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Review I:  
 
The authors propose an approach based on chemostat model analysis to explain 
phytoplanktonic biodiversity and species successions through different scenario 
representing various seasons and latitudes. The model combines genomic information to 
the uptake and growth rate of 3 N and 3 P substrates. Changing environmental conditions 
are then simulated, in order to simulate phytoplankton community structure. 
 
This work can be seen as an attempt to give more mechanistic explanations to the 
work of Follows et al., but I don’t think it achieves this goal. 
 
As described in the abstract, the main purposes of our model are to first develop a new 
biogeochemical model that includes phytoplankton genomic information; secondly, to 
link genetic activation with biogeochemical processes; and finally to study phytoplankton 
adaptation under the changing environments.  
 
Although the method we use to assemble the phytoplankton communities is similar to 
that developed by Follows et al. (2007), our overall methodology differs from theirs in 
that each type of phytoplankton in our model is able to adapt to available nutrient 
concentrations by using different pathways of nutrient utilization encoded in its genome. 
A by-product of developing this model is that it does indeed provide a possible 
mechanistic grounding for the methodology of Follows et al. (2007), but this was not the 
main aim of the project. 
 
The three principal limit of the paper are 1/ the frightening assemblage of hypotheses, 
most of them being difficult / impossible to verify, 2/the use of chemostat framework to 
extrapolate results in the ocean 3/ the lack of systematic simulation exploration of the 
possible parameter values: 
 
We agree with the reviewer that the model contains some key assumptions. Some of them 
may be tedious and time-consuming to verify, but we disagree that they are inherently 
impossible to verify. For example, we know qualitatively that phytoplankton with larger 
genomes tend to have lower maximum growth rates (Hessen et al., 2009). But the 
quantitative relationship between genome size and growth rate is not known for some 
phytoplankton types in our model. Because of this, we run a sensitivity analysis to 
quantify how our hypothesized relationship will affect the model output.  Results from 
this analysis are shown at the end of this reply.  
 
1- The set of hypotheses which are assumed in order to derive the model strongly limit 
the breadth of the model. The list of fragile and unverified hypotheses gives the feeling of 
an abstract exercise.  
 
Equations (5), (6) and (8) would require more experimental support.  
 
The aim of equations (5)-(6) is to provide a simple mathematical representation of 
nutrient uptake when organisms have the ability to utilize membrane transporters under 
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low nutrient concentrations. This process of facilitated diffusion is best described used a 
reaction-diffusion equation which requires knowledge of both diffusion and reaction 
rates; the latter are known for only a very few, specialized cases. So, to simplify our 
model, we assume that the chemical reaction rate is much faster than the diffusion rate 
resulting in a diffusion-limited process. 
 
In order to clarify the above process, we have altered the text on “p. 821, l. 21-22” to read 
“Through the further assumption that nutrient elements and specialized enzymes 
immediately react as soon as they encounter each other at the cell surface (Atkin, 1998; 
Eigen and Hammes, 2006), the nutrient uptake is limited only by diffusion process and 
calculated as the nutrient diffusive flux to the surface of a cell of radius R (Jumars et al., 
1993; KarpBoss et al., 1996) by:” 
 
We use equation (5) to describe transport by passive diffusion for NH4 and PO4 only 
when they are abundant. Nutrient transport to the cells is by passive diffusion for all 
phytoplankton types in our model regardless of genetic combination. Compared to 
equation (6), Eq (5) indicates that nutrients (NH4 and PO4) around the cell surface won’t 
be completely removed. In our model, we use the critical extracellular concentrations 
(C0,j) to quantify the lower limit to the nutrient concentration which still allows for uptake 
by passive diffusion.  
 
We made this assumption because 1) there is a lack of experimental results that would 
allow for a more detailed model to be used (as pointed out by the reviewer) and 2) the use 
of C0,j provides a transition from passive to facilitated diffusion and a convenient way to 
link environmental changes of nutrient concentrations with genetic activation. We agree 
with the reviewer that it is important to examine the sensitivity of the model to the values 
of the constants chosen and so we have run a series of sensitivity analyses to test the 
influence of different choices of C0,j on the model results (see the end of this document).  
 
Equation (8) serves several purposes. It is well known (e.g. Follows et al., 2007) that this 
type of simulation can easily create a “super-organism” that can outcompete all others. 
Equation (8) helps to avoid this situation by reducing the growth rate of organisms with 
large genomes (i.e. those organisms with greater flexibility in nutrient acquisition etc.). 
Although a quantitative understanding of how genome size affects cell maintenance costs 
and growth rate is lacking, there is some evidence of an inverse relationship between 
growth rate and genome size (e.g. Hessen et al., 2009). Because of this lack of 
quantitative information we chose to use a very simple form for equation (8) that 
expresses the core of the idea.  
 
Maximum and minimum cell quota are derived from allometric hypotheses, but 
the publications which are mentioned do not refer to a nitrogen or phosphorus quota, but 
to the chla quota, this is rather different.  
 
The reviewer is correct and this was our mistake! The reference cited was from an old 
version of the manuscript and does not reflect the values that were used in the model. The 
model used P and N cell quotas obtained from Shuter (1978). We have corrected this in 
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the manuscript by giving the correct references and citations: the references (p.821, l. 14 
& 15) have been adjusted to (Shuter 1978; Blasco et al., 1982).  
 
Moreover, the parameter choice is not very convincing and seems very arbitrary. This is 
particularly true for the parameters of Table 3. The authors should give a better 
justification of this choice, and more important, they should assess the influence of a 
given parameter set on the model results (sensitivity analysis). The way the parameters 
are chosen is unclear, especially for the parameters which play a key role, such as the 
critical extracellular concentration. 
 
We thank the reviewer for the suggestion of performing a sensitivity analysis. We have 
done this for the critical parameters r (the growth reduction constants that appear in 
equation (8)) and C0 (the critical extracellular nutrient concentration) and will include a 
section in the manuscript covering this — the proposed section is included as an appendix 
to this response. Other parameters in Table 3 are either taken from experiments (such as 
diffusion coefficients for each nutrient) or widely used in literatures (such as minimum 
and maximum intracellular N and P content).  
 
2- This is not clear how many simulations have been run to get the results, and if 
there is a preliminary simulation to reach periodic values, and how many seasons are 
tested. The results should be stable despite various initialization and parameter choice. 
 
The following paragraph has been added on “p. 826, l. 4” to make the manuscript clearer.  
“The initial values of nutrient concentrations are set to zero among all scenarios. The 
initial values for phytoplankton cell density and cell quota are 10 cells/l and average 
value of maximum and minimum cell quota respectively. The model run for 5 five years 
and after a quasi steady-state is established for all variables in the model, the last year’s 
results are presented in the next section.” 
 
Despite not having light controls, the patterns of phytoplankton community diversity in 
the model scenarios share some similarities with observed biodiversity patterns. This 
assertion seems rather weak and too vague. It should be supported by statistical analysis 
of large simulations sets initiated from arbitrary choices of parameters and initial 
conditions. This property could be claimed only if it turns out to be stable, for randomly 
chosen initial conditions, parameters and dilution rate (in a given range). 
 
As shown in the sensitivity analysis, the dominant species in experiment I are almost the 
same as the base when we double the C0

NH4 or C0
PO4. The relative percentage difference 

of phytoplankton biomass is always below 10%. Although nearly half of the dominant 
species are different from the base in the experiment II, the small, slow-growing 
phytoplankton types are still the most common species among the dominant species 
under the settings of Scenario II.  
 
3- The reduction of the model to a CSTR is of course a tremendous assumption which 
strongly shorten the work scope. Moreover, the choice of the dilution is arbitrary, it is 
well known however that it can be determinant for the competition outcome. 



	
   4	
  

 
As we stated in the manuscript, this model is meant to be a proof of concept, and we are 
currently working to extend the model to more realistic settings such as the Amazon 
River Plume where we have both biogeochemical and omics data. The current focus is to 
form a model framework to include genomic information, predict gene expression 
patterns, and study phytoplankton adaptation. As a result, we have attempted to keep the 
model as simple as possible. 
 
We agree that the choice of dilution rate will affect the competition outcome. For 
example, if dilution rate is higher than maximum growth rate, nothing will survive. On 
the other side, if dilution rate becomes zero, phytoplankton community will be eventually 
dominated by slow-growing type of small phytoplankton. We chose our dilution rates to 
represent, in some broad (though admittedly highly simplified) sense, nutrient input to the 
surface waters from mixing. Although the choice of dilution rate is arbitrary in both 
scenarios (dilution rates change in Scenario I from 0.1 to 0 and from 0.01 to 0 in Scenario 
II), a higher dilution rate (0.1) was used in Scenario I in the spring in order to represent 
stronger mixing from below the mixed layers. Lower dilution rates (0.01) were used in 
Scenario II in the spring to represent weaker mixing. A zero dilution was used in the 
middle of the year to represent the ocean surface during the summer stratification period.   
 
4- Other comments: Because of the crucial role of the nitrogen fixing cyanobacteria 
which is highlighted by the model, a more accurate representation of the underlying 
mechanism should be included. It should include the (high) energetic cost to activate the 
nitrogenase. 
 
We agree that the nitrogen fixing cyanobacteria play a crucial role in the model that the 
activation of the nitrogenase is associated with the high cost. We did not wish to develop 
a whole cell model (it is impractical to embed such models into large scale 
biogeochemical models) and so tried to develop a simpler model that encapsulated the 
main features of the underlying mechanisms without introducing too much detail. To that 
end, the growth penalties used in equation (8) depend on the genes carried. As can be 
seen in Table 3, phytoplankton having the “nif” gene cluster receives the highest 
reduction of maximum growth (12). Therefore, the tradeoff associated with the higher 
energetic costs of N fixation is lower maximum growth rate when cyanobacteria are 
fixing N in a DIN deplete environment. 
 
Two crucial parameters (light and temperature) are not represented, and they may have a 
large impact stronger than the nitrogen and phosphorus limitations. 
 
We agree that crucial environmental parameters like light and T may have a strong 
impact on phytoplankton community and should be considered in a fully predictive 
model. However, the goal of this paper is to introduce the model framework as a proof of 
concept and to show that the model structure captures certain features seen in natural 
communities; in particular, that communities can adapt to changing environmental 
conditions Therefore, we consider our study as an initial attempt to build an ecological 
model that integrates microbial genomics and predicts gene expression patterns. It is far 
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from being a mature model, but the initial results are sufficiently encouraging for us that 
we are developing a more predictive version of the model.  
 
The genomic side in the model is very rough and simply consists in assuming some cell 
capability, and it links the number of these pathways to a maximal growth rate value. At 
the end, there is no real contribution of any genomic knowledge, and I have the feeling 
that the results obtained by this approach are less clear than for Follows approach, despite 
more fragile underlying hypotheses. Finally, the gain of the approach is not clear. 
 
The aim of this manuscript was to present a modeling framework that allowed for a link 
to be made between genomic information, biogeochemistry and community structure. We 
did not intend the manuscript to contribute to genomic knowledge per se, but instead to 
provide a framework for synthesizing genomic, biogeochemical and community structure 
information. We agree that the representation of genetic information in the model is very 
simple indeed. However, as the reviewer has alluded to, whilst there is abundant 
qualitative genomic information, there is little quantitative information (though that is 
changing). As the reviewer appreciates, this hinders any modeling effort. So, the question 
arises of how to incorporate the available genomic information into a model with 
biogeochemistry? To do this we have adapted the approach taken by Mick Follows and 
colleagues and extended it by developing a means to allow the organisms to adapt to 
changing environmental conditions by giving them suites of pathways that can be used 
under different conditions. In doing so we can track the changes in activation of these 
pathways and thereby provide a link to the -omics information available. For example, 
we can track the relative changes in activation of a certain pathway as environmental 
conditions change and compare that with quantitative changes seen in the –omics 
information. This link between the –omics information, biogeochemical information and 
community structure is what we gain by this approach. However, in order to do this, we 
have had to make simplifying assumptions. The initial “proof of concept” version of the 
model gives results that are generally satisfactory. The next phase is to incorporate this 
model into a larger framework and make comparisons with specific observations.   
 
The authors should work hard to address these points and propose a more convincing 
revision. 
 
Minor comment: 
 
Equation (2) should involve µ, instead of u, this seems to be simply a typo. 
 
This has been corrected. 
 
The meaning of the parameters is unclear and unconsistant. What the authors denote 
µmax is not the maximum growth rate. The maximum growth rate depends on the ratio 
Qmin/Qmax. Change µ’max into \bar \mu to avoid any confusion. But then, several 
relationships along the paper should be revisited. 
 
!!"#: in the modified version of our manuscripts, we will use !!"# to denote “maximum 
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potential growth rate” that only depends on the cell size, and call !′!"# the maximum 
growth rate (pp 823, ll 10).  
 
Appendix:  
 
We propose to run a series of sensitivity analysis and will add the following parts in the 
method and result sections of the manuscripts.  
 
2.8 Sensitivity Analysis:  
 

Values for two crucial model parameters are unknown. These are the growth 
reduction factor (r) and the critical extracellular nutrient concentration (c0) that controls 
the activation of the functional gene clusters. We examined the effect that the chosen 
values of these parameters have on the model results using a sensitivity analysis. The 
baseline model run used for this was scenario II and the 8 parameters were doubled 
individually (Exp I.1, c0

NH4 doubles; Exp I.2, c0
PO4 doubles; Exp II.1, ramt doubles; Exp 

II.2, rnr doubles; Exp II.3, rnif doubles; Exp II.4, rpst doubles; Exp II.5, rpho doubles; Exp 
II.6, rphn doubles) and the resulting total biomass and dominant species were compared 
with the baseline model run. 
 
3.4 Results of sensitivity analysis 
 

In general the total biomass predicted by the model was insensitive to the values 
for C0, with maximum relative differences of about 6% from the baseline simulation 
(Figure A.1). These differences were seen when C0

NH4 was varied, and the model showed 
no discernable difference from the baseline simulation when C0

PO4 was varied. 
Differences in biomass were significantly greater when varying the growth reduction 
parameters (Figure A.1). Differences from the baseline simulation were reasonably small 
(< 15%) when ramt was doubled, and slightly larger relative differences (< 25%) were 
seen when rcop was doubled. Variations in the remaining growth reduction parameters 
were larger (< 35%) 
 
 The different choices of parameters (C0 and r) also change the dominant species 
in the model results. In experiment I, increasing C0

NH4 and C0
PO4 does not significantly 

change the pattern of dominant species. Compared to the baseline simulation, the 
dominant species are generally small, slow-growing phytoplankton that contains P related 
gene clusters (Figure A.2). In experiment II we increased the growth reduction constants 
and this led to a change in which species dominated. The pattern of this change is 
especially obvious in experiment II.2, 3, 6; species that were dominant in the baseline 
simulation had lower relative abundances because of the increased penalty on growth. 
For example, phytoplankton types that possess nr, nif, and phn gene cluster are 
commonly found in the baseline simulation, but only one species having the nr gene is 
dominant in experiment II.2, one having nif gene in experiment II.3, and one having phn 
gene in experiment II.6 (Figure A.2).   
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Figure A1: Sensitivity analysis of phytoplankton biomass.  

(Relative Difference (%) = 
(!"#$%&'$()!!"#$)
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Figure A2: Sensitivity analysis of temporal variations of genetic combinations from 
dominant species (Note: dominant species on each day is represented by its combination 
of six genes on the y-axis according to the order of amt, nr, nif, pst, pho, phn from the 
bottom to top of y-axis; white bar stands for the presence of a particular gene.)   

 


