

Interactive
Comment

Interactive comment on “Nitrous oxide (N₂O) production in axenic *Chlorella vulgaris* cultures: evidence, putative pathways, and potential environmental impacts” by B. Guieyssse et al.

Anonymous Referee #2

Received and published: 25 July 2013

The study by Guieyssse et al. addresses a rather under-researched topic known for almost 3 decades now: Nitrous oxide production by microalgal and cyanobacterial cultures. Studies in this area of research are urgently needed of interest to many researchers. Although the basic finding that *Chlorella vulgaris* is capable of N₂O production is confirmatory, the authors speculate on N₂O formation pathways in *Chlorella vulgaris* based on experiments with nitrate reductase inhibitors, which is positive to guide future research. Further findings of the study included that nitrite rather than nitrate stimulate N₂O production. N₂O emissions of bioreactors with nitrate as N-source were significant due to accumulation of nitrite in the lower mM range. What is the significance of N₂O emissions by photo-bioreactors (% of global N₂O emissions per

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

year)? If yes, would it be feasible to operate bioreactors with ammonium as N-source rather than nitrate? Might there be other strategies to mitigate N₂O emissions? Such questions need to be addressed to clarify the relevance of the study. P9742 L17 Please give x g rather than rpm P9744 L8-14 Was nitrate reductase activity shown and the effect of the inhibitor verified? P9745 L25 Please give reference for IC method.

Interactive comment on Biogeosciences Discuss., 10, 9739, 2013.

BGD

10, C3741–C3742, 2013

Interactive
Comment

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

[Discussion Paper](#)

