from a sample, that is then purified and analyzed.

⁴ Relative to the stochastic distribution. Also referred to as data in the Caltech Intralaboratory reference frame. Includes the acid digestion correction of $0.08. \pm$ values are one standard error.

⁵Values given on the absolute reference frame.

ГГ						1					
	Relative to the stochastic distribution					Absolute reference frame					
Dataset	Slope ^e	1 s.e.	Intercept	1 s.e.	R ²	Slope ^e	1 s.e.	Intercept	1 s.e.	\mathbf{R}^2	
Inorganic calcite ^a Ghosh et al, 2006	0.0598	0.0094	-0.0248	0.1046	0.8896	0.0620	0.0099	0.0021	0.1095	0.8877	
Inorganic calcite ^a Dennis and Schrag, 2010	0.0316	0.0036	0.2697	0.0382	0.8587	0.0340	0.0038	0.3155	0.0408	0.8600	
Published biogenic data compilation ^b	0.0550	0.0019	0.0267	0.0223	0.9140	0.0559	0.0019	0.0708	0.0232	0.9105	
All bivalve mollusks This study	0.0341	0.0041	0.2719	0.0496	0.7246	0.0362	0.0044	0.3140	0.0527	0.7258	
Bivalve mollusks minus Antarctic specimens ^c This study	0.0378	0.0050	0.1488	0.0601	0.7094	0.0402	0.0054	0.2686	0.0638	0.7098	
Calcitic bivalve mollusks This study ^d	0.0342	0.0054	0.2725	0.0658	0.7685	0.0364	0.0058	0.3140	0.0706	0.7656	
Aragonitic bivalve mollusks This study ^d	0.0383	0.0074	0.2094	0.0893	0.8180	0.0407	0.0078	0.2483	0.0095	0.8179	

Table 4. Slopes and intercepts of linear regressions through Δ_{47} and temperature data for samples with known growth temperatures.

^aSee Table S1 for the data used for these regression lines calculations.

^bIncludes coral data from Ghosh et al., 2006 (but excludes Red Sea *Porites*), and data from Ghosh et al., 2007; Came et al., 2007; Tripati et al., 2010; Eagle et al., 2010; Thiagarajan et al., 2011. See Table S1 for values for these data.

^cExcluding data from the five individuals of *Laternula ellipica* and *Adamussium colbecki* (which are Antarctic specimens from the coldest environments sampled in this study) as a means for determining whether the calibration slope could be significantly influenced by these samples alone.

^dExcluding specimens with mixed mineralogy

^eLinear regressions through previously published data are all recalculated here using GraphPad Prism software (Zar, 1984) so that they are directly comparable to the new mollusk data presented here, and as a result may have slight differences from the slopes and intercepts given in original publications at the third or fourth decimal place. All regressions are on data that include an acid digestion temperature correction where appropriate (Passey et al., 2010). Errors are given as 1

standard error (1 s.e.).

Table 5. ANCOVA p-values derived by comparing linear regressions through the dataset generated in this study to previously published data.

Dataset ^a	Inorganic calcite Ghosh et al, 2006	Inorganic calcite Dennis and Schrag, 2010	Published biogenic data Compilation ^d
All bivalve mollusks, this study	p = 0.0035 (Y)	p = 0.7020 (N)	p < 0.0001 (Y)
Bivalve mollusks minus Antarctic species ^b This study	p = 0.0139 (Y)	p = 0.5453 (N)	p = 0.0006 (Y)
Calcitic bivalve mollusks this study ^c	p = 0.0196 (Y)	p = 0.9354 (N)	p = 0.0013 (Y)
Aragonitic bivalve mollusks this study ^c	p = 0.1274 (N)	p = 0.4664 (N)	p = 0.0126 (Y)

^aLinear regression lines through different subsets of our mollusk Δ_{47} calibration dataset in the first column are statistically compared to using analysis of covariance (ANCOVA) tests (Zar, 1984) to linear regressions through other previously published calibration studies datasets. Calculations are done with values on the absolute reference frame (ARF). The table displays the ANCOVA p-value and whether the two slopes being compared are statistically different; (Y) = Yes, (N) = No. In this case we consider a p value < 0.05 as indicating statistically significant differences between the two slopes.

^bExcluding the five specimens of *Laternula ellipica* and *Adamussium colbecki* (which are specimens from the coldest Antarctic environments) as a means for determining whether the calibration slope could be significantly influenced by these samples alone.

^cExcluding specimens with mixed mineralogy

^dIncludes coral data from Ghosh et al., 2006 (but excludes Red Sea *Porites*), and data from Ghosh et al., 2007; Came et al., 2007; Tripati et al., 2010; Eagle et al., 2010; Thiagarajan et al., 2011. See Table S1 for values for these data.

Taxa	Sample ID	pCO ₂ (ppm)	Alkalinity	рН	$\Omega_{ m Aragonite}$	Total Number of	δ ¹³ C ‰	δ ¹⁸ Ο ‰	Δ ₄₇ ‰	Δ ₄₇ ‰
						Analyses ¹	V-PDB	V-PDB	$(SD)^2$	$(ARF)^3$
Mya arenaria	JR-131	409	1833	8.02	2.11	3	-1.0	-3.3	0.648 ± 0.005	0.714 ± 0.005
Mya arenaria	JR-132	409	1833	8.02	2.11	4	-1.0	-3.3	0.644 ± 0.002	0.716 ± 0.008
Mya arenaria	JR-135	2856	2063	7.45	0.71	3	-0.8	-2.8	0.650 ± 0.008	0.723 ± 0.018
Mya arenaria	JR-136	2856	2063	7.45	0.71	3	-1.0	-3.0	0.657 ± 0.018	0.721 ± 0.016
Agropecten irradians	JR-113	409	1833	8.02	2.11	4	-1.7	-1.6	0.661 ± 0.003	0.728 ± 0.003
Agropecten irradians	JR-114	409	1833	8.02	2.11	4	-2.6	-2.0	0.677 ± 0.011	0.745 ± 0.012
Agropecten irradians	JR-117	2856	2063	7.45	0.71	2	-1.3	-2.1	0.664 ± 0.004	0.730 ± 0.004
Agropecten irradians	JR-118	2856	2063	7.45	0.71	3	-5.2	-2.0	0.663 ± 0.010	0.730 ± 0.010

Table 6. Stable isotope data for individual cultured mollusk specimens grown at ambient carbonate saturation state and undersaturated conditions

Culture conditions and seawater chemistry measurements are from Ries et al., 2009.

¹Represents the number of distinct extractions of CO₂ from all samples analyzed sample, that is then purified and analyzed.

²Relative to the stochastic distribution only. Also referred to as data in the Caltech Intralaboratory reference frame. Includes the acid digestion correction of 0.08.

± values are one standard error.

³Values given on the absolute reference frame.

 $\Omega_{\text{aragonite}} = [Ca^{2+}][CO_3^{2-}]/K_{\text{sp}}$, where K_{sp} is the stoichiometric solubility product of aragonite. $\Omega_{\text{aragonite}}$ was calculated as described in Ries et al., 2009.

 Table S1
 Eagle et al., The influence of temperature and seawater carbonate saturation state on 13C-180 bond ordering in bivalve mollusks, Biogeosciences, 2012
 Conversion of published data to absolute reference frame

Using tranfer function proposed by Dennis et al. (2011) Geochim. Cosmochim. Acta. 75(22): 7117-7131 In most cases the transfer function is carried out using heated gas data and NBS-19 standard data, unless other standard data is available In cases where carbonate standard data was not reported in publications we use accepted values from our laboratory based on long term (n>50) analysis

Conditional Section Section Section Condition Section	Publication	Material	Taxa (where given)	Δ ₄₇ (‰) (SD)	1 s.e.	Growth T (°C)	T (°C) error (where given)	10 ⁶ /T ² (T in Kelvin)	Calculated Sample \$\Delta_{47}\$ (ARF)	Paramater Used For Transfer Function	Source of standard \$\Delta_{47}\$ (SD) data	Measured or assumed \$\Delta_{47} (SD)\$	Accepted ∆ ₄7 (ARF) (Dennis et al., 2011)
One of a sector Sector Open Part of a sector Open Part of a sector None for a sector Advantable been (1, 2) (2) O DEDE Sector Open Part of a sector	Ghosh et al., 2006	Synthetic calcite		0.550	0.011	50	2	9.576	0.598	NBS-19	Ghosh et al., 2006	0.352	0.392
diskup spread (a) (a) (a) (b) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	Ghosh et al., 2006	Synthetic calcite		0.770	0.016	1	0.2	13.305	0.826	Heated gas	As described in Dennis et al, 2011	0	0.0266
diskut 200 Synthetic cardies 0.015	Ghosh et al., 2006	Synthetic calcite		0.600	0.015	33	2	10.669	0.649				
Bitsberg Symptoxicable (a) 000 Symptoxicable (b) 0000 Symptoxicable (b) 0000 Sympto	Ghosh et al., 2006	Synthetic calcite		0.650	0.025	23	1	11.402	0.701				
diam generation Galo	Ghosh et al., 2006	Synthetic calcite		0.710	0.014	23	1	11.402	0.764				
Biological (2)////////////////////////////////////	Ghosh et al., 2006	Synthetic calcite		0.620	0.025	23	1	11.402	0.670				
Constrait Constrait <t< td=""><td>Ghosh et al., 2006</td><td>Synthetic calcite</td><td></td><td>0.550</td><td>0.014</td><td>50</td><td>2</td><td>9.576</td><td>0.598</td><td></td><td></td><td></td><td></td></t<>	Ghosh et al., 2006	Synthetic calcite		0.550	0.014	50	2	9.576	0.598				
Constraint Constr	Ghosh et al., 2006	Deep Sea Coral	Desmophyllum dianthus	0.740	0.019	5.5	1	12.879	0.795				
Click of a 1, 2000 Redox of a 1, 2000 Part of a 1, 2000	Ghosh et al., 2006	Deep Sea Coral	Desmophyllum dianthus	0.740	0.012	8	0.5	12.651	0.795				
Biology Resides Protection	Ghosh et al., 2006	Indonesian Surface Coral	Porites sp.	0.630	0.034	29.3	2	10.932	0.681				
 Indicate 1. 2000 Indicate 1. 2000	Ghosh et al., 2006	Red Sea Porites Coral	Porites sp.	0.630	0.030				0.681				
Biologic Resides Printe Carl Book H 2, 2006 Resides Printe Carl Printe Sign Printe Sign Biologic Resides Printe Carl Printe Sign Printe Sign <th< td=""><td>Ghosh et al., 2006</td><td>Red Sea Porites Coral</td><td>Porites sp.</td><td>0.630</td><td>0.030</td><td></td><td></td><td></td><td>0.681</td><td></td><td></td><td></td><td></td></th<>	Ghosh et al., 2006	Red Sea Porites Coral	Porites sp.	0.630	0.030				0.681				
Biology and Service Column Protects-phine Protects-phine Protects-phine Protects-phine Column Protects-phine Column Protects-phine Protects	Ghosh et al., 2006	Red Sea Porites Coral	Pontes sp.	0.640	0.030				0.091				
original scale origina	Ghosh et al., 2006	Red Sea Porites Coral	Pontes sp.	0.650	0.030				0.701				
constrate 4, 200, Heides protection protects 4, 200, Heides protection protects 4, 200, Heides protection protects 4, 200, Heides protection protect 4, 200, Heides protection protect 4, 200, Heides protection prot	Ghosh et al., 2000	Red Sea Porites Coral	Porites sp.	0.030	0.020				0.743				
 a base statistic constraints of the service constraints of th	Ghosh et al. 2006	Red Sea Porites Coral	Porites sp.	0.720	0.010				0.774				
 Tensing 1.200 Refe Sa Potter Cord Potter 15, Potter 14, 200 Refe Sa Potter Cord Potter 14, 200 Refe Sa Potter Cord	Ghosh et al. 2006	Red Sea Porites Coral	Porites sp	0.720	0.020				0.774				
orient et al. 2000 (book et al. 2000) Patters be votters be out al. 2000 (book et al. 2000 (book et al. 2000) Patters be out al. 2000 Patters be out al. 2000 Patters be out al. 2000 Patters be out al. 2000 Patters be out al. 2000) Patters be out al. 2000 Patters be out al. 2000 Patters be out al. 2000) Patters be out al. 2000 Patters be out al. 2000 Patters be out al. 2000 Patters be out al. 2000) Patters be out al. 200	Ghosh et al., 2006	Red Sea Porites Coral	Porites sp.	0.770	0.000				0.826				
cincate 1,200 (model e1, 200) Refs = protes Cori Refs = protes Cori	Ghosh et al., 2006	Red Sea Porites Coral	Porites sp.	0.750	0.010				0.805				
nons of 1,200 constraints 1,200 constraints 1,200 constraints 1,200 constraints 1,200 constraints 2,200 constraints 2,200 constrain	Ghosh et al., 2006	Red Sea Porites Coral	Porites sp.	0.740	0.030				0.795				
ender station constraint 2000 constraint	Ghosh et al., 2006	Red Sea Porites Coral	Porites sp.	0.750	0.010				0.805				
on both et al, 2000 both et al, 2007 both et al	Ghosh et al., 2006	Red Sea Porites Coral	Porites sp.	0.670	0.020				0.722				
nome is 1,200 constrained 1,200 constrain	Ghosh et al., 2006	Red Sea Porites Coral	Porites sp.	0.770	0.030				0.826				
nonber el.2000 endos el se al portes son endos el se al portes son 	Ghosh et al., 2006	Red Sea Porites Coral	Porites sp.	0.680	0.020				0.732				
Bindbard al. 2006 Refs Se Portices Corial Portices Sp. G690 0.020 0.031 Bindbard al. 2006 Refs Se Portices Corial Portices Sp. G630 0.030 0.031	Ghosh et al., 2006	Red Sea Porites Coral	Porites sp.	0.640	0.020				0.691				
Binder al. 2006 Refs Se Portics Coral Portics sp. 0.650 0.050 0.070 0.081 <td>Ghosh et al., 2006</td> <td>Red Sea Porites Coral</td> <td>Porites sp.</td> <td>0.690</td> <td>0.010</td> <td></td> <td></td> <td></td> <td>0.743</td> <td></td> <td></td> <td></td> <td></td>	Ghosh et al., 2006	Red Sea Porites Coral	Porites sp.	0.690	0.010				0.743				
Chool et al. 2006 Red Sea Portices Coral Portices sp. 0.630 0.030 0.631 Chool et al. 2006 Red Sea Portices Coral Portices sp. 0.670 0.030 0.030 0.031 Chool et al. 2006 Red Sea Portices Coral Portices sp. 0.670 0.030 0.030 0.031 Other al. 2006 Red Sea Portices Coral Portices sp. 0.630 0.030 0.031 0.031 Other al. 2006 Red Sea Portices Coral Portices sp. 0.630 0.030 0.030 0.031 0.031 Other al. 2006 Red Sea Portice Coral Portices sp. 0.680 0.030 0.030 0.033 0.033 0.033 0.033 0.033 0.033 0.031 0.054 0.054 0.054 0.056 0.052 0.053 0.056 0.053 0.053 0.054 0.056	Ghosh et al., 2006	Red Sea Porites Coral	Porites sp.	0.690	0.020				0.743				
choch et al., 2005 Red Sa Porties Coral Porties sp. 0.60 0.010 Use of the al., 2005 Red Sa Porties Coral Porties sp. 0.60 0.020 Use of the al., 2005 Red Sa Porties Coral Porties sp. 0.600 0.000 Use of the al., 2005 Red Sa Porties Coral Porties sp. 0.630 0.000 Use of the al., 2005 Red Sa Porties Coral Porties sp. 0.630 0.000 Use of the al., 2005 Red Sa Porties Coral Porties sp. 0.730 0.000 Use of the al., 2005 Red Sa Porties Coral Porties sp. 0.730 0.000 Use of the al., 2005 Red Sa Porties Coral Porties sp. 0.730 0.000 Use of the al., 2005 Red Sa Porties Coral Porties sp. 0.730 0.000 Use of the al., 2005 Red Sa Porties Coral Porties sp. 0.630 0.020 Use of the al., 2005 Red Sa Porties Coral Porties sp. 0.630 0.020 Use of the al., 2005 Red Sa Porties Coral Porties sp. 0.630 0.020 Use of the al., 2005 Red Sa Porties Coral Porties sp. 0.630 0.020 Use of the al., 2007 NBS-19 Paramater Used Sa Porties sp. Sa Porties sp. Sa Portie Al., 2005 Po	Ghosh et al., 2006	Red Sea Porites Coral	Porites sp.	0.630	0.030				0.681				
Change all 2006 Red Sea Parties Coral Portres sp. 0.670 0.030 Use of the space o	Ghosh et al., 2006	Red Sea Porites Coral	Porites sp.	0.640	0.010				0.691				
Ghode Ha, 2006 Ref 3a Porties Coral Porties sp. 0.650 0.020 0.651 0.691 Ghode Ha, 2006 Red 5a Porties Coral Porties sp. 0.650 0.000 0.691 Ghode Ha, 2006 Red 5a Porties Coral Porties sp. 0.650 0.691 0.774 Ghode Ha, 2006 Red 5a Porties Coral Porties sp. 0.680 0.020 0.774 Ghode Ha, 2006 Red 5a Porties Coral Porties sp. 0.680 0.020 0.774 Ghode Ha, 2006 Red 5a Porties Coral Porties sp. 0.680 0.020 0.732 Ghode Ha, 2006 Red 5a Porties Coral Porties sp. 0.800 0.020 0.732 Ghode Ha, 2007 Ref 5a Porties Coral Porties sp. 0.700 0.020 7.62 0.774 Publication Material Taxa $A_{0}(\mathbf{k}_{0})$ 1.s. Growth T(°C) error 10/71 Calculated Sample Source of standard $A_{0}(\mathbf{k}_{0})$ 0.025 0.322 0.322 0.322 0.322 0.322 0.325 0.322 <t< td=""><td>Ghosh et al., 2006</td><td>Red Sea Porites Coral</td><td>Porites sp.</td><td>0.670</td><td>0.030</td><td></td><td></td><td></td><td>0.722</td><td></td><td></td><td></td><td></td></t<>	Ghosh et al., 2006	Red Sea Porites Coral	Porites sp.	0.670	0.030				0.722				
Choch et al., 2006 Choch et al., 2006 Red Sea Porties Coral Red Sea Porties Coral Porties sp.0.6400.0300.0300.011Choch et al., 2006 Choch et al., 2006 Red Sea Porties Coral Porties sp.0.7200.0100.772Choch et al., 2006 Red Sea Porties Coral Porties sp.0.7300.0300.7724Choch et al., 2006 Red Sea Porties Coral Porties sp.0.7300.0300.722Choch et al., 2006 Red Sea Porties Coral Porties sp.0.6800.0300.722Publication Red Sea Porties Coral Porties sp.0.6800.0300.7220.724Choch et al., 2007 Red Sea Porties Coral Porties sp.0.7300.0300.722Choch et al., 2007 Choch et al., 2007Parties sp.0.6800.0300.722Choch et al., 2007 Choch et al., 2007Parties sp.0.5800.0320.724Choch et al., 2007 Choch et al., 2007Parties coral red Sea Porties CoralParties sp.0.716Choch et al., 2007 Choch et al., 2007Parties coral red sea Porties CoralParties coral sp.0.6320.225Choch et al., 2007 Choch et al., 2007Partines coral red sea Porties CoralParties coral sp.0.6430.0252Choch et al., 2007 Choch et al., 2007Partines coral red sea Porties Coral0.6430.02521.2250.774Choch et al., 2007 Choch et al., 2007Parties coral red sea Porties Coral0.6530.6510.2260.7250.226Choch et al., 2007 <b< td=""><td>Ghosh et al., 2006</td><td>Red Sea Porites Coral</td><td>Porites sp.</td><td>0.650</td><td>0.020</td><td></td><td></td><td></td><td>0.701</td><td></td><td></td><td></td><td></td></b<>	Ghosh et al., 2006	Red Sea Porites Coral	Porites sp.	0.650	0.020				0.701				
Choch et al., 2006Ref Sea Porties CoralPorties sp.0.6500.0000.701Choch et al., 2006Ref Sea Porties CoralPorties sp.0.6800.0100.732Choch et al., 2006Ref Sea Porties CoralPorties sp.0.6800.0300.732Choch et al., 2006Ref Sea Porties CoralPorties sp.0.6800.0300.732Choch et al., 2006Ref Sea Porties CoralPorties sp.0.6800.3020.732Choch et al., 2006Ref Sea Porties CoralPorties sp.0.6800.2020.732Choch et al., 2006Ref Sea Porties CoralPorties sp.0.7100.2020.712Choch et al., 2007Fish otolithPatagonotothen romsoyi0.7250.0225212.9250.779NB5-19Accepted Caltech value0.3520.392Choch et al., 2007Fish otolithLutjonus molabohus0.6420.0132213.2490.693Heated gasAccepted Caltech value0.3520.392Choch et al., 2007Fish otolithLutjonus molabohus0.6420.0132213.2490.693Heated gasAccepted Caltech value0.3520.392Choch et al., 2007Fish otolithLutjonus molabohus0.6470.029212.7410.575Choch et al., 2007Fish otolithCaludant SampleCaluated SampleAccepted Calueth Value0.3520.392Choch et al., 2007Fish otolithLutjonus smolabohus0.6470.029<	Ghosh et al., 2006	Red Sea Porites Coral	Porites sp.	0.640	0.030				0.691				
Ghosh et al., 2006 Red Sea Porties Coral Porties sp. 0.20 0.010 0.774 Ghosh et al., 2006 Red Sea Porties Coral Porties sp. 0.600 0.010 0.784 Ghosh et al., 2006 Red Sea Porties Coral Porties sp. 0.600 0.030 0.732 Ghosh et al., 2006 Red Sea Porties Coral Porties sp. 0.680 0.020 0.732 Chosh et al., 2006 Red Sea Porties Coral Porties sp. 0.680 0.020 0.774 Chosh et al., 2006 Red Sea Porties Coral Porties sp. 0.680 0.020 0.732 Chosh et al., 2007 Fish totlith Parties sp. 0.020 Crecepted Ac (ARF) Paramater Used Source of standard Acc (SD) data Acc (SD) data 0.352 0.392 Ghosh et al., 2007 Fish totlith Parties sp. 0.013 25 3 11.249 0.693 Heated gas As described in Dennis et al., 2011 0.025 0.025 15 2 12.741 0.7574 Ghosh et al., 2007 Fish totlith Gadus morhus	Ghosh et al., 2006	Red Sea Porites Coral	Porites sp.	0.650	0.000				0.701				
Choch et al., 2006 Choch et al., 2006 Red Sea Porties Coral Choch et al., 2006Porties sp.0.8900.0100.724Choch et al., 2006 Choch et al., 2006Red Sea Porties Coral Red Sea Porties CoralPorties sp.0.8900.0300.732Choch et al., 2006Red Sea Porties Coral Red Sea Porties CoralPorties sp.0.8000.0200.732Choch et al., 2006Red Sea Porties CoralPorties sp.0.7100.0200.744PublicationMaterialTax (where given) $\Lambda_{c}(Sv)$ I. CTC(C) error (where given) $10^{4} T^{2}$ (rin Ketvin)Calculated Sample Ac (ARF)Paramater Used SampleSaure of standard Ac (SD) dataMessered or assumed Ac (SD)Accepted Ac (ARF) (Dennis et al., 2011)Chosh et al., 2007Fish otolith Lutjonus analaborius0.4220.0132531.12490.693Heated gas Ac described in Dennis et al., 20110.3520.392Chosh et al., 2007Fish otolith Lutjonus analaborius0.4270.013221.12490.693Heated gasAccepted Caltech value Ac described in Dennis et al., 201100.0266Chosh et al., 2007Fish otolith Lutjonus analaborius0.4740.02921.12490.693Heated gasAcdescribed in Dennis et al., 201100.0266Chosh et al., 2007Fish otolith Lutjonus analaborius0.4740.02921.12490.7310.7510.7510.7610.761Chosh et al., 2007Fish otolith <td>Ghosh et al., 2006</td> <td>Red Sea Porites Coral</td> <td>Porites sp.</td> <td>0.720</td> <td>0.010</td> <td></td> <td></td> <td></td> <td>0.774</td> <td></td> <td></td> <td></td> <td></td>	Ghosh et al., 2006	Red Sea Porites Coral	Porites sp.	0.720	0.010				0.774				
Cance is al, 2006 Red Sea Porties Coral Porties Sp. 0.730 0.030	Ghosh et al., 2006	Red Sea Porites Coral	Porites sp.	0.680	0.010				0.732				
Chrosh et al., 2006 Red Sea Porties Coral Portifes sp. 0.880 0.020 0.722 Ghosh et al., 2006 Red Sea Porties Coral Porties sp. 0.700 0.200 0.724 0.754 Publication Material Taxa (where given) 0.710 0.200 TC') error $10^{4/T^2}$ Calculated Sample 0.724 Paramater Used Source of standard Δ_{α} (SD) data Measured or assumed Δ_{α} (SD) Accepted Δ_{α} (ARF) (where given) $(Ti in Kelvin)$ $Calculated SampleAr (ARF) Paramater Used Source of standard\Delta_{\alpha} (SD) data Measured or assumed\Delta_{\alpha} (SD) Composition (R) (D, 2) (D, 2) (Ti in Kelvin) (T, 2) (Ti in Kelvin) (A_{\alpha} (RF) (R) (R$	Ghosh et al., 2006	Red Sea Porites Coral	Porites sp.	0.730	0.030				0.784				
Difficient et al., 2006 Red Sea Profites Coral Paulies pi. 0.804 0.020 0.724 Publication Material Taxa (where given) Δ_{c} (%) 1 s.e. Growth T (°) T (°) error $10^{0}/T^2$ Calculated Sample Δ_{c} (ARF) Paramater Used For Transfer Function Source of standard Δ_{c} (SD) data Measured or assumed Δ_{c} (SD) Accepted Δ_{n} (ARF) Ghosh et al., 2007 Fish toblith Patagonotothen ramsoyi (SD) 0.725 0.022 5 2 12.925 0.779 NBS-19 Accepted Caltech value Accepted Caltech value 0.352 0.392 Ghosh et al., 2007 Fish toblith Patagonotothen ramsoyi 0.725 0.022 5 2 12.925 0.779 NBS-19 Accepted Caltech value 0.352 0.392 Ghosh et al., 2007 Fish toblith Lutjanus moldsorius 0.642 0.010 2 2 13.209 0.617 0.552 0.032 Ghosh et al., 2007 Fish toblith Galtanus molds morhus 0.647 0.029 7 2 12.741 0.575 Ghosh et al	Ghosh et al., 2006	Red Sea Porites Coral	Porites sp.	0.680	0.030				0.732				
Construct al., 2001Net Disk Profits QLOf 10OutsOutsOutsOutsOutsPublicationMaterialTaxa $A_{C}(%)$ 1 s.Growth T(°)T(°) $T(°)$ $0^{10}/r^{2}$ (where given)Calculated Sample $C (T in KeVin)$ Paramater UsedSource of standard $A_{C}(SD)$ Mescare of assauced $A_{C}(SD)$ Accepted $A_{C}(ARF)$ (Dennis et al., 2011)Ghosh et al., 2007Fish tolithPotogonotothen ransoyi0.7250.0225212.9250.779NB5-19Accepted Caltech value0.3520.392Ghosh et al., 2007Fish tolithReinhorditis0.6470.0102213.2690.817Heated gasAs described in Dennis et al., 201100.0266Ghosh et al., 2007Fish tolithGadus morhuo0.7640.0097212.2410.757Gadus and0.8020.8020.817Ghosh et al., 2007Fish tolithGadus morhuo0.7940.0097212.2440.7460.7460.7460.746Ghosh et al., 2007Fish tolithBagonias cramis0.6500.01125213.1130.794Source of standardMessared or assumedAccepted $\Delta_{C}(ARF)$ PublicationMaterialTaxa $\Delta_{C}(%)$ 1 s.e.Growth T(°C)T(°C) error $10^{4}T^{2}$ Calculated SampleParamater UsedSource of standardMessared or assumedAccepted $\Delta_{C}(ARF)$ Ghosh et al., 2007Fish tolithGadus morhuo0	Ghosh et al., 2006	Red Sea Porites Coral	Pontes sp.	0.080	0.020				0.752				
Publication Material Taxa (where given) Δ_{cr} (Sb) 1 s.e. Growth T (°C) T (°C) error (where given) $10^6/T^2$ Calculated sample (A _{cr} (ARF) Parameter Used For Transfer Function Source of standard A _c (SD) data Measured or assume (A _{cr} (SD) Resured or assume (A _{cr} (ARF) Resured or assume (A _{cr} (SD) Resured or assume (SD) Resured or	Ghosh et al., 2006	Red Sea Pontes Coral	Pontes sp.	0.710	0.020				0.764				
Shosh et al., 2007 Shosh	Publication	Material	Taxa (where given)	Δ ₄₇ (‰) (SD)	1 s.e.	Growth T (°C)	T (°C) error (where given)	10 ⁶ /T ² (T in Kelvin)	Calculated Sample Δ ₄₇ (ARF)	Paramater Used For Transfer Function	Source of standard A ₄₇ (SD) data	Measured or assumed \$\Delta_{47}\$ (SD)	Accepted A ₄₇ (ARF) (Dennis et al., 2011)
Land Land <thland< th=""> Land Land</thland<>	Ghosh et al 2007	Fish otolith	Patagonotothen ramsavi	0 725	0.022	5	2	12 925	0 779	NRS-19	Accepted Caltech value	0 352	0 392
Ghosh et al., 2007 Fish totlith Reinhardfus hippoglossoide 0.761 0.010 2 2 13.209 0.817 Interce gus 1.5 Calculate an Construct on Construt on Constr	Ghosh et al. 2007	Fish otolith	Lutianus malabarius	0.642	0.013	25	3	11 249	0.693	Heated gas	As described in Dennis et al. 2011	0.552	0.0266
Ghosh et al., 2007 Fish otolith Lutjanus analis 0.647 0.029 20 2 11.636 0.698 Ghosh et al., 2007 Fish tolith Gadus morhua 0.74 0.09 7 2 12.741 0.757 Ghosh et al., 2007 Fish tolith Gadus morhua 0.025 15 2 12.741 0.757 Ghosh et al., 2007 Fish tolith Lutjanus synagris 0.650 0.011 25 2 11.249 0.701 Ghosh et al., 2007 Fish tolith Lutjanus synagris 0.650 0.011 25 2 11.13 0.794 Publication Material Gadus morhua 0.739 0.021 3 2 13.13 0.794 Came et al., 2007 Brachiopod Taxa (where given) A_{cr} (%o) 1 see. Growth T(°C) T(°C) error (where given) $10^6/T^2$ Calculated Sample Parameter Used Source of standard A_{cr} (SD) data Measured or assume A_{cr} (SD) Occepted Calme (ARF) Came et al., 2007 Brachiopod Theoidellina blochmanni 0.640 0.011 24.5 0.5 11.518 <t< td=""><td>Ghosh et al., 2007</td><td>Fish otolith</td><td>Reinhardtius hippoalossoides</td><td>0.761</td><td>0.010</td><td>25</td><td>2</td><td>13.209</td><td>0.817</td><td>i leateu gas</td><td>As described in Dennis et al, 2011</td><td>0</td><td>0.0200</td></t<>	Ghosh et al., 2007	Fish otolith	Reinhardtius hippoalossoides	0.761	0.010	25	2	13.209	0.817	i leateu gas	As described in Dennis et al, 2011	0	0.0200
Ghosh et al., 2007 Ghosh et al., 2007 Fish otolith Fish otolith Gadus morhua 0.704 0.009 7 2 12.741 0.757 Ghosh et al., 2007 Ghosh et al., 2007 Fish otolith Fish otolith Pagonias cromis Gadus morhua 0.650 0.025 15 2 12.044 0.746 Ghosh et al., 2007 Ghosh et al., 2007 Fish otolith Fish otolith Pagonias cromis Gadus morhua 0.650 0.011 25 2 11.249 0.701 Paramater Used Ar (ARF) Source of standard Ar, (SD) data Measured or assumed Accepted Ar, (ARF) Publication Material Taxa (where given) Ar, (%o) (SD) 1 s.e. Growth T (°C) (where given) 10 ⁶ /T ² (T in Kelvin) Calculated Sample Ar, (ARF) Paramater Used For Transfer Function Source of standard Ar, (SD) data Measured or assumed 	Ghosh et al., 2007	Fish otolith	Lutianus analis	0.647	0.029	20	2	11.636	0.698				
Ghosh et al., 2007 Ghosh et al., 2007Fish otolith Fish otolithPogonias cromis Lutjanus synagris 0.6390.093 0.0110.025 25 0.01112.5 2 2 2 11.2490.701 0.701PublicationMaterialTaxa (vhere given) Δ_{ar} (%) (%)1.2 2.1Te(°) (%)Te(°) (%) $10^6/T^2$ (%)Calculated Sample (%)Paramater Used For Transfer FunctionSource of standard Δ_{cr} (SD) dataMeasured or assume (Meanet et al., 2007)Came et al., 2007Brachiopod (Brachiopod)Tichosino floridensis (more given)0.650 (0.007)0.0120.55 2.1.511.518 (%)0.701NBS-19 0.651Accepted Caltech value Ac (SD) data0.352 0.3920.392 0.0266Came et al., 2007Brachiopod (Brachiopod)Tichosino floridensis (more given)0.650 0.0110.01 2.4.50.5 0.511.518 0.6510.071 0.651NBS-19 0.651Accepted Caltech value A dcr (SD) data0.352 0.392 0.0266Came et al., 2007 (Came et al., 2007Brachiopod (Molusk (Molusk (Molusk)Terebratilina septentrionalis 0.7100.012 0.0120.5 0.512.473 0.550.774NBS-19 0.774Accepted Caltech value A dcr (SD) data0.352 0.02660.0266 0.0266Came et al., 2007 (Came et al., 2007 (Molusk (Molusk)Chiomy silandica 0.7400.700 0.0080.5 0.512.675 0.550.7764NEaterial data 0.795NEaterial data 0.795NEaterial data 0.795NEaterial data 0.7764	Ghosh et al., 2007	Fish otolith	Gadus morhua	0.704	0.009	7	2	12.741	0.757				
Ghosh et al., 2007 Ghosh et al., 2007Fish otolith Fish otolithLutjanus synagris Gadus morhua0.650 0.0210.011 252511.249 20.701 13.1130.794PublicationMaterial (where given)Taxa (where given) Δ_{r_7} (%) (SD)1 s.e. (SD)Growth T (°C) (where given)T (°C) error (mere given)106/T² (T in Kelvin)Calculated Sample Δ_{c_7} (ARF)Paramater Used For Transfer FunctionSource of standard Δ_{c_7} (SD) dataMeasured or assume Δ_{c_7} (SD)Accepted Δ_{ar} (ARF) (Dennis et al., 2011)Came et al., 2007 Came et al., 2007 Came et al., 2007 BrachiopodTichosina floridensis (Tichosina floridensis)0.650 0.6400.007 0.01121.50.511.518 0.550.701NBS-19 Heated gasAccepted Caltech value A corepted Caltech value Heated gas0.352 As described in Dennis et al, 2011 00.3520.392 0.0266Came et al., 2007 Came et al., 2007 Came et al., 2007 MolluskTrechosina floridensis Acretica islandica0.700 0.0120.0121.50.511.287 12.4730.691 0.774Heated gas As described in Dennis et al, 2011 00.352 0.02660.352 0.0266Came et al., 2007 Came et al., 2007 MolluskMollusk Chlomys islandica0.700 0.7400.0083.60.512.473 0.7540.774 0.764Heated gas 0.795Heated gas 0.795Heated gas 0.795Heated gas 0.795Heated gas 0.795Heated gas 0.795Heated gas 0.795Heated gas <br< td=""><td>Ghosh et al., 2007</td><td>Fish otolith</td><td>Pogonias cromis</td><td>0.693</td><td>0.025</td><td>15</td><td>2</td><td>12.044</td><td>0.746</td><td></td><td></td><td></td><td></td></br<>	Ghosh et al., 2007	Fish otolith	Pogonias cromis	0.693	0.025	15	2	12.044	0.746				
Ghosh et al., 2007Fish otolithGadus morhua0.7390.0213213.130.794PublicationMaterialTaxa (where given) Δ_{rr} (%D)1 s.e.Growth T (°C) (where given)T (°C) error (where given) $10^6/T^2$ (T in Kelvin)Calculated Sample Δ_{rr} (ARF)Paramater Used (For Transfer Function)Source of standard Δ_{rr} (SD) dataMeasured or assume (Accepted Calted Ac (ARF) (Dennis et al., 2011)Came et al., 2007BrachiopodTichosina floridensis0.6500.00721.50.511.5180.701NBS-19 0.691Accepted Calted value A sdescribed in Dennis et al., 20110.3520.392Came et al., 2007BrachiopodTrecidellina blochmanni 0.6400.01124.50.511.2870.691Heated gasAccepted Calted value As described in Dennis et al., 201100.266Came et al., 2007BrachiopodTrecidellina blochmannis 0.7100.7020.012100.512.4730.774As described in Dennis et al., 201100.266Came et al., 2007MolluskArticia islandica0.7040.0083.60.513.0560.7950.764	Ghosh et al., 2007	Fish otolith	Lutjanus synagris	0.650	0.011	25	2	11.249	0.701				
Publication Material Taxa (where given) Δ_{r_1} (%) (SD) Is.e. Growth T (°C) (where given) T (°C) error (where given) $10^6/1^2$ (Tin Kelvin) Calculated Sample (ACRF) Parametr Used (For Transfer Function) Source of standard (A _r (SD) data Measured or assume (Accepted A _c (ARF) (Denis et al., 2011) Came et al., 2007 Brachlopod (Fredright) Ticclosina floridensis (Denis et al., 2007) 0.500 11.518 0.701 NBS-19 Accepted Caltech value (Acre (Data) 0.352 0.392 Came et al., 2007 Brachlopod (Fredright) Trecidellina blochmanni 0.640 0.011 24.5 0.5 11.287 0.691 Heated gas As described in Dennis et al., 2011 0 0.0266 Came et al., 2007 Brachlopod (Mollusk Terebratulnas septentrionalis (Chame et al., 2007) 0.012 10 0.5 12.473 0.774 Heated gas A described in Dennis et al., 2011 0 0.0266 Came et al., 2007 Mollusk Articia islandica 0.700 0.005 8.8 0.5 13.056 0.795 0.764	Ghosh et al., 2007	Fish otolith	Gadus morhua	0.739	0.021	3	2	13.113	0.794				
Came et al., 2007BrachiopodTichosina floridensis0.6500.00721.50.511.5180.701NBS-19Accepted Caltech value0.3520.392Came et al., 2007BrachiopodThecidellina blochmanni0.6400.01124.50.511.2870.691Heated gasAs described in Dennis et al., 201100.0266Came et al., 2007BrachiopodTreerbratilnas septentrionalis0.700.012100.512.4730.774Came et al., 2007MolluskArritica islandica0.7100.0058.80.512.5790.764Came et al., 2007MolluskChlamys islandica0.7400.0083.60.513.0560.79514.473	Publication	Material	Taxa	∆ ₄7 (‰)	1 s.e.	Growth T (°C)	T (°C) error	10 ⁶ /T ²	Calculated Sample	Paramater Used	Source of standard	Measured or assumed	Accepted ▲47 (ARF)
Came et al., 2007 Brachiopod Tichosina floridensis 0.650 0.007 21.5 0.5 11.518 0.701 NBS-19 Accepted Caltech value 0.352 0.392 Came et al., 2007 Brachiopod Thecidellina biochmanni 0.640 0.011 24.5 0.5 11.287 0.691 Heated gas As described in Dennis et al, 2011 0 0.0266 Came et al., 2007 Brachiopod Terebratulnas septentrionalis 0.70 0.012 10 0.5 12.473 0.774 Came et al., 2007 Mollusk Arctica islandica 0.710 0.005 8.8 0.5 12.579 0.764 Came et al., 2007 Mollusk Chlamys islandica 0.740 0.008 3.6 0.5 13.056 0.795			(where given)	(SD)			(where given)	(T in Kelvin)	Δ ₄₇ (ARF)	For Transfer Function	Δ ₄₇ (SD) data	Δ ₄₇ (SD)	(Dennis et al., 2011)
Came et al., 2007 Brachiopod The cidellina blochmanni jointerinsis 0.69 0.01 24.5 0.5 11.310 0.701 No.5-19 Accepted calledri Value 0.532 0.392 Came et al., 2007 Brachiopod The cidellina blochmanni 0.640 0.011 24.5 0.5 11.287 0.691 Heated gas As described in Dennis et al, 2011 0 0.0266 Came et al., 2007 Brachiopod The cidellina blochmanni 0.612 10 0.5 12.473 0.774 As described in Dennis et al, 2011 0 0.0266 Came et al., 2007 Mollusk Arctica islandica 0.710 0.005 8.8 0.5 12.579 0.764 Came et al., 2007 Mollusk Chiomys islandica 0.740 0.008 3.6 0.5 13.056 0.795	Camp at al 2007	Prachionod	Tichosing floridonsis	0.650	0.007	21 E	0.5	11 510	0 701	NPC 10	Acconted Caltach value	0.252	0 202
Came et al., 2007 Mollusk Arctica islandica 0.70 0.001 10.005 11.267 0.051 11.267 0.052 11.267 0.052 11.267 0.052 11.267 0.052 11.267 0.051 11.267 0.051 11.267 0.051 11.267 0.052 11.267 0.052 11.267 0.051 11.267 0.051 11.267 0.051 11.267 0.051 11.267 0.051 11.267 0.051 11.267 0.051 11.267 0.051 11.267 0.051 11.267 0.051 11.267 0.051 11.267 0.051 11.267 0.774 Came et al., 2007 Mollusk Arcticia islandica 0.700 0.005 8.8 0.5 12.579 0.764 Came et al., 2007 Mollusk Chlamys islandica 0.740 0.008 3.6 0.5 13.056 0.795	Came et al., 2007	Brachiopod	Theodelling blochmanni	0.630	0.007	21.5	0.5	11.516	0.701	ET-CON Sen hoteoH	Accepted CallectivalUe	0.552	0.392
Came et al., 2007 Mollusk Arctica islandica 0.710 0.005 8.8 0.5 12.759 0.764 Came et al., 2007 Mollusk Chlamys islandica 0.740 0.008 3.6 0.5 12.759 0.764	Came et al. 2007	Brachiopod	Terebratulina sententrionalis	0.720	0.012	10	0.5	12 473	0.051	neateu gas	, o desended in Dennis et al, 2011	0	0.0200
Came et al., 2007 Mollusk Chlomys islandica 0.740 0.008 3.6 0.5 1.0.56 0.795	Came et al., 2007	Mollusk	Arctica islandica	0.710	0.005	8.8	0.5	12.579	0.764				
	Came et al., 2007	Mollusk	Chlamys islandica	0.740	0.008	3.6	0.5	13.056	0.795				

Came et al., 2007	Mollusk	Paphia crassiscula	0.640	0.012	28	0.5	11.026	0.691				
Publication	Material	Taxa (where given)	Δ ₄₇ (‰) (SD)	1 s.e.	Growth T (°C)	T (°C) error (where given)	10 ⁶ /T ² (T in Kelvin)	Calculated Sample المربع (ARF)	Paramater Used For Transfer Function	Source of standard A 47 (SD) data	Measured or assumed \$\measured_{47} (SD)\$	Accepted ∆ ₄7 (ARF) (Dennis et al., 2011)
Tripati et al 2010	Planktic foraminifera	Pullepiating obliquiloculata	0.655	0.034	23.0	3.0	11 402	0 707	NRS-10	Accented Caltech value	0 352	0 392
Tripati et al., 2010	Planktic foraminifera	Globiaerinoides ruber	0.658	0.038	24.5	1.5	11.287	0.710	Heated gas	As described in Dennis et al. 2011	0	0.0266
Tripati et al., 2010	Planktic foraminifera	Globiaerinoides ruber	0.638	0.002	24.0	2.0	11.325	0.688				
Tripati et al., 2010	Planktic foraminifera	Globiaerinoides ruber	0.654	0.007	23.5	2.5	11.363	0.705				
Tripati et al., 2010	Planktic foraminifera	Globiaerinoides ruber	0.625	0.009	29.2	0.4	10.939	0.676				
Tripati et al., 2010	Planktic foraminifera	Globiaerinoides ruber	0.628	0.010	29.2	0.4	10.939	0.679				
Tripati et al., 2010	Planktic foraminifera	Globiaerinoides ruber	0.627	0.010	29.2	0.4	10.939	0.677				
Tripati et al., 2010	Planktic foraminifera	Globigerinoides sacculifer (without sac)	0.637	0.003	29.2	0.4	10.939	0.688				
Tripati et al., 2010	Planktic foraminifera	Globigerinoides sacculifer (without sac)	0.634	0.047	27.0	1.0	11.100	0.684				
Tripati et al., 2010	Planktic foraminifera	Globigerinoides sacculifer (without sac)	0.643	0.021	28.0	1.0	11.026	0.694				
Tripati et al., 2010	Planktic foraminifera	Globigerinoides sacculifer (without sac)	0.658	0.009	23.5	0.5	11.363	0.710				
Tripati et al., 2010	Planktic foraminifera	Globigerinoides sacculifer (without sac)	0.668	0.009	22.0	3.0	11.479	0.720				
Tripati et al., 2010	Planktic foraminifera	Globigerinoides sacculifer (without sac)	0.644	0.002	26.8	2.0	11.115	0.695				
Tripati et al., 2010	Planktic foraminifera	Globigerinoides sacculifer (with sac)	0.657	0.009	21.0	3.0	11.557	0.708				
Tripati et al., 2010	Planktic foraminifera	Globigerina bulloides	0.697	0.009	14.7	1.0	12.069	0.750				
Tripati et al., 2010	Planktic foraminifera	Globigerina bulloides	0.723	0.019	9.1	1.0	12.553	0.777				
Tripati et al., 2010	Planktic foraminifera	Globorotalia menardii	0.658	0.006	22.5	2.5	11.440	0.710				
Tripati et al., 2010	Planktic foraminifera	Globorotalia menardii	0.692	0.008	21.0	3.0	11.557	0.744				
Tripati et al., 2010	Planktic foraminifera	Globorotalia hirsuta	0.702	0.014	13.5	0.5	12.170	0.756				
Tripati et al., 2010	Planktic foraminifera	Globorotalia tumida	0.641	0.007	17.0	5.0	11.878	0.692				
Tripati et al., 2010	Planktic foraminifera	Globorotalia tumida	0.660	0.009	17.0	5.0	11.878	0.711				
Tripati et al., 2010	Planktic foraminifera	Globorotalia tumida	0.661	0.005	17.0	5.0	11.878	0.713				
Tripati et al., 2010	Planktic foraminifera	Globorotalia tumida	0.669	0.012	17.0	5.0	11.878	0.721				
Tripati et al., 2010	Planktic foraminifera	Globorotalia truncatulinoides	0.665	0.010	14.9	3.0	12.052	0.716				
Tripati et al., 2010	Benthic foraminifera	Uvigerina semiornata	0.703	0.010	13.0	0.2	12.213	0.756				
Tripati et al., 2010	Benthic foraminifera	Uvigerina semiornata	0.685	0.005	16.1	0.2	11.956	0.738				
Tripati et al., 2010	Benthic foraminifera	Uvigerina semiornata	0.683	0.003	19.9	0.2	11.643	0.736				
Tripati et al., 2010	Benthic foraminifera	Hoeglundina elegans	0.660	0.007	19.9	0.2	11.643	0.712				
Tripati et al., 2010	Benthic foraminifera	Hoeglundina elegans	0.755	0.013	2.8	0.2	13.129	0.810				
Tripati et al., 2010	Benthic foraminitera	Cibicidoides mundulus	0.752	0.003	2.4	0.2	13.174	0.807				
Tripati et al., 2010	Benthic foraminifera	Planulina wuellerstorfi	0.754	0.011	2.4	0.2	13.174	0.810				
Tripati et al., 2010	Benthic foraminifera	Oridorsalis umbonatus	0.740	0.005	2.4	0.2	13.174	0.795				
Tripati et al., 2010	Benthic foraminifera	Planuina wueiterstorji Oridaraalia umbaaatus	0.732	0.007	-0.8	0.2	13.482	0.785				
Tripati et al., 2010	Denthic forominifero	Mixed appaies	0.751	0.009	-0.8	0.2	13.462	0.800				
Tripati et al., 2010	Cultured coccelith	Emiliani huvluoi	0.756	0.014	1.4	0.2	13.207	0.815				
Tripati et al., 2010	Cultured coccolith	Cossolithicus palagisus	0.085	0.007	10.0	0.1	12.044	0.737				
Tripati et al. 2010	Bulk carbonate	Mixed species	0.713	0.007	9.5	1.0	12.473	0.707				
Tripati et al. 2010	Bulk carbonate	Mixed species	0.698	0.000	14.0	1.0	12.517	0.752				
Tripati et al. 2010	Bulk carbonate	Mixed species	0.056	0.011	9.1	1.0	12.120	0.801				
Tripati et al 2010	Bulk carbonate	Mixed species	0.633	0.001	29.2	0.4	10.939	0.684				
Tripati et al., 2010	Benthic foraminifera	Planulina wuellerstorfi	0.739	0.008	3.3	2.0	13.084	0.794				
Tripati et al., 2010	Benthic foraminifera	Melonis nompiloides	0.735	0.007	3.3	2.0	13.084	0.789				
Tripati et al., 2010	Benthic foraminifera	Gyroiding sp.	0.729	0.011	4.3	2.0	12.991	0.783				
Publication	Material	Taxa (where given)	Δ ₄₇ (‰) (SD)	1 s.e.	Growth T (°C)	T (°C) error (where given)	10 ⁶ /T ² (T in Kelvin)	Calculated Sample Δ ₄₇ (ARF)	Paramater Used For Transfer Function	Source of standard \$\overline{A}_{47}\$ (SD) data	Measured or assumed \$\Delta_{47}\$ (SD)	Accepted \$\Delta_{47}\$ (ARF) (Dennis et al., 2011)
Eagle et al., 2010	Rhino tooth	Ceratotherium simum	0.597	0.006	37	0.5	10.396	0.654	NBS-19	Fagle et al., 2010	0.361	0.392
Eagle et al. 2010	Flenhant tooth	Elenhas maximus	0.596	0.000	37	0.5	10.396	0.653	Heated gas	As described in Dennis et al. 2011	0.501	0.0266
Eagle et al. 2010	Crocodile tooth	Crocodylus niloticus	0.550	0.006	28	3	11.026	0.698	102-6C-4701	Fagle et al 2010	0.646	0.713
Eagle et al., 2010	Alligator tooth	Alligator mississippiensis	0.639	0.011	28	3	11.026	0.699	102 00 4201	Lagic et al., 2010	0.040	0.715
Eagle et al., 2010	Tiger shark teeth	Carcharias taurus	0.641	0.013	25.3	0.5	11.227	0.701				
Eagle et al., 2010	Tiger shark teeth	Carcharias taurus	0.654	0.010	23.6	0.5	11.356	0.715				
Publication	Material	Taxa (where given)	Δ ₄₇ (‰) (SD)	1 s.e.	Growth T (°C)	T (°C) error (where given)	10 ⁶ /T ² (T in Kelvin)	Calculated Sample A ₄₇ (ARF)	Paramater Used For Transfer Function	Source of standard A ₄₇ (SD) data	Measured or assumed \$\Delta_{47}\$ (SD)	Accepted A ₄₇ (ARF) (Dennis et al., 2011)
Dennis and Schrag. 2010	Synthetic calcite		0.656	0.007	7.5		12.696	0.718	Harvard Carrara Marble	Dennis et al 2011	0.334	0.385
Dennis and Schrag, 2010	Synthetic calcite		0.677	0.006	10		12.473	0.740	Heated gas	As described in Dennis et a.l, 2011	0	0.0266
Dennis and Schrag, 2010	Synthetic calcite		0.649	0.024	15		12.044	0.710			-	
Dennis and Schrag, 2010	Synthetic calcite		0.620	0.015	15		12.044	0.680				
Dennis and Schrag, 2010	Synthetic calcite		0.629	0.019	20		11.636	0.689				
Dennis and Schrag, 2010	Synthetic calcite		0.691	0.028	20		11.636	0.755				
Dennis and Schrag, 2010	Synthetic calcite		0.640	0.004	25		11.249	0.701				
Dennis and Schrag, 2010	Synthetic calcite		0.608	0.014	30		10.881	0.667				

Dennis and Schrag, 2010	Synthetic calcite		0.612	0.002	30		10.881	0.671				
Dennis and Schrag, 2010	Synthetic calcite		0.586	0.014	40		10.198	0.644				
Dennis and Schrag, 2010	Synthetic calcite		0.549	0.014	50		9.576	0.605				
Dennis and Schrag, 2010	Synthetic calcite		0.562	0.015	60		9.010	0.619				
Dennis and Schrag, 2010	Synthetic calcite		0.530	0.008	70		8.492	0.585				
Dennis and Schrag, 2010	Synthetic calcite		0.555	0.019	70		8.492	0.611				
Dennis and Schrag, 2010	Synthetic calcite		0.526	0.015	77		8.156	0.581				
Publication	Material	Taxa	∆ 47 (‰)	1 s.e.	Growth T (°C)	T (°C) error	10 ⁶ /T ²	Calculated Sample	Paramater Used	Source of standard	Measured or assumed	Accepted ▲47 (ARF)
		(where given)	(SD)			(where given)	(T in Kelvin)	Δ ₄₇ (ARF)	For Transfer Function	Δ ₄₇ (SD) data	Δ ₄₇ (SD)	(Dennis et al., 2011)
Thiagarajan et al., 2011	Coral	Desmophyllum	0.733	0.007	7.9		12.660	0.788	NBS-19	Accepted Caltech value	0.352	0.392
Thiagarajan et al., 2011	Coral	Desmophyllum	0.736	0.006	7.9		12.660	0.791	heated gas	As described in Dennis et al, 2011	0	0.0266
Thiagarajan et al., 2011	Coral	Desmophyllum	0.732	0.009	7.9		12.660	0.786				
Thiagarajan et al., 2011	Coral	Desmophyllum	0.736	0.008	7.9		12.660	0.791				
Thiagarajan et al., 2011	Coral	Desmophyllum	0.722	0.005	7.9		12.660	0.776				
Thiagarajan et al., 2011	Coral	Desmophyllum	0.726	0.007	7.9		12.660	0.780				
Thiagarajan et al., 2011	Coral	Desmophyllum	0.697	0.006	7.9		12.660	0.750				
Thiagarajan et al., 2011	Coral	Desmophyllum	0.707	0.009	13.1		12.204	0.761				
Thiagarajan et al., 2011	Coral	Desmophyllum	0.695	0.008	13.1		12.204	0.748				
Thiagarajan et al., 2011	Coral	Desmophyllum	0.717	0.010	13.1		12.204	0.771				
Thiagarajan et al., 2011	Coral	Desmophyllum	0.749	0.006	4.2		13.000	0.804				
Thiagarajan et al., 2011	Coral	Desmophyllum	0.762	0.010	9.8		12.491	0.818				
Thiagarajan et al., 2011	Coral	Desmophyllum	0.715	0.005	9.8		12.491	0.769				
Thiagarajan et al., 2011	Coral	Desmophyllum	0.727	0.008	9.8		12.491	0.781				
Thiagarajan et al., 2011	Coral	Desmophyllum	0.772	0.008	2.3		13.180	0.828				
Thiagarajan et al., 2011	Coral	Desmophyllum	0.744	0.010	3.7		13.047	0.799				
Thiagarajan et al., 2011	Coral	Ennalopsammia	0.675	0.004	14.3		12.103	0.727				
Thiagarajan et al., 2011	Coral	Ennalopsammia	0.738	0.009	7.5		12.696	0.793				
Thiagarajan et al., 2011	Coral	Caryophyllia	0.688	0.011	17.4		11.846	0.741				
Thiagarajan et al., 2011	Coral	Caryophyllia	0.744	0.008	4.6		12.963	0.799				
Thiagarajan et al., 2011	Coral	Caryophyllia	0.744	0.008	6.1		12.824	0.799				
Thiagarajan et al., 2011	Coral	Porites	0.650	0.006	25.2		11.234	0.701				
Thiagarajan et al., 2011	Coral	Porites	0.639	0.006	25.2		11.234	0.690				
Thiagarajan et al., 2011	Coral	Porites	0.648	0.005	25.2		11.234	0.699				
Thiagarajan et al., 2011	Coral	Porites	0.615	0.007	25.2		11.234	0.665				

 $SD = Relative to the stochastic distribution. Also referred to as data in the Caltech Intralaboratory reference frame. Includes the acid digestion correction of 0.08. <math>\pm$ Values are one standard error ARF = Values given on the absolute reference frame